Software Tools for Technology Transfer manuscript No.

(will be inserted by the editor)

Real-Time Specifications *

Alexandre David' and Kim. G. Larsen' and Axel Legay? and Ulrik Nyman' and Louis-Marie

Traonouez? and Andrzej Wasowski?

! Computer Science, Aalborg University, Denmark, e-mail: adavid@cs.aau.dk, kgl@cs.aau.dk, ulrik@cs.aau.dk
2 INRIA/IRISA, Rennes Cedex, France, e-mail: axel.legay@irisa.fr, louis-marie.traonouez@irisa.fr
3 IT University of Copenhagen, Denmark, e-mail: wasowski@itu.dk

Received: date / Accepted: date

Abstract A specification theory combines notions of
specifications and implementations with a satisfaction
relation, a refinement relation, and a set of operators
supporting stepwise design. We develop a specification
framework for real-time systems using Timed I/O Au-
tomata as the specification formalism, with the seman-
tics expressed in terms of Timed I/O Transition Systems.
We provide constructs for refinement, consistency check-
ing, logical and structural composition, and quotient of
specifications — all indispensable ingredients of a compo-
sitional design methodology.

The theory is implemented in the new tool ECDAR.
We present symbolic versions of the algorithms used in
ECDAR, and demonstrate the use of the tool using a
small case study in compositional verification.

Key words: Real-time systems, Stepwise-Refinement,
Compositional Verification

1 Introduction

Many modern systems are big and complex assemblies
of numerous components. The components are often de-
signed by independent teams, working under a common
agreement on what the interface of each component should
be. Consequently, compositional reasoning [41], the math-
ematical foundations of reasoning about interfaces, is an
active research area. It supports inferring properties of
the global implementation from the components, or ad-
visedly designing and reusing components.

* This paper is an extended version of the work previously pre-
sented in [24,23,26]. The main additions are (1) a unified presenta-
tion, (2) a deeper link between the theory and the tool, (3) proofs
of theorems, and (4) the description of case studies.

In a logical interpretation, interfaces are specifica-
tions, while components that implement an interface are
understood as models/implementations. Specification the-
ories may support various features including (1) refine-
ment, which allows us to compare specifications as well
as to replace a specification by another one in a larger
design, (2) logical conjunction, expressing the intersec-
tion of the set of requirements expressed by two or more
specifications, (3) structural composition, which allows
us to combine specifications, and (4) a quotient opera-
tor that is dual to structural composition. We shall see
that quotient is useful to perform incremental design and
to reason about assumptions and guarantees. Also, the
operations have to be related by compositional reason-
ing theorems, guaranteeing both incremental design and
independent implementability [32].

Building good specification theories is the subject of
intensive studies [20,31]. One successfully direction is the
theory of interface automata [31,32,45,52]. In this frame-
work, an interface is represented by an input/output au-
tomaton [50], i.e. an automaton whose transitions are
typed with input and output. The semantics of such
an automaton is given by a two-player game: the in-
put player represents the environment, and the output
player represents the component itself. Contrary to the
input/output model proposed by Lynch [50], this seman-
tic offers an optimistic treatment of composition: two
interfaces can be composed if there exists at least one
environment in which they can interact together in a
safe way. In [34], a timed extension of the theory of in-
terface automata has been introduced, motivated by the
fact that time can be a crucial parameter in practice,
for example in embedded systems. While [34] focuses
mostly on structural composition, in this paper we go
one step further and build a game-based specification
theory for timed systems that embbeds the four features
listed above.

We represent specifications by timed input/output
automata [42], i.e., timed automata whose sets of dis-
crete transitions are split into input and output transi-
tions (see Section 4). Contrary to [34] and [42], we dis-
tinguish between implementations and specifications by
adding conditions on the models. This is done by assum-
ing that the former have fixed timing behaviour and they
can always advance either by producing an output or
delaying. We also provide a game-based methodology to
decide whether a specification is consistent, i.e. whether
it has at least one implementation. The latter reduces
to deciding existence of a strategy that despite the be-
haviour of the environment will avoid states that cannot
possibly satisfy the implementation requirements.

Our theory is equipped with a refinement relation
(see Section 5). Roughly speaking, a specification Sy re-
fines a specification Ss iff it is possible to replace So
with S; in every environment and obtain an equivalent
system that satisfies the same specifications. In the in-
put/output setting, checking refinement reduces to de-
ciding an alternating timed simulation between the two
specifications [31]. In our timed extension, checking such
simulation can be done with a slight modification of the
theory proposed in [15]. As implementations are spec-
ifications, refinement coincides with the satisfaction re-
lation. Our refinement operator has the model inclusion
property, i.e., Sy refines Sy iff the set of implementations
satisfied by S; is included in the set of implementations
satisfied by S3. We also propose a logical conjunction op-
erator between specifications (see Section 6). Given two
specifications, the operator will compute a specification
whose implementations are satisfied by both operands.
The operation may introduce error states that do not
satisfy the implementation requirement. Those states are
pruned by synthesizing a strategy for the component to
avoid reaching them. We also show that conjunction co-
incides with shared refinement, i.e., it corresponds to the
greatest specification that refines both S; and Ss.

Following [34], specifications interact by synchroniz-
ing on inputs and outputs. However, like in [42,50], we
restrict ourselves to input-enabled systems. This makes
it impossible to reach an immediate deadlock state, where
a component proposes an output that cannot be cap-
tured by the other component. Here, in checking for com-
patibility of the composition of specifications, one tries
to synthesize a strategy for the inputs to avoid the error
states, i.e., an environment in which the components can
be used together in a safe way. Our composition opera-
tor is associative and the refinement is a precongruence
with respect to it (see Section 7). We propose a quotient
operator dual to composition (see Section 8). Intuitively,
given a global specification T' of a composite system as
well as the specification of an already realized compo-
nent S, the quotient will return the most liberal specifi-
cation X for the missing component, i.e. X is the largest
specification such that S in parallel with X refines T'.

Our methodology has been implemented in a new
tool ECDAR that is an extension of UPPAAL-TIGA [9] (see
Section 9). It builds on timed input/output automata,
a symbolic representation for timed input/output tran-
sition systems. We show that conjunction, composition,
and quotienting can be reduced to simple product con-
structions allowing for both consistency and compatibil-
ity checking to be solved using the zone-based algorithms
for synthesizing winning strategies in timed games [51,
17]. So while our theory is clearly new, our reduction
allows us to exploit well-established algorithms and im-
plementations which makes it robust. Finally, refinement
between specifications is checked using a variant of the
recent efficient game-based algorithm of [15]. The poten-
tial of our tool is illustrated on two case studies, each of
them showing the utility of the various features of our
theory (see Sections 10 and 11).

2 Introductory Example

We will now give a rough overview of the theory using
an example. Consider a vending machine that can serve
tea or coffee. Its specification is shown in Fig. 1(a). We
use the syntax of timed I/O automata[42]. The dashed
edges represent outputs and the solid ones correspond
to inputs. In the example, tea! is an output and coin?
is an input. The machine waits for coins and serves ei-
ther tea or coffee with different timing constraints. It
can also serve free tea after two time units. A possible
implementation of this machine is given in Fig. 1(b).
Our models share the following characteristics:

— Both specifications and implementations are deter-
ministic. This assumption reflects our experience of
working with engineers, who prefer to create deter-
ministic specifications. It also allows to create a the-
ory with good properties for compositional reasoning.

— Output transitions of the implementation Implemen-
tation must arrive at a fixed moment in time and
cannot be delayed. We say that an implementation
is output-urgent. Specifications are allowed to be im-
precise about timing of outputs, while implementa-
tions have fixed timing. Intuitively, this means that
not only the choice of action but also the timing (of
outputs) is deterministic. We do not restrict the tim-
ing of inputs as the environment may well be not
predictable.

— In Implementation, we can observe that each time the
output tea! from Idle to Idle is taken, Clock y is re-
set. Without this reset, the time would be stopped
and the execution would be stuck in the location Idle.
A desirable property is that either a component can
delay or it must be able to produce some output.
This property, called independent progress, guaran-
tees that the progress of time can happen without
relying on the environment.

a) | Machine b
Idle

~—

Implementation
Idle

coin cof tea coin

cof tea

c) | Researcher

Figure 1: a) Specification of a coffee and tea Machine, b) an implementation that refines the specification and c)
a Researcher that uses the Machine. Initial locations are double circled. Transition guards are written in green and

clock resets in blue, while location invariants are in purple.

— Both specifications and implementations are assumed
to be input-enabled. This is a natural requirement
that a component cannot prevent the environment
from sending an input. Instead we should be able
to decsribe the failure of the system, when an un-
expected input arrives. This assumption is made in
many specification theories[49,38,56,61,53].

Implementations relate to specifications through re-
finement. More precisely, our implementation model Im-
plementation refines our specification Machine in the sense
that whenever Implementation wants to produce an out-
put, that output is allowed by Machine, and Implementa-
tion accepts all the inputs specified by Machine. Then an
implementation is reusable in any envirnoment which ac-
cepts the specification. Also an implementation will not
produce more interactions than what the specification
allows in such an environment. We will see later that
checking refinement reduces to a two-player game where
the attacker plays delays and outputs on Implementation,
and inputs on Machine, while the defender responds with
outputs and delays on Machine and inputs from Imple-
mentation.

More generally, the refinement can be used to com-
pare specifications. Thanks to the assumptions of deter-
minism and input-enabledness, our refinement coincides
with implementation set inclusion, that is Specification
Ag refines Specification Ap if and only if the set of im-
plementations of Ag is included in the set of implemen-
tations of Ar.

Consider now the specification of UniSpec in Fig. 2.
A good university produces patents as a result of receiv-
ing grants. Observe the timing constraints that constrain
how often the university should produce patents. Our ob-
jective is to refine this specification by another one that
is more precise regarding the behavior of the researchers
and administration staff of the university. We consider
researchers who will publish, if provided with tea and
coffee, an administration that will turn grants into coins
(to fund tea and coffee) while turning publications into
patents, and a coffee machine that accepts coins and
produces hot beverages for the researchers. In order to
reason about each component individually, we will split

UniSpec u<=2

grant?

u=0

grant?

'u=0 patent! :
\ 7

patentt =7 T __PEET

fgrant I patent

Figure 2: Specification of the university component
(UniSpec).

the university specification into multiple specifications
that we will combine using composition operators. The
resulting specification shall then be checked against the
original one using refinement.

The specifications for the coffee machine and the re-
searcher are given in figures 1(a) and 1(c), respectively.
We assume that researchers publish more efficiently if
drinking coffee than when drinking tea. Furthermore, re-
searchers dislike tea, so if tea is served after a long period
of waiting (15 units of time) the subsequent behaviour
is undefined—supposedly due to irritation. Publications
are produced with the output pub!.

The case of the administration is somewhat more
complicated. Indeed, administration should not only turn
grants into coins but also turn publications into patents—
a conjunction of two requirements. We will model each
requirement individually and then compute their con-
junction, i.e, the specification that represents the set
of their common implementations: Administration is the
conjunction of HalfAdml and HalfAdm2, both presented
in Fig. 3. Observe that both specifications are input en-
abled and allow patents and coins as outputs. Given
grants (grant?), resp. publications (pub?), coins are pro-
duced within 2 time units (with coin!), resp. patents
(with patent!). In general, conjunction can introduce
bad behaviors in specifications, i.e, behaviors that can-
not be implemented because they do not respect prop-
erties such as independent progress. In our theory such
behaviors will be pruned using a game-based technique.

[HalfAdm1 b) [HalfAdm?2

~ I = C 1
1~ patent! grant FAAN coin
N

&
Nty

pub?

coin! grant? patent! (pub?
x=0 \ y=0
patent! i~~~ coinli” ~~
L X<=2 L y<=2
? ?
pub grant? pub grant?
grant patent pub coin grant patent pub coin

Figure 3: Two conjuncts that together model the Admin-
istration component.

We are now ready to compose our specifications in
order to derive a refinement of the university model.
Fig. 4 gives the overview of this refinement check. We
put in parallel the components for the researcher, the
coffee machine, and the administration. Our verification
engine then checks if this composition refines the spec-
ification of our university. The verification is done in a
compositional manner in the sense that every component
is explored locally, bad behaviour is eliminated (pruned),
and combined with the appropriate operator, shown in
the figure.

Slightly surprisingly, the refinement check of Fig. 4
fails. It turns out that since the machine allows the re-
searchers to get free tea, they can publish for free, which
can give patents for free—a scenario that has not been
anticipated in the specification.

3 Related Work

The objective of this section is mainly to survey a state-
of-the art for interface theory, not to make an exhaustive
list of all existing timed specification theories.

It has been argued [31,27,32] that games constitute
a natural model for interface theories: each component
is represented by an automaton whose transitions are
typed with input and output modalities. The semantics
of such an automaton is given by a two-player game: the
input player represents the environment, and the owut-
put player represents the component. Contrary to the
input/output model proposed by Lynch and Tuttle [50],
this semantic offers (among many other advantages) an
optimistic treatment of composition: two interfaces can
be composed if there exists at least one environment in
which they can interact together in a safe way. Game-
based interfaces were first developed for untimed systems
[32,28] and implemented in tools such as TICC [2] and
CHIC [21] for both synchronous and asynchronous mod-
els. The first dense time extension of the theory of in-
terface automata has been developed in [34], motivated
by the fact that real time is a crucial parameter in some
systems. The theory, which extends timed input/output

automata [42], was later implemented in TICC, but us-
ing discretized real time only [29]. The idea is similar to
the untimed case: components are modeled using timed
input/output automata (TIOAs) with a timed game se-
mantics [17]. The theory of [34] has never been com-
pleted, in the sense that it lacks support for conjunc-
tion and refinement (in contrast to the one presented
here). The usefulness of such theories for compositional
design of real time systems is thus limited. While tool-
ing is not the focus of this paper, let us mention that,
elsewhere [14], we show how the ECDAR tool and our
timed interface theory can be used to solve problems
that are beyond the scope of classical UPPAAL timed
input/automata extensions [13,11].

In [45] Larsen proposes modal automata, which are
deterministic automata equipped with transitions of the
following two types: may and must. The components
that implement such interfaces are simple labeled tran-
sition systems. Roughly, a must transition is available in
every component that implements the modal specifica-
tion, while a may transition need not be. Recently [12] a
timed extension of modal automata was proposed. This
series of works, which generalizes an early attempt [19],
embeds all the operations presented in the present pa-
per. However, modalities are orthogonal to inputs and
outputs, and it is well-known [47] that, contrary to the
game-semantic approach, they cannot be used to distin-
guish between the behaviors of the component and those
of the environment.

Among other modeling languages for specification,
one find those that use logical representations such as
Timed Computational Tree Logic (TCTL), Metric Tem-
poral Logic (MTL), or duration. While such logics are
generally convenient to reason on individual requirements
[54], they are generally not suited for operations such
as structural composition and quotient. To the best of
our knowledge, the expressiveness relation between log-
ical formalism and timed I/O automata or timed modal
specifications remains unknown. There are also timed
extensions of languages such as CSP. A comparison be-
tween CSP (and related process algebra languages) and
interface theories can be found in [8].

Finally, let us add that numerous authors have stud-
ied interface theories and component based design. Am-
ong them, one finds a series of very practical works that
do not study quotient and conjunction, but rather focus
on richer composition operations and specific models of
computation for interconnection and software design [1,
36,37]. Another example is the series of more recent pa-
pers that focus on composition and performance analysis
or scheduling for embedded systems [40]. While our the-
ory is certainly more general, it would be of interest to
learn from those models and the case studies they handle
in order to extend our composition operation.

There are of course other tools and theories for timed
systems. As an example, another tool supporting refine-
ment is PAT [57,58]. Unlike ECDAR, it builds on CSP

Machine

HalfAdml HalfAdm2
‘4‘,§$“ N

ounid pue

UniSpec

Researcher

X
&
&
&
&

TP e

S
L - : |
combine with operator L/

Figure 4: Illustration of the steps performed in a concrete refinement check. The grey box represents the part carried

out internally by the verification engine.

with a failure, divergence and refusal semantics which
makes a direct comparison difficult. However, the CSP
theory does not support quotienting nor simple con-
junction of specifications. And thus in contrast to Ec-
DAR, PAT does not support assume/guarantee reasoning
about systems. This related work survey only the posi-
tion of our work in the interface theory setting.

4 Specifications and Implementations

We use four classes of objects in our theory—specifica-
tions, and models (implementations) together with their
respective behavioral semantics as transition systems.
Two kinds of relations are used between the four classes:
operational semantics and satisfaction. Fig. 5 shows an
overview of the four classes of objects and relations be-
tween them.

We distinguish specifications and models. In the left
part of Fig. 5, a specification A and a model X can be re-
lated through a satisfaction relation |=, relating models
and specifications. The left half of Fig. 5, shows syntactic
objects (specifications and implementations), while the
right half shows the semantic objects (specification se-
mantics and implementation semantics). Horizontal ar-
rows point from syntactic objects to their semantics. Ver-
tical arrows point from specifications downwards to their
models (both in the syntactic and the semantic halves).

Traditionally specifications are logical formulas, and
models are witnesses of consistency of these formulas.
This is the view that most of the model-checking [22,
7] research takes. In our case, specifications are timed
games [51], resembling timed automata[3]. Since these
are symbolic finite representations describing continu-
ous state behavior, it is convenient to distinguish an-
other semantic layer, which describes this behavior op-
erationally. Thus we will say that the semantics of a
specification A (respectively of an implementation X) is
given by a Timed I/O Transition System [S Jsem (re-
spectively of a Timed I/O Transition System [X Jsem)-
Our transition systems are very similar to those induced

timed I/O | timed 1/O

automata transition systems
(finite) 1 (infinite)
|

w0

5 [

% A'&' S=[Alsem

3 |

@ |

& |

- E|------ |

2 |

OE |

s [Jsem
] X® —————= & P=[X]sem
£ |

Figure 5: Semantic Layer’s in our specification theory

by processes in [63], except that their discrete actions are
split into inputs and outputs, like in I/O automata [49].
Unlike in I/O automata we give them a game semantics,
not the language semantics.

Throughout the presentation of our specification the-
ory, we continuously switch the mode of discussion be-
tween the semantic and syntactic levels. In general, the
formal framework is developed for the semantic objects,
Timed I/O Transition Systems (TIOTSs in short) [39],
and enriched with syntactic constructions for Timed I/0
Automata (TIOAs), which act as a symbolic and finite
representation for TIOTSs. However, the theory for
TIOTSs does not rely in any way on the TIOAs represen-
tation—one can build TIOTSs that cannot be repre-
sented by TIOAs, and the theory remains sound for them
(although we would not know how to manipulate them
symbolically).

Definition 1. A Timed I/O Transition System (TIOTS)
is a tuple S = (Sts, 50, 2%, %), where St is an infinite
set of states, so € St is the initial state, X = X% @ X3
is a finite set of actions partitioned into inputs (X?°) and
outputs (X5) and —° : §t% x (XSUR>0) x St° is a transi-
s

tion relation. We write s-25°s instead of (s, a,s’) € —°,

and we write s-2° if 35'.5s%%¢’, and use i?, o! and d to

range over inputs, outputs and R>¢ respectively. Tran-
sitions that are labelled by actions (inputs or outputs)
are called discrete transitions, while transitions labelled
by real values are called timed transitions. In addition
any TIOTS satisfies the following:

[time determinism] if s-4+%’ and s-%%" then s’ =s"

[time reflexivity] s-2+°s for all s € St¥

[time additivity] for all s, s’ e St° and all d,ds € R,

we have sditde S¢ iff ¢ di S¢' and ¢'-425¢” for an

s' e St°.

We only work with deterministic TIOTSs in this paper:
for all @ € ¥ U R>o whenever s-25s' and s-25°5", we
have s’ = s” (determinism is required not only for timed
transitions but also for discrete transitions). In the rest
of the paper, we often drop the adjective ’determinis-

ic’. Of course, this definition of determinism does not
prevent from issuing several actions from the same state,
the only restriction is that one given action can only take
the system to a deterministic location.

For a TIOTS S and a set of states X, we write:
pred® (X) = {s € 8% | I €X. SLS'} (1)

for the set of all a-predecessors of states in X. We write

ipredS(X) for the set of all input predecessors, and
opredS(X) for all the output predecessors of X:

ipred” (X) = U, c s pred (X) 2)

opred” (X)) = Usess pred? (X) . (3)

Also postf% 40 (5) is the set of all time successors of a
state s that can be reached by delays smaller or equal to
d()t

posty 4, (s) = {s €St° | 3de|0,dy). s s} (4)

Following [51] we will later use these operators to find
strategies for safety and reachability objectives imposed
on TIOTSs.

We shall now introduce a finite syntactic symbolic repre-
sentation for TIOTSs in terms of Timed I/O Automata
(TIOAs). Let Clk be a finite set of clocks. A clock val-
uation over Clk is a mapping u € [Clk — Rx>¢]. Given
d € R0, we write u+ d to denote a valuation such that
for any clock r we have (u+ d)(r) = = + d iff u(r) = «.
We write u[r — 0],¢. for a valuation which agrees with
u on all values for clocks not in ¢, and returns 0 for all
clocks in c. Let op be the set of relational operators:
op ={<,<,>,>}. A guard over Clk is a finite conjunc-
tion of expressions of the form x < n, where < is a
relational operator and n € N. We write B(Clk) for the
set of guards over Clk using operators in the set op, and
U(Clk) for the subset of upper bound guards using only
the operators {<, <}. We also write &?(X) for the pow-
erset of a set X.

Definition 2. A Timed I/O Automaton (TIOA) is a
tuple A = (Loc, qo, Clk, E, Act, Inv) where Loc is a finite
set of locations, gy € Loc is the initial location, Clk is a
finite set of clocks, F C Locx Actx B(Clk)x 2 (Clk) x Loc
is a set of edges, Act = Act; ® Act, is a finite set of
actions, partitioned into inputs and outputs respectively,
and Inv: Loc— U(Clk) is a set of location invariants.

If (q,a,¢,¢,q¢') € FE is an edge, then ¢ is an initial loca-
tion, a is an action label, ¢ is a constraint over clocks
that must be satisfied when the edge is executed, c is
a set of clocks to be reset, and ¢’ is a target location.
We denote NexztInu(q') = Inv(q') V (\,c.{r = 0}) the
invariant of the next location that restrict the guard of
the edge. Examples of TIOAs have been shown in the
introduction.

We define the semantic of a TIOA A= (Loc, qo, Clk,
E, Act, Inv) to be a TIOTS [A]sem = (Loc x (Clk —
R>0), (g0,0), Act, —), where 0 is a constant function map-
ping all clocks to zero, and — is the largest transition
relation generated by the following rules:

(¢:0,¢,¢,¢') €EE u€E [Clk— Rx)

u = pA ulr — Olrec = Invu(q’)
(‘L u)L’(q/7 u["' = O}T‘EC)

[Clk— R>¢] dE€R>o
(g,w) 4~ (q,u+d)

The TIOTSs induced by TIOAs, according to the above
rules, satisfy the axioms of Definition 1: time determin-
ism, time reflexivity, time additivity. Moreover, in order
to guarantee determinism of [A Jsem, the TIOA A has to
be deterministic: for each action—location pair only one
transition can be enabled at the same time.

This can be checked algorithmically with a standard
check for disjointness of guards of transitions with the
same action. For each location ¢ and each action a €
Act, check whether all its guards are mutually exclusive.
Formally, let G4, be the set of strengthened guards of
all a transitions leaving g:

g€ Loc wue u+d = Inv(q)

Gq.a = {© A NextInv(q') | whenever (q,a,¢,¢,q') € E}

(5)

To guarantee determinism check for each pair ¥, €

Gy,o whether the conjunction Inv(q) A ¢ A g is incon-
sistent, and do that for all locations.

We assume that all TIOAs below are deterministic.

4.1 Specifications

We will now introduce our notions of specifications and
implementations.

Definition 3 (Specification). A TIOTS P = (St*,
po, X, =) is a specification semantics if each state s €
St" is input-enabled: for each input i? € Z there exists
a state s’ € St” such that 2P’

A TIOA A is a specification iff its semantics [A Jsem
is input-enabled.

The assumption of input-enabledness, also seen in many
specification theories [49,38,56,61,53], reflects our belief
that an input cannot be prevented from being sent to a
system, but it might be unpredictable how the system
behaves after receiving it. A standard way of modeling
a disallowed input in such a setting is to redirect it to a
special universal state, where all actions are enabled—
the behaviour of the system becomes unpredictable after
reaching this state.

Input-enabledness encourages explicit modeling of this
unpredictability, and compositional reasoning about it;
for example, it allows asking if an unpredictable be-
haviour of one component induces unpredictability of
the entire system.

In practice, tools should not require the users to spec-
ify input-enabled automata, as this quickly becomes te-
dious. There are however good strategies for making au-
tomata input-enabled. First, absent inputs can be in-
terpreted as ignored inputs, corresponding to location
loops in the automaton that can be added automatically.
Second, absent inputs can be interpreted as unavailable
(“blocking”) inputs, which are modeled by adding im-
plicit transitions to a designated error location (for ex-
ample a universal location as suggested above). Later,
in Section 7 we will call such a state strictly undesirable
and give a rationale for this name.

In order to check that a TIOA A induces an input-
enabled TIOTS [A Jsem, decide for each location ¢ €
Loc™ and each input action i? € Act if a disjunction of
guards of outgoing transitions labelled by 7 is entailed
by Inv(q). Formally, if G4 ;2 is the set of strengthened
guards (see (5)) of all i?—transitions leaving ¢, then in
order to check if 7 is always enabled in location ¢, check

\ v (6)

YEGy, 7

Inv(q) entails

To check if the entire specification automaton is input-
enabled just repeat the check for all location—input pairs.

4.2 Implementations

The role of specifications in a specification theory is to
abstract, or underspecify, sets of possible implementa-
tions. We will assume that implementations of timed sys-
tems have fixed timing behaviour (outputs occur at pre-
dictable times) and systems can always advance either by
producing an output or delaying. This is formalized us-
ing axioms of output-urgency and independent-progress
below:

Definition 4 (Implementation). A TIOTS P = (5t",
po, X, =) is an implementation semantics if it fulfills
the output urgency and independent progress conditions,
so if for each state p € St© we respectively have:

[output urgency| Vp', p” € St* if p2-Fp’ and p-4Lp”
then d = 0 (and thus, due to determinism p = p”)

[independent progress] either (Vd > 0.p-4F)
or 3d€R>¢.30!€ XP pdsp’ and p' 27,

A TIOA A is an implementation iff A is a speci-
fication and its semantics, [A Jsem, fulfills independent
progress and output urgency.

Independent progress is one of the central properties
in our theory: it states that an implementation cannot
ever get stuck in a state where it is up to the environment
to induce the progress of time. So in every state there is
either an output transition (which is controlled by the
implementation) or an ability to delay until an output
is possible. Otherwise a state can delay indefinitely. An
implementation cannot wait for an input from the envi-
ronment without letting time pass.

Remark 1. Our notion of implementation remains at the
theory level. Generating executable code and taking ro-
bustness into account is not the topic of this paper. How-
ever, one could exploit existing works [5] to generate ro-
bust C code from a given timed automaton.

In Section 9 we describe how to check for indepen-
dent progress and other important properties of specifi-
cations.

4.8 Specifications as Timed Games

Specifications are interpreted as two-player real-time ga-
mes between the output player (the component) and the
input player (the environment). The input player plays
with actions in Act; and the output player plays with
actions in Act,. A strategy for a player is a function that
defines his move at any state (either delaying or playing
a controllable action). As we will explain in the following
sections, strategies for output (respectively input) can be
interpreted as implementations (respectively compatible
environments).

A strategy is called memoryless if the next move de-
pends solely on the current state. We only consider mem-
oryless strategies, as these suffice for safety games [30].
For simplicity, we only define strategies for the output
player (i.e. output is the verifier). Definitions for the in-
put player are obtained symmetrically.

Definition 5. A memoryless strategy f, for the output
player on the TIOA A is a partial function Sl Alsem
Acty, U {delay}, such that

—1If f,(s) € Act, then 3s’.5-Lo(s) S5/
— If f,(s) = delay then 3s”.5-2°5" for some d > 0, and
fo(s") = delay.

The game proceeds as a concurrent game between the
two players. Then, by applying a strategy f, the output
player restricts the set of reachable states from the se-
mantics. This defines the outcome of the strategy, such

that for a state s € Sl Alsem Outcome(s, f,) is the set
of states defined inductively by:

— s € Outcome(s, f,),
— if s’ € Outcome(s, f,) and s’-%»s”, then
s" € Outcome(s, f,) if one the following conditions
holds:
1. a € Act;,
2. a € Act, and f,(s') = q,
3. a € R>o and Vd € [0,a[.3s"". s’ 45"
and f,(s") = delay.

In a safety game, the winning condition is to avoid a set
Bad of “bad” states. A strategy f, is a winning strategy
from state s if and only if Outcome(s, f,) N Bad = (. A
state s is winning if there exists a winning strategy from
s, and the game is winning if and only if the initial state
is winning. Solving this game is decidable [51,17,24].

5 Satisfaction, Refinement and Consistency

A notion of refinement allows to compare two specifica-
tions as well as to relate an implementation to a speci-
fication. Refinement should satisfy the following substi-
tutability condition. If P refines @), then it should be
possible to replace Q with P in every environment and
obtain an equivalent system.

We study these kind of properties in later sections. It
is well known from the literature [31,32,15] that in order
to give these kind of guarantees a refinement should have
the flavour of alternating (timed) simulation [4].

Definition 6 (Refinement <). A TIOTS S = (Sts,so,
X, —5) refines a TIOTS T = (St% 19, X, =), written
S <T, iff there exists a binary relation R C St°x St' con-
taining (so, to) such that for each pair of states (s,t) € R
we have:

1. whenever -7t for some ¢’ € St* then s-i*55¢ and
(s',t') € R for some s’ € St°

2. whenever 525’ for some s’ € St° then t-2T¢ and
(s',t') € R for some t' € St"

3. whenever s-45°s’ for d € R¢ then t-4T¢ and (s',t') €
R for some t' € St¥

A specification automaton A; refines another specifica-
tion automaton As, written Ay < Ay, iff [A; Jsem <
[[AQ]]sem-

It is easy to see that the refinement is reflexive and tran-
sitive, so it is a preorder on the set of all specifications
(and, of course, also on the set of all specification se-
mantics). Refinement can be checked for specification
automata by reducing the problem to a specific refine-
ment game, and using a symbolic representation to rea-
son about it. We discuss details of this process in Sec-
tion 9.

Fig. 6 shows a coffee machine that is a refinement of
the one in Fig. 1. It has been refined in two ways: one

Machine2 y>=2
SO)
7 coin? teal
4
d
.7 cof!
y>=4 y<=5
coin?

coin cof tea

Figure 6: A coffee machine specification that refines the
coffee machine in Fig. 1.

Inconsistent
coin?

Figure 7: An inconsistent specification.

output transition has been completely dropped and one
state invariant has been tightened.

Since our implementations are a subclass of specifi-
cations, we simply use refinement as an implementation
relation:

Definition 7 (Satisfaction). An implementation se-
mantics TIOTS P satisfies a specification semantics S,
written P = S, iff P < S. An implementation I sat-
isfies a specification A iff [I]sem = [AJsem. We write
[Almoa for all semantic models of A, s0 [A]moa = {P |
Pisa TIOTS and P = [AJsem}-

From a logical perspective, specifications are like for-
mulae, and implementations are their models. This anal-
ogy leads us to a classical notion of consistency, as exis-
tence of models.

Definition 8 (Consistency). A specification seman-
tics TIOTS S is consistent if there exists an input-enabled
TIOTS P such that P |= S, and P is an implementation
semantics. A specification A is consistent if its specifica-
tion semantics, [A Jsem, iS consistent.

All specifications shown until now are consistent. An
example of an inconsistent specification can be found in
Fig. 7: notice that the invariant in the second state (x<4)
is stronger than the guard (z>5) on the cof! edge; there-
fore this state does not fulfill the independent progress
condition, and it cannot be implemented.

We also define a soundly stricter, more syntactic, no-
tion of consistency, which requires that all states are con-
sistent:

Definition 9 (Local Consistency). A state s of a
specification semantics S is locally consistent if it ful-
fills independent progress. S is locally consistent iff ev-
ery state s € St” is locally consistent. A specification A
is locally consistent if [A Jsem is locally consistent.

Lemma 1. FEvery locally consistent specification seman-
tics S 1is consistent in the sense of Def. 8.

Proof (Lemma 1). Let us begin with defining an auxil-
iary function ¢ which chooses a delay and an output for
every locally consistent state s:

d for some d such that s-4°s’
0s = and Jo!. s’ 2.5 (7)

+oo ifVd>0.s45

Note that § is a function, so it always gives a unique
value of a delay for any state s, thus in the first case we
mean that an arbitrary fixed value is chosen out of un-
countably many possible values. It is immaterial for the
proof which of the many values is chosen. It is important
however that § is time additive in the following sense: if
s-4,s" and d < &, then 6y +d = J,. It is always possible
to choose such a function & due to time additivity of —°,
and local consistency of S.

We want to synthesize a TIOTS P = (St”, p,, 5°,
—P), where St = {p, | s € §t°}, £F = 5 with the
same partitioning into inputs and outputs, and — is
the largest transition relation generated by the following
rules:

s25s ire X8
1?7 P (8)
Ps— Ds’
1 S/ | S —
s&s ol ,EPEO 0s =0 (9)
Ds—2" Py
s S de RZQ d < 6
- (10)
Ps— Ds’

Since P only takes a subset of transitions of S, the
determinism of S implies determinism of P. The transi-
tion relation of P is time-additive due to time additivity
of —IAlem and of 4. It is also time-reflexive due to the
last rule (0 < §, for every state s and —° was time
reflexive). So P is a TIOTS.

The new transition relation is also input-enabled as
it inherits input transitions from A, which was input
enabled. The second rule guarantees that outputs are
urgent (P only outputs when no further delays are pos-
sible). Moreover P observes independent progress. Con-
sider a state ps. Then if 03 = +oo clearly ps can delay
indefinitely. If §, is finite, then by definition of § and of
P, the state ps; can delay and then produce an output.
Thus P satisfies conditions of Def. 8.

Now, the following relation R C St x St° witnesses
PES:

R:{(ps,s) |psEStP andsEStﬂA]]sem} (11)

This is argued using an unsurprising coinductive argu-
ment. O

It follows directly that:

Corollary 1. FEwvery locally consistent specification is con-
sistent (in the sense of Def.8).

We shall see later (Figure 8) that the implication
opposite to the one of Corollary 1 does not hold. To es-
tablish local consistency, or independent progress, for a
TIOA, it suffices to check for each location if the supre-
mum of all solutions of its invariant exists, whether it
satisfies the invariant itself and allows at least one en-
abled output transition.

Prior specification theories for discrete time [45] and
probabilistic [16] systems reveal two main requirements
for a definition of implementation. These are the same re-
quirements that are typically imposed on a definition of a
model as a special case of a logical formula. First, imple-
mentations should be consistent specifications (logically,
models correspond to some consistent formulae). Sec-
ond, implementations should be most specified (models
cannot be refined by non-models), as opposed to proper
specifications, which should be underspecified. For exam-
ple, in propositional logics, a model is represented as a
complete consistent term. Any implicant of such a term
is also a model (in propositional logics, it is actually
equivalent to it).

Our definition of implementation satisfies both re-
quirements, and to the best of our knowledge, is the
first example of a proper notion of implementation for
timed specifications. As the refinement is reflexive we
get P |= P for any implementation and thus each im-
plementation is consistent as per Def. 8. Furthermore
each implementation cannot be refined anymore by any
underspecified specifications:

Lemma 2. Any locally consistent specification seman-
tics S refining an implementation semantics P is an im-
plementation semantics as per Def. 4.

Proof (Lemma 2). Observe first that S is already lo-
cally consistent, so all states of S warrant independent
progress. We only need to argue that they also verify
output urgency.

Without loss of generality, assume that [.S Jsem only
contains states that are reachable by (sequences of) dis-
crete or timed transitions.

If S only contains reachable states, every state of S
has to be related to some state of P in a relation R wit-
nessing S < P (output and delay transitions need to be
matched in the refinement; input transitions also need to
be matched as P is input enabled and S is deterministic).

This can be argued for using a standard, though slightly
lengthy argument, by formalizing reachable states as a
fixpoint of a monotonic operator.

Now, that we know that every state of S is related
to some state of P consider an arbitrary s € St and let
p € St” be such that (s, p) € R. Then if s-°1555’ for some
state s’ € St° and an output ol € X5 it must be that
also p2Lsp’ for some state p' € St (and (s',p') € R).
But since P is an implementation, its outputs must be
urgent, so p A4 for all d > 0, and consequently s /%5
for all s > 0. We have shown that all states of S have
urgent outputs (if any) and thus S is an implementation.

O

Corollary 2. Any locally consistent specification S re-
fining an implementation P is an implementation itself.

We conclude the section with the first major theorem.
Observe that every preorder < is intrinsically complete
in the following sense: S < T iff for every smaller element
P < S also P < T'. This means that a refinement of two
specifications coincides with inclusion of sets of all the
specifications refining each of them:

S<T iff {P|P<S}C{P|P<LT} (12)
However, since out of all specifications only the imple-
mentations correspond to real world objects, another
completeness question is more relevant: does the refine-
ment coincide with the inclusion of implementation sets?
This property, which does not hold for preorders in gen-
eral, turns out to hold for our refinement:

Theorem 1 (Refinement Is Thorough). For any two
locally consistent specifications A, B we have that

A<LB fo [[Aﬂmod C [[B]]mod (13)

We split the proof of Theorem 1 into two lemmas.

Lemma 3 (Soundness). For all locally consistent spec-
ification semantics S and T, if S < T then for any im-
plementation semantics P, P |= S implies P = T.

Proof (Lemma 3). This lemma is a special case of the
transitivity of the refinement relation. Consider an im-
plementation semantics P of S. Then P < S and S < T,
implies P < T, which proves that P = T. a

Lemma 4 (Completeness). For all locally consistent
specification semantics S and T, if for any implementa-
tion semantics P, P = S implies P = T, then S <T.

In the following we write p |= s for states p and s of
TIOTS P (respectively S) meaning that there exists a
relation R’ witnessing P = S that contains the pair of
states (p, s).

10

Proof (Lemma /). Assume that every model of S is a
model of T'. Consider the relation R C St° x St

R = {(s,t) | for each implementation TIOA P

it holds that (p} E s = pb =)}, (14)

where pf’ denotes the initial state of P. We shall argue
that R witnesses S < T. It follows directly from the
definition of R and the assumption on model inclusion
that (so,t0) € R. Now consider a pair (s,t) € R. There
are two cases to be considered:

— For any input i? there exists ¢ € SI such that
2. T4 We need to show existence of a state s’ € St°
such that s-+°s" and (s',#') € R.

Observe that due to input-enabledness, for the same
i?, there exists a state s’ € St° such that s-1215Jsem g/,
We need to show that (s’,t') € R. By Theorem 1 we
have that there exists an implementation semantics
P with initial state p{’ such that p) & s’ (tech-
nically speaking, s may be a non-initial state of S,
but then we can consider a version of S with initial
state changed to s to apply Theorem 1, concluding
existence of the implementation P as above).

We will now argue that arbitrary implementation
semantics (not only P) satisfying the state s’ also
satisfies t’. So consider an implementation semantics
@ E S and its initial state q(c)2 such that q(? E s
We show that ¢& |= /.

Create an implementation Q' by merging Q and P
above and adding a fresh state qég " with all the same
transitions like the initial location of P (so targeting
locations of the P-part), except for the transition la-
beled by i?, which should go to ¢; so: qég,i@,qg?
and otherwise q(?l “—>le whenever pf’ 25"p for a #
1?. The transitions for all the other states of @’ are
like in P and @, depending to which of the two im-
plementation semantics the state originally belonged.
Now qég, E sasp | s and it follows all evolutions
of p for a # 47 and ¢-29 ¢ and qo E s'. By assump-
tion, every implementation semantics of s is also an
implementation semantics of ¢, so qu = ¢ and con-

sequently qo = t' as qu is deterministic on 7.

Summarizing, for any implementation gy = s we
were able to argue that ¢y | t/, thus necessarily
(s',t') € R.

Consider any action a (which is an output or a de-
lay) for which exists s’ such that s-2°s’. Similarly
as above, one can construct (and thus postulate ex-
istence) of an implementation P containing p € St*
such that p = s which has a transition p-25"p’. Since
then also p = t we have that there exists ¢’ € St”
such that t-25T#'. It remains to argue that (s',t') € R.
This is done in the same way as with the first case,
by considering any model of s’, then by extending it

Partially Inconsistent
coin?

/
4
7
7/
s coin?
4

.7 y=0
,7 cof!

/

y<=0
\\y:O

coin?

J
{coin I cof I tea

Figure 8: A partially inconsistent specification.

deterministically to a model of s, concluding that it
is now a model of ¢ and the only a-derivative, which
is p’, must be a model of ¢'. Consequently (s',t') € R.

O

A complete refinement in the above sense is also
sometimes called thorough (see e.g.[6]). The restriction
of the theorem to locally consistent specifications is not a
serious one. As we shall see later (Theorem 2), any con-
sistent specification can be transformed into a locally
consistent one preserving the set of implementations.

6 Consistency and Conjunction

6.1 Consistency

We will now study how consistency and refinement in-
teract with time lock errors (violation of independent
progress) in specifications. In particular we will give an
operational characterization of Def. 8.

An immediate error occurs in a state of a specifica-
tion semantics if the state disallows progress of time and
output transitions—such a specification will break if the
environment does not send an input. For a specification
semantics S we define the set of immediate error states
err® C St° as:

err®={s | (3d. s/%) and VdVo! Vs'.s-4s' implies s’ /2% }

It follows that no immediate error states can occur in
implementations, or in locally consistent specifications.

In general, immediate error states in a specification
do not necessarily mean that a specification cannot be
implemented. Fig. 8 shows a partially inconsistent speci-
fication, a version of the coffee machine that becomes in-
consistent if it ever outputs tea. The inconsistency can be
possibly avoided by some implementations, which would
not implement delay or output transitions leading to it.
More precisely an implementation will exist if there is a
strategy for the output player in a safety game to avoid
err’.

11

We will solve the safety game, by seeking states which
can delay until a safe move, without passing through any
unsafe states (or states from which a spoiling move ex-
ists). We first define the safe timed predecessor operator
[33,51,17], which gives all the states that can safely delay
until an output into X while avoiding the set of unsafe
states Y:

Pred? (X,Y) = {s € S° | 3dy € R0.3s" € X. s8¢
and postf) 4,(s) €V} (15)

Since in our game it is possible to play by delaying indef-
initely (not necessarily until an output is possible), we
need another operator, ldle;, that captures states that
can delay indefinitely without passing through unsafe
states. This operator is analogous to the above one, ex-
cept that it delays indefinitely. Again, Y denotes the
unsafe states:

ldlel (V) = {s € St° |Vd € R>0.3s' € Y. 545"} (16)

Now the set of safe states is computed as the greatest
fixpoint of the following operator 7, which is an adjust-
ment of the standard controllable predecessors operator
[33,51] that accounts for infinite delay moves:

(X)) =erS N [|d|ef (ipredS(Y))
U Pred? (opredS(X),ipredS(Y))} (17)

The 7 operator formalizes a two player game, when both
players choose a delay, possibly zero, and a move to be
made. The move with a shorter delay is executed. If the
two delays are equal then the move is nondeterministic,
and thus the operator computing the strategy requires
that both moves have to be non-losing.

The set of all consistent states cons® (i.e. the states
for which the environment has a winning strategy) is
defined as the greatest fixpoint of 7: cons® = 7(cons?),
which is guaranteed to exist by monotonicity of 7 and
completeness of the powerset lattice due to the theo-
rem of Knaster and Tarski [59]. For transition systems
enjoying finite symbolic representations, automata spec-
ifications included, the fixpoint computation converges
after a finite number of iterations [51,17].

°(

Lemma 5. A specification semantics S = (Sts, 55,39,

—%) is consistent iff s5 € cons®.

Correctness of the fixpoint characterization of win-
ning strategies for safety games has first been observed
in [51]. We have updated the theorem to our setting
(which allows idling as a possible move). Below we pro-
vide a proof for this extended version.

Proof (Lemma 5). First, assume that s € cons®. Show
that S is consistent in the sense of Def. 8. In a similar

fashion to the proof of Lemma 1 we first postulate ex-
istence of a function §, which chooses a delay and an
output for every consistent state s:

d S 1 ol S

5. 5454 and Jol. s’ 255

{d’ if As’,s” € cons
58 = .
400 otherwise

(18)

For each state s € cons® the value of §, can be de-
fined, since either s € Idle;(ipred®(cons%)) or s € Pred(
opred® (cons®), ipred” (cons®)). In the former case it must
be able to delay indefinitely through states in cons® (and
thus ds postulating the infinite delay is reasonable), in
the latter case it can delay until an output predecessor
of a state in cons®, without leaving cons® during the de-
lay. Note that § is a function, so it always gives a unique
value of a delay for any state s, thus in the first case
we mean that an arbitrary fixed value is chosen out of
possibly uncountably many values for d’. It is important
however that § is time additive in the following sense: if
s-%,s" and d < §, then 6y +d = §,. It is always possible
to choose such a function & due to time additivity of —°,
and the fact that cons® is a fixpoint of 7.

We show this by constructing an implementation se-
mantics P = (St”,pg, ¥,) such that St" = {p, |
s € Sts}, YP = 3% with the same partitioning in the
inputs and outputs, po = ps, and the transition relation
is the largest relation generated by the following rules:

" and s € cons® and §, =0

1. ps2Ppy iff s2 55
2. po 2P py iff s 25
3. ps-LPpy iff s45°s" and d < §,

Observe that the construction of P is essentially iden-
tical to the one in the proof of Lemma 1 above. It can
be argued in almost the same way as in the above proof,
that P satisfies the axioms of TIOTSs and is an imple-
mentation semantics. Here one has to use the definition
of 7 in order to see that the side condition in the first
rule, that is s’ € cons®, does not introduce a violation of
independent progress.

It remains to argue that P |= S. This is done by
arguing that the following relation R:

o}

R= {(p,s) e St x 8t° | ps

For the opposite direction, assume that S is consistent
and show that sy € cons®. Since S is consistent, then
there exists an implementation semantics P and P = 5,
witnessed by a satisfaction relation R. Without loss of
generality consider an implementation, which only has
reachable states, and all its states are related to some
states of S in R (so R is a total relation). Consider the
following subset of states of S:

X ={se 5t°| (p,s) € R for some state p of P} (20)

Obviously s5 € X. It suffices to show that X is a post-
fixed point of m. Then s € X C m(X) C cons®, since
cons® is the greatest such (post-) fixed point.

(19)

witnesses the refinement of S by P.

12

Remember that (p, s) € R for some state p of P. Also

p satisfies independent, progress. We consider two cases:

— p can delay indefinitely: Vd. p-4sp’ for some state p’.
But then also s-%.s' for some state s’ € St° and
(p',s') € R. So we have that all s € X. To show
that s € m(X) we need to see that s’ € errd and
s € Idlef (ipred®(X)). For the former this is quite
obvious, as s must satisfy independent progress, if p
does. For the latter assume that s-2-s’ 2% 5" for some
s" € X. It must be that p-4p’ for some state p’ €
StP | since p can delay indefinitely, and by satisfaction
(p',s') € R. Then also p'“5p” for some state p”
and (p”,s"”) € R by satisfaction. But then s € X,
which contradicts our assumption that s’ € X. Thus
all timed successors of s avoid unsafe states as per
definition of Idle] (ipred® (X)).

— p can delay until a safe output: 3dy € R>o. p-2esp’
o,y for some states p’ and p”’. Then by satisfac-
tion s-4o,s’' 9 ,s" for some states s’ and s, such
that (p',s"), (p”,s") € R, so ¢, s € X. To ar-
gue that s € Pred (opred(X),ipred(X)) it remains
to show that postg, ; 1(s)N ipred®(X) = 0. So assume

the opposite: s-95§ 2,§" for some delay d < dy and

states &', 8 with §” € X. Since p is time additive we
have that p-9-p’ for some state p’ € St and by sat-
isfaction p’22sp" for some state p”; witnessing that
§', 8" € X, which contradicts our assumption. Thus
it must be that s € Pred’ (opred(X), ipred(X)). O

Corollary 3. Consistency can be soundly established for
any specification A by applying the above procedure that
establishes Lemma 5 for [Alsem-

The set of (in)consistent states can be computed for
timed games, and thus for specification automata, using
controller synthesis algorithms [17]. We discuss it briefly
in Section 9.

The inconsistent states can be pruned from a con-
sistent S leading to a locally consistent specification.
Pruning is applied in practice to decrease the size of
specifications.

For a consistent specification semantics S = (Sts, 55 ,
X5 %) we define the pruned specification semantics
54 = (consS sp, &5, —57), where —5° = —5 N (consSx
(2% UR>0) x cons®).

Theorem 2. Let S be a consistent specification seman-
tics. S4 is locally consistent and [S Jmod =[S* Jmod-

Proof (Theorem 2). All the inconsistent states (that do
not fulfill the independent progress condition) are re-
moved from the pruned specification semantics, so obvi-
ously S4 is locally consistent.

Then, as we proved in Lemma 5, if we consider an
implementation P of S and the set X = {s € St° |
(p,s) € R for some state p of P} of the states from S
that are related to some state in P, then this set of states

is consistent: X C cons®. This allows to use the same
refinement relation R to show that P < S iff P < §4.

For specification automata pruning is realized by ap-
plying a controller synthesis algorithm, obtaining a max-
imum winning strategy, which can then be presented as
a specification automaton itself.

6.2 Conjunction

Consistency guarantees realizability of a single specifi-
cation. It is of further interest whether several specifi-
cations can be simultaneously met by the same compo-
nent, without reaching error states of any of them. We
formalize this notion by defining a logical conjunction
for specifications.

Definition 10 (Product x). Let S = (St°,s5, 2, —5)
and T = (St*, 3, X, =T be two specification semantics.
A product of S and T, written S x T, is defined to be
the specification semantics (St° x St*, (s5,s%), 2, —),
where the transition relation — is the largest relation
generated by the following rule:
t-2 Ty

SaSS/

a€X URZO
(s,t)2s (s, 1)

(21)

In general, a result of the product may be locally incon-
sistent, or even inconsistent. To guarantee consistency
we apply a consistency check to the result, checking if
(50,t0) € cons®*T and, possibly, pruning the inconsis-
tent parts:

Definition 11 (Conjunction A). For specifications S
and T over the same alphabet, such that SxT is consis-
tent, define SAT = (SxT)4

Conjunction is commutative, associative and it is the
greatest lower bound for locally consistent specifications
in the following sense:

Theorem 3. For any locally consistent specification se-
mantics S, T and U over the same alphabet:

1.SANT<Sand SNT<T

2.(U<S) and (U <T) implies U < (SAT)
3. [[S/\Tﬂmod = [[S]]mod N [[Tﬂmod

4. LISAT)ANU Jmod =[S A (T AU) Jmod

All the above facts naturally translate to syntactic spec-
ifications (TIOAs).

We omit the (fairly standard) proof for the first claim.
Intuitively the claim holds because S x T transitions
are strictly transitions of S (and of T') and because the
pruning producing (S x T)“ only removes output and
delay transitions (which are allowed to be dropped by
the refinement). It never removes input transitions from
reachable states.

The third claim follows from the first two and the
fact that the refinement coincides with model inclusion.
The fourth claim follows from repetitive application of
the third claim (and the fact that set intersection is the
least upper bound in every powerset lattice). We only
give a detailed proof for the second claim below.

Proof (Theorem 3.2). Assume that the relation Ry wit-
nesses U < S, and relation Ry witnesses U < T'. First,
show that the following set X is a post fixed point of 7:

X ={(s,t) | Ju e St (u,s) € R, and
(u,t) € R} (22)

Then we know that then (s,t) € X C 7(X) C cons®*7,
so all states in X are states of the conjunction.

Consider an arbitrary pair (s,¢) in X, such that (u, s)
€ Ry and (u,t) € Ry for some state u € StV . Show
that (s,t) € errSXT. This is easily seen ad absurdum. By
Lemma 1 we know that there exists an implementation
P and its state p such that p = wu. Since P is an imple-
mentation semantics it satisfies independent progress. So
p can delay independently, or until an output. By sat-
isfaction v can do the same, and by refinement both s
and ¢ can do the same. By construction of the prod-
uct (s,t) can thus do the same, and it cannot be that
(s,t) € errSxT,

Similarly, show (s,t) € IdleJ*” (ipredSXT(Y)) U

Pred? > (opredSXT(X), ipredSXT(7)>. This is again ar-
gued by the properties of u (and the fact that U is con-
sistent). Consider the state u witnessing that (s,t) € X.
Since U is consistent, it must be that u either admits
delaying indefinitely, or it delays until an output.

— Assume that for each delay d there exists a state u’
such that u-%su’ then, by refinement and construc-
tion (s,t)-<s(s’,t') for some (s',t') € X. Since u is
locally consistent, all intermediate successors states
are implementable thus intermediate time successors
of (s,t) cannot be in ipred®*” (X). Formally, consider
an intermediate successor u”, so u-4—u” and thus
(s,8)4(s", ") for some (s”,t") with (u”,s”) € Ry
and (u”,t") € Ry. Now if (s”,¢")2(s" ") for
some (s” ") € X we get a contradiction as by re-
finement it must be that v’ -/’ and v/’ witnesses
that (s"”,t"") € X.

— If w cannot delay indefinitely, then it can delay until
an output (by local consistency). We use an almost
identical argument that then both s and ¢ must be
able to do this, and so must their product. Avoiding
ipred® 7 (X) is argued ad absurdum exactly like in
the previous case. So we conclude that X describes
a consistent part of the product.

Now it remains to show that U indeed refines the
part of S x T induced by X. This is a standard proof

by arguing that the following relation R is a refinement
relation:

R={(u,(s,t)) € StV x X | (u,s) € R and

(u,t) € R} (23)

Since X C cons®*T, we have that R also witnesses re-
finement of SAT by U. ad

We turn our attention to syntactic representations
again. Consider two specifications TIOAs A; = (Loc1, ¢¢,
Clky, Ey, Act', Invy) and Ay = (Locz, g3, Clks, B, Act?,
Invy) with Act; = Act? and Act’ = Act®. Their conjunc-
tion, denoted A A As, is the TIOA A = (Loc, qo, Clk, E,
Act!, Inv) given by: Loc = Loc; x Loca, qo = (¢t,q3),
Clk = Clky W Clka, Inv((q1,q2)) = Inv(q1) A Inv(gz). The
set of edges E is defined by the following rule:

- If (Q17a7§01aclaq/1) € Ey and (qQaa79027627qé) € E2>
then ((q1,92),a, 01 A2, c1Ucs, (q1,43)) € E

It might appear as if two systems can only advance on an
input if both are ready to receive an input, but because
of input enabledness this is always the case.

The following theorem lifts all the results from the
TIOTSs level to the symbolic representation level:

Theorem 4. Let Ay and Az be two specification au-
tomata, we have [A1 Jsem N [A2]sem = [A1 A A2 Jsem-

7 Compatibility and Composition

We shall now define structural composition, also called
parallel composition, between specifications. We follow
the optimistic approach of [34], i.e., two specifications
can be composed if there exists at least one environment
in which they can work together. Parallel composition is
made of three main steps. First, we compute the classical
product between timed specifications [42], where compo-
nents synchronize on common inputs/outputs. The sec-
ond step is to identify incompatible states in the product,
i.e., states in which the two components cannot work
together. The last step is to seek for an environment
that can avoid such error states, i.e., an environment in
which the two components can work together in a safe
way. Before going further, we would like to contrast the
structural and logical composition.

The main use case for parallel composition is in fact
dual to the one for conjunction. Indeed, as observed in
the previous section, conjunction is used to reason about
internal properties of an implementation set, so if a local
inconsistency arises in conjunction we limit the imple-
mentation set to avoid it in implementations. A pruned
specification can be given to a designer, who chooses a
particular implementation satisfying conjoined require-
ments. A conjunction is consistent if the output player
can avoid inconsistencies, and its main theorem states

14

that its set of implementation coincides with the inter-
section of implementation sets of the conjuncts.

In contrast, parallel composition is used to reason
about external use of two (or more) components. We
assume an independent implementation scenario, where
the two composed components are implemented by inde-
pendent designers. The designer of any of the environ-
ment components can only assume that the composed
implementations will adhere to original specifications be-
ing composed. Consequently if an error occurs in parallel
composition of the two specifications, the environment is
the only entity that possibly has the power to avoid it.
Thus, following [31], we say that a composition is useful,
and composed components are compatible, if the input
player has a strategy in the safety game to avoid error
states in the composition. The main theorem will state
that if an environment is compatible with a useful speci-
fication, it is also compatible with any of its refinements,
including implementations.

We now propose our formal definition for parallel
composition. We consider two specification semantics S =
(Sts, 55,55 55 and T = (StT,soT,ET—?) and we say
that they are composable iff their output alphabets are
disjoint £ N YT = (). We say that two specifications are
composable if their semantics are composable.

As we did for conjunction, before defining the par-
allel composition we first introduce a suitable notion of
product.

Definition 12 (Parallel product ®). The parallel prod-
uct of S and T', which roughly corresponds to the one de-
fined on timed input/output automata [42], is the speci-
fication S®T = (St° @ St7, (s§, sT), 25T 59T where
the alphabet X5®T = 9 U X7 is partitioned in inputs
and outputs in the following way: %7 = (£5\ £T)U
(ZF\23), 25eT= 27 u X7,

The transition relation of the product is the largest
relation generated by the following rules:

s25¢ ae XS\ xT
ST [indep-I]
(S, t)_> (S) t)
te Ty aqeXT\ X5 fndep-r]
indep-r
(5,1)2T (s, 1)
PRACHY ta Ty

a € R UXT U (XS n XU (X5 nxP)
(s,1) 59T (s, 1)

Observe that if we compose two locally consistent
specifications using the above product rules, then the
resulting product is also locally consistent. Since we nor-
mally work with consistent specifications in a develop-
ment process, immediate errors as defined for conjunc-
tion are not applicable to parallel composition. More-
over, unlike [34], our specifications are input-enabled,

[sync]

and there is no way to define an error state in which
a component, can issue an output that cannot be cap-
tured by the other component. However, the absence
of “model-related” error states allows us to define more
elaborated errors, specified by the designer. Those can-
not easily be considered in [34].

When reasoning about parallel composition we use
model specific error states, i.e., error states indicated by
the designer. These error states could arise in several
ways. First, a specification may contain an error state in
order to model unavailable inputs in presence of input-
enabledness (transitions under inputs that the system is
not ready to receive, should target such an incompatible
state. Typically universal states are used for the pur-
pose of signaling unpredictability of the behaviour after
receiving an unanticipated input). Second, a temporal
property written in some logic such as TCTL[3] can be
interpreted over our specification, which when analyzed
by a model checker, will result in a partition of the states
into good ones (say satisfying the property) and bad ones
(violating the property). Third, an incompatibility in a
composition can be propagated from incompatibilities in
the composed components. It should always be the case
that a state in a product (s,t) is an incompatible state
if s is an incompatible state in .S, or ¢ is an incompatible
state in T'.

Formally, we will model all these sources of incom-
patibility as a set of error states. We will call this set
of states, strictly undesirable states and refer to it as
undesirable®. In the rest of the section, to simplify the
presentation, we will include the set of strictly undesir-
able states as part of specification definitions.

We say that a specification is useful if there exists an
environment F that can always avoid reaching a strictly
undesirable state, whatever the specification will do. Thus
the environment is characterizing a winning strategy for
the input player in a safety game to avoid undesirable
states. The environment £ is said to be compatible with
S.

We compute the set of useful states of S using a fix-
point characterisation. This characterization is a dual of
the safety game for consistency presented in the previ-
ous sections. We consider a variant of controllable timed
predecessor operator, where the roles of the inputs and
outputs are reversed:

w(X) = undesirable” N |Idle” (opred® (X))U

Pred; (ipred(X), opred(X))] (24)
Now the set of useful states useful® can be char-
acterized as the greatest fixpoint of w, so useful®

w(useful®). Again existence and uniqueness of this fix-
point is warrented by monotonicity of w. Since the w is
a simple dual of m we omit the proofs in this section,
as they are essentially isomorphic to the ones for consis-

15

tency and conjunction; with exception of the congruence
theorem, whose proof is standard.

Theorem 5. A consistent specification semantics S is
useful iff so € useful®. A consistent specification A is
useful iff sgA]]se‘“ € usefullAl=em.

The proof of Theorem 5 is a dual to the one of Lemma 5.

As for inconsistent states, undesirable states can be
pruned from the specification. For a useful specification
semantics S = (Sts, 55,55, %) we define the pruned
specification semantics S = (useful® U {u}, s, X5, =5,
where u is a universal state (allows arbitrary behaviour)
and —5” = 5 N(useful® U {u}x (25 UR>q) x useful® U
{u}). The following theorem shows that pruning the spec-
ification does not change the set of compatible environ-
ments.

Theorem 6. Let S be a useful specification semantics.
Then E is an environment compatible with S iff E is
compatible with SP.

The proof of Theorem 6 is a dual to the one of Theo-
rem 2 that shows that P is an implementation semantics
of specification S iff P is an implementation semantics
of S4.

Having introduced the general notion of usefulness
of components and specifications, we are now ready to
define compatibility of specifications and parallel com-
position. We propose the following definition, which is
in the spirit of [31].

Definition 13 (Compatibility). Two composable spec-
ification semantics S and T are compatible iff the ini-
tial state of S ® T is useful. Two composable specifi-
cations A and B are compatible if the initial state of
[Alsem ® [BJsem is useful.

Definition 14 (Composition ||). For two compati-
ble specification semantics S and 7' define their parallel
composition S || T = (S ® T)?, and undesirable*!” =
{(s,t) | s € undesirable® or ¢ € undesirable” }.

As we have discussed above, the set of strictly undesir-
able states, undesirabIeS®T, can be increased by the de-
signer as needed, for example by adding state for which
desirable temporal properties about the interplay of S
and T do not hold.

Observe that parallel composition is commutative,
and that two specifications composed, give rise to well-
formed specifications. It is also associative in the follow-
ing sense:

[STT) N Ulmoa =[5 (T U) Imoa

Theorem 7. Refinement is a pre-congruence with re-
spect to parallel composition; for any specification se-
mantics S1, So, and T such that S1 < Sy and S1 com-
posable with T, we have that Sy composable with T and
Sy || T < So || T. Moreover if So compatible with T then
S1 compatible with T.

(25)

We now switch to the symbolic representation. Par-
allel composition of two specification TIOAs is defined in
the following way. Consider two TIOA A; = (Loci, ¢},
Clkl, El, ACtl, Invl) and AQ = (LOCQ, qg, Clkg, EQ, ACtQ,
Invy) with Act) N Act2 = (). Their parallel composition
which is denoted Ay || As is the TIOA A = (Loc, qo, Clk,
E, Act, Inv) given by: Loc = Loc; x Loca, qo = (g}, q3),
Clk = Clky W Clkz, Inv((q1,q2)) = Inv(q1) A Inv(gz) and
the set of actions Act = Act; W Act, is given by Act; =
Act} \ Ac2 U Act?\ Act: and Act, = Actl U Act?. The set
of edges F is defined by the following rules:

— If (¢1,a,91,c1,q]) € Ey with a € Acty \ Acty then for
ea‘Ch q2 S LOCQ ((Q1a QQ)v a, Y1, C1, (qia C]2)) EE

— If (q2,a,92,c2,q5) € Ex with a € Acty \ Acty then for
each q1 € LOCl ((qla q2)7 @, p1,C1, (QIa q/Q)))

- If (Q17a7§01aclaqll) € El and (quavaaCQanZ) € E2
with a € Acty N Acty then ((q1,¢2),a,p1 A 2,1 U
C2, (qia q12)) €EF

Just like for conjunction, after the composition, the re-
sult can be pruned to limit the representation to useful
states. Note that the result of this pruning may lead
to a locally inconsistent specification. The consistency
pruning (A) can be applied subsequently to fix this, if
desirable.

Finally, the following theorem lifts all the results from
timed input/output transition systems to the symbolic
representation level.

Theorem 8. Let Ay and As be two specification au-
tomata, we have [A1 Jsem || [A2]sem = [A1 || A2 Jsem-

8 Quotient

The quotient operator allows for factoring out behavior
from a larger component. If one has a large component
specification 7" and a small one S then T\ S is the spec-
ification of all the models that when composed with S
refine T. In other words, T\\S specifies the work that
still needs to be done, given availability of an implemen-
tation of S, in order to provide an implementation of T'.
We first describe the theory behind the operator, then
we show how it can be exploited to reason on assump-
tions and guarantees.

We have the following requirements on the sets of
inputs and outputs of the dividend 7" and the divisor S
when applying quotienting: Eis C EiT UXT and X5 C
XT (and S must be well-formed, so X% and X3 are dis-
joint).

We proceed similarly to structural and logical compo-
sitions and start with a pre-quotient that may introduce
error states. Those errors are then pruned to obtain the
quotient.

Definition 15 (Pre-quotient X). Given two specifi-
cation semantics S = (St5 55, X5 5) and T = (S5 7,
YT T their pre-quotient is a specification semantics

16

TXNS = (St (s5,tF), ¥, —), where St = (8§t° x St') U
{u,e} where u and e are fresh states such that u is uni-
versal (allows arbitrary behaviour) and e is inconsistent
(no output-controllable behaviour can satisfy it). State
e disallows progress of time and has no output transi-
tions. The universal state guarantees nothing about the
behaviour of its implementations (thus any refinement
with a suitable alphabet is possible), and dually the in-
consistent state allows no implementations.

Moreover we require that ¥ = X7 with % = X' U
Y9 and X, = XT\ X9 Finally the transition relation

—T™5 is the largest relation generated by the following
rules:
ta Ty gaSd ,e¥Sy R0 '
a TRS (4 o [all]
(t, S)—> (t , S)
S 7&5 a € 25 U R>0
(1,5) 4 n5 = [unreachable]
,S)— u
t /ol safy aexSnxl .
(1, 5) L5 [unsafe]
te Ty qe XT\ X5 dividend
a TS (41 [dividend]
(t,s) 272 (1))
a€XURz0 (o aeX .
s, [universal] ToaSe [inconsistent]

It is not hard to see that the pre-quotient T X\ S
is input-enabled. Inputs of T X S are X = X U X5,
The universal state u (respectively the inconsistent state
e) is input-enabled for X, due to the [universal] (resp.
[inconsistent]) rule. For the remaining states input-ena-
bledness follows from the remaining rules. Let a € Y.
For a € X9 we get that the transition exists by the
[unreachable], [unsafe], or [all] rule. Otherwise, if a € X
a transition is induced by the [dividend], or [all] rule.

Theorem 9 states that the proposed pre-quotient op-
erator has exactly the property that it is dual of struc-
tural composition with regards to refinement.

Theorem 9. For any two specification semantics S and
T such that the pre-quotient TX\S is defined, and for any
implementation semantics X over the same alphabet as
T XS, we have that S || X is defined and S || X <T iff
X<TXS.

We now give the proof for Theorem 9. First observe
that since X has the same input and output alphabets
as T)\ S, sets XX and X9 are disjoint and thus S || X
is defined. We split the argument for the two directions
of the equivalence into two separate lemmas below.

Lemma 6. For any two specification semantics S and
T such that T N S is defined and an implementation X
over the same alphabet as T X\ S':

S| X <T implies X <TXS

Proof (Lemma 6). We have the refinement relation R;
showing that S || X < T and need to present a relation
witnessing X < T X S. Consider:

Ry = {(z, (t,) | ((s,2),1) € R}

U{(x,u) |z € St*} (26)
We have to prove that Rs is a refinement relation. Let
(z,(t,8)) € Rs.

— Assume that (¢, s) %
and (2, (', s')) € Rs. Split in sub-cases depending on
which rule was used to conclude (¢, s) 2 (t', s).

[all] If both t-%-¢" and s-%-s’ then:
as z is input-enabled we have -2’ and by [sync-
io] that (s,x)-24(s’, 2'). Then since (s, x),t) € Ry
it must be that ((s',2'),¢') € Ry and (2/, (', ¢)) €
Rs.

Similarly if both t-*5¢' and s-:*»s’ then:
because x is input-enabled we have z-“-z’ and
by rule [sync-in| we have (s || #)-Z~(s" || ') and
thus ((s’,2'),t') € Ry, which allows concluding
that (2, (t',s')) € Ra.

Observe that other input/output combinations
with an application of [all] are not possible here:
ti¢" and s s’ would result in an output of the
quotient, contradicting the assumption; t*~¢' and
s4,s" is impossible as X7 C XT and the inputs
are disjoint from outputs.

[unreachable] Assume premise of [unreachable]. Then
(t,s)“>u. By input-enabledness of z get x-2%a’
and by construction: (z’,u) € Ra.

[unsafe] If i € XTI N XY then this rule cannot be used
to conclude that (¢, s) 2 (¢, s') because then ¢ /-
and s’ which implies that ((s,z),t) ¢ Ry (or
that R; is not a refinement relation).

If i € XT'n 2° then i € X9 so it cannot be
that (t,s)-%.

[dividend] We have that t-*¢" and, by input-enabled-
ness, v-*»2’ and i ¢ X°. By [indep-r] obtain
(s,2)2 (s, 2"), which with ((s,z),t) € Ry allows
concluding ((s,2’),t') € Ry and in turn (2/, (¢, s))
€ Rs.

[universal] Then (t,s) = u. It is trivial to see that
the transitions induced by this rule satisfy the
definition of refinement.

linconsistent| Then (Z,s) = e. This rule could have

not been used to induce (¢,s)-2(t,s’), simply
because (x, e) ¢ Rs.
— Assume z-2-2’ and show that (¢,5)-2%(¢,s') and
(z',(¥',5')) € Ra. Note that 0 € XX = X7\ X

If o e (XT\ X9)Nn X5 and then by the parallel
composition rule [sync-io] we have (s,z)-2%(s’,2')
and since ((s,z),t) € R; then also t-2t' for some
state t' and ((¢',2'),t') € Ry. But then by construc-
tion also (z’,(s',t")) € Ra. It remains to see that
(t,s)-2-(#,s') but this follows from rule [all].

(t',s"). Need to show that x %z’

17

If o € (XT\ X9)\ X5 the argument is analogous,
except that [indep-r] and [dividend] are used instead
of respectively [sync-io] and [all].
Assume that z-%2" and show (¢, s)-%»
(t',s")) € RS.

If s A5 then we can conclude by [unreachable] that
(t,s)-4u and (2/,u) € Re. Otherwise, if s-4-s" then
(s,2)-4s(s',2') and by ((s,z),t) € R1 we know that
t-4,t' for some state t’ and ((s’,z'),t') € Ry which in
turn gives (', (t',s")) € Ry. It remains to show that
(t,8)-25(t, s) which follows from [all].

Lemma 7. For any two specification semantics S and
T such that TN\ S is defined and an implementation X
over the same alphabet as T X\ S':

(t',s') and (2’

S| X<T<=X<TxS

Proof (Lemma 7).

We have the refinement relation Ro witnessing that
X < T NS and want to give a relation showing that
S || X <T. Consider:

Ry = {((S,Qf),t) | (Z‘, (tv

We have to prove that R; is a refinement relation.
Assume that (z, (¢, 5)) € R;.

s)) € Ra}

— Assume that t**-¢' and show states s’, 2’ such that
(s,2)(s',2") and ((s',2'),t') € Ry.

Since x is input-enabled then 2’2’ for some z’.
If i € X then also s-*s' and by rule [sync-io
we have that (s,z)%5(s',2’). Further by [all] also
(t, 8)(t', s') and since (z, (t,8)) € Ry also (2/, (',
s')) € Rs. This by construction gives ((s',z),t') €
R;.

Otherwise, if i € XT \ X7 use an analogous argu-
ment relying on [mdep r] and [dividend] rules instead
of respectively [sync-io] and [all].

Assume that (s,2)-25(s’,2’) and show that t-°.
and ((s',2'),t') € Ry for some state ¢'.

Case 2.1: If 0 € XX N X3 then have s<2.s’ and
-2%,2 by rule [sync-io]. Assume that ¢ 2. Then
by [unsafe| (, s)-2*»e and (determinism and inde-
pendent-progress!) it cannot be that (z, (¢,s)) €
R, since (2',e) ¢ Rs for any x’. So there must
exist t' such that ¢t-25¢'. Moreover by [all] we
get (t,5)-2% (¢, s') and since (z, (t,s)) € Ry also
get (2, (t',s')) € Re. By construction of Ry get
((¢',2"),t') € Ry.

Case 2.2: Assume o0 € XX N X5, Then have s-2%;s’
and z-2%2’ by [sync-io]. We use the same argu-
ment as above to conclude that ¢t-2-5¢' for some
state t’. Otherwise |unsafe| allows concluding that
(t,s)2>eand (z, (¢, 9)) € Ry is violated as (2, e) ¢
R>. By [all] we get (t 5)2L,(#', s") and since (z, (t,

s)) € Ry also get (2/,(t',s")) € Ra. By construc-
tion of Ry get ((s’,x’),t’) € R;.

t/

Case 2.3: If o € XX\ X% = XT\ X% then by [indep-r|
we have (s,z)-25(s,2') with 222’ Further, by
[dividend] have (¢,)2 (¢, s) and, since (x, (¢, s))
€ Ry, also (¢/,(t',s)) € Re which in turn gives
((s,2"),t") € Ry by construction of the latter.

Assume (s, 7)-%45(s’,2") and show that t-45¢’ and ((s/,

2'),t') € Ry. By [delay] we have that s-<.s’ and

r-4,2'. Since x-252', 545’ and (z,(t,s)) € Ry it

must be that (¢,s)-2(¢,s’) (because only rule [all]

could have been used) and (z/,(t',s’)) € Ry. Thus
also t-4¢' from the premise of [all] and ((s,2'),t') €

Ry

Finally, the actual quotient, denoted T\ S, is defined
if T\ S is consistent. It is obtained by pruning the states
of the pre-quotient T'X\ S from where the implementation
has no strategy to avoid immediate errors states err” \3
using the same game characterization like in Section 6.
It follows from Theorem 2 that Theorem 9 also holds
for the actual quotient operator Y\ (as opposed to the
pre-quotient).

Definition 16 (Quotient \\). For any specifications S
and T such that T X\ S is defined and consistent, define
T\S = (T X S)4.

Quotienting for specifications (TIOAs) is defined in
the following way. Consider two specifications Ap
(Locr,qt', Clkr, Ex, Actr, Invr) and As = (Locs, g5,
Clks, Es, Acts, Invs) with Act; C Act] and Act) C
Actg. The quotient, which is denoted Ar\Ag is the
TIOA given by: Loc = Locr x Locs U {ly,lp}, q0 =
(¢, 45), Clk = Clkr & Clks W {Tnew}, Inv((qr,qs)) =
Inv(l,) = true and Inv(lp) = {Tpew < 0}. The two new
states [, and [y are respectively universal and inconsis-
tent. The set of actions Act = Act; W Act, is given by
Act; = Actl U ActS U {inew} and Act, = Act? \ Act.

The set of edges E is defined by the following rules:

[unreachablel] For each qr € Locr,qs € Locs and
a € Act, ((g7,49s), a, 7 Invs(qs), {Tnew}. lu) € E.
[unsafel] For each qr € Locr, qs € Locg,

((qu QS)v inew; _'In'UT(qT)/\In'US(qS)v {xnew}v l@) S
[a”] It (qu a,yr,cr, q’/l“) € Er and (qsv a,ps,cs, qg‘) €
Es, then ((qr,9s),a, 91 A ps,cr Ucs, (a7,q5)) € E
[unsafe2] For each (gs,a, ¢s,cs,qs) € Eg with a €
Atha ((QTv QS)v a,ps A _‘GT, {xnew}y l@) clE

where Gr = \/{or | (¢r,a, o1, cr, q7)}

[dividend] For each (¢r,a,pr,cr,¢f) € Ep and a ¢
ACtS: ((qu QS)v a,pr,Cr, (Q’/]“a qS)) €eE

[unreachable2] For each (¢r,a, 7, cr, ¢f) € Er with
a € Act], ((gr,qs),a,~Gs,{}.l.) € E

where Gs = \/{ps | (¢s,a, ps,cs,95)}

[universal] For each a € Act;, (I, a,true, {},1p) € E
[inconsistent] For each a € Act, (1, a,true,{},1,) € E

Finally, the following theorem lifts all the results from
timed input/output transition systems to the symbolic
representation level.

18

Theorem 10. Let A1 and As be two specification au-
tomata, we have

([A1 Jsem ™ [A2Jsem)? = ([A1 XN Az Jeem)® (27)

8.1 Assumptions and Guarantees

In the following we will illustrate the utility of quotient-
ing. This section is a summary of results presented in
[25]. The contribution of the present paper is in apply-
ing the definition presented in this section to the park-
ing example of Section 11. We start with an example
that consists of three Timed I/O Automata specifica-
tions as shown in Fig. 9. We start with a simple specifi-
cation, shown in Fig. 9(a) of a system with two buttons.
The specification states that as long as only buttonl is
pressed (assumption) then only good output will be pro-
duced (guarantee). If at some point button2 is pressed
then the system could start to produce bad output. Fig-
ure 9 thus represents the combination of assumptions
and guarantees, each of them being described with a
TIOA. In general, one does not obtain such specifica-
tion directly, but rather from the combination of some
automata representing the assumptions and the guaran-
tees. We now show how quotient can be used to combine
assumptions and guarantees to obtain the automaton in
Fig.9.

The following definition taken from [25] presents an
operator known as weaken or weakening, that is used for
easier specification of assume guarantee specifications.
Weakening computes the largest guarantee one can get
under some assumption.

Definition 17 (Weaken >>). For any specifications
A and G we define G >> A as follows:

G>> A= (4]|G)\A

Let us go back to our example and show how it can
exploit the weakening operator. We would like to express
the assumptions and guarantees that we have to the sys-
tem separately and then retrieve the automaton in Fig.9.
In Fig. 9(b) we specify the assumption that button?2 is
never pressed while in Fig. 9(c) we specify the guaran-
tee that the system never produces bad output. Even
though, in this example, our ButtonSpec is quite sim-
ple the assumption ButtonA and guarantee ButtonG are
even simpler and extremely easy to understand. We then
compute ButtonG >> ButtonA and show that it coin-
cides (in terms of refinement) with ButtonSpec, i.e., we
use ECDAR to prove the following two refinements:

refinement: (ButtonG >> ButtonA) <= ButtonSpec
refinement: ButtonSpec <= (ButtonG >> ButtonA)

Thus effectively being able to substitute ButtonG >>
ButtonA for ButtonSpec in any context.

The possibility of splitting assumptions from guaran-
tees becomes even more appealing when having multiple
assumptions and guarantees that are conjoined.

a b c
) ButtonSpec) ButtonA)
|
,_g_of’ff_ button1? bad? ButtonG
.)/ ,~ . good!
A button2? s2 LD - AP
s1 ! - - button1! :_/ button1? ! good!
~<, <~
\ /7
</ bad!
button1? button2? good? button2?
bad good button1 | button2 bad good button1 Ybutton2 bad good button1 Y button2

Figure 9: Specification of a) the ButtonSpec, b) the assumption ButtonA, c) the guarantee ButtonG.

9 Tool Support

Our specification theory has been implemented in a new
tool called ECDAR. We shall now describe the function-
ality of the tool, then provide some details on the various
game-based algorithms implemented in ECDAR, and fi-
nally demonstrate what is possible in the tool using a
small case study. ECDAR is freely available at ecdar.cs.
aau.dk.

9.1 Architecture and Functionality

The architecture of ECDAR builds on UpPAAL. The tool
features a graphical user interface (GUI), and a model-
checker in the form of a server or a standalone verifier.
The user can edit, simulate, and specify properties in the
GUI.

Editor. The timed I/O automata (TIOA) are represented
as graphs with solid (input) and dashed (output) edges.

Since TIOAs must be input enabled, only broadcast com-

munications are allowed. The user has access to the other

features of the language such as user-defined types and

functions. All figures of specifications and implementa-

tions in this paper have been made using the editor of

ECDAR.

Simulator. The simulator, based on UPPAAL-TIGA, shows
networks of automata and will allow the user to se-

lect transitions according to how components are com-

posed (parallel composition or conjunction). The simu-

lator supports open systems and follows the semantics

of TIOAs as described in this paper. It cannot at the

moment simulate systems where the quotient operator

is used®.

Specification Interface. Another view in the interface is
used to specify properties using the expressions of our
theory. This view is similar to UPPAAL’s model checking
view. Unlike in UPPAAL, the simulator only works when

L The quotient generates components that cannot be displayed
in the GUIL.

19

a query has been checked previously because the struc-
ture of the system (as given by the different operations)
is defined in the query.

The properties supported are of the following types:

— consistency check with the syntax
consistency: system,

— refinement check with the syntax
refinement: system <= system

— implementation check with the syntax
implementation: system,

where system is a composition of components using the
parallel composition, conjunction, or quotient operator.
The consistency and refinement checks follow directly
the algorithms presented in this paper. The engine can
check if a system is an implementation according to the
constraints we have defined, such as output urgency and
independent progress.

The tool provides a strategy to prove or disprove the
property, which can be used to refine the model. The
strategy can be played interactively. Fig. 10 shows a
screenshot of such an interactive game. When the checked
property is satisfied for consistency and implementa-
tion, the user can choose inputs and the engine responds
with outputs. For refinement it is an alternating 2-player
game and the user plays the attacker and the engine the
defender if the property is satisfied. If the property is not
satisfied, the roles are inverted. ECDAR can also output
the resulting strategy in a textual format.

9.2 Implementation of ECDAR

ECDAR exploits the verification engine for timed games
implemented in UPPAAL-TIGA, the game extension of
UpPAAL [9,10]. EcDAR differs from UPPAAL-TIGA by
implementing compositional reasoning primitives.

The Game Solver of UPPAAL-TIGA The engine of
UPPAAL-TIGA supports the computation of winning stra-
tegies for timed games with respect to a large class of
timed temporal logic winning objectives such as reach-
ability /safety or even Biichi. All the algorithms imple-
mented in UPPAAL-TIGA build on the so-called reach-
ability algorithm of UPPAAL-TIGA introduced in [17].

FEile Edit View Tools inh?ns P
BlalE| «[ala|[R]@]+] e

[Editor | Simulator | Verifier

Help

Ispecu = 0.00

Gantt Chart

loeh 2 3 4 5 6 7 8 9 01 02 03 36 35 36 97 08°

5
4 ol

Figure 10: Playing a refinement counter-strategy in the
simulator.

Roughly speaking, this algorithm uses an on-the-fly ap-
proach to perform forward exploration of reachable states
and back-propagation of (so-far) computed winning states
in an interleaved manner using fixed-point operators as
shown in this paper. Crucial to any game solving algo-
rithm is the symbolic representation and efficient ma-
nipulation of state-sets. In UPPAAL-TIGA, our symbolic
representations exploit zomes, i.e. sets of clock valua-
tions characterized by constraints on individual clocks
and clock-differences. In particular the operators used
in the fixpoint algorithm of UPPAAL-TIGA are computed
using federations (unions of zones). In addition, the en-
gine implements the turn-based game solver of [15]. We
refer to this engine as the simulation engine.

The Game Solver of ECDAR The engine of ECDAR
reuses the same basic design as UPPAAL-TIGA to im-
plement its consistency checker with the addition of a
special component to characterize consistent states. In
addition, all components implementing the semantics of
the transition system are changed on-the-fly to choose
between the different operations of parallel composition,
conjunction, and quotienting. ECDAR also reuses the gen-
erated state graphs as internal inputs for incremental
consistency checks whereas UPPAAL-TIGA only takes a
network of timed game automata as input. Before us-
ing the result of a consistency check (for refinement or
to apply an operation), the state-graph is pruned with
respect to the strategy obtained from the consistency
game. The procedure is as follows: for every symbolic
state, restrict it to the winning states of the strategy;
and for every output transition, restrict to the ones al-
lowed by the strategy (by strengthening its guard). The
pruning feature is absent from UPPAAL-TIGA.

The consistency checker is used to check whether a
specification admits at least one implementation. This
question reduces to the one of deciding if there exists
a strategy for the output player to avoid reaching bad
states in the specification, i.e., states that do not satisfy

20

the independent progress property. To solve this con-
sistency game, we apply the reachability algorithm of
UPPAAL-TIGA where input transitions are controllable,
output transitions uncontrollable, and where states that
do not have any outputs nor allow time to elapse are tar-
get states. The game is then solved as in UPPAAL-TIGA
but with different components that change the semantics
and with the addition of pruning.

The refinement checker is used to decide whether an
implementation satisfies a given specification or if a spec-
ification refines another one. As we already said, refine-
ment checking reduces to a 2-player alternating game.
To solve this game, we change the rules of the simula-
tion game of UPPAAL-TIGA to match the semantics of
refinement, i.e., the rules w.r.t. controllable and uncon-
trollable transitions are inverted. In this game where we
check the refinement S < T, the first player (the at-
tacker) plays outputs on S and inputs on T, whereas the
second player (the defender) plays inputs on S and in-
puts on 7. The product of S and T according to these
rules is then constructed on-the-fly, which is the forward
exploration step. We detect error states on-the-fly and
we back-propagate them. There are two kinds of error
states: 1) Either the attacker may delay and violates in-
variants on 7', which is, the defender cannot match a
delay, or 2) the defender has to play a given action and
cannot do so, i.e., a deadlock. This is similar to UPPAAL-
TIGA in principle, except that the underlying structures
are different: a pruned state-graph for ECDAR and a net-
work of timed game automata for UPPAAL-TIGA.

We discuss checking for independent progress, out-
put determinism, and output urgency in more detail. A
symbolic state is a tuple (g, Z), where ¢ is a location,
and Z a zone [48]. A state is not urgent, if its invariant
allows a positive delay:?

urgent((q, Z)) =V v € Z.3d > 0. v+d = inv(q) = d =

A state is unbounded if Z has no upper bound, i.e., it
contains valuations where it is possible to delay infinitely.
Since we are handling convex sets defined with difference
constraints, if a state is unbounded then it is possible to
delay infinitely from all its valuations.

unbounded((q, Z)) ={ve Z|Vt>0.v+t€Z}#0

Algorithm 1 combines these notions to check for in-
dependent progress. We check that for this notion of
deadlock in lines 3-5. For a set of clock valuations Z
we write Z! (line5) meaning the set of its time prede-
cessors: Zt ={v|3d>0.v+de Z}.

Algorithm 2 shows how we check for output deter-
minism. It is applied iteratively to every reachable sym-
bolic state of a specification. For an output o and a sym-
bolic state (¢, Z) we identify edges that can be enabled
in this state, and check whether they cause nondeter-
minism.

2 EcpAR borrows from UppPaAL the syntactic constructs to ob-
tain this effect conveniently: urgent locations and urgent channels

o

Algorithm 1: Symbolic check for independent
progress.

function consistent({q, Z))
1 if unbounded({q, Z)) then return true
2 deadlock — Z
if urgent({q, Z)) then
4 foreach edge (q,0!,p,¢,q") do

deadlock «— deadlock \ (¢ N NextInv(q') N Z)

5 else foreach edge (q,0!,¢,¢,¢') do

deadlock « deadlock \ (¢ N NextInv(q') N Z)}
6 return deadlock = ()

w

Algorithm 2: Symbolic check for output deter-
minism.
function output-determinism({q, Z))
1 succ + 0
2 succ = {e = (q,0!,,¢,¢") | ¢ N NextInv(q') N Z #
() for any guard ¢ and output o!}
3 foreach pair of edges
(e1,e2) € succ. e1 # ea A output(er) = output(es)
do
4 let (q1,0!, ¢1,c1,4;) = e1 and
(qu 0!7 ¥2, C2, qé) = €2
5 if o1 N2 N Z # () then return false
end
6 return true

Output urgency for implementations is established
by constructing a zone graph and checking the following
condition for each symbolic state (g, Z):

—urgent((q, Z)) = for each edge (¢, 0!, p,c,q').
© N NextInv(q)N Z = 0.

10 Application 1: Milner’s Scheduler Case
Study

We use a modified real-time version of Milner’s scheduler
algorithm, to show how inductive arguments for refine-
ment can be constructed using compositional operators
of our theory. The model consists of N nodes arranged
in a ring. A token is sent around, which takes some time,
and the nodes on the ring perform some work when the
token arrives. Fig. 11 (left) shows a single node that can
receive a token on rec;. The node subsequently begins
external work by outputting on w;. In parallel to this it
can forward the token by outputting on rec;41, but only
after a delay between d and D time units. Fig. 11 (right)
illustrates a ring of such nodes M; in which some nodes
have been grouped together. This grouping exemplifies
a part of the specification, which we will later be able
to replace with an abstraction SS; in order to execute a
compositional proof.

21

Figure 11: Overview of Milner’s scheduler example and
the sub-specification S.5;.

y>d ,7OT\

rec[(i+1)%N]! .-

rec[i]?

/”y;d
rec[(i+1)%N]!

recfi]?

Figure 12: Left: Template for a single node M;. Right:
Template for the overall specification.

We model the scheduler using templates in a modular
way, which allows us to scale the model by instantiating
as many nodes as needed. A single node of our sched-
uler is shown in the left side of Fig. 12. In the initial
location of the specification, it is ready to receive a mes-
sage on the channel rec[i]7. After this there are two
ways to return to the initial state depending on the or-
der in which it starts its work (w[i]!) and passes on the
token (rec[(i+1)%N]1!). The first node of the system
My is instantiated with a different initial location (the
bottom-most one), reflecting the fact that it holds the
token initially. The right side of Fig. 12 shows the over-
all specification Sy of the system. It requires that w[0]!
occurs at least every (N+1) % D time units. Remaining
actions can be executed freely.

One way to verify that the scheduler is correct is to
verify a property of the type:

refinement: (MO || M1 || M2 || M3 || M4) <= SO

We call this type of verification monolithic, since it con-
structs a specification precisely representing the entire
system. It is natural to verify the monolithic property in
order to show that the composed system refines the over-
all specification. Unfortunately, this strategy fails due to
state-space explosion. As the number of components is
increased, the state space grows, and more interleaving
is introduced in the system.

In order to combat the problem we apply composi-
tional verification. The idea is to create IV sub-specifica-
tions that are used in a series of refinement steps. First
one shows that M; < S§S;. After this it is proved for

refinement: M1 <= SS1

refinement: (SS1 || M2) <= SS2
refinement: (SS2 || M3) <= SS3
refinement: (SS3 || M4) <= SS4
refinement: (SS4 || MO) <= SO

Figure 13: Incremental verification.

|d=29 20 10 9 8 6 4
n=>5 |0080 0097 0.191 0.169 0.172 0.151 0.205
monolithic | 0.034 0.034 0.073 1.191 1.189 64.933 > 600
n=6 |0.102 0.133 0231 0.228 0.238 0.238 0.29}
monolithic | 0.040 0.043 0.095 6.786 6.791 > 600 > 600
n=8 | 0225 0349 0516 0.515 0.5/0 0.600 0.582
monolithic | 0.076 0.076 0.230 88.542 88.642 > 600 > 600
n=12 | 0.830 1414 1.802 1.895 1.831 2.079 2.181
monolithic | 0.220 0.223 0.843 >600 >600 > 600 > 600
n =20 |4.990 9.739 12.377 11.923 12.041 12.438 12.764
monolithic | 1.038 1.030 4.523 >600 >600 > 600 > 600
n =30 |22.053 45.709 55.728 55.345 55.112 54.702 56.164

monolithic | 3.791 3.778 17.652 >600 >600 >600 om

Table 1: Results of the verification experiments.

increasing indexes, 1 to N that SS;||M;+1 < SS;41. Fi-
nally the property SS,||My < Sp is checked. Fig. 13
gives the properties for five nodes. The sub-specification
aims at capturing the important aspect of the subsys-
tem needed for the next step in the verification process
of the overall property. It is very important to notice that
the sub-specification is, like all the other components in
the system, created as a template, and that thus it is
modelled only once and then instantiated with different
indices.

Here the sub-specification SS;, as shown in Fig. 14,
is a model for a sequence of nodes Mj]|...||M; (see
Fig. 11). Informally S'S; is expressed as following, noting
that the relevant ports for this subsystem are rec[1]7,
wle]l! (0<e<=i) and rec[i+1]!: Under the assumption
that a) the time elapsing between two rec[1]7? is more
than N % d time-units and b) there are no two consecu-
tive rec[1]7? without a rec[i+1]!, then it is guaranteed
that rec[i+1]! will occur within [i* d, i * D] time units
from rec[1]7.

We have conducted experiments for different values
of N, the number of nodes in the ring, and d the min-
imum time delay before passing on the token. We have
fixed the upper time limit for passing the token to 30.
The results of the experiments are shown in Table 1.
The table shows the time used to check a given property
measured in seconds. For each value of N we have two
rows. The top one represents the verification of all the
steps in the compositional verification while the bottom
row represents the verification of one monolithic prop-
erty. If the verification took more than 600 seconds we
stopped it. We had one instance where ECDAR ran out of
memory which is indicated by om. The time results that
are written in italics are the cases in which the composi-

22

-
'icz[é]' e>0 && e<=i
y=0' | /el
[
rec[1]?

y>N*d X<=i*D I \/(eCK‘*l)%NN

rec[1]? x>=i*d - B
x=0, | rec[(i+1)%N]! s.. rosses
y=0 N wle]!

e>0 && e<=i
wle]!

Figure 14: The sub-specification S5; that abstracts the
the sub-system M;]| ... ||M;.

tional verification gave a negative result. In these cases
one needs to propose more precise sub-specifications in
order to make the compositional verification work. The
monolithic method gives positive results in these cases.

In the case where d is close to D there is very little in-
terleaving in the system and in this case the verification
of the monolithic property is the fastest. The smaller
the d value the more interleaving appears in the system
and in these complex cases the compositional verifica-
tion shows its strength. The cases where the composi-
tional verification beats the monolithic are marked by
boldface.

11 Application 2: A Parking System

In this example we use real-time specifications in an as-
sume/guarantee approach, to build a system that de-
scribes the behavior of a car park. Such a system has
been studied in [55], with a top to bottom approach that
builds a specification of the system from a list of require-
ments written in natural language, and then projects
these specifications on an architecture of components.
We use a different approach that starts with a set of
requirements for these components and then builds the
formal specifications of these components, which can be
composed together in order to build the specification of
the system. We also made the example much more realis-
tic by adding timing requirements. This also requires to
check global timing properties, which we perform using
the ECDAR toolset.

The system is composed of four components: Entry-
Gate, ExitGate, Controller and Payment. It is parameter-
ized by the maximum number N,,,, of cars that can en-
ter the parking. We will also consider the environment
of the system that consists in the car users. However, we
adopt an abstract view of the system in which cars are
not individualized, but we remember the number of cars
that have entered.

The components are defined by the following require-
ments that describe either guarantees on the outputs of

the components or assumptions on the inputs provided

by the environment. For each gate:

Req. 1 A wvehicle shall not pass when the gate is closed.
Req. 2 Once a vehicle has passed the gate, another ve-
hicle cannot pass before the gate closes.

Req. 3 After the gate has opened, it does not open before
it closes. After the gate has closed, it does not
close before it opens.

Req. 4 The gate must close within 5 seconds after a ve-
hicle passes, and only then.

Specific to EntryGate:

Req. b An entry ticket is issued only when the entry gate
is closed.

Req. 6 The gate must open within 5 seconds after an
entry ticket has been issued, and only then.

Specific to ExitGate:

Req. 7 An exit ticket is inserted only when the entry
gate s closed.

Req. 8 The gate must open within 5 seconds after an
ezit ticket has been inserted, and only then.

For Controller:

Req. 9 A wehicle does mot exit when the parking is
empty.

Req. 10 A wvehicle does not enter before receiving an entry
ticket.

Req. 11 If the parking is not full, an entry ticket is issued
within 10 seconds after being requested.

For Payment:

Req. 12 A user inserts a coin every time an entry ticket
is inserted and only then.

Req. 13 A user may insert an entry ticket only initially
or after an exit ticket has been issued.

Req. 14 The payment machine issues an exit ticket
within 40 seconds once the entry ticket and the
coin have been inserted.

The communications between the components are

described in Fig. 15.

11.1 The entry gate subsystem

We begin with the specifications of the two components
EntryGate and Controller. It forms a subsystem that has
three inputs (vehicle_enter, vehicle_exit and
request_enter) and three outputs (entry_gate_open,
entry_gate_closeand entry_ticket_issue).Each re-
quirement is translated into a timed specification. Reqs. 1-
2 are assumptions on the EntryGate inputs. They are
translated into specifications EnAl (Fig. 16(a)) and EnA2
(Fig. 16(b)), respectively. Req. 5 is translated into a
specification EnA3 similar to EnAl. Conversely, Regs. 3-
4-6 correspond to guarantees on the outputs of Entry-
Gate, and they are translated into specifications EnG1
(Fig. 16(c)), EnG2 (Fig. 16(d)) and EnG3 (Fig. 16(e)),
respectively.

The Controller is responsible for the delivery of the
entry ticket. We impose an additional requirement on
the Controller that should be sufficient to satisfy the as-
sumption in Req. 5:

vehicle_enter - entry_gate_open -
L »
EntryGate
- entry_gate_close g
» »
A
Ld
request_enter -~ Controller
L entry_ticket_issue
A
Ld
- exit_gate_open g
vehicle_exit i >
- ExitGate
exit_gate_close -
exit_ticket_insert ’ »
entry_ticket_insert ;
exit_ticket_issue
Payment = = >
coin_insert -
Ld

Figure 15: Parking components and communication
channels

Number of vehicles 10 102 10® 10* 10°

<0.1s <0.1s 0.4s 4.4s 45.4s
<0.1s <0.1s 0.2s 1.6s 18s

Consistency

Compatibility

Table 2: Ecpar performance in analyzing SubSys

Req. 15 Request to enter are ignored for 6 seconds after

a vehicle has entered.
Then, Regs. 9-10-11-15 defined the specification CtAG,
shown in Fig. 16, that encompasses both assumptions
and guarantees in the same model, using a universal
state to model incompatible inputs.

We check with ECDAR the consistency of this subsys-
tem and the compatibility between its two components.
The EntryGate component is defined using the weaken
operator between the assumptions and the guarantees:

EnA := (EnAl A EnA2 A EnA3)

EnG := (EnG1 A EnG2 A EnG3)
EntryGate := EnG >> EnA

The subsystem is constructed using the parallel compo-
sition.
SubSys := EntryGate || CtAG

We provide a minimal environment that is build from
the assumptions EnAl, EnA2 and the one described in
Req. 9, translated into EnvCtl, such that Env := EnA1A
EnA2 AEnvCtl. We check that SubSys || Env is consistent
and that no universal state is reached. This proves that
the components are compatible and that the assump-
tions Req. 5 and Req. 11 are both satisfied by the other
component. Benchmarking results are given in Table 2
for different number of vehicles in the car park. They
show that these tests scale well.

a) EnAl

entry_gate_open?

vehicle_enter!

RN

closed

r~

entry_gate_close? entry_ticket_issue!

.- ~

entry_ticket_issue!

entry_ticket_issue!

entry_gate_close?

c¢) EnGl1

entry_gate_open!

-

O

entry_gate_close!

closed

~

~
~
~
~

d) EnG2

entry_gate_close!

—=x PR

! ! \
\\ ,
/
Voo

&,

closed_1 "~

entry_ticket_issue? \ /

entry_open=0

N

.
_~"closed_2

e) EnG3

entry_gate_close!

entry_gate_open! entry_gate_open!

T -I) !
\ / \ 1
vy vehicle_enter? oo

\Ci entry_close=0 iﬁ'
N

.
.7open_2

~7entry_open<=5 AN
b N e open_1 N entry_close <= T_close_entry
N -
entry_gate_closel~ ~‘entry_gate_open! S .
O” entry_gate_openh entfy_gate_close!
open
closed
f) CtAG _
Universal
n==0
vehicle_exit? -
- n==0

vehicle_ex vehicle_exit?

n<Nmax and

> deliver >= 6)

vehicle erlitg request enter? deliver <= 10
T quest ‘ requested
n—-— deliver=0
>
n==Nmax or , n O_ o
deliver < 6 L vehicle_exit?
n——

request_enter?

vehicle_dqter?
n++,deliver0

n>0
vehicle_exit?
n-

n==0
vehicle_exit?

issued

Figure 16: Timed specifications of the entry gate subsystem (all models are input-enabled and therefore assume that

self-loops exist for input actions that ar

a) PayAl

entryﬁtickgtﬁi nsert!

waiting_ticket _ -~ - Tl - Wwaiting_payment
S~ ~o -7 VRN
~ - / \
S -7 ___2
coin_insert! entry_ticket_insert!

e not represented).

b) PayA2

entry_ticket_insert!

_-
pe

available

N
\

)
coin_insert! exit_ticket_issue? coin_insert!

c) PayG

payment_inserted
exit_ticket <= T_ticket_exit

4
.
4
- : | |
exn_nckel?wfsue. it ticket=0
,

s
s

entry_ticket_insert?

idle ticket_inserted

Figure 17: Timed specifications of payment machine (self-loops with input actions are not represented).

24

entry_ticket_issue?
m++

entry_ticket_issue?

no—éim m-++ Xtickets
Y 7 N
AN -7 N. | entry_ticket_insert!
N .7 N m=—
m==1
entry_ticket_insert!
m——

Figure 18: EnvEnTickets: Specification of the environ-
ment w.r.t. entry tickets.

11.2 Parking system correctness

We pursue our study by including the components Ex-
itGate and Payment. For ExitGate, Reqs. 1-2-7 yield the
specifications of the assumptions ExA1l, ExA2 and ExA3,
and Reqgs. 3-4-8 yield the guarantees ExG1l, ExG2 and
ExG3, in the same manner as were constructed the ones
of EntryGate. For Payment, Reqs. 12-13-14 yield the spec-
ifications PayAl (Fig. 17(a)), PayA2 (Fig. 17(b)) and
PayG1 (Fig. 17(c)), respectively. Then the system under
study is the following:

ExA := (ExA1 A ExA2 A ExA3)
ExG := (ExG1 A ExG2 A ExG3)
ExitGate := ExG >> ExA
Payment := PayG >> (PayAl A PayA2)
Sys := EntryGate || ExitGate || Payment || CtAG

This system is however underspecified, since no for-
mal relation exists between the tickets that are issued
and the ones that are inserted. Therefore we add the
following requirements:

Req. 16 An entry ticket is inserted only if it has been
issued before.

Req. 17 An exit ticket is inserted only if it has been issued
before.

These yield two specifications, EnvEnTickets in Fig. 18,

and similarly EnvExTickets, that are added in conjunc-

tion to the environment, along with the assumptions of

ExitGate and Payment.

We want to check the correctness of the parking sys-
tem, expressed by the property that no car can exit with-
out paying. Therefore we design a specification SpecExp
(Fig. 19(a)), that increases its revenue expectation e each
time a vehicle enter, and decreases it when the payment
is received. If all the vehicles exit when the number n
of vehicles in the parking is strictly greater than e, that
means that the payment has been received previously.
We check by refinement that the system satisfy this prop-
erty:

Sys || Env < SpecExp

Benchmarking results for this property are listed in the
first row of Table 3.

25

a) SpecExp b) SpecTime
n<Nmax and e<Nmax
vehicle_enter!
n++.e++
[vehicle_exit! vehicle_enter!
\ S s LE_EL
\\ // \\ /l l\ //
I~) N vehicle_enter! N
n>0tan|d e<n o ~<_ time=0 /
vehicle exr‘llﬁ b ide @)g------------- > Entered
FEERN Y L7 time <= Tmax
// \\ \\\ . .
(pp— =
e>—Nmax vehicle_exit!
coin_insert!
e
Figure 19: System properties.
entry_gate_close? car_entry <= 30
open
entry_gate_open?
car}@rﬂryzo a
ide QF----------------= requested

request_enter!

Figure 20: EnvEnCar: Specification of the environment
w.r.t. entry cars.

11.8 Timing constraints

In the last part of our study we perform a timing anal-
ysis of the system. Inherent timing constraints of the
components have already been taken into account in the
guarantees (EnG2,EnG3,ExG2,ExG3,CtAG and PayG). We
would like to check a global timing constraint: the time
between a vehicle entering the parking and a vehicle ex-
iting is bounded by some maximum delay. For this study
we need to precisely specify the timing behaviors of the
environment, that is to say the vehicle drivers, which
lead us to add or modify some requirements:
Req. 18 A user inserts a coin within 30 seconds every
time an entry ticket is inserted and only then.
Req. 19 Once an entry ticket is issued, the user inserts
it in the payment machine within 1 hour.
Req. 20 Once an exit ticket is issued, the user inserts it
at the exit gate within 5 minutes.
Req. 21 When a gate opens, a vehicle passes within 30
seconds.
Consequently, to satisfy Regs. 18-19-20 we modify the
specifications of the environment PayAl, EnvEnTickets
and EnvExTickets. To satisfy Req. 21 we add two addi-
tional specifications to the environment, EnvEnCar (dis-
played in Fig. 20), and similarly EnvExCar, that describe
the behavior of the users. We check the compatibility of
this new environment that is sufficient to satisfy the as-
sumptions of EntryGate and ExitGate, since no universal
state is reached in Sys || Env.
Finally the timing property is translated into a spec-
ification SpecTime displayed in Fig. 19(b). The property
is checked with the refinement:

Sys || Env < SpecTime

Number of vehicles 2 4 8 16 32
SpecExp <0.1s 0.2s 1.5s 11.5s 90s
Compatibility 0.2s 0.6s 3.5s 17.3s 72.5s
SpecTime 0.2s 1.58 19.5s 94s 32Ts

Table 3: Ecpar performances in analyzing Sys

We prove that the property is satisfied for T}, = 4100.
Table 3 presents the benchmarking results for the anal-
ysis of Sys.

12 Conclusion and future work

This paper presents a complete game-based interface
theory for timed systems. Our theory implements all the
good operations for a specification theory, namely: con-
sistency, refinement, structural/logical composition, and
quotient. Our results have been implemented in the Ec-
DAR toolset that is an extension of the well-established
UprPAAL model checker. Our tool has been applied to se-
rious size case studies (while most of existing frameworks
remain at the theory level).

Our research can be pursued in various directions,
one of them being to continue intensive testing of Ec-
DAR and give a complete characterization of problems
for which our theory is indeed practically useful. Target-
ing large size systems will certainly require to improve
the efficiency of the algorithms implemented in ECDAR.
As an example, we postulate that state-space reduction
through bisimulation quotient should considerably im-
prove the pruning algorithm. Still, in the context of Ec-
DAR, developing a user-feedback mechanism is challeng-
ing, but needed to broaden our user base.

Another promising direction is the one of robust spec-
ification theories. One says that an implementation is
robust with respect to a given specification if it remains
an implementation of the specification under small per-
turbations of time. Studying robustness is crucial as it is
generally not possible to implement a specification with-
out considering perturbations introduced by the exter-
nal environment [62] (e.g. hardware constraints). We re-
cently investigated this problem for our timed interfaces
for a fixed value of the perturbation [46] and we proposed
a technique to evaluate the maximal perturbation under
which an implementation remains robust [60]. In the fu-
ture we want to fully integrate this theory in ECDAR.

We will also investiguate the problem of stuttering
and hidden actions, which we plan to do via an exploita-
tion of imperfect information games [18§].

Finally, it would be worth extending our theory to
systems with both timed and stochastic aspects, hence
proposing the first specification theory for probabilistic
timed automata [43,44]. In a series of recent work [35,
16], we have proposed specification theories for stochas-

26

tic systems. We postulate that such specification theo-
ries can be combined with our timed interfaces one, just
like timed automata have been combined with Markov
decision processes.

Acknowledgements. Work partially supported by VKR Cen-
tre of Excellence - MT-LAB, the European project COMBEST,
and ARC (TP)L

References

1. Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis.
Model-based implementation of real-time applications.
In EMSOFT, pages 229-238. ACM, 2010.

2. B. Thomas Adler, Luca de Alfaro, Leandro Dias da Silva,
Marco Faella, Axel Legay, Vishwanath Raman, and Pri-
tam Roy. Ticc: A tool for interface compatibility and
composition. In CAV, volume 4144 of LNCS, pages 59—
62. Springer, 2006.

3. Rajeev Alur and David L. Dill. A theory of timed au-
tomata. Theor. Comput. Sci., 126(2):183-235, 1994.

4. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman,
and Moshe Y. Vardi. Alternating refinement relations.
In CONCUR, volume 1466 of LNCS. Springer, 1998.

5. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul
Pettersson, and Wang Yi. Times: A tool for schedu-
lability analysis and code generation of real-time sys-
tems. In FORMATS, volume 2791 of LNCS, pages 60-72.
Springer, 2003.

6. Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Ny-
man, and Andrzej Wasowski. Modal and mixed specifi-
cations: key decision problems and their complexities.
Mathematical Structures in Computer Science, 20(1):75—
103, 2010.

7. Christel Baier and Joost-Pieter Katoen.
Model Checking. The MIT Press, 2008.

8. Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Axel
Legay, and Jiri Srba. Extending modal transition sys-
tems with structured labels. Mathematical Structures in
Computer Science, 22(4):581-617, 2012.

9. Gerd Behrmann, Agnés Cougnard, Alexandre David,

Emmanuel Fleury, Kim G. Larsen, and Didier Lime.

Uppaal-tiga: Time for playing games! In CAV, volume

4590 of LNCS. Springer, 2007.

Gerd Behrmann, Alexandre David, Kim Guldstrand

Larsen, Paul Pettersson, and Wang Yi. Developing up-

paal over 15 years. Softw., Pract. Ezper., 41(2):133-142,

2011.

Jasper Berendsen and Frits W. Vaandrager. Composi-

tional abstraction in real-time model checking. In FOR-

MATS, volume 5215 of LNCS. Springer, 2008.

Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and

Jean-Baptiste Raclet. A compositional approach on

modal specifications for timed systems. In ICFEM,

LNCS. Springer, 2009.

T. Bourke and A. Sowmya. Automatically transforming

and relating uppaal models of embedded systems.

EMSOFT, pages 59-68. ACM, 2008.

Principles of

10.

11.

12.

13.

In

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Timothy Bourke, Alexandre David, Kim G. Larsen, Axel
Legay, Didier Lime, Ulrik Nyman, and Andrzej Wa-
sowski. New results on timed specifications. In WADT,
volume 7137 of LNCS, pages 175-192. Springer, 2010.
Peter Bulychev, Thomas Chatain, Alexandre David, and
Kim G. Larsen. Efficient on-the-fly algorithm for check-
ing alternating timed simulation. In FORMATS, volume
5813 of LNCS, pages 73-87. Springer, 2009.

Benoit Caillaud, Benoit Delahaye, Kim G. Larsen, Axel
Legay, Mikkel L. Pedersen, and Andrzej Wasowski. Com-
positional design methodology with constraint Markov
chains. In QEST, pages 123-132. IEEE, 2010.

Franck Cassez, Alexandre David, Emmanuel Fleury,
Kim G. Larsen, and Didier Lime. Efficient on-the-fly al-
gorithms for the analysis of timed games. In CONCUR,
2005.

Franck Cassez, Alexandre David, Kim Guldstrand
Larsen, Didier Lime, and Jean-Francois Raskin. Timed
control with observation based and stuttering invariant
strategies. In ATVA, volume 4762 of LNCS, pages 192—
206. Springer, 2007.

Karlis Cerans, Jens Chr. Godskesen, and Kim Guld-
strand Larsen. Timed modal specification - theory and
tools. In CAV, pages 253-267. Springer-Verlag, 1993.
Arindam Chakabarti, Luca de Alfaro, Thomas A. Hen-
zinger, and Marielle I. A. Stoelinga. Resource interfaces.
In R. Alur and I. Lee, editors, EMSOFT 03: 8rd Intl.
Workshop on Embedded Software, LNCS. Springer, 2003.
Arindam Chakrabarti, Luca de Alfaro, Thomas A. Hen-
zinger, and Freddy Y. C. Mang. Synchronous and bidi-
rectional component interfaces. In CAV, volume 2404 of
LNCS, pages 414-427, 2002.

Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. The MIT Press, 1999.
Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-
man, and Andrzej Wasowski. Methodologies for specifi-
cation of real-time systems using timed i/o automata. In
FMCO, volume 6286 of LNCS, pages 290-310. Springer,
2009.

Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-
man, and Andrzej Wasowski. Timed i/o automata: a
complete specification theory for real-time systems. In
HSCC, pages 91-100. ACM ACM, 2010.

Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Mikael H. Mgller, Ulrik Nyman, Anders P. Ravn, Arne
Skou, and Andrzej Wasowski. Compositional verification
of real-time systems using ecdar. STTT, 14(6):703-720,
2012.

Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Ulrik Nyman, and Andrzej Wasowski. Ecdar: An en-
vironment for compositional design and analysis of real
time systems. In ATVA, volume 6252 of LNCS, pages
365-370. Springer, 2010.

Luca de Alfaro. Game models for open systems. In Pro-
ceedings of the International Symposium on Verification
(Theory in Practice), volume 2772 of LNCS. Springer,
2003.

Luca de Alfaro, Leandro Dias da Silva, Marco Faella,
Axel Legay, Pritam Roy, and Maria Sorea. Sociable in-
terfaces. In FroCos, volume 3717 of LNCS, pages 81-105.
Springer, 2005.

Luca de Alfaro and Marco Faella. An accelerated al-
gorithm for 3-color parity games with an application to

27

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

timed games. In CAV, volume 4590 of LNCS. Springer,
2007.

Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Ru-
pak Majumdar, and Mariélle Stoelinga. The element of
surprise in timed games. In CONCUR, volume 2761 of
LNCS, pages 142-156. Springer, 2003.

Luca de Alfaro and Thomas A. Henzinger. Interface
automata. In FSE, pages 109-120, Vienna, Austria,
September 2001. ACM Press.

Luca de Alfaro and Thomas A. Henzinger. Interface-
based design. In In Engineering Theories of Software In-
tensive Systems, Marktoberdorf Summer School. Kluwer
Academic Publishers, 2004.

Luca de Alfaro, Thomas A. Henzinger, and Rupak Ma-
jumdar. Symbolic algorithms for infinite-state games.
In CONCUR, volume 2154 of LNCS, pages 536-550.
Springer, 2001.

Luca de Alfaro, Thomas A. Henzinger, and Marielle I. A.
Stoelinga. Timed interfaces. In EMSOFT, volume 2491
of LNCS, pages 108-122. Springer, 2002.

Benoit Delahaye, Joost-Pieter Katoen, Kim G. Larsen,
Axel Legay, Mikkel L. Pedersen, Falak Sher, and Andrzej
Wasowski. Abstract Probabilistic Automata. In VMCAI
pages 324-339. Springer, 2011.

José Luiz Fiadeiro and Luis Filipe Andrade. Intercon-
necting objects via contracts. In Proc. of the 38th In-
ternational Conference on Technology of Object-Oriented
Languages and Systems, Components for Mobile Com-
puting (TOOLS’38), pages 182-183. IEEE Computer So-
ciety, 2001.

José Luiz Fiadeiro and T. S. E. Maibaum. Interconnect-
ing formalisms: Supporting modularity, reuse and incre-
mentality. In Proc. of the 8rd ACM SIGSOFT Sym-
posium on Foundations of Software Engineering (SIG-
SOFT FSE’95), pages 72-80. ACM, 1995.

Stephen J. Garland and Nancy A. Lynch. The IOA
language and toolset: Support for designing, analyz-
ing, and building distributed systems. Technical report,
Massachusetts Institute of Technology, Cambridge, MA,
1998.

Thomas A. Henzinger, Zohar Manna, and Amir Pnueli.
Timed transition systems. In REX Workshop, volume
600 of LNCS, pages 226-251. Springer, 1991.

Thomas A. Henzinger and Slobodan Matic. An interface
algebra for real-time components. In IEEE Real Time
Technology and Applications Symposium, pages 253—266.
IEEE Computer Society, 2006.

Thomas A. Henzinger and Joseph Sifakis. The embedded
systems design challenge. In F'M, volume 4085 of LNCS,
pages 1-15. Springer, 2006.

Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala,
and Frits W. Vaandrager. The Theory of Timed 1/0
Automata, Second Edition. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Pub-
lishers, 2010.

M. Z. Kwiatkowska, G. Norman, J. Sproston, and
F. Wang. Symbolic model checking for probabilistic
timed automata. In FORMATS, volume 3253 of LNCS,
pages 293—-308. Springer, 2004.

M. Z. Kwiatkowska, G. Norman, J. Sproston, and
F. Wang. Symbolic model checking for probabilistic
timed automata. Inf. Comput., 205(7):1027-1077, 2007.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Kim G. Larsen. Modal specifications. In Joseph Sifakis,
editor, Automatic Verification Methods for Finite State
Systems, volume 407 of LNCS, pages 232-246. Springer,
1989.

Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and
Andrzej Wasowski. Robust specification of real time
components. In FORMATS 2011, volume 6919 of LNCS.
Springer, 2011.

Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski.
Modal I/O automata for interface and product line the-
ories. In Rocco De Nicola, editor, ESOP, volume 4421 of
LNCS, pages 64-79. Springer, 2007.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-
Checking for Real-Time Systems. In Proc. of Fundamen-
tals of Computation Theory, volume 965 of LNCS, pages
62-88, August 1995.

Nancy Lynch. I/O automata: A model for discrete event
systems. In Annual Conference on Information Sciences
and Systems, pages 29-38, Princeton University, Prince-
ton, N.J., 1988.

Nancy A. Lynch and Mark R. Tuttle. An intro-
duction to input/output automata. Technical Report
MIT/LCS/TM-373, The MIT Press, November 1988.
Oded Maler, Amir Pnueli, and Joseph Sifakis. On the
synthesis of discrete controllers for timed systems (an
extended abstract). In STACS, pages 229-242, 1995.
Robin Milner. Communication and Concurrency. Pren-
tice Hall, 1988.

Rocco De Nicola and Roberto Segala. A process algebraic
view of input/output automata. Theoretical Computer
Science, 138, 1995.

Amalinda Post, Jochen Hoenicke, and Andreas Podelski.
rt-inconsistency: A new property for real-time require-
ments. In FASE, volume 6603 of LNCS, pages 34-49.
Springer, 2011.

J.-B. Raclet, B. Caillaud, D. Nickovic, R. Passerone,
A. Sangiovanni-Vincentelli, T. Henzinger, and K. G.
Larsen. Contracts for the design of embedded sys-
tems part i: Methodology and use cases. Technical re-
port. Submitted, http://www.irisa.fr/distribcom/
benveniste/pub/ProcIEEE_contractsPartl.pdf.
Eugene W. Stark, Rance Cleavland, and Scott A.
Smolka. A process-algebraic language for probabilistic
I/O automata. In CONCUR, LNCS, pages 189-2003.
Springer, 2003.

Jun Sun, Yang Liu, and Jin Song Dong. Model checking
csp revisited: Introducing a process analysis toolkit. In
ISoLA, volume 17 of Communications in Computer and
Information Science, pages 307-322. Springer, 2008.
Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi,
and Andre Etienne. Modeling and verifying hierarchical
real-time systems using stateful timed csp. ACM Trans.
Softw. Eng. Methodol., 2012. Accepted.

Alfred Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics, 5:285—
309, 1955.

Louis-Marie Traonouez. A parametric counterexample
refinement approach for robust timed specifications. In
FIT, volume 87 of EPTCS, pages 17-33, 2012.

Frits W. Vaandrager. On the relationship between pro-
cess algebra and input/output automata. In LICS, pages
387-398, 1991.

28

62. Martin Wulf, Laurent Doyen, Nicolas Markey, and Jean-

Frangois Raskin. Robust safety of timed automata.
Formal Methods in System Design, 33:45-84, December
2008.

63. Wang Yi. Real-time behaviour of asynchronous agents.

In Jos C. M. Baeten and Jan Willem Klop, editors, CON-
CUR, volume 458 of LNCS, pages 502-520. Springer,
1990.

