
Software Tools for Te
hnology Transfer manus
ript No.

(will be inserted by the editor)

Real-Time Spe
i�
ations

⋆

Alexandre David

1
and Kim. G. Larsen

1
and Axel Legay

2
and Ulrik Nyman

1
and Louis-Marie

Traonouez

2
and Andrzej W¡sowski

3

1
Computer S
ien
e, Aalborg University, Denmark, e-mail: adavid�
s.aau.dk, kgl�
s.aau.dk, ulrik�
s.aau.dk

2
INRIA/IRISA, Rennes Cedex, Fran
e, e-mail: axel.legay�irisa.fr, louis-marie.traonouez�irisa.fr

3
IT University of Copenhagen, Denmark, e-mail: wasowski�itu.dk

Re
eived: date / A

epted: date

Abstra
t A spe
i�
ation theory
ombines notions of

spe
i�
ations and implementations with a satisfa
tion

relation, a re�nement relation, and a set of operators

supporting stepwise design. We develop a spe
i�
ation

framework for real-time systems using Timed I/O Au-

tomata as the spe
i�
ation formalism, with the seman-

ti
s expressed in terms of Timed I/O Transition Systems.

We provide
onstru
ts for re�nement,
onsisten
y
he
k-

ing, logi
al and stru
tural
omposition, and quotient of

spe
i�
ations � all indispensable ingredients of a
ompo-

sitional design methodology.

The theory is implemented in the new tool E
dar.

We present symboli
 versions of the algorithms used in

E
dar, and demonstrate the use of the tool using a

small
ase study in
ompositional veri�
ation.

Key words: Real-time systems, Stepwise-Re�nement,

Compositional Veri�
ation

1 Introdu
tion

Many modern systems are big and
omplex assemblies

of numerous
omponents. The
omponents are often de-

signed by independent teams, working under a
ommon

agreement on what the interfa
e of ea
h
omponent should

be. Consequently,
ompositional reasoning [41℄, the math-

emati
al foundations of reasoning about interfa
es, is an

a
tive resear
h area. It supports inferring properties of

the global implementation from the
omponents, or ad-

visedly designing and reusing
omponents.

⋆
This paper is an extended version of the work previously pre-

sented in [24,23,26℄. The main additions are (1) a uni�ed presenta-

tion, (2) a deeper link between the theory and the tool, (3) proofs

of theorems, and (4) the des
ription of
ase studies.

In a logi
al interpretation, interfa
es are spe
i�
a-

tions, while
omponents that implement an interfa
e are

understood as models/implementations. Spe
i�
ation the-

ories may support various features in
luding (1) re�ne-

ment, whi
h allows us to
ompare spe
i�
ations as well

as to repla
e a spe
i�
ation by another one in a larger

design, (2) logi
al
onjun
tion, expressing the interse
-

tion of the set of requirements expressed by two or more

spe
i�
ations, (3) stru
tural
omposition, whi
h allows

us to
ombine spe
i�
ations, and (4) a quotient opera-

tor that is dual to stru
tural
omposition. We shall see

that quotient is useful to perform in
remental design and

to reason about assumptions and guarantees. Also, the

operations have to be related by
ompositional reason-

ing theorems, guaranteeing both in
remental design and

independent implementability [32℄.

Building good spe
i�
ation theories is the subje
t of

intensive studies [20,31℄. One su

essfully dire
tion is the

theory of interfa
e automata [31,32,45,52℄. In this frame-

work, an interfa
e is represented by an input/output au-

tomaton [50℄, i.e. an automaton whose transitions are

typed with input and output . The semanti
s of su
h

an automaton is given by a two-player game: the in-

put player represents the environment, and the output

player represents the
omponent itself. Contrary to the

input/output model proposed by Lyn
h [50℄, this seman-

ti
 o�ers an optimisti
 treatment of
omposition: two

interfa
es
an be
omposed if there exists at least one

environment in whi
h they
an intera
t together in a

safe way. In [34℄, a timed extension of the theory of in-

terfa
e automata has been introdu
ed, motivated by the

fa
t that time
an be a
ru
ial parameter in pra
ti
e,

for example in embedded systems. While [34℄ fo
uses

mostly on stru
tural
omposition, in this paper we go

one step further and build a game-based spe
i�
ation

theory for timed systems that embbeds the four features

listed above.

We represent spe
i�
ations by timed input/output

automata [42℄, i.e., timed automata whose sets of dis-

rete transitions are split into input and output transi-

tions (see Se
tion 4). Contrary to [34℄ and [42℄, we dis-

tinguish between implementations and spe
i�
ations by

adding
onditions on the models. This is done by assum-

ing that the former have �xed timing behaviour and they

an always advan
e either by produ
ing an output or

delaying. We also provide a game-based methodology to

de
ide whether a spe
i�
ation is
onsistent, i.e. whether

it has at least one implementation. The latter redu
es

to de
iding existen
e of a strategy that despite the be-

haviour of the environment will avoid states that
annot

possibly satisfy the implementation requirements.

Our theory is equipped with a re�nement relation

(see Se
tion 5). Roughly speaking, a spe
i�
ation S1 re-

�nes a spe
i�
ation S2 i� it is possible to repla
e S2

with S1 in every environment and obtain an equivalent

system that satis�es the same spe
i�
ations. In the in-

put/output setting,
he
king re�nement redu
es to de-

iding an alternating timed simulation between the two

spe
i�
ations [31℄. In our timed extension,
he
king su
h

simulation
an be done with a slight modi�
ation of the

theory proposed in [15℄. As implementations are spe
-

i�
ations, re�nement
oin
ides with the satisfa
tion re-

lation. Our re�nement operator has the model in
lusion

property, i.e., S1 re�nes S2 i� the set of implementations

satis�ed by S1 is in
luded in the set of implementations

satis�ed by S2. We also propose a logi
al
onjun
tion op-

erator between spe
i�
ations (see Se
tion 6). Given two

spe
i�
ations, the operator will
ompute a spe
i�
ation

whose implementations are satis�ed by both operands.

The operation may introdu
e error states that do not

satisfy the implementation requirement. Those states are

pruned by synthesizing a strategy for the
omponent to

avoid rea
hing them. We also show that
onjun
tion
o-

in
ides with shared re�nement, i.e., it
orresponds to the

greatest spe
i�
ation that re�nes both S1 and S2.

Following [34℄, spe
i�
ations intera
t by syn
hroniz-

ing on inputs and outputs. However, like in [42,50℄, we

restri
t ourselves to input-enabled systems. This makes

it impossible to rea
h an immediate deadlo
k state, where

a
omponent proposes an output that
annot be
ap-

tured by the other
omponent. Here, in
he
king for
om-

patibility of the
omposition of spe
i�
ations, one tries

to synthesize a strategy for the inputs to avoid the error

states, i.e., an environment in whi
h the
omponents
an

be used together in a safe way. Our
omposition opera-

tor is asso
iative and the re�nement is a pre
ongruen
e

with respe
t to it (see Se
tion 7). We propose a quotient

operator dual to
omposition (see Se
tion 8). Intuitively,

given a global spe
i�
ation T of a
omposite system as

well as the spe
i�
ation of an already realized
ompo-

nent S, the quotient will return the most liberal spe
i�-

ation X for the missing
omponent, i.e. X is the largest

spe
i�
ation su
h that S in parallel with X re�nes T .

Our methodology has been implemented in a new

tool E
dar that is an extension of Uppaal-tiga [9℄ (see

Se
tion 9). It builds on timed input/output automata,

a symboli
 representation for timed input/output tran-

sition systems. We show that
onjun
tion,
omposition,

and quotienting
an be redu
ed to simple produ
t
on-

stru
tions allowing for both
onsisten
y and
ompatibil-

ity
he
king to be solved using the zone-based algorithms

for synthesizing winning strategies in timed games [51,

17℄. So while our theory is
learly new, our redu
tion

allows us to exploit well-established algorithms and im-

plementations whi
h makes it robust. Finally, re�nement

between spe
i�
ations is
he
ked using a variant of the

re
ent e�
ient game-based algorithm of [15℄. The poten-

tial of our tool is illustrated on two
ase studies, ea
h of

them showing the utility of the various features of our

theory (see Se
tions 10 and 11).

2 Introdu
tory Example

We will now give a rough overview of the theory using

an example. Consider a vending ma
hine that
an serve

tea or
o�ee. Its spe
i�
ation is shown in Fig. 1(a). We

use the syntax of timed I/O automata [42℄. The dashed

edges represent outputs and the solid ones
orrespond

to inputs. In the example, tea! is an output and
oin?

is an input. The ma
hine waits for
oins and serves ei-

ther tea or
o�ee with di�erent timing
onstraints. It

an also serve free tea after two time units. A possible

implementation of this ma
hine is given in Fig. 1(b).

Our models share the following
hara
teristi
s:

� Both spe
i�
ations and implementations are deter-

ministi
. This assumption re�e
ts our experien
e of

working with engineers, who prefer to
reate deter-

ministi
 spe
i�
ations. It also allows to
reate a the-

ory with good properties for
ompositional reasoning.

� Output transitions of the implementation Implemen-

tation must arrive at a �xed moment in time and

annot be delayed. We say that an implementation

is output-urgent. Spe
i�
ations are allowed to be im-

pre
ise about timing of outputs, while implementa-

tions have �xed timing. Intuitively, this means that

not only the
hoi
e of a
tion but also the timing (of

outputs) is deterministi
. We do not restri
t the tim-

ing of inputs as the environment may well be not

predi
table.

� In Implementation, we
an observe that ea
h time the

output tea! from Idle to Idle is taken, Clo
k y is re-

set. Without this reset, the time would be stopped

and the exe
ution would be stu
k in the lo
ation Idle.

A desirable property is that either a
omponent
an

delay or it must be able to produ
e some output.

This property,
alled independent progress, guaran-

tees that the progress of time
an happen without

relying on the environment.

2

a)

teacoin cof

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2

Ma
hine b)

teacoin cof

coin?

tea!
y=0

cof!

coin?

Idle

y<=5

Serving

y = 0

y==5

y <= 6
y==6

Implementation
)

pub
coftea

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Resear
her

Figure 1: a) Spe
i�
ation of a
o�ee and tea Ma
hine, b) an implementation that re�nes the spe
i�
ation and
)

a Resear
her that uses the Ma
hine. Initial lo
ations are double
ir
led. Transition guards are written in green and

lo
k resets in blue, while lo
ation invariants are in purple.

� Both spe
i�
ations and implementations are assumed

to be input-enabled. This is a natural requirement

that a
omponent
annot prevent the environment

from sending an input. Instead we should be able

to de
sribe the failure of the system, when an un-

expe
ted input arrives. This assumption is made in

many spe
i�
ation theories [49,38,56,61,53℄.

Implementations relate to spe
i�
ations through re-

�nement. More pre
isely, our implementation model Im-

plementation re�nes our spe
i�
ationMa
hine in the sense

that whenever Implementation wants to produ
e an out-

put, that output is allowed by Ma
hine, and Implementa-

tion a

epts all the inputs spe
i�ed by Ma
hine. Then an

implementation is reusable in any envirnoment whi
h a
-

epts the spe
i�
ation. Also an implementation will not

produ
e more intera
tions than what the spe
i�
ation

allows in su
h an environment. We will see later that

he
king re�nement redu
es to a two-player game where

the atta
ker plays delays and outputs on Implementation,

and inputs onMa
hine, while the defender responds with

outputs and delays on Ma
hine and inputs from Imple-

mentation.

More generally, the re�nement
an be used to
om-

pare spe
i�
ations. Thanks to the assumptions of deter-

minism and input-enabledness, our re�nement
oin
ides

with implementation set in
lusion, that is Spe
i�
ation

AS re�nes Spe
i�
ation AT if and only if the set of im-

plementations of AS is in
luded in the set of implemen-

tations of AT .
Consider now the spe
i�
ation of UniSpe
 in Fig. 2.

A good university produ
es patents as a result of re
eiv-

ing grants. Observe the timing
onstraints that
onstrain

how often the university should produ
e patents. Our ob-

je
tive is to re�ne this spe
i�
ation by another one that

is more pre
ise regarding the behavior of the resear
hers

and administration sta� of the university. We
onsider

resear
hers who will publish, if provided with tea and

o�ee, an administration that will turn grants into
oins

(to fund tea and
o�ee) while turning publi
ations into

patents, and a
o�ee ma
hine that a

epts
oins and

produ
es hot beverages for the resear
hers. In order to

reason about ea
h
omponent individually, we will split

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpe

Figure 2: Spe
i�
ation of the university
omponent

(UniSpe
).

the university spe
i�
ation into multiple spe
i�
ations

that we will
ombine using
omposition operators. The

resulting spe
i�
ation shall then be
he
ked against the

original one using re�nement.

The spe
i�
ations for the
o�ee ma
hine and the re-

sear
her are given in �gures 1(a) and 1(
), respe
tively.

We assume that resear
hers publish more e�
iently if

drinking
o�ee than when drinking tea. Furthermore, re-

sear
hers dislike tea, so if tea is served after a long period

of waiting (15 units of time) the subsequent behaviour

is unde�ned�supposedly due to irritation. Publi
ations

are produ
ed with the output pub!.

The
ase of the administration is somewhat more

ompli
ated. Indeed, administration should not only turn

grants into
oins but also turn publi
ations into patents�

a
onjun
tion of two requirements. We will model ea
h

requirement individually and then
ompute their
on-

jun
tion, i.e, the spe
i�
ation that represents the set

of their
ommon implementations: Administration is the

onjun
tion of HalfAdm1 and HalfAdm2, both presented

in Fig. 3. Observe that both spe
i�
ations are input en-

abled and allow patents and
oins as outputs. Given

grants (grant?), resp. publi
ations (pub?),
oins are pro-

du
ed within 2 time units (with
oin!), resp. patents

(with patent!). In general,
onjun
tion
an introdu
e

bad behaviors in spe
i�
ations, i.e, behaviors that
an-

not be implemented be
ause they do not respe
t prop-

erties su
h as independent progress. In our theory su
h

behaviors will be pruned using a game-based te
hnique.

3

a)

grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1 b)

grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

Figure 3: Two
onjun
ts that together model the Admin-

istration
omponent.

We are now ready to
ompose our spe
i�
ations in

order to derive a re�nement of the university model.

Fig. 4 gives the overview of this re�nement
he
k. We

put in parallel the
omponents for the resear
her, the

o�ee ma
hine, and the administration. Our veri�
ation

engine then
he
ks if this
omposition re�nes the spe
-

i�
ation of our university. The veri�
ation is done in a

ompositional manner in the sense that every
omponent

is explored lo
ally, bad behaviour is eliminated (pruned),

and
ombined with the appropriate operator, shown in

the �gure.

Slightly surprisingly, the re�nement
he
k of Fig. 4

fails. It turns out that sin
e the ma
hine allows the re-

sear
hers to get free tea, they
an publish for free, whi
h

an give patents for free�a s
enario that has not been

anti
ipated in the spe
i�
ation.

3 Related Work

The obje
tive of this se
tion is mainly to survey a state-

of-the art for interfa
e theory, not to make an exhaustive

list of all existing timed spe
i�
ation theories.

It has been argued [31,27,32℄ that games
onstitute

a natural model for interfa
e theories: ea
h
omponent

is represented by an automaton whose transitions are

typed with input and output modalities. The semanti
s

of su
h an automaton is given by a two-player game: the

input player represents the environment, and the out-

put player represents the
omponent. Contrary to the

input/output model proposed by Lyn
h and Tuttle [50℄,

this semanti
 o�ers (among many other advantages) an

optimisti
 treatment of
omposition: two interfa
es
an

be
omposed if there exists at least one environment in

whi
h they
an intera
t together in a safe way. Game-

based interfa
es were �rst developed for untimed systems

[32,28℄ and implemented in tools su
h as TICC [2℄ and

CHIC [21℄ for both syn
hronous and asyn
hronous mod-

els. The �rst dense time extension of the theory of in-

terfa
e automata has been developed in [34℄, motivated

by the fa
t that real time is a
ru
ial parameter in some

systems. The theory, whi
h extends timed input/output

automata [42℄, was later implemented in TICC, but us-

ing dis
retized real time only [29℄. The idea is similar to

the untimed
ase:
omponents are modeled using timed

input/output automata (TIOAs) with a timed game se-

manti
s [17℄. The theory of [34℄ has never been
om-

pleted, in the sense that it la
ks support for
onjun
-

tion and re�nement (in
ontrast to the one presented

here). The usefulness of su
h theories for
ompositional

design of real time systems is thus limited. While tool-

ing is not the fo
us of this paper, let us mention that,

elsewhere [14℄, we show how the E
dar tool and our

timed interfa
e theory
an be used to solve problems

that are beyond the s
ope of
lassi
al Uppaal timed

input/automata extensions [13,11℄.

In [45℄ Larsen proposes modal automata, whi
h are

deterministi
 automata equipped with transitions of the

following two types: may and must . The
omponents

that implement su
h interfa
es are simple labeled tran-

sition systems. Roughly, a must transition is available in

every
omponent that implements the modal spe
i�
a-

tion, while a may transition need not be. Re
ently [12℄ a

timed extension of modal automata was proposed. This

series of works, whi
h generalizes an early attempt [19℄,

embeds all the operations presented in the present pa-

per. However, modalities are orthogonal to inputs and

outputs, and it is well-known [47℄ that,
ontrary to the

game-semanti
 approa
h, they
annot be used to distin-

guish between the behaviors of the
omponent and those

of the environment.

Among other modeling languages for spe
i�
ation,

one �nd those that use logi
al representations su
h as

Timed Computational Tree Logi
 (TCTL), Metri
 Tem-

poral Logi
 (MTL), or duration. While su
h logi
s are

generally
onvenient to reason on individual requirements

[54℄, they are generally not suited for operations su
h

as stru
tural
omposition and quotient. To the best of

our knowledge, the expressiveness relation between log-

i
al formalism and timed I/O automata or timed modal

spe
i�
ations remains unknown. There are also timed

extensions of languages su
h as CSP. A
omparison be-

tween CSP (and related pro
ess algebra languages) and

interfa
e theories
an be found in [8℄.

Finally, let us add that numerous authors have stud-

ied interfa
e theories and
omponent based design. Am-

ong them, one �nds a series of very pra
ti
al works that

do not study quotient and
onjun
tion, but rather fo
us

on ri
her
omposition operations and spe
i�
 models of

omputation for inter
onne
tion and software design [1,

36,37℄. Another example is the series of more re
ent pa-

pers that fo
us on
omposition and performan
e analysis

or s
heduling for embedded systems [40℄. While our the-

ory is
ertainly more general, it would be of interest to

learn from those models and the
ase studies they handle

in order to extend our
omposition operation.

There are of
ourse other tools and theories for timed

systems. As an example, another tool supporting re�ne-

ment is PAT [57,58℄. Unlike E
dar, it builds on CSP

4

E

n

g

i

n

e

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2

Ma
hine

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Resear
her

grant? grant?

grant?

patent! patent!

grant?
GrantStartEnd

u=0

u<=2

u=0

u<=20
u>2

UniSpe

e

x

p

l

o

r

e

a

n

d

p

r

u

n

e

i

n

t

e

r

n

a

l

T

I

O

A

&&

o

n

j

u

n

t

i

o

n

‖

o

m

p

o

s

i

t

i

o

n

ombine with operator

≤

r

e

�

n

e

m

e

n

t

h

e

k

yes/no+strategy

Figure 4: Illustration of the steps performed in a
on
rete re�nement
he
k. The grey box represents the part
arried

out internally by the veri�
ation engine.

with a failure, divergen
e and refusal semanti
s whi
h

makes a dire
t
omparison di�
ult. However, the CSP

theory does not support quotienting nor simple
on-

jun
tion of spe
i�
ations. And thus in
ontrast to E
-

dar, PAT does not support assume/guarantee reasoning

about systems. This related work survey only the posi-

tion of our work in the interfa
e theory setting.

4 Spe
i�
ations and Implementations

We use four
lasses of obje
ts in our theory�spe
i�
a-

tions, and models (implementations) together with their

respe
tive behavioral semanti
s as transition systems.

Two kinds of relations are used between the four
lasses:

operational semanti
s and satisfa
tion. Fig. 5 shows an

overview of the four
lasses of obje
ts and relations be-

tween them.

We distinguish spe
i�
ations and models. In the left

part of Fig. 5, a spe
i�
ation A and a model X
an be re-

lated through a satisfa
tion relation |=, relating models

and spe
i�
ations. The left half of Fig. 5, shows synta
ti

obje
ts (spe
i�
ations and implementations), while the

right half shows the semanti
 obje
ts (spe
i�
ation se-

manti
s and implementation semanti
s). Horizontal ar-

rows point from synta
ti
 obje
ts to their semanti
s. Ver-

ti
al arrows point from spe
i�
ations downwards to their

models (both in the synta
ti
 and the semanti
 halves).

Traditionally spe
i�
ations are logi
al formulas, and

models are witnesses of
onsisten
y of these formulas.

This is the view that most of the model-
he
king [22,

7℄ resear
h takes. In our
ase, spe
i�
ations are timed

games [51℄, resembling timed automata [3℄. Sin
e these

are symboli
 �nite representations des
ribing
ontinu-

ous state behavior, it is
onvenient to distinguish an-

other semanti
 layer, whi
h des
ribes this behavior op-

erationally. Thus we will say that the semanti
s of a

spe
i�
ation A (respe
tively of an implementation X) is

given by a Timed I/O Transition System JS K
sem

(re-

spe
tively of a Timed I/O Transition System JX K
sem

).

Our transition systems are very similar to those indu
ed

A

X

S = JAKsem

P = JX Ksem

|= |=

J ·Ksem

J ·Ksem

timed I/O
transition systems

(infinite)

timed I/O
automata

(finite)

sp
ec

ifi
ca

tio
ns

(im
pl

e
m

e
nt

a
tio

ns
)

m
od

el
s

Figure 5: Semanti
 Layer's in our spe
i�
ation theory

by pro
esses in [63℄, ex
ept that their dis
rete a
tions are

split into inputs and outputs, like in I/O automata [49℄.

Unlike in I/O automata we give them a game semanti
s,

not the language semanti
s.

Throughout the presentation of our spe
i�
ation the-

ory, we
ontinuously swit
h the mode of dis
ussion be-

tween the semanti
 and synta
ti
 levels. In general, the

formal framework is developed for the semanti
 obje
ts,

Timed I/O Transition Systems (TIOTSs in short) [39℄,

and enri
hed with synta
ti

onstru
tions for Timed I/O

Automata (TIOAs), whi
h a
t as a symboli
 and �nite

representation for TIOTSs. However, the theory for

TIOTSs does not rely in any way on the TIOAs represen-

tation�one
an build TIOTSs that
annot be repre-

sented by TIOAs, and the theory remains sound for them

(although we would not know how to manipulate them

symboli
ally).

De�nition 1. A Timed I/O Transition System (TIOTS)

is a tuple S = (StS , s0, Σ
S,−→S), where StS is an in�nite

set of states, s0 ∈ St is the initial state, ΣS = ΣS
i

⊕ΣS
o

is a �nite set of a
tions partitioned into inputs (ΣS
i

) and

outputs (ΣS
o

) and −→S : StS×(ΣS∪R≥0)×St
S
is a transi-

tion relation. We write s a−→Ss′ instead of (s, a, s′) ∈ −→S ,
and we write s a−→S if ∃s′.s a−→Ss′, and use i?, o! and d to

5

range over inputs, outputs and R≥0 respe
tively. Tran-

sitions that are labelled by a
tions (inputs or outputs)

are
alled dis
rete transitions, while transitions labelled

by real values are
alled timed transitions. In addition

any TIOTS satis�es the following:

[time determinism℄ if s d−→Ss′ and s d−→Ss′′ then s′=s′′

[time re�exivity℄ s 0−→Ss for all s ∈ StS

[time additivity℄ for all s, s′′∈ St

S
and all d1, d2 ∈ R≥0,

we have s d1+d2−−−−→Ss′′ i� s d1−−→Ss′ and s′ d2−−→Ss′′ for an

s′ ∈ St

S
.

We only work with deterministi
 TIOTSs in this paper:

for all a ∈ Σ ∪ R≥0 whenever s a−→Ss′ and s a−→Ss′′, we
have s′ = s′′ (determinism is required not only for timed

transitions but also for dis
rete transitions). In the rest

of the paper, we often drop the adje
tive 'determinis-

ti
'. Of
ourse, this de�nition of determinism does not

prevent from issuing several a
tions from the same state,

the only restri
tion is that one given a
tion
an only take

the system to a deterministi
 lo
ation.

For a TIOTS S and a set of states X , we write:

pred

S
a (X) =

{

s ∈ St

S
∣

∣ ∃s′∈X. s a−→s′
}

(1)

for the set of all a-prede
essors of states in X . We write

ipred

S(X) for the set of all input prede
essors, and

opred

S(X) for all the output prede
essors of X :

ipred

S(X) =
⋃

a∈ΣS
i

pred

S
a (X) (2)

opred

S(X) =
⋃

a∈ΣS
o

pred

S
a (X) . (3)

Also post

S
[0,d0]

(s) is the set of all time su

essors of a

state s that
an be rea
hed by delays smaller or equal to

d0:

post

S
[0,d0]

(s) =
{

s′∈StS
∣

∣ ∃ d∈ [0, d0]. s d−→Ss′
}

(4)

Following [51℄ we will later use these operators to �nd

strategies for safety and rea
hability obje
tives imposed

on TIOTSs.

We shall now introdu
e a �nite synta
ti
 symboli
 repre-

sentation for TIOTSs in terms of Timed I/O Automata

(TIOAs). Let Clk be a �nite set of
lo
ks. A
lo
k val-

uation over Clk is a mapping u ∈ [Clk 7→ R≥0]. Given
d ∈ R≥0, we write u+ d to denote a valuation su
h that

for any
lo
k r we have (u + d)(r) = x + d i� u(r) = x.
We write u[r 7→ 0]r∈c for a valuation whi
h agrees with

u on all values for
lo
ks not in c, and returns 0 for all

lo
ks in c. Let op be the set of relational operators:

op = {<,≤, >,≥}. A guard over Clk is a �nite
onjun
-

tion of expressions of the form x ≺ n, where ≺ is a

relational operator and n ∈ N. We write B(Clk) for the
set of guards over Clk using operators in the set op, and

U(Clk) for the subset of upper bound guards using only

the operators {<,≤}. We also write P(X) for the pow-
erset of a set X .

De�nition 2. A Timed I/O Automaton (TIOA) is a

tuple A = (Lo
, q0,Clk, E,Act, Inv) where Lo
 is a �nite

set of lo
ations, q0 ∈ Lo
 is the initial lo
ation, Clk is a

�nite set of
lo
ks, E ⊆ Lo
×A
t×B(Clk)×P(Clk)×Lo

is a set of edges, A
t = A
t

i

⊕A
t

o

is a �nite set of

a
tions, partitioned into inputs and outputs respe
tively,

and Inv : Lo
 7→ U(Clk) is a set of lo
ation invariants.

If (q, a, ϕ, c, q′) ∈ E is an edge, then q is an initial lo
a-

tion, a is an a
tion label, ϕ is a
onstraint over
lo
ks

that must be satis�ed when the edge is exe
uted, c is

a set of
lo
ks to be reset, and q′ is a target lo
ation.

We denote NextInv(q′) = Inv(q′) ∨
(
∨

r∈c{r ≥ 0}
)

the

invariant of the next lo
ation that restri
t the guard of

the edge. Examples of TIOAs have been shown in the

introdu
tion.

We de�ne the semanti
 of a TIOA A=(Lo
, q0,Clk,
E,A
t, Inv) to be a TIOTS JA K

sem

= (Lo
 × (Clk 7→
R≥0), (q0,0),A
t,−→), where 0 is a
onstant fun
tion map-

ping all
lo
ks to zero, and −→ is the largest transition

relation generated by the following rules:

(q, a, ϕ, c, q′) ∈ E u ∈
ˆ

Clk 7→ R≥0

˜

u |= ϕ∧ u[r 7→ 0]r∈c |= Inv(q′)

(q, u) a−−→(q′, u[r 7→ 0]r∈c)

q ∈ Lo
 u ∈
ˆ

Clk 7→ R≥0

˜

d ∈ R≥0 u + d |= Inv(q)

(q, u) d−→(q, u + d)

The TIOTSs indu
ed by TIOAs, a

ording to the above

rules, satisfy the axioms of De�nition 1: time determin-

ism, time re�exivity, time additivity. Moreover, in order

to guarantee determinism of JA K
sem

, the TIOA A has to

be deterministi
: for ea
h a
tion�lo
ation pair only one

transition
an be enabled at the same time.

This
an be
he
ked algorithmi
ally with a standard

he
k for disjointness of guards of transitions with the

same a
tion. For ea
h lo
ation q and ea
h a
tion a ∈
A
t,
he
k whether all its guards are mutually ex
lusive.

Formally, let Gq,a be the set of strengthened guards of

all a transitions leaving q:

Gq,a = {ϕ ∧ NextInv(q′) | whenever (q, a, ϕ, c, q′) ∈ E}
(5)

To guarantee determinism
he
k for ea
h pair ψ1, ψ2 ∈
Gq,a whether the
onjun
tion Inv(q) ∧ ψ1 ∧ ψ2 is in
on-

sistent, and do that for all lo
ations.

We assume that all TIOAs below are deterministi
.

4.1 Spe
i�
ations

We will now introdu
e our notions of spe
i�
ations and

implementations.

De�nition 3 (Spe
i�
ation). A TIOTS P = (StP ,
p0, Σ

P ,−→P) is a spe
i�
ation semanti
s if ea
h state s ∈
St

P
is input-enabled : for ea
h input i?∈ΣP

i

there exists

a state s′∈StP su
h that s i?−−→P s′.

6

A TIOA A is a spe
i�
ation i� its semanti
s JA K
sem

is input-enabled.

The assumption of input-enabledness, also seen in many

spe
i�
ation theories [49,38,56,61,53℄, re�e
ts our belief

that an input
annot be prevented from being sent to a

system, but it might be unpredi
table how the system

behaves after re
eiving it. A standard way of modeling

a disallowed input in su
h a setting is to redire
t it to a

spe
ial universal state, where all a
tions are enabled�

the behaviour of the system be
omes unpredi
table after

rea
hing this state.

Input-enabledness en
ourages expli
it modeling of this

unpredi
tability, and
ompositional reasoning about it;

for example, it allows asking if an unpredi
table be-

haviour of one
omponent indu
es unpredi
tability of

the entire system.

In pra
ti
e, tools should not require the users to spe
-

ify input-enabled automata, as this qui
kly be
omes te-

dious. There are however good strategies for making au-

tomata input-enabled. First, absent inputs
an be in-

terpreted as ignored inputs,
orresponding to lo
ation

loops in the automaton that
an be added automati
ally.

Se
ond, absent inputs
an be interpreted as unavailable

(�blo
king�) inputs, whi
h are modeled by adding im-

pli
it transitions to a designated error lo
ation (for ex-

ample a universal lo
ation as suggested above). Later,

in Se
tion 7 we will
all su
h a state stri
tly undesirable

and give a rationale for this name.

In order to
he
k that a TIOA A indu
es an input-

enabled TIOTS JA K
sem

, de
ide for ea
h lo
ation q ∈
Lo

A
and ea
h input a
tion i? ∈ A
t if a disjun
tion of

guards of outgoing transitions labelled by i? is entailed

by Inv(q). Formally, if Gq,i? is the set of strengthened

guards (see (5)) of all i?�transitions leaving q, then in

order to
he
k if i? is always enabled in lo
ation q,
he
k

Inv(q) entails

∨

ψ∈Gg,i?

ψ (6)

To
he
k if the entire spe
i�
ation automaton is input-

enabled just repeat the
he
k for all lo
ation�input pairs.

4.2 Implementations

The role of spe
i�
ations in a spe
i�
ation theory is to

abstra
t, or underspe
ify, sets of possible implementa-

tions. We will assume that implementations of timed sys-

tems have �xed timing behaviour (outputs o

ur at pre-

di
table times) and systems
an always advan
e either by

produ
ing an output or delaying. This is formalized us-

ing axioms of output-urgen
y and independent-progress

below:

De�nition 4 (Implementation). A TIOTS P = (StP ,
p0, Σ

P ,−→P) is an implementation semanti
s if it ful�lls

the output urgen
y and independent progress
onditions,

so if for ea
h state p ∈ St

P
we respe
tively have:

[output urgen
y℄ ∀ p′, p′′ ∈ St

P
if p o!−−→P p′ and p d−→P p′′

then d = 0 (and thus, due to determinism p = p′′)

[independent progress℄ either (∀d ≥ 0. p d−→P)
or ∃ d∈R≥0. ∃ o!∈ΣP

o

. p d−→p′ and p′ o!−−→P .

A TIOA A is an implementation i� A is a spe
i-

�
ation and its semanti
s, JA K
sem

, ful�lls independent

progress and output urgen
y.

Independent progress is one of the
entral properties

in our theory: it states that an implementation
annot

ever get stu
k in a state where it is up to the environment

to indu
e the progress of time. So in every state there is

either an output transition (whi
h is
ontrolled by the

implementation) or an ability to delay until an output

is possible. Otherwise a state
an delay inde�nitely. An

implementation
annot wait for an input from the envi-

ronment without letting time pass.

Remark 1. Our notion of implementation remains at the

theory level. Generating exe
utable
ode and taking ro-

bustness into a

ount is not the topi
 of this paper. How-

ever, one
ould exploit existing works [5℄ to generate ro-

bust C
ode from a given timed automaton.

In Se
tion 9 we des
ribe how to
he
k for indepen-

dent progress and other important properties of spe
i�-

ations.

4.3 Spe
i�
ations as Timed Games

Spe
i�
ations are interpreted as two-player real-time ga-

mes between the output player (the
omponent) and the

input player (the environment). The input player plays

with a
tions in A
t

i

and the output player plays with

a
tions in A
t

o

. A strategy for a player is a fun
tion that

de�nes his move at any state (either delaying or playing

a
ontrollable a
tion). As we will explain in the following

se
tions, strategies for output (respe
tively input)
an be

interpreted as implementations (respe
tively
ompatible

environments).

A strategy is
alled memoryless if the next move de-

pends solely on the
urrent state. We only
onsider mem-

oryless strategies, as these su�
e for safety games [30℄.

For simpli
ity, we only de�ne strategies for the output

player (i.e. output is the veri�er). De�nitions for the in-

put player are obtained symmetri
ally.

De�nition 5. A memoryless strategy fo for the output
player on the TIOA A is a partial fun
tion St

JA K
sem 7→

A
t

o

∪ {delay}, su
h that

� If fo(s) ∈ A
t

o

then ∃s′.s fo(s)−−−−→Ss′.
� If fo(s) = delay then ∃s′′.s d−→Ss′′ for some d > 0, and
fo(s

′′) = delay.

The game pro
eeds as a
on
urrent game between the

two players. Then, by applying a strategy fo the output
player restri
ts the set of rea
hable states from the se-

manti
s. This de�nes the out
ome of the strategy, su
h

7

that for a state s ∈ St

JA K
sem

, Out
ome(s, fo) is the set

of states de�ned indu
tively by:

� s ∈ Out
ome(s, fo),
� if s′ ∈ Out
ome(s, fo) and s

′ a−→s′′, then
s′′ ∈ Out
ome(s, fo) if one the following
onditions

holds:

1. a ∈ A
ti,

2. a ∈ A
to and fo(s
′) = a,

3. a ∈ R≥0 and ∀d ∈ [0, a[.∃s′′′. s′ d−→s′′′

and fo(s
′′′) = delay.

In a safety game, the winning
ondition is to avoid a set

Bad of �bad� states. A strategy fo is a winning strategy

from state s if and only if Out
ome(s, fo) ∩ Bad = ∅. A
state s is winning if there exists a winning strategy from
s, and the game is winning if and only if the initial state

is winning. Solving this game is de
idable [51,17,24℄.

5 Satisfa
tion, Re�nement and Consisten
y

A notion of re�nement allows to
ompare two spe
i�
a-

tions as well as to relate an implementation to a spe
i-

�
ation. Re�nement should satisfy the following substi-

tutability
ondition. If P re�nes Q, then it should be

possible to repla
e Q with P in every environment and

obtain an equivalent system.

We study these kind of properties in later se
tions. It

is well known from the literature [31,32,15℄ that in order

to give these kind of guarantees a re�nement should have

the �avour of alternating (timed) simulation [4℄.

De�nition 6 (Re�nement ≤). ATIOTS S = (StS , s0,
Σ,−→S) re�nes a TIOTS T = (StT, t0, Σ,−→T), written
S≤T , i� there exists a binary relation R⊆StS×StT
on-
taining (s0, t0) su
h that for ea
h pair of states (s, t) ∈ R
we have:

1. whenever t i?−−→T t′ for some t′∈StT then s i?−−→Ss′ and
(s′, t′)∈R for some s′∈StS

2. whenever s o!−−→Ss′ for some s′ ∈ St

S
then t o!−−→T t′ and

(s′, t′) ∈ R for some t′ ∈ St

T

3. whenever s d−→Ss′ for d ∈ R≥0 then t d−→T t′ and (s′, t′) ∈
R for some t′ ∈ St

T

A spe
i�
ation automaton A1 re�nes another spe
i�
a-

tion automaton A2, written A1 ≤ A2, i� JA1 K
sem

≤
JA2 K

sem

.

It is easy to see that the re�nement is re�exive and tran-

sitive, so it is a preorder on the set of all spe
i�
ations

(and, of
ourse, also on the set of all spe
i�
ation se-

manti
s). Re�nement
an be
he
ked for spe
i�
ation

automata by redu
ing the problem to a spe
i�
 re�ne-

ment game, and using a symboli
 representation to rea-

son about it. We dis
uss details of this pro
ess in Se
-

tion 9.

Fig. 6 shows a
o�ee ma
hine that is a re�nement of

the one in Fig. 1. It has been re�ned in two ways: one

teacoin cof

Ma
hine2

Figure 6: A
o�ee ma
hine spe
i�
ation that re�nes the

o�ee ma
hine in Fig. 1.

teacoin cof

In
onsistent

Figure 7: An in
onsistent spe
i�
ation.

output transition has been
ompletely dropped and one

state invariant has been tightened.

Sin
e our implementations are a sub
lass of spe
i�-

ations, we simply use re�nement as an implementation

relation:

De�nition 7 (Satisfa
tion). An implementation se-

manti
s TIOTS P satis�es a spe
i�
ation semanti
s S,
written P |= S, i� P ≤ S. An implementation I sat-

is�es a spe
i�
ation A i� J I K
sem

|= JA K
sem

. We write

JA K
mod

for all semanti
 models of A, so JA K
mod

= {P |
P is a TIOTS and P |= JA K

sem

}.

From a logi
al perspe
tive, spe
i�
ations are like for-

mulae, and implementations are their models. This anal-

ogy leads us to a
lassi
al notion of
onsisten
y, as exis-

ten
e of models.

De�nition 8 (Consisten
y). A spe
i�
ation seman-

ti
s TIOTS S is
onsistent if there exists an input-enabled

TIOTS P su
h that P |= S, and P is an implementation

semanti
s. A spe
i�
ation A is
onsistent if its spe
i�
a-

tion semanti
s, JA K
sem

, is
onsistent.

All spe
i�
ations shown until now are
onsistent. An

example of an in
onsistent spe
i�
ation
an be found in

Fig. 7: noti
e that the invariant in the se
ond state (x≤4)
is stronger than the guard (x≥5) on the
of! edge; there-

fore this state does not ful�ll the independent progress

ondition, and it
annot be implemented.

We also de�ne a soundly stri
ter, more synta
ti
, no-

tion of
onsisten
y, whi
h requires that all states are
on-

sistent:

8

De�nition 9 (Lo
al Consisten
y). A state s of a

spe
i�
ation semanti
s S is lo
ally
onsistent if it ful-

�lls independent progress. S is lo
ally
onsistent i� ev-

ery state s ∈ St

S
is lo
ally
onsistent. A spe
i�
ation A

is lo
ally
onsistent if JA K
sem

is lo
ally
onsistent.

Lemma 1. Every lo
ally
onsistent spe
i�
ation seman-

ti
s S is
onsistent in the sense of Def. 8.

Proof (Lemma 1). Let us begin with de�ning an auxil-

iary fun
tion δ whi
h
hooses a delay and an output for

every lo
ally
onsistent state s:

δs =











d for some d su
h that s d−→Ss′

and ∃o!. s′ o!−−→S

+∞ if ∀d ≥ 0. s d−→S
(7)

Note that δ is a fun
tion, so it always gives a unique

value of a delay for any state s, thus in the �rst
ase we

mean that an arbitrary �xed value is
hosen out of un-

ountably many possible values. It is immaterial for the

proof whi
h of the many values is
hosen. It is important

however that δ is time additive in the following sense: if

s d−→s′ and d ≤ δs then δs′ + d = δs. It is always possible
to
hoose su
h a fun
tion δ due to time additivity of −→S ,
and lo
al
onsisten
y of S.

We want to synthesize a TIOTS P = (StP , ps0 , Σ
P ,

−→P), where St

P = {ps | s ∈ St

S}, ΣP = ΣS
with the

same partitioning into inputs and outputs, and −→P is

the largest transition relation generated by the following

rules:

s i?−−→Ss′ i? ∈ ΣS
i

ps i?−−→P ps′
(8)

s o!−−→Ss′ o! ∈ ΣS
o

δs = 0

ps o!−−→P ps′
(9)

s d−→Ss′ d ∈ R≥0 d ≤ δs

ps d−→
P ps′

(10)

Sin
e P only takes a subset of transitions of S, the
determinism of S implies determinism of P . The transi-
tion relation of P is time-additive due to time additivity

of −→JA K
sem

and of δ. It is also time-re�exive due to the

last rule (0 ≤ δs for every state s and −→S was time

re�exive). So P is a TIOTS.

The new transition relation is also input-enabled as

it inherits input transitions from A, whi
h was input

enabled. The se
ond rule guarantees that outputs are

urgent (P only outputs when no further delays are pos-

sible). Moreover P observes independent progress. Con-

sider a state ps. Then if δs = +∞
learly ps
an delay

inde�nitely. If δs is �nite, then by de�nition of δ and of

P , the state ps
an delay and then produ
e an output.

Thus P satis�es
onditions of Def. 8.

Now, the following relation R ⊆ St

P × St

S
witnesses

P |= S :

R =
{

(ps, s) | ps ∈ St

P
and s ∈ St

JA K
sem

}

(11)

This is argued using an unsurprising
oindu
tive argu-

ment. ⊓⊔

It follows dire
tly that:

Corollary 1. Every lo
ally
onsistent spe
i�
ation is
on-

sistent (in the sense of Def.8).

We shall see later (Figure 8) that the impli
ation

opposite to the one of Corollary 1 does not hold. To es-

tablish lo
al
onsisten
y, or independent progress, for a

TIOA, it su�
es to
he
k for ea
h lo
ation if the supre-

mum of all solutions of its invariant exists, whether it

satis�es the invariant itself and allows at least one en-

abled output transition.

Prior spe
i�
ation theories for dis
rete time [45℄ and

probabilisti
 [16℄ systems reveal two main requirements

for a de�nition of implementation. These are the same re-

quirements that are typi
ally imposed on a de�nition of a

model as a spe
ial
ase of a logi
al formula. First, imple-

mentations should be
onsistent spe
i�
ations (logi
ally,

models
orrespond to some
onsistent formulae). Se
-

ond, implementations should be most spe
i�ed (models

annot be re�ned by non-models), as opposed to proper

spe
i�
ations, whi
h should be underspe
i�ed. For exam-

ple, in propositional logi
s, a model is represented as a

omplete
onsistent term. Any impli
ant of su
h a term

is also a model (in propositional logi
s, it is a
tually

equivalent to it).

Our de�nition of implementation satis�es both re-

quirements, and to the best of our knowledge, is the

�rst example of a proper notion of implementation for

timed spe
i�
ations. As the re�nement is re�exive we

get P |= P for any implementation and thus ea
h im-

plementation is
onsistent as per Def. 8. Furthermore

ea
h implementation
annot be re�ned anymore by any

underspe
i�ed spe
i�
ations:

Lemma 2. Any lo
ally
onsistent spe
i�
ation seman-

ti
s S re�ning an implementation semanti
s P is an im-

plementation semanti
s as per Def. 4.

Proof (Lemma 2). Observe �rst that S is already lo-

ally
onsistent, so all states of S warrant independent

progress. We only need to argue that they also verify

output urgen
y.

Without loss of generality, assume that JS K
sem

only

ontains states that are rea
hable by (sequen
es of) dis-

rete or timed transitions.

If S only
ontains rea
hable states, every state of S
has to be related to some state of P in a relation R wit-

nessing S ≤ P (output and delay transitions need to be

mat
hed in the re�nement; input transitions also need to

be mat
hed as P is input enabled and S is deterministi
).

9

This
an be argued for using a standard, though slightly

lengthy argument, by formalizing rea
hable states as a

�xpoint of a monotoni
 operator.

Now, that we know that every state of S is related

to some state of P
onsider an arbitrary s ∈ St

S
and let

p ∈ St

P
be su
h that (s, p) ∈ R. Then if s o!−−→Ss′ for some

state s′ ∈ St

S
and an output o! ∈ ΣS

o

, it must be that

also p o!−−→p′ for some state p′ ∈ St

P
(and (s′, p′) ∈ R).

But sin
e P is an implementation, its outputs must be

urgent, so p 6 d−−→P for all d > 0, and
onsequently s 6 d−−→S

for all s > 0. We have shown that all states of S have

urgent outputs (if any) and thus S is an implementation.

⊓⊔

Corollary 2. Any lo
ally
onsistent spe
i�
ation S re-

�ning an implementation P is an implementation itself.

We
on
lude the se
tion with the �rst major theorem.

Observe that every preorder � is intrinsi
ally
omplete

in the following sense: S � T i� for every smaller element

P � S also P � T . This means that a re�nement of two

spe
i�
ations
oin
ides with in
lusion of sets of all the

spe
i�
ations re�ning ea
h of them:

S ≤ T i� {P | P ≤ S} ⊆ {P | P ≤ T } (12)

However, sin
e out of all spe
i�
ations only the imple-

mentations
orrespond to real world obje
ts, another

ompleteness question is more relevant: does the re�ne-

ment
oin
ide with the in
lusion of implementation sets?

This property, whi
h does not hold for preorders in gen-

eral, turns out to hold for our re�nement:

Theorem 1 (Re�nement Is Thorough). For any two

lo
ally
onsistent spe
i�
ations A, B we have that

A ≤ B i� JA K
mod

⊆ JB K
mod

(13)

We split the proof of Theorem 1 into two lemmas.

Lemma 3 (Soundness). For all lo
ally
onsistent spe
-

i�
ation semanti
s S and T , if S ≤ T then for any im-

plementation semanti
s P , P |= S implies P |= T .

Proof (Lemma 3). This lemma is a spe
ial
ase of the

transitivity of the re�nement relation. Consider an im-

plementation semanti
s P of S. Then P ≤ S and S ≤ T ,
implies P ≤ T , whi
h proves that P |= T . ⊓⊔

Lemma 4 (Completeness). For all lo
ally
onsistent

spe
i�
ation semanti
s S and T , if for any implementa-

tion semanti
s P , P |= S implies P |= T , then S ≤ T .

In the following we write p |= s for states p and s of
TIOTS P (respe
tively S) meaning that there exists a

relation R′
witnessing P |= S that
ontains the pair of

states (p, s).

Proof (Lemma 4). Assume that every model of S is a

model of T . Consider the relation R ⊆ St

S × St

T
:

R = {(s, t) | for ea
h implementation TIOA P

it holds that (pP0 |= s =⇒ pP0 |= t)} , (14)

where pP0 denotes the initial state of P . We shall argue

that R witnesses S ≤ T . It follows dire
tly from the

de�nition of R and the assumption on model in
lusion

that (s0, t0) ∈ R. Now
onsider a pair (s, t) ∈ R. There
are two
ases to be
onsidered:

� For any input i? there exists t′ ∈ St

T
su
h that

t i?−−→T t′. We need to show existen
e of a state s′ ∈ St

S

su
h that s i?−−→Ss′ and (s′, t′) ∈ R.

Observe that due to input-enabledness, for the same

i?, there exists a state s′ ∈ St

S
su
h that s i?−−→JS K

sems′.
We need to show that (s′, t′) ∈ R. By Theorem 1 we

have that there exists an implementation semanti
s

P with initial state pP0 su
h that pP0 |= s′ (te
h-
ni
ally speaking, s may be a non-initial state of S,
but then we
an
onsider a version of S with initial

state
hanged to s to apply Theorem 1,
on
luding

existen
e of the implementation P as above).

We will now argue that arbitrary implementation

semanti
s (not only P) satisfying the state s′ also
satis�es t′. So
onsider an implementation semanti
s

Q |= S and its initial state qQ0 su
h that qQ0 |= s′.

We show that qQ0 |= t′.

Create an implementation Q′
by merging Q and P

above and adding a fresh state qQ
′

0 with all the same

transitions like the initial lo
ation of P (so targeting

lo
ations of the P -part), ex
ept for the transition la-

beled by i?, whi
h should go to qQ0 ; so: q
Q′

0
i?−−→Q

′

qQ0
and otherwise qQ

′

0
a−→Q

′

p whenever pP0
a−→P p for a 6=

i?. The transitions for all the other states of Q′
are

like in P and Q, depending to whi
h of the two im-

plementation semanti
s the state originally belonged.

Now qQ
′

0 |= s as p |= s and it follows all evolutions

of p for a 6= i? and q i?−−→Q
′

q0 and q0 |= s′. By assump-

tion, every implementation semanti
s of s is also an

implementation semanti
s of t, so qQ
′

0 |= t and
on-

sequently q0 |= t′ as qQ
′

0 is deterministi
 on i?.

Summarizing, for any implementation q0 |= s′ we
were able to argue that q0 |= t′, thus ne
essarily

(s′, t′) ∈ R.
� Consider any a
tion a (whi
h is an output or a de-

lay) for whi
h exists s′ su
h that s a−→Ss′. Similarly

as above, one
an
onstru
t (and thus postulate ex-

isten
e) of an implementation P
ontaining p ∈ St

P

su
h that p |= s whi
h has a transition p a−→P p′. Sin
e
then also p |= t we have that there exists t′ ∈ St

T

su
h that t a−→T t′. It remains to argue that (s′, t′) ∈ R.
This is done in the same way as with the �rst
ase,

by
onsidering any model of s′, then by extending it

10

teacoin cof

coin?

cof!

coin?

tea!

coin?
y<=0

y<=6y>=4

y=0 y=0

Partially In
onsistent

Figure 8: A partially in
onsistent spe
i�
ation.

deterministi
ally to a model of s,
on
luding that it

is now a model of t and the only a-derivative, whi
h
is p′, must be a model of t′. Consequently (s′, t′) ∈ R.

⊓⊔

A
omplete re�nement in the above sense is also

sometimes
alled thorough (see e.g. [6℄). The restri
tion

of the theorem to lo
ally
onsistent spe
i�
ations is not a

serious one. As we shall see later (Theorem 2), any
on-

sistent spe
i�
ation
an be transformed into a lo
ally

onsistent one preserving the set of implementations.

6 Consisten
y and Conjun
tion

6.1 Consisten
y

We will now study how
onsisten
y and re�nement in-

tera
t with time lo
k errors (violation of independent

progress) in spe
i�
ations. In parti
ular we will give an

operational
hara
terization of Def. 8.

An immediate error o

urs in a state of a spe
i�
a-

tion semanti
s if the state disallows progress of time and

output transitions�su
h a spe
i�
ation will break if the

environment does not send an input. For a spe
i�
ation

semanti
s S we de�ne the set of immediate error states

err

S ⊆ St

S
as:

err

S=
{

s
∣

∣ (∃d. s6 d−−→) and ∀d∀o! ∀s′.s d−→s′ implies s′6 o!−−→
}

It follows that no immediate error states
an o

ur in

implementations, or in lo
ally
onsistent spe
i�
ations.

In general, immediate error states in a spe
i�
ation

do not ne
essarily mean that a spe
i�
ation
annot be

implemented. Fig. 8 shows a partially in
onsistent spe
i-

�
ation, a version of the
o�ee ma
hine that be
omes in-

onsistent if it ever outputs tea. The in
onsisten
y
an be

possibly avoided by some implementations, whi
h would

not implement delay or output transitions leading to it.

More pre
isely an implementation will exist if there is a

strategy for the output player in a safety game to avoid

err

S
.

We will solve the safety game, by seeking states whi
h

an delay until a safe move, without passing through any

unsafe states (or states from whi
h a spoiling move ex-

ists). We �rst de�ne the safe timed prede
essor operator

[33,51,17℄, whi
h gives all the states that
an safely delay

until an output into X while avoiding the set of unsafe

states Y :

Pred

S
t

(X,Y) = {s ∈ St

S
∣

∣ ∃d0 ∈ R≥0. ∃s
′ ∈ X. s d0−−→Ss′

and post

S
[0,d0]

(s) ⊆ Y } (15)

Sin
e in our game it is possible to play by delaying indef-

initely (not ne
essarily until an output is possible), we

need another operator, Idle

t

, that
aptures states that

an delay inde�nitely without passing through unsafe

states. This operator is analogous to the above one, ex-

ept that it delays inde�nitely. Again, Y denotes the

unsafe states:

Idle

S
t

(Y) = {s ∈ St

S | ∀d ∈ R≥0. ∃s
′ ∈ Y . s d−→s′} (16)

Now the set of safe states is
omputed as the greatest

�xpoint of the following operator π, whi
h is an adjust-

ment of the standard
ontrollable prede
essors operator

[33,51℄ that a

ounts for in�nite delay moves:

π(X) = err

S ∩
[

Idle

S
t

(

ipred

S(X)
)

∪PredS
t

(

opred

S(X), ipredS(X)
)]

(17)

The π operator formalizes a two player game, when both

players
hoose a delay, possibly zero, and a move to be

made. The move with a shorter delay is exe
uted. If the

two delays are equal then the move is nondeterministi
,

and thus the operator
omputing the strategy requires

that both moves have to be non-losing.

The set of all
onsistent states
ons

S
(i.e. the states

for whi
h the environment has a winning strategy) is

de�ned as the greatest �xpoint of π:
onsS = π(
onsS),
whi
h is guaranteed to exist by monotoni
ity of π and

ompleteness of the powerset latti
e due to the theo-

rem of Knaster and Tarski [59℄. For transition systems

enjoying �nite symboli
 representations, automata spe
-

i�
ations in
luded, the �xpoint
omputation
onverges

after a �nite number of iterations [51,17℄.

Lemma 5. A spe
i�
ation semanti
s S = (StS , sS0 , Σ
S ,

−→S) is
onsistent i� sS0 ∈
ons

S
.

Corre
tness of the �xpoint
hara
terization of win-

ning strategies for safety games has �rst been observed

in [51℄. We have updated the theorem to our setting

(whi
h allows idling as a possible move). Below we pro-

vide a proof for this extended version.

Proof (Lemma 5). First, assume that s0 ∈
ons

S
. Show

that S is
onsistent in the sense of Def. 8. In a similar

11

fashion to the proof of Lemma 1 we �rst postulate ex-

isten
e of a fun
tion δ, whi
h
hooses a delay and an

output for every
onsistent state s:

δs =

{

d′ if ∃s′, s′′ ∈
ons

S . s d
′

−−→Ss′ and ∃o!. s′ o!−−→Ss′′

+∞ otherwise

(18)

For ea
h state s ∈
ons

S
the value of δs
an be de-

�ned, sin
e either s ∈ Idle

t

(ipredS(
onsS)) or s ∈ Pred

t

(

opred

S(
onsS), ipredS(
onsS)). In the former
ase it must

be able to delay inde�nitely through states in
ons

S
(and

thus δs postulating the in�nite delay is reasonable), in

the latter
ase it
an delay until an output prede
essor

of a state in
ons

S
, without leaving
ons

S
during the de-

lay. Note that δ is a fun
tion, so it always gives a unique
value of a delay for any state s, thus in the �rst
ase

we mean that an arbitrary �xed value is
hosen out of

possibly un
ountably many values for d′. It is important

however that δ is time additive in the following sense: if

s d−→s′ and d ≤ δs then δs′ + d = δs. It is always possible
to
hoose su
h a fun
tion δ due to time additivity of −→S ,
and the fa
t that
ons

S
is a �xpoint of π.

We show this by
onstru
ting an implementation se-

manti
s P = (StP , p0, Σ
P ,−→P) su
h that St

P = {ps |
s ∈ St

S}, ΣP = ΣS
with the same partitioning in the

inputs and outputs, p0 = ps0 and the transition relation

is the largest relation generated by the following rules:

1. ps o!−−→P ps′ i� s o!−−→Ss′ and s′ ∈
ons

S
and δs = 0

2. ps i?−−→P ps′ i� s i?−−→Ss′

3. ps d−→P ps′ i� s d−→Ss′ and d ≤ δs

Observe that the
onstru
tion of P is essentially iden-

ti
al to the one in the proof of Lemma 1 above. It
an

be argued in almost the same way as in the above proof,

that P satis�es the axioms of TIOTSs and is an imple-

mentation semanti
s. Here one has to use the de�nition

of π in order to see that the side
ondition in the �rst

rule, that is s′ ∈
ons

S
, does not introdu
e a violation of

independent progress.

It remains to argue that P |= S. This is done by

arguing that the following relation R:

R =
{

(p, s) ∈ St

P × St

S | ps = p
}

(19)

witnesses the re�nement of S by P .

For the opposite dire
tion, assume that S is
onsistent

and show that s0 ∈
ons

S
. Sin
e S is
onsistent, then

there exists an implementation semanti
s P and P |= S,
witnessed by a satisfa
tion relation R. Without loss of

generality
onsider an implementation, whi
h only has

rea
hable states, and all its states are related to some

states of S in R (so R is a total relation). Consider the

following subset of states of S:

X = {s ∈ St

S | (p, s) ∈ R for some state p of P } (20)

Obviously sS0 ∈ X . It su�
es to show that X is a post-

�xed point of π. Then s0 ∈ X ⊆ π(X) ⊆
ons

S
, sin
e

ons

S
is the greatest su
h (post-) �xed point.

Remember that (p, s) ∈ R for some state p of P . Also
p satis�es independent progress. We
onsider two
ases:

� p
an delay inde�nitely: ∀d. p d−→p′ for some state p′.
But then also s d−→s′ for some state s′ ∈ St

S
and

(p′, s′) ∈ R. So we have that all s′ ∈ X . To show

that s ∈ π(X) we need to see that s′ ∈ errS and

s ∈ Idle

S
t

(ipredS(X)). For the former this is quite

obvious, as s must satisfy independent progress, if p
does. For the latter assume that s d−→s′ i?−−→s′′ for some

s′′ ∈ X. It must be that p d−→p′ for some state p′ ∈
St

P
, sin
e p
an delay inde�nitely, and by satisfa
tion

(p′, s′) ∈ R. Then also p′ i?−−→p′′ for some state p′′

and (p′′, s′′) ∈ R by satisfa
tion. But then s′′ ∈ X ,

whi
h
ontradi
ts our assumption that s′′ ∈ X. Thus

all timed su

essors of s avoid unsafe states as per

de�nition of Idle

S
t

(ipredS(X)).
� p
an delay until a safe output: ∃d0 ∈ R≥0. p d0−−→p′

o!−−→p′′ for some states p′ and p′′. Then by satisfa
-

tion s d0−−→s′ o!−−→s′′ for some states s′ and s′′, su
h
that (p′, s′), (p′′, s′′) ∈ R, so s′, s′′ ∈ X . To ar-

gue that s ∈ Pred

S
t

(opred(X), ipred(X)) it remains

to show that post

S
[0,d0]

(s)∩ ipredS(X) = ∅. So assume

the opposite: s d̂−→ŝ′ i?−−→ŝ′′ for some delay d̂ ≤ d0 and

states ŝ′, ŝ′′ with ŝ′′ ∈ X . Sin
e p is time additive we

have that p d̂−→p̂′ for some state p̂′ ∈ St

P
and by sat-

isfa
tion p̂′ i?−−→p̂′′ for some state p̂′′; witnessing that

ŝ′, ŝ′′ ∈ X , whi
h
ontradi
ts our assumption. Thus

it must be that s ∈ Pred

S
t

(opred(X), ipred(X)). ⊓⊔

Corollary 3. Consisten
y
an be soundly established for

any spe
i�
ation A by applying the above pro
edure that

establishes Lemma 5 for JA K
sem

.

The set of (in)
onsistent states
an be
omputed for

timed games, and thus for spe
i�
ation automata, using

ontroller synthesis algorithms [17℄. We dis
uss it brie�y

in Se
tion 9.

The in
onsistent states
an be pruned from a
on-

sistent S leading to a lo
ally
onsistent spe
i�
ation.

Pruning is applied in pra
ti
e to de
rease the size of

spe
i�
ations.

For a
onsistent spe
i�
ation semanti
s S = (StS , sS0 ,
ΣS ,−→S) we de�ne the pruned spe
i�
ation semanti
s

S∆ = (
onsS, s0, Σ
S,−→S

∆

), where −→S
∆

= −→S ∩(
onsS×
(ΣS ∪R≥0)×
ons

S).

Theorem 2. Let S be a
onsistent spe
i�
ation seman-

ti
s. S∆ is lo
ally
onsistent and JS K
mod

=JS∆ K
mod

.

Proof (Theorem 2). All the in
onsistent states (that do

not ful�ll the independent progress
ondition) are re-

moved from the pruned spe
i�
ation semanti
s, so obvi-

ously S∆ is lo
ally
onsistent.

Then, as we proved in Lemma 5, if we
onsider an

implementation P of S and the set X = {s ∈ St

S |
(p, s) ∈ R for some state p of P } of the states from S
that are related to some state in P , then this set of states

12

is
onsistent: X ⊆
ons

S
. This allows to use the same

re�nement relation R to show that P ≤ S i� P ≤ S∆.

For spe
i�
ation automata pruning is realized by ap-

plying a
ontroller synthesis algorithm, obtaining a max-

imum winning strategy, whi
h
an then be presented as

a spe
i�
ation automaton itself.

6.2 Conjun
tion

Consisten
y guarantees realizability of a single spe
i�-

ation. It is of further interest whether several spe
i�-

ations
an be simultaneously met by the same
ompo-

nent, without rea
hing error states of any of them. We

formalize this notion by de�ning a logi
al
onjun
tion

for spe
i�
ations.

De�nition 10 (Produ
t ×). Let S = (StS , sS0 , Σ,−→
S)

and T = (StT , sT0 , Σ,−→
T) be two spe
i�
ation semanti
s.

A produ
t of S and T , written S × T , is de�ned to be

the spe
i�
ation semanti
s (StS × St

T , (sS0 , s
T
0), Σ,−→),

where the transition relation −→ is the largest relation

generated by the following rule:

s a−→Ss′ t a−→T t′ a ∈ Σ ∪R≥0

(s, t) a−→(s′, t′)
(21)

In general, a result of the produ
t may be lo
ally in
on-

sistent, or even in
onsistent. To guarantee
onsisten
y

we apply a
onsisten
y
he
k to the result,
he
king if

(s0, t0) ∈
ons

S×T
and, possibly, pruning the in
onsis-

tent parts:

De�nition 11 (Conjun
tion ∧). For spe
i�
ations S
and T over the same alphabet, su
h that S×T is
onsis-

tent, de�ne S∧T = (S×T)∆.

Conjun
tion is
ommutative, asso
iative and it is the

greatest lower bound for lo
ally
onsistent spe
i�
ations

in the following sense:

Theorem 3. For any lo
ally
onsistent spe
i�
ation se-

manti
s S, T and U over the same alphabet:

1. S ∧ T ≤ S and S ∧ T ≤ T
2. (U ≤ S) and (U ≤ T) implies U ≤ (S∧T)
3. JS ∧ T K

mod

= JS K
mod

∩ JT K
mod

4. J (S ∧ T) ∧ U K
mod

= JS ∧ (T ∧ U) K
mod

All the above fa
ts naturally translate to synta
ti
 spe
-

i�
ations (TIOAs).

We omit the (fairly standard) proof for the �rst
laim.

Intuitively the
laim holds be
ause S × T transitions

are stri
tly transitions of S (and of T) and be
ause the

pruning produ
ing (S × T)∆ only removes output and

delay transitions (whi
h are allowed to be dropped by

the re�nement). It never removes input transitions from

rea
hable states.

The third
laim follows from the �rst two and the

fa
t that the re�nement
oin
ides with model in
lusion.

The fourth
laim follows from repetitive appli
ation of

the third
laim (and the fa
t that set interse
tion is the

least upper bound in every powerset latti
e). We only

give a detailed proof for the se
ond
laim below.

Proof (Theorem 3.2). Assume that the relation R1 wit-

nesses U ≤ S, and relation R2 witnesses U ≤ T . First,
show that the following set X is a post �xed point of π:

X = {(s, t) | ∃u ∈ St

U . (u, s) ∈ R1 and

(u, t) ∈ R2} (22)

Then we know that then (s, t) ∈ X ⊆ π(X) ⊆
ons

S×T
,

so all states in X are states of the
onjun
tion.

Consider an arbitrary pair (s, t) in X , su
h that (u, s)
∈ R1 and (u, t) ∈ R2 for some state u ∈ St

U
. Show

that (s, t) ∈ err

S×T
. This is easily seen ad absurdum. By

Lemma 1 we know that there exists an implementation

P and its state p su
h that p |= u. Sin
e P is an imple-

mentation semanti
s it satis�es independent progress. So

p
an delay independently, or until an output. By sat-

isfa
tion u
an do the same, and by re�nement both s
and t
an do the same. By
onstru
tion of the prod-

u
t (s, t)
an thus do the same, and it
annot be that

(s, t) ∈ err

S×T
.

Similarly, show (s, t) ∈ Idle

S×T
t

(

ipred

S×T (X)
)

∪

Pred

S×T
t

(

opred

S×T (X), ipredS×T (X)
)

. This is again ar-

gued by the properties of u (and the fa
t that U is
on-

sistent). Consider the state u witnessing that (s, t) ∈ X .

Sin
e U is
onsistent, it must be that u either admits

delaying inde�nitely, or it delays until an output.

� Assume that for ea
h delay d there exists a state u′

su
h that u d−→u′ then, by re�nement and
onstru
-

tion (s, t) d−→(s′, t′) for some (s′, t′) ∈ X . Sin
e u is

lo
ally
onsistent, all intermediate su

essors states

are implementable thus intermediate time su

essors

of (s, t)
annot be in ipred

S×T (X). Formally,
onsider

an intermediate su

essor u′′, so u d′−−→u′′ and thus

(s, t) d
′

−−→(s′′, t′′) for some (s′′, t′′) with (u′′, s′′) ∈ R1

and (u′′, t′′) ∈ R2. Now if (s′′, t′′) i?−−→(s′′′, t′′′) for

some (s′′′, t′′′) ∈ X we get a
ontradi
tion as by re-

�nement it must be that u′′ i?−−→u′′′ and u′′′ witnesses
that (s′′′, t′′′) ∈ X .

� If u
annot delay inde�nitely, then it
an delay until

an output (by lo
al
onsisten
y). We use an almost

identi
al argument that then both s and t must be
able to do this, and so must their produ
t. Avoiding

ipred

S×T (X) is argued ad absurdum exa
tly like in

the previous
ase. So we
on
lude that X des
ribes

a
onsistent part of the produ
t.

Now it remains to show that U indeed re�nes the

part of S × T indu
ed by X . This is a standard proof

13

by arguing that the following relation R is a re�nement

relation:

R = {(u, (s, t)) ∈ St

U ×X | (u, s) ∈ R1 and

(u, t) ∈ R2} (23)

Sin
e X ⊆
ons

S×T
, we have that R also witnesses re-

�nement of S ∧ T by U . ⊓⊔

We turn our attention to synta
ti
 representations

again. Consider two spe
i�
ations TIOAsA1 = (Lo
1, q
1
0 ,

Clk1, E1, Act
1, Inv1) and A2 = (Lo
2, q

2
0 ,Clk2, E2, Act

2,
Inv2) with A
t

1
i = A
t

2
i and A
t

1
o = A
t

2
o. Their
onjun
-

tion, denoted A1 ∧A2, is the TIOA A = (Lo
, q0,Clk, E,
Act1, Inv) given by: Lo
 = Lo
1 × Lo
2, q0 = (q10 , q

2
0),

Clk = Clk1 ⊎Clk2, Inv((q1, q2)) = Inv(q1) ∧ Inv(q2). The
set of edges E is de�ned by the following rule:

� If (q1, a, ϕ1, c1, q
′
1) ∈ E1 and (q2, a, ϕ2, c2, q

′
2) ∈ E2,

then ((q1, q2), a, ϕ1 ∧ ϕ2, c1 ∪ c2, (q′1, q
′
2)) ∈ E

It might appear as if two systems
an only advan
e on an

input if both are ready to re
eive an input, but be
ause

of input enabledness this is always the
ase.

The following theorem lifts all the results from the

TIOTSs level to the symboli
 representation level:

Theorem 4. Let A1 and A2 be two spe
i�
ation au-

tomata, we have JA1 K
sem

∧ JA2 K
sem

= JA1 ∧A2 K
sem

.

7 Compatibility and Composition

We shall now de�ne stru
tural
omposition, also
alled

parallel
omposition, between spe
i�
ations. We follow

the optimisti
 approa
h of [34℄, i.e., two spe
i�
ations

an be
omposed if there exists at least one environment

in whi
h they
an work together. Parallel
omposition is

made of three main steps. First, we
ompute the
lassi
al

produ
t between timed spe
i�
ations [42℄, where
ompo-

nents syn
hronize on
ommon inputs/outputs. The se
-

ond step is to identify in
ompatible states in the produ
t,

i.e., states in whi
h the two
omponents
annot work

together. The last step is to seek for an environment

that
an avoid su
h error states, i.e., an environment in

whi
h the two
omponents
an work together in a safe

way. Before going further, we would like to
ontrast the

stru
tural and logi
al
omposition.

The main use
ase for parallel
omposition is in fa
t

dual to the one for
onjun
tion. Indeed, as observed in

the previous se
tion,
onjun
tion is used to reason about

internal properties of an implementation set, so if a lo
al

in
onsisten
y arises in
onjun
tion we limit the imple-

mentation set to avoid it in implementations. A pruned

spe
i�
ation
an be given to a designer, who
hooses a

parti
ular implementation satisfying
onjoined require-

ments. A
onjun
tion is
onsistent if the output player

an avoid in
onsisten
ies, and its main theorem states

that its set of implementation
oin
ides with the inter-

se
tion of implementation sets of the
onjun
ts.

In
ontrast, parallel
omposition is used to reason

about external use of two (or more)
omponents. We

assume an independent implementation s
enario, where

the two
omposed
omponents are implemented by inde-

pendent designers. The designer of any of the environ-

ment
omponents
an only assume that the
omposed

implementations will adhere to original spe
i�
ations be-

ing
omposed. Consequently if an error o

urs in parallel

omposition of the two spe
i�
ations, the environment is

the only entity that possibly has the power to avoid it.

Thus, following [31℄, we say that a
omposition is useful,

and
omposed
omponents are
ompatible, if the input

player has a strategy in the safety game to avoid error

states in the
omposition. The main theorem will state

that if an environment is
ompatible with a useful spe
i-

�
ation, it is also
ompatible with any of its re�nements,

in
luding implementations.

We now propose our formal de�nition for parallel

omposition. We
onsider two spe
i�
ation semanti
s S =
(StS, sS0 , Σ

S,−→S) and T = (StT, sT0 , Σ
T,−→T) and we say

that they are
omposable i� their output alphabets are

disjoint ΣS
o

∩ΣT
o

= ∅. We say that two spe
i�
ations are

omposable if their semanti
s are
omposable.

As we did for
onjun
tion, before de�ning the par-

allel
omposition we �rst introdu
e a suitable notion of

produ
t.

De�nition 12 (Parallel produ
t ⊗). The parallel prod-

u
t of S and T , whi
h roughly
orresponds to the one de-
�ned on timed input/output automata [42℄, is the spe
i-

�
ation S⊗T = (StS⊗StT, (sS0 , s
T
0), ΣS⊗T,−→S⊗T), where

the alphabet ΣS⊗T = ΣS ∪ ΣT
is partitioned in inputs

and outputs in the following way: ΣS⊗T
i = (ΣS

i \Σ
T
o)∪

(ΣT
i \Σ

S
o), ΣS⊗T

o = ΣS
o ∪Σ

T
o .

The transition relation of the produ
t is the largest

relation generated by the following rules:

s a−→Ss′ a ∈ ΣS \ΣT

(s, t) a−→S⊗T (s′, t)
[indep-l]

t a−→T t′ a ∈ ΣT \ΣS

(s, t) a−→S⊗T (s, t′)
[indep-r]

s a−→Ss′ t a−→T t′

a ∈ R≥0 ∪Σ
S⊗T
i ∪ (ΣS

i ∩Σ
T
o) ∪ (ΣS

o ∩Σ
S
i)

(s, t) a−→S⊗T (s′, t′)
[syn
]

Observe that if we
ompose two lo
ally
onsistent

spe
i�
ations using the above produ
t rules, then the

resulting produ
t is also lo
ally
onsistent. Sin
e we nor-

mally work with
onsistent spe
i�
ations in a develop-

ment pro
ess, immediate errors as de�ned for
onjun
-

tion are not appli
able to parallel
omposition. More-

over, unlike [34℄, our spe
i�
ations are input-enabled,

14

and there is no way to de�ne an error state in whi
h

a
omponent
an issue an output that
annot be
ap-

tured by the other
omponent. However, the absen
e

of �model-related� error states allows us to de�ne more

elaborated errors, spe
i�ed by the designer. Those
an-

not easily be
onsidered in [34℄.

When reasoning about parallel
omposition we use

model spe
i�
 error states, i.e., error states indi
ated by

the designer. These error states
ould arise in several

ways. First, a spe
i�
ation may
ontain an error state in

order to model unavailable inputs in presen
e of input-

enabledness (transitions under inputs that the system is

not ready to re
eive, should target su
h an in
ompatible

state. Typi
ally universal states are used for the pur-

pose of signaling unpredi
tability of the behaviour after

re
eiving an unanti
ipated input). Se
ond, a temporal

property written in some logi
 su
h as TCTL [3℄
an be

interpreted over our spe
i�
ation, whi
h when analyzed

by a model
he
ker, will result in a partition of the states

into good ones (say satisfying the property) and bad ones

(violating the property). Third, an in
ompatibility in a

omposition
an be propagated from in
ompatibilities in

the
omposed
omponents. It should always be the
ase

that a state in a produ
t (s, t) is an in
ompatible state

if s is an in
ompatible state in S, or t is an in
ompatible

state in T .

Formally, we will model all these sour
es of in
om-

patibility as a set of error states. We will
all this set

of states, stri
tly undesirable states and refer to it as

undesirable

S
. In the rest of the se
tion, to simplify the

presentation, we will in
lude the set of stri
tly undesir-

able states as part of spe
i�
ation de�nitions.

We say that a spe
i�
ation is useful if there exists an

environment E that
an always avoid rea
hing a stri
tly

undesirable state, whatever the spe
i�
ation will do. Thus

the environment is
hara
terizing a winning strategy for

the input player in a safety game to avoid undesirable

states. The environment E is said to be
ompatible with

S.

We
ompute the set of useful states of S using a �x-

point
hara
terisation. This
hara
terization is a dual of

the safety game for
onsisten
y presented in the previ-

ous se
tions. We
onsider a variant of
ontrollable timed

prede
essor operator, where the roles of the inputs and

outputs are reversed:

ω(X) = undesirable

S ∩
[

Idle

S
t

(opredS(X))∪

Pred

t

(ipred(X), opred(X))
]

(24)

Now the set of useful states useful

S

an be
har-

a
terized as the greatest �xpoint of ω, so useful

S =

ω(usefulS). Again existen
e and uniqueness of this �x-

point is warrented by monotoni
ity of ω. Sin
e the ω is

a simple dual of π we omit the proofs in this se
tion,

as they are essentially isomorphi
 to the ones for
onsis-

ten
y and
onjun
tion; with ex
eption of the
ongruen
e

theorem, whose proof is standard.

Theorem 5. A
onsistent spe
i�
ation semanti
s S is

useful i� s0 ∈ useful

S
. A
onsistent spe
i�
ation A is

useful i� s
JA K

sem

0 ∈ useful

JA K
sem

.

The proof of Theorem 5 is a dual to the one of Lemma 5.

As for in
onsistent states, undesirable states
an be

pruned from the spe
i�
ation. For a useful spe
i�
ation

semanti
s S = (StS , sS0 , Σ
S ,−→S) we de�ne the pruned

spe
i�
ation semanti
s Sβ=(usefulS ∪ {u}, s0, ΣS,−→S
β

),
where u is a universal state (allows arbitrary behaviour)

and −→S
β

= −→S ∩(usefulS ∪ {u}× (ΣS ∪R≥0)× useful

S ∪
{u}). The following theorem shows that pruning the spe
-

i�
ation does not
hange the set of
ompatible environ-

ments.

Theorem 6. Let S be a useful spe
i�
ation semanti
s.

Then E is an environment
ompatible with S i� E is

ompatible with Sβ.

The proof of Theorem 6 is a dual to the one of Theo-

rem 2 that shows that P is an implementation semanti
s

of spe
i�
ation S i� P is an implementation semanti
s

of S∆.
Having introdu
ed the general notion of usefulness

of
omponents and spe
i�
ations, we are now ready to

de�ne
ompatibility of spe
i�
ations and parallel
om-

position. We propose the following de�nition, whi
h is

in the spirit of [31℄.

De�nition 13 (Compatibility). Two
omposable spe
-

i�
ation semanti
s S and T are
ompatible i� the ini-

tial state of S ⊗ T is useful. Two
omposable spe
i�-

ations A and B are
ompatible if the initial state of

JA K
sem

⊗ JB K
sem

is useful.

De�nition 14 (Composition ‖). For two
ompati-

ble spe
i�
ation semanti
s S and T de�ne their parallel

omposition S ‖ T = (S ⊗ T)β , and undesirable

S‖T =

{(s, t) | s ∈ undesirable

S
or t ∈ undesirable

T }.

As we have dis
ussed above, the set of stri
tly undesir-

able states, undesirable

S⊗T
,
an be in
reased by the de-

signer as needed, for example by adding state for whi
h

desirable temporal properties about the interplay of S
and T do not hold.

Observe that parallel
omposition is
ommutative,

and that two spe
i�
ations
omposed, give rise to well-

formed spe
i�
ations. It is also asso
iative in the follow-

ing sense:

J (S ‖ T) ‖ U K
mod

= JS ‖ (T ‖ U) K
mod

(25)

Theorem 7. Re�nement is a pre-
ongruen
e with re-

spe
t to parallel
omposition; for any spe
i�
ation se-

manti
s S1, S2, and T su
h that S1 ≤ S2 and S1
om-

posable with T , we have that S2
omposable with T and

S1 ‖ T ≤ S2 ‖ T . Moreover if S2
ompatible with T then

S1
ompatible with T .

15

We now swit
h to the symboli
 representation. Par-

allel
omposition of two spe
i�
ation TIOAs is de�ned in

the following way. Consider two TIOA A1 = (Lo
1, q
1
0 ,

Clk1, E1, Act1, Inv1) and A2 = (Lo
2, q
2
0 ,Clk2, E2, Act2,

Inv2) with A
t

1
o ∩ A
t

2
o = ∅. Their parallel
omposition

whi
h is denoted A1 ‖ A2 is the TIOA A = (Lo
, q0,Clk,
E,Act, Inv) given by: Lo
 = Lo
1 × Lo
2, q0 = (q10 , q

2
0),

Clk = Clk1 ⊎ Clk2, Inv((q1, q2)) = Inv(q1) ∧ Inv(q2) and
the set of a
tions A
t = A
ti ⊎ A
to is given by A
ti =
A
t

1
i \A
t

2
o∪A
t

2
i \A
t

1
o and A
to = A
t

1
o∪A
t

2
o. The set

of edges E is de�ned by the following rules:

� If (q1, a, ϕ1, c1, q
′
1) ∈ E1 with a ∈ A
t1 \A
t2 then for

ea
h q2 ∈ Lo
2 ((q1, q2), a, ϕ1, c1, (q
′
1, q2)) ∈E

� If (q2, a, ϕ2, c2, q
′
2) ∈ E2 with a ∈ A
t2 \A
t1 then for

ea
h q1 ∈ Lo
1 ((q1, q2), a, ϕ1, c1, (q1, q
′
2)) ∈E

� If (q1, a, ϕ1, c1, q
′
1) ∈ E1 and (q2, a, ϕ2, c2, q

′
2) ∈ E2

with a ∈ A
t1 ∩ A
t2 then ((q1, q2), a, ϕ1 ∧ ϕ2, c1 ∪
c2, (q

′
1, q

′
2)) ∈ E

Just like for
onjun
tion, after the
omposition, the re-

sult
an be pruned to limit the representation to useful

states. Note that the result of this pruning may lead

to a lo
ally in
onsistent spe
i�
ation. The
onsisten
y

pruning (∆)
an be applied subsequently to �x this, if

desirable.

Finally, the following theorem lifts all the results from

timed input/output transition systems to the symboli

representation level.

Theorem 8. Let A1 and A2 be two spe
i�
ation au-

tomata, we have JA1 K
sem

‖ JA2 K
sem

= JA1 ‖ A2 K
sem

.

8 Quotient

The quotient operator allows for fa
toring out behavior

from a larger
omponent. If one has a large
omponent

spe
i�
ation T and a small one S then T \\S is the spe
-

i�
ation of all the models that when
omposed with S
re�ne T . In other words, T \\S spe
i�es the work that

still needs to be done, given availability of an implemen-

tation of S, in order to provide an implementation of T .
We �rst des
ribe the theory behind the operator, then

we show how it
an be exploited to reason on assump-

tions and guarantees.

We have the following requirements on the sets of

inputs and outputs of the dividend T and the divisor S
when applying quotienting: ΣS

i

⊆ ΣT
i

∪ ΣT
o

and ΣS
o

⊆
ΣT
o

(and S must be well-formed, so ΣS
i

and ΣS
o

are dis-

joint).

We pro
eed similarly to stru
tural and logi
al
ompo-

sitions and start with a pre-quotient that may introdu
e

error states. Those errors are then pruned to obtain the

quotient.

De�nition 15 (Pre-quotient ⋋). Given two spe
i�-

ation semanti
s S = (StS, sS0 , Σ
S,−→S) and T = (StT, tT0 ,

ΣT,−→T) their pre-quotient is a spe
i�
ation semanti
s

T ⋋ S = (St, (sS0 , t
T
0), Σ,−→), where St = (StS × St

T) ∪
{u, e} where u and e are fresh states su
h that u is uni-

versal (allows arbitrary behaviour) and e is in
onsistent

(no output-
ontrollable behaviour
an satisfy it). State

e disallows progress of time and has no output transi-

tions. The universal state guarantees nothing about the

behaviour of its implementations (thus any re�nement

with a suitable alphabet is possible), and dually the in-

onsistent state allows no implementations.

Moreover we require that Σ = ΣT
with Σ

i

= ΣT
i

∪
ΣS
o

and Σ
o

= ΣT
o

\ ΣS
o

. Finally the transition relation

−→T⋋S
is the largest relation generated by the following

rules:

t a−→T t′ s a−→Ss′ a ∈ ΣS ∪R≥0

(t, s) a−→T⋋S(t′, s′)
[all]

s 6 a−−→S a ∈ ΣS
o

∪R≥0

(t, s) a−→T⋋S
u

[unrea
hable]

t 6 a−−→T s a−→Ss′ a ∈ ΣS ∩ΣT
o

(t, s) a−→T⋋S
e

[unsafe]

t a−→T t′ a ∈ ΣT \ΣS

(t, s) a−→T⋋S(t′, s)
[dividend]

a ∈ Σ ∪R≥0

u

a−→T⋋S
u

[universal]
a ∈ Σ

i

e

a−→T⋋S
e

[in
onsistent]

It is not hard to see that the pre-quotient T ⋋ S
is input-enabled. Inputs of T ⋋ S are Σ

i

= ΣT
i

∪ ΣS
o

.

The universal state u (respe
tively the in
onsistent state

e) is input-enabled for Σ
i

due to the [universal℄ (resp.

[in
onsistent℄) rule. For the remaining states input-ena-

bledness follows from the remaining rules. Let a ∈ Σ
i

.

For a ∈ ΣS
o

we get that the transition exists by the

[unrea
hable℄, [unsafe℄, or [all℄ rule. Otherwise, if a ∈ ΣT
i

a transition is indu
ed by the [dividend℄, or [all℄ rule.

Theorem 9 states that the proposed pre-quotient op-

erator has exa
tly the property that it is dual of stru
-

tural
omposition with regards to re�nement.

Theorem 9. For any two spe
i�
ation semanti
s S and

T su
h that the pre-quotient T⋋S is de�ned, and for any

implementation semanti
s X over the same alphabet as

T ⋋ S, we have that S ‖ X is de�ned and S ‖ X ≤ T i�

X ≤ T ⋋ S.

We now give the proof for Theorem 9. First observe

that sin
e X has the same input and output alphabets

as T ⋋ S, sets ΣX
o

and ΣS
o

are disjoint and thus S ‖ X
is de�ned. We split the argument for the two dire
tions

of the equivalen
e into two separate lemmas below.

Lemma 6. For any two spe
i�
ation semanti
s S and

T su
h that T ⋋ S is de�ned and an implementation X
over the same alphabet as T ⋋ S:

S ‖ X ≤ T implies X ≤ T ⋋ S

16

Proof (Lemma 6). We have the re�nement relation R1

showing that S ‖ X ≤ T and need to present a relation

witnessing X ≤ T ⋋ S. Consider:

R2 = {(x, (t, s)) | ((s, x), t) ∈ R1}

∪ {(x, u) | x ∈ St

X} (26)

We have to prove that R2 is a re�nement relation. Let

(x, (t, s)) ∈ R2.

� Assume that (t, s) i?−−→(t′, s′). Need to show that x i?−−→x′

and (x′, (t′, s′)) ∈ R2. Split in sub-
ases depending on

whi
h rule was used to
on
lude (t, s) i?−−→(t′, s′).
[all℄ If both t i!−→t′ and s i!−→s′ then:

as x is input-enabled we have x i?−−→x′ and by [syn
-
io℄ that (s, x) i!−→(s′, x′). Then sin
e (s, x), t) ∈ R1

it must be that ((s′, x′), t′) ∈ R1 and (x′, (t′, s′)) ∈
R2.

Similarly if both t i?−−→t′ and s i?−−→s′ then:
be
ause x is input-enabled we have x i?−−→x′ and
by rule [syn
-in℄ we have (s ‖ x) i?−−→(s′ ‖ x′) and

thus ((s′, x′), t′) ∈ R1, whi
h allows
on
luding

that (x′, (t′, s′)) ∈ R2.

Observe that other input/output
ombinations

with an appli
ation of [all℄ are not possible here:

t i!−→t′ and s i?−−→s′ would result in an output of the

quotient,
ontradi
ting the assumption; t i?−−→t′ and
s i!−→s′ is impossible as ΣS

o

⊂ ΣT
o

and the inputs

are disjoint from outputs.

[unrea
hable℄ Assume premise of [unrea
hable℄. Then

(t, s) i?−−→u. By input-enabledness of x get x i?−−→x′

and by
onstru
tion: (x′, u) ∈ R2.

[unsafe℄ If i ∈ ΣT
o

∩ΣS
o

then this rule
annot be used

to
on
lude that (t, s) i?−−→(t′, s′) be
ause then t 6 i!−→
and s i!−→s′, whi
h implies that ((s, x), t) /∈ R1 (or

that R1 is not a re�nement relation).

If i ∈ ΣT
o

∩ ΣS
i

then i ∈ ΣT⋋S
o

so it
annot be

that (t, s) i?−−→.

[dividend℄ We have that t i?−−→t′ and, by input-enabled-
ness, x i?−−→x′ and i /∈ ΣS

. By [indep-r℄ obtain

(s, x) i?−−→(s′, x′), whi
h with ((s, x), t) ∈ R1 allows

on
luding ((s, x′), t′) ∈ R1 and in turn (x′, (t′, s))
∈ R2.

[universal℄ Then (t, s) = u. It is trivial to see that

the transitions indu
ed by this rule satisfy the

de�nition of re�nement.

[in
onsistent℄ Then (t, s) = e. This rule
ould have

not been used to indu
e (t, s) i?−−→(t′, s′), simply

be
ause (x, e) /∈ R2.

� Assume x o!−−→x′ and show that (t, s) o!−−→(t′, s′) and

(x′, (t′, s′)) ∈ R2. Note that o ∈ ΣX
o

= ΣT
o

\ΣS
o

If o ∈ (ΣT
o

\ ΣS
o

) ∩ ΣS
i

and then by the parallel

omposition rule [syn
-io℄ we have (s, x) o!−−→(s′, x′)
and sin
e ((s, x), t) ∈ R1 then also t o!−−→t′ for some

state t′ and ((s′, x′), t′) ∈ R1. But then by
onstru
-

tion also (x′, (s′, t′)) ∈ R2. It remains to see that

(t, s) o!−−→(t′, s′) but this follows from rule [all℄.

If o ∈ (ΣT
o

\ ΣS
o

) \ ΣS
i

the argument is analogous,

ex
ept that [indep-r℄ and [dividend℄ are used instead

of respe
tively [syn
-io℄ and [all℄.

� Assume that x d−→x′ and show (t, s) d−→(t′, s′) and (x′,
(t′, s′)) ∈ R′

2.

If s 6 d−→ then we
an
on
lude by [unrea
hable℄ that

(t, s) d−→u and (x′, u) ∈ R2. Otherwise, if s d−→s′ then
(s, x) d−→(s′, x′) and by ((s, x), t) ∈ R1 we know that

t d−→t′ for some state t′ and ((s′, x′), t′) ∈ R1 whi
h in

turn gives (x′, (t′, s′)) ∈ R2. It remains to show that

(t, s) d−→(t′, s′), whi
h follows from [all℄.

Lemma 7. For any two spe
i�
ation semanti
s S and

T su
h that T ⋋ S is de�ned and an implementation X
over the same alphabet as T ⋋ S:

S ‖ X ≤ T ⇐= X ≤ T ⋋ S

Proof (Lemma 7).

We have the re�nement relation R2 witnessing that

X ≤ T ⋋ S and want to give a relation showing that

S ‖ X ≤ T . Consider:

R1 = {((s, x), t) | (x, (t, s)) ∈ R2}

We have to prove that R1 is a re�nement relation.

Assume that (x, (t, s)) ∈ R1.

� Assume that t i?−−→t′ and show states s′, x′ su
h that

(s, x) i?−−→(s′, x′) and ((s′, x′), t′) ∈ R1.

Sin
e x is input-enabled then x i?−−→x′ for some x′.
If i ∈ ΣS

i

then also s i?−−→s′ and by rule [syn
-io℄

we have that (s, x) i?−−→(s′, x′). Further by [all℄ also

(t, s) i?−−→(t′, s′) and sin
e (x, (t, s)) ∈ R2 also (x′, (t′,
s′)) ∈ R2. This by
onstru
tion gives ((s′, x′), t′) ∈
R1.

Otherwise, if i ∈ ΣT
i

\ ΣS
i

, use an analogous argu-

ment relying on [indep-r℄ and [dividend℄ rules instead

of respe
tively [syn
-io℄ and [all℄.

� Assume that (s, x) o!−−→(s′, x′) and show that t o!−−→t′

and ((s′, x′), t′) ∈ R1 for some state t′.

Case 2.1: If o ∈ ΣX
o

∩ ΣS
o

then have s o!−−→s′ and

x o?−−→x′ by rule [syn
-io℄. Assume that t 6 o!−−→. Then

by [unsafe℄ (t, s) o?−−→e and (determinism and inde-

pendent-progress!) it
annot be that (x, (t, s)) ∈
R2, sin
e (x′, e) /∈ R2 for any x′. So there must

exist t′ su
h that t o!−−→t′. Moreover by [all℄ we

get (t, s) o?−−→(t′, s′) and sin
e (x, (t, s)) ∈ R2 also

get (x′, (t′, s′)) ∈ R2. By
onstru
tion of R1 get

((s′, x′), t′) ∈ R1.

Case 2.2: Assume o ∈ ΣX
o

∩ ΣS
i

. Then have s o?−−→s′

and x o!−−→x′ by [syn
-io℄. We use the same argu-

ment as above to
on
lude that t o!−−→t′ for some

state t′. Otherwise [unsafe℄ allows
on
luding that
(t, s) o!−−→e and (x, (t, s)) ∈ R2 is violated as (x′, e) /∈
R2. By [all℄ we get (t, s) o!−−→(t′, s′) and sin
e (x, (t,
s)) ∈ R2 also get (x′, (t′, s′)) ∈ R2. By
onstru
-

tion of R1 get ((s′, x′), t′) ∈ R1.

17

Case 2.3: If o ∈ ΣX
o

\ΣS = ΣT
o

\ΣS
then by [indep-r℄

we have (s, x) o!−−→(s, x′) with x o!−−→x′ Further, by
[dividend℄ have (t, s) o!−−→(t′, s) and, sin
e (x, (t, s))
∈ R2, also (x′, (t′, s)) ∈ R2 whi
h in turn gives

((s, x′), t′) ∈ R1 by
onstru
tion of the latter.

� Assume (s, x) d−→(s′, x′) and show that t d−→t′ and ((s′,
x′), t′) ∈ R1. By [delay℄ we have that s d−→s′ and

x d−→x′. Sin
e x d−→x′, s d−→s′ and (x, (t, s)) ∈ R2 it

must be that (t, s) d−→(t′, s′) (be
ause only rule [all℄

ould have been used) and (x′, (t′, s′)) ∈ R2. Thus

also t d−→t′ from the premise of [all℄ and ((s′, x′), t′) ∈
R1

Finally, the a
tual quotient, denoted T \\S, is de�ned
if T⋋S is
onsistent. It is obtained by pruning the states

of the pre-quotient T⋋S from where the implementation

has no strategy to avoid immediate errors states err

T\\S

using the same game
hara
terization like in Se
tion 6.

It follows from Theorem 2 that Theorem 9 also holds

for the a
tual quotient operator \\ (as opposed to the

pre-quotient).

De�nition 16 (Quotient \\). For any spe
i�
ations S
and T su
h that T ⋋ S is de�ned and
onsistent, de�ne

T \\S = (T ⋋ S)∆.

Quotienting for spe
i�
ations (TIOAs) is de�ned in

the following way. Consider two spe
i�
ations AT =
(Lo
T , q

T
0 ,ClkT , ET , ActT , InvT) and AS = (Lo
S , q

S
0 ,

ClkS , ES , ActS , InvS) with A
t

S
i ⊆ A
t

T
i and A
t

S
o ⊆

A
t

T
o . The quotient, whi
h is denoted AT \\AS is the

TIOA given by: Lo
 = Lo
T × Lo
S ∪ {lu, l∅}, q0 =
(qT0 , q

S
0), Clk = ClkT ⊎ ClkS ⊎ {xnew}, Inv((qT , qS)) =

Inv(lu) = true and Inv(l∅) = {xnew ≤ 0}. The two new

states lu and l∅ are respe
tively universal and in
onsis-

tent. The set of a
tions A
t = A
ti ⊎ A
to is given by

A
ti = A
t

T
i ∪ A
t

S
o ∪ {inew} and A
to = A
t

T
o \A
t

S
o .

The set of edges E is de�ned by the following rules:

� [unrea
hable1] For ea
h qT ∈ Lo
T , qS ∈ Lo
S and

a ∈ A
t, ((qT , qS), a,¬InvS(qS), {xnew}, lu) ∈ E.

� [unsafe1] For ea
h qT ∈ Lo
T , qS ∈ Lo
S ,

((qT , qS), inew ,¬InvT (qT)∧InvS(qS), {xnew}, l∅) ∈ E.

� [all] If (qT , a, ϕT , cT , q
′
T) ∈ ET and (qS , a, ϕS , cS , q

′
S) ∈

ES , then ((qT , qS), a, ϕT ∧ ϕS , cT ∪ cS , (q′T , q
′
S)) ∈ E

� [unsafe2] For ea
h (qS , a, ϕS , cS , q
′
S) ∈ ES with a ∈

A
t

S
o , ((qT , qS), a, ϕS ∧ ¬GT , {xnew}, l∅) ∈ E

where GT =
∨

{ϕT | (qT , a, ϕT , cT , q′T)}
� [dividend] For ea
h (qT , a, ϕT , cT , q

′
T) ∈ ET and a /∈

A
tS , ((qT , qS), a, ϕT , cT , (q
′
T , qS)) ∈ E

� [unrea
hable2] For ea
h (qT , a, ϕT , cT , q
′
T) ∈ ET with

a ∈ A
t

S
o , ((qT , qS), a,¬GS , {}, lu) ∈ E

where GS =
∨

{ϕS | (qS , a, ϕS , cS , q′S)}
� [universal] For ea
h a ∈ A
ti, (l∅, a, true, {}, l∅) ∈ E

� [in
onsistent] For ea
h a ∈ A
t, (lu, a, true, {}, lu) ∈ E

Finally, the following theorem lifts all the results from

timed input/output transition systems to the symboli

representation level.

Theorem 10. Let A1 and A2 be two spe
i�
ation au-

tomata, we have

(JA1 K
sem

⋋ JA2 K
sem

)∆ = (JA1 ⋋A2 K
sem

)∆ (27)

8.1 Assumptions and Guarantees

In the following we will illustrate the utility of quotient-

ing. This se
tion is a summary of results presented in

[25℄. The
ontribution of the present paper is in apply-

ing the de�nition presented in this se
tion to the park-

ing example of Se
tion 11. We start with an example

that
onsists of three Timed I/O Automata spe
i�
a-

tions as shown in Fig. 9. We start with a simple spe
i�-

ation, shown in Fig. 9(a) of a system with two buttons.

The spe
i�
ation states that as long as only button1 is

pressed (assumption) then only good output will be pro-

du
ed (guarantee). If at some point button2 is pressed

then the system
ould start to produ
e bad output. Fig-

ure 9 thus represents the
ombination of assumptions

and guarantees, ea
h of them being des
ribed with a

TIOA. In general, one does not obtain su
h spe
i�
a-

tion dire
tly, but rather from the
ombination of some

automata representing the assumptions and the guaran-

tees. We now show how quotient
an be used to
ombine

assumptions and guarantees to obtain the automaton in

Fig.9.

The following de�nition taken from [25℄ presents an

operator known as weaken or weakening, that is used for

easier spe
i�
ation of assume guarantee spe
i�
ations.

Weakening
omputes the largest guarantee one
an get

under some assumption.

De�nition 17 (Weaken >>). For any spe
i�
ations

A and G we de�ne G >> A as follows:

G >> A ≡ (A||G)\\A

Let us go ba
k to our example and show how it
an

exploit the weakening operator. We would like to express

the assumptions and guarantees that we have to the sys-

tem separately and then retrieve the automaton in Fig.9.

In Fig. 9(b) we spe
ify the assumption that button2 is

never pressed while in Fig. 9(
) we spe
ify the guaran-

tee that the system never produ
es bad output. Even

though, in this example, our ButtonSpe
 is quite sim-

ple the assumption ButtonA and guarantee ButtonG are

even simpler and extremely easy to understand. We then

ompute ButtonG >> ButtonA and show that it
oin-

ides (in terms of re�nement) with ButtonSpe
, i.e., we

use E
dar to prove the following two re�nements:

refinement: (ButtonG >> ButtonA) <= ButtonSpe

refinement: ButtonSpe
 <= (ButtonG >> ButtonA)

Thus e�e
tively being able to substitute ButtonG >>
ButtonA for ButtonSpe
 in any
ontext.

The possibility of splitting assumptions from guaran-

tees be
omes even more appealing when having multiple

assumptions and guarantees that are
onjoined.

18

a)

bad good button1 button2

button1?

button2?

bad!

good!

s1 s2

button2?

button1?
good!

ButtonSpe

b)

bad good button1 button2

button1!

good?

bad?

ButtonA

)

bad good button1 button2

button2?

good!button1?
G

ButtonG

Figure 9: Spe
i�
ation of a) the ButtonSpe
, b) the assumption ButtonA,
) the guarantee ButtonG.

9 Tool Support

Our spe
i�
ation theory has been implemented in a new

tool
alled E
dar. We shall now des
ribe the fun
tion-

ality of the tool, then provide some details on the various

game-based algorithms implemented in E
dar, and �-

nally demonstrate what is possible in the tool using a

small
ase study. E
dar is freely available at e
dar.
s.

aau.dk.

9.1 Ar
hite
ture and Fun
tionality

The ar
hite
ture of E
dar builds on Uppaal. The tool

features a graphi
al user interfa
e (GUI), and a model-

he
ker in the form of a server or a standalone veri�er.

The user
an edit, simulate, and spe
ify properties in the

GUI.

Editor. The timed I/O automata (TIOA) are represented

as graphs with solid (input) and dashed (output) edges.

Sin
e TIOAs must be input enabled, only broad
ast
om-

muni
ations are allowed. The user has a

ess to the other

features of the language su
h as user-de�ned types and

fun
tions. All �gures of spe
i�
ations and implementa-

tions in this paper have been made using the editor of

E
dar.

Simulator. The simulator, based onUppaal-tiga, shows

networks of automata and will allow the user to se-

le
t transitions a

ording to how
omponents are
om-

posed (parallel
omposition or
onjun
tion). The simu-

lator supports open systems and follows the semanti
s

of TIOAs as des
ribed in this paper. It
annot at the

moment simulate systems where the quotient operator

is used

1

.

Spe
i�
ation Interfa
e. Another view in the interfa
e is

used to spe
ify properties using the expressions of our

theory. This view is similar to Uppaal's model
he
king

view. Unlike in Uppaal, the simulator only works when

1

The quotient generates
omponents that
annot be displayed

in the GUI.

a query has been
he
ked previously be
ause the stru
-

ture of the system (as given by the di�erent operations)

is de�ned in the query.

The properties supported are of the following types:

�
onsisten
y
he
k with the syntax

onsisten
y: system,

� re�nement
he
k with the syntax

refinement: system <= system

� implementation
he
k with the syntax

implementation: system,

where system is a
omposition of
omponents using the

parallel
omposition,
onjun
tion, or quotient operator.

The
onsisten
y and re�nement
he
ks follow dire
tly

the algorithms presented in this paper. The engine
an

he
k if a system is an implementation a

ording to the

onstraints we have de�ned, su
h as output urgen
y and

independent progress.

The tool provides a strategy to prove or disprove the

property, whi
h
an be used to re�ne the model. The

strategy
an be played intera
tively. Fig. 10 shows a

s
reenshot of su
h an intera
tive game.When the
he
ked

property is satis�ed for
onsisten
y and implementa-

tion, the user
an
hoose inputs and the engine responds

with outputs. For re�nement it is an alternating 2-player

game and the user plays the atta
ker and the engine the

defender if the property is satis�ed. If the property is not

satis�ed, the roles are inverted. E
dar
an also output

the resulting strategy in a textual format.

9.2 Implementation of E
dar

E
dar exploits the veri�
ation engine for timed games

implemented in Uppaal-tiga, the game extension of

Uppaal [9,10℄. E
dar di�ers from Uppaal-tiga by

implementing
ompositional reasoning primitives.

The Game Solver of Uppaal-tiga The engine of

Uppaal-tiga supports the
omputation of winning stra-

tegies for timed games with respe
t to a large
lass of

timed temporal logi
 winning obje
tives su
h as rea
h-

ability/safety or even Bü
hi. All the algorithms imple-

mented in Uppaal-tiga build on the so-
alled rea
h-

ability algorithm of Uppaal-tiga introdu
ed in [17℄.

19

Figure 10: Playing a re�nement
ounter-strategy in the

simulator.

Roughly speaking, this algorithm uses an on-the-�y ap-

proa
h to perform forward exploration of rea
hable states

and ba
k-propagation of (so-far)
omputed winning states

in an interleaved manner using �xed-point operators as

shown in this paper. Cru
ial to any game solving algo-

rithm is the symboli
 representation and e�
ient ma-

nipulation of state-sets. In Uppaal-tiga, our symboli

representations exploit zones, i.e. sets of
lo
k valua-

tions
hara
terized by
onstraints on individual
lo
ks

and
lo
k-di�eren
es. In parti
ular the operators used

in the �xpoint algorithm of Uppaal-tiga are
omputed

using federations (unions of zones). In addition, the en-

gine implements the turn-based game solver of [15℄. We

refer to this engine as the simulation engine.

The Game Solver of E
dar The engine of E
dar

reuses the same basi
 design as Uppaal-tiga to im-

plement its
onsisten
y
he
ker with the addition of a

spe
ial
omponent to
hara
terize
onsistent states. In

addition, all
omponents implementing the semanti
s of

the transition system are
hanged on-the-�y to
hoose

between the di�erent operations of parallel
omposition,

onjun
tion, and quotienting. E
dar also reuses the gen-

erated state graphs as internal inputs for in
remental

onsisten
y
he
ks whereas Uppaal-tiga only takes a

network of timed game automata as input. Before us-

ing the result of a
onsisten
y
he
k (for re�nement or

to apply an operation), the state-graph is pruned with

respe
t to the strategy obtained from the
onsisten
y

game. The pro
edure is as follows: for every symboli

state, restri
t it to the winning states of the strategy;

and for every output transition, restri
t to the ones al-

lowed by the strategy (by strengthening its guard). The

pruning feature is absent from Uppaal-tiga.

The
onsisten
y
he
ker is used to
he
k whether a

spe
i�
ation admits at least one implementation. This

question redu
es to the one of de
iding if there exists

a strategy for the output player to avoid rea
hing bad

states in the spe
i�
ation, i.e., states that do not satisfy

the independent progress property. To solve this
on-

sisten
y game, we apply the rea
hability algorithm of

Uppaal-tiga where input transitions are
ontrollable,

output transitions un
ontrollable, and where states that

do not have any outputs nor allow time to elapse are tar-

get states. The game is then solved as in Uppaal-tiga

but with di�erent
omponents that
hange the semanti
s

and with the addition of pruning.

The re�nement
he
ker is used to de
ide whether an

implementation satis�es a given spe
i�
ation or if a spe
-

i�
ation re�nes another one. As we already said, re�ne-

ment
he
king redu
es to a 2-player alternating game.

To solve this game, we
hange the rules of the simula-

tion game of Uppaal-tiga to mat
h the semanti
s of

re�nement, i.e., the rules w.r.t.
ontrollable and un
on-

trollable transitions are inverted. In this game where we

he
k the re�nement S ≤ T , the �rst player (the at-

ta
ker) plays outputs on S and inputs on T , whereas the
se
ond player (the defender) plays inputs on S and in-

puts on T . The produ
t of S and T a

ording to these

rules is then
onstru
ted on-the-�y, whi
h is the forward

exploration step. We dete
t error states on-the-�y and

we ba
k-propagate them. There are two kinds of error

states: 1) Either the atta
ker may delay and violates in-

variants on T , whi
h is, the defender
annot mat
h a

delay, or 2) the defender has to play a given a
tion and

annot do so, i.e., a deadlo
k. This is similar to Uppaal-

tiga in prin
iple, ex
ept that the underlying stru
tures

are di�erent: a pruned state-graph for E
dar and a net-

work of timed game automata for Uppaal-tiga.

We dis
uss
he
king for independent progress, out-

put determinism, and output urgen
y in more detail. A

symboli
 state is a tuple 〈q, Z〉, where q is a lo
ation,

and Z a zone [48℄. A state is not urgent, if its invariant

allows a positive delay:

2

urgent(〈q, Z〉) ≡ ∀ v ∈ Z. ∃d ≥ 0. v+d |= inv(q) ⇒ d = 0

A state is unbounded if Z has no upper bound, i.e., it

ontains valuations where it is possible to delay in�nitely.

Sin
e we are handling
onvex sets de�ned with di�eren
e

onstraints, if a state is unbounded then it is possible to

delay in�nitely from all its valuations.

unbounded(〈q, Z〉) ≡ {v ∈ Z | ∀t ≥ 0. v + t ∈ Z} 6= ∅

Algorithm 1
ombines these notions to
he
k for in-

dependent progress. We
he
k that for this notion of

deadlo
k in lines 3�5. For a set of
lo
k valuations Z
we write Z↓

(line 5) meaning the set of its time prede-

essors: Z↓ = {v | ∃ d ≥ 0. v + d ∈ Z}.
Algorithm 2 shows how we
he
k for output deter-

minism. It is applied iteratively to every rea
hable sym-

boli
 state of a spe
i�
ation. For an output o and a sym-

boli
 state (q, Z) we identify edges that
an be enabled

in this state, and
he
k whether they
ause nondeter-

minism.

2

E
dar borrows from Uppaal the synta
ti

onstru
ts to ob-

tain this e�e
t
onveniently: urgent lo
ations and urgent
hannels

20

Algorithm 1: Symboli

he
k for independent

progress.

fun
tion consistent(〈q, Z〉)
if unbounded(〈q, Z〉) then return true1

deadlo
k ← Z2

if urgent(〈q, Z〉) then3

forea
h edge (q, o!, ϕ, c, q′) do4

deadlo
k ← deadlo
k \ (ϕ ∩ NextInv(q′) ∩ Z)
else forea
h edge (q, o!, ϕ, c, q′) do5

deadlo
k ← deadlo
k \ (ϕ ∩ NextInv(q′) ∩ Z)↓

return deadlo
k = ∅6

Algorithm 2: Symboli

he
k for output deter-

minism.

fun
tion output-determinism(〈q, Z〉)
su

← ∅1

su

 = {e = (q, o!, ϕ, c, q′) | ϕ ∩NextInv(q′) ∩ Z 6=2

∅ for any guard ϕ and output o!}
forea
h pair of edges3

(e1, e2) ∈ su

. e1 6= e2 ∧ output(e1) = output(e2)
do

let (q1, o!, ϕ1, c1, q
′
1) = e1 and4

(q2, o!, ϕ2, c2, q
′
2) = e2

if ϕ1 ∩ ϕ2 ∩ Z 6= ∅ then return false5

end

return true6

Output urgen
y for implementations is established

by
onstru
ting a zone graph and
he
king the following

ondition for ea
h symboli
 state 〈q, Z〉:

¬urgent(〈q, Z〉)⇒ for ea
h edge (q, o!, ϕ, c, q′).

ϕ ∩ NextInv(q′) ∩ Z = ∅.

10 Appli
ation 1: Milner's S
heduler Case

Study

We use a modi�ed real-time version of Milner's s
heduler

algorithm, to show how indu
tive arguments for re�ne-

ment
an be
onstru
ted using
ompositional operators

of our theory. The model
onsists of N nodes arranged

in a ring. A token is sent around, whi
h takes some time,

and the nodes on the ring perform some work when the

token arrives. Fig. 11 (left) shows a single node that
an

re
eive a token on reci. The node subsequently begins

external work by outputting on wi. In parallel to this it

an forward the token by outputting on reci+1, but only

after a delay between d and D time units. Fig. 11 (right)

illustrates a ring of su
h nodes Mi in whi
h some nodes

have been grouped together. This grouping exempli�es

a part of the spe
i�
ation, whi
h we will later be able

to repla
e with an abstra
tion SSi in order to exe
ute a

ompositional proof.

(...)

(...)

PSfrag repla
ements

Mi

Mi

Mi+1

reci

reci+1

reci+1

wi

wi

wi+1

M0

M1

M2

w0

w1

w2

rec1

rec2

SSi

Figure 11: Overview of Milner's s
heduler example and

the sub-spe
i�
ation SSi.

w[i]!

rec[(i+1)%N]!

rec[(i+1)%N]! w[i]!

rec[i]?

x<=D

y>d

x<=D

x<=D

rec[i]?

rec[i]?
x=0,
y=0

rec[i]?

y>d w[e]!

z=0

rec[e]!

w[0]!

z<=(N+1)*De!=0
e:id_t

e:id_t

Figure 12: Left: Template for a single node Mi. Right:

Template for the overall spe
i�
ation.

We model the s
heduler using templates in a modular

way, whi
h allows us to s
ale the model by instantiating

as many nodes as needed. A single node of our s
hed-

uler is shown in the left side of Fig. 12. In the initial

lo
ation of the spe
i�
ation, it is ready to re
eive a mes-

sage on the
hannel re
[i℄?. After this there are two

ways to return to the initial state depending on the or-

der in whi
h it starts its work (w[i℄!) and passes on the

token (re
[(i+1)%N℄!). The �rst node of the system

M0 is instantiated with a di�erent initial lo
ation (the

bottom-most one), re�e
ting the fa
t that it holds the

token initially. The right side of Fig. 12 shows the over-

all spe
i�
ation S0 of the system. It requires that w[0℄!

o

urs at least every (N+1) ∗D time units. Remaining

a
tions
an be exe
uted freely.

One way to verify that the s
heduler is
orre
t is to

verify a property of the type:

refinement: (M0 || M1 || M2 || M3 || M4) <= S0

We
all this type of veri�
ation monolithi
, sin
e it
on-

stru
ts a spe
i�
ation pre
isely representing the entire

system. It is natural to verify the monolithi
 property in

order to show that the
omposed system re�nes the over-

all spe
i�
ation. Unfortunately, this strategy fails due to

state-spa
e explosion. As the number of
omponents is

in
reased, the state spa
e grows, and more interleaving

is introdu
ed in the system.

In order to
ombat the problem we apply
omposi-

tional veri�
ation. The idea is to
reate N sub-spe
i�
a-

tions that are used in a series of re�nement steps. First

one shows that M1 ≤ SS1. After this it is proved for

21

refinement: M1 <= SS1

refinement: (SS1 || M2) <= SS2

refinement: (SS2 || M3) <= SS3

refinement: (SS3 || M4) <= SS4

refinement: (SS4 || M0) <= S0

Figure 13: In
remental veri�
ation.

d = 29 20 10 9 8 6 4

n = 5 0.080 0.097 0.191 0.169 0.172 0.151 0.205

monolithi
 0.034 0.034 0.073 1.191 1.189 64.933 > 600

n = 6 0.102 0.133 0.231 0.228 0.238 0.238 0.294

monolithi
 0.040 0.043 0.095 6.786 6.791 > 600 > 600

n = 8 0.225 0.349 0.516 0.515 0.540 0.600 0.582

monolithi
 0.076 0.076 0.230 88.542 88.642 > 600 > 600

n = 12 0.830 1.414 1.802 1.895 1.831 2.079 2.181

monolithi
 0.220 0.223 0.843 > 600 > 600 > 600 > 600

n = 20 4.990 9.739 12.377 11.923 12.041 12.438 12.764

monolithi
 1.038 1.030 4.523 > 600 > 600 > 600 > 600

n = 30 22.053 45.709 55.728 55.345 55.112 54.702 56.164

monolithi
 3.791 3.778 17.652 > 600 > 600 > 600 om

Table 1: Results of the veri�
ation experiments.

in
reasing indexes, 1 to N that SSi||Mi+1 ≤ SSi+1. Fi-

nally the property SSn||M0 ≤ S0 is
he
ked. Fig. 13

gives the properties for �ve nodes. The sub-spe
i�
ation

aims at
apturing the important aspe
t of the subsys-

tem needed for the next step in the veri�
ation pro
ess

of the overall property. It is very important to noti
e that

the sub-spe
i�
ation is, like all the other
omponents in

the system,
reated as a template, and that thus it is

modelled only on
e and then instantiated with di�erent

indi
es.

Here the sub-spe
i�
ation SSi, as shown in Fig. 14,

is a model for a sequen
e of nodes M1|| . . . ||Mi (see

Fig. 11). Informally SSi is expressed as following, noting
that the relevant ports for this subsystem are re
[1℄?,

w[e℄! (0<e<=i) and re
[i+1℄!: Under the assumption

that a) the time elapsing between two re
[1℄? is more

than N ∗ d time-units and b) there are no two
onse
u-

tive re
[1℄? without a re
[i+1℄!, then it is guaranteed

that re
[i+1℄! will o

ur within [i ∗ d, i ∗D] time units

from re
[1℄?.

We have
ondu
ted experiments for di�erent values

of N , the number of nodes in the ring, and d the min-

imum time delay before passing on the token. We have

�xed the upper time limit for passing the token to 30.
The results of the experiments are shown in Table 1.

The table shows the time used to
he
k a given property

measured in se
onds. For ea
h value of N we have two

rows. The top one represents the veri�
ation of all the

steps in the
ompositional veri�
ation while the bottom

row represents the veri�
ation of one monolithi
 prop-

erty. If the veri�
ation took more than 600 se
onds we

stopped it. We had one instan
e where E
dar ran out of

memory whi
h is indi
ated by om. The time results that

are written in itali
s are the
ases in whi
h the
omposi-

rec[(i+1)%N]!

rec[1]?
rec[(i+1)%N]!

rec[1]?
w[e]!

w[e]!

rec[1]?

rec[1]?

rec[1]?

e:id_t

e>0 && e<=i

e>0 && e<=i

x<=i*D

e:id_t

e:id_t

w[e]!

x=0,
y=0 y<=N*d

x=0,
y=0

e>0 && e<=ix>=i*d

y>N*d

Figure 14: The sub-spe
i�
ation SSi that abstra
ts the
the sub-system M1|| . . . ||Mi.

tional veri�
ation gave a negative result. In these
ases

one needs to propose more pre
ise sub-spe
i�
ations in

order to make the
ompositional veri�
ation work. The

monolithi
 method gives positive results in these
ases.

In the
ase where d is
lose to D there is very little in-

terleaving in the system and in this
ase the veri�
ation

of the monolithi
 property is the fastest. The smaller

the d value the more interleaving appears in the system

and in these
omplex
ases the
ompositional veri�
a-

tion shows its strength. The
ases where the
omposi-

tional veri�
ation beats the monolithi
 are marked by

boldfa
e.

11 Appli
ation 2: A Parking System

In this example we use real-time spe
i�
ations in an as-

sume/guarantee approa
h, to build a system that de-

s
ribes the behavior of a
ar park. Su
h a system has

been studied in [55℄, with a top to bottom approa
h that

builds a spe
i�
ation of the system from a list of require-

ments written in natural language, and then proje
ts

these spe
i�
ations on an ar
hite
ture of
omponents.

We use a di�erent approa
h that starts with a set of

requirements for these
omponents and then builds the

formal spe
i�
ations of these
omponents, whi
h
an be

omposed together in order to build the spe
i�
ation of

the system. We also made the example mu
h more realis-

ti
 by adding timing requirements. This also requires to

he
k global timing properties, whi
h we perform using

the E
dar toolset.

The system is
omposed of four
omponents: Entry-

Gate, ExitGate, Controller and Payment. It is parameter-

ized by the maximum number Nmax of
ars that
an en-

ter the parking. We will also
onsider the environment

of the system that
onsists in the
ar users. However, we

adopt an abstra
t view of the system in whi
h
ars are

not individualized, but we remember the number of
ars

that have entered.

The
omponents are de�ned by the following require-

ments that des
ribe either guarantees on the outputs of

22

the
omponents or assumptions on the inputs provided

by the environment. For ea
h gate:

Req. 1 A vehi
le shall not pass when the gate is
losed.

Req. 2 On
e a vehi
le has passed the gate, another ve-

hi
le
annot pass before the gate
loses.

Req. 3 After the gate has opened, it does not open before

it
loses. After the gate has
losed, it does not

lose before it opens.

Req. 4 The gate must
lose within 5 se
onds after a ve-

hi
le passes, and only then.

Spe
i�
 to EntryGate:

Req. 5 An entry ti
ket is issued only when the entry gate

is
losed.

Req. 6 The gate must open within 5 se
onds after an

entry ti
ket has been issued, and only then.

Spe
i�
 to ExitGate:

Req. 7 An exit ti
ket is inserted only when the entry

gate is
losed.

Req. 8 The gate must open within 5 se
onds after an

exit ti
ket has been inserted, and only then.

For Controller:

Req. 9 A vehi
le does not exit when the parking is

empty.

Req. 10 A vehi
le does not enter before re
eiving an entry

ti
ket.

Req. 11 If the parking is not full, an entry ti
ket is issued

within 10 se
onds after being requested.

For Payment:

Req. 12 A user inserts a
oin every time an entry ti
ket

is inserted and only then.

Req. 13 A user may insert an entry ti
ket only initially

or after an exit ti
ket has been issued.

Req. 14 The payment ma
hine issues an exit ti
ket

within 40 se
onds on
e the entry ti
ket and the

oin have been inserted.

The
ommuni
ations between the
omponents are

des
ribed in Fig. 15.

11.1 The entry gate subsystem

We begin with the spe
i�
ations of the two
omponents

EntryGate and Controller. It forms a subsystem that has

three inputs (vehi
le_enter, vehi
le_exit and

request_enter) and three outputs (entry_gate_open,

entry_gate_
loseand entry_ti
ket_issue). Ea
h re-

quirement is translated into a timed spe
i�
ation. Reqs. 1-

2 are assumptions on the EntryGate inputs. They are

translated into spe
i�
ations EnA1 (Fig. 16(a)) and EnA2

(Fig. 16(b)), respe
tively. Req. 5 is translated into a

spe
i�
ation EnA3 similar to EnA1. Conversely, Reqs. 3-

4-6
orrespond to guarantees on the outputs of Entry-

Gate, and they are translated into spe
i�
ations EnG1

(Fig. 16(
)), EnG2 (Fig. 16(d)) and EnG3 (Fig. 16(e)),

respe
tively.

The Controller is responsible for the delivery of the

entry ti
ket. We impose an additional requirement on

the Controller that should be su�
ient to satisfy the as-

sumption in Req. 5:

EntryGate

ExitGate

Controller

Payment

vehicle_enter

entry_ticket_issue

entry_gate_open

entry_gate_close

request_enter

vehicle_exit

exit_gate_open

exit_gate_close
exit_ticket_insert

exit_ticket_issue

entry_ticket_insert

coin_insert

Figure 15: Parking
omponents and
ommuni
ation

hannels

Number of vehi
les 10 102 103 104 105

Consisten
y <0.1s <0.1s 0.4s 4.4s 45.4s

Compatibility <0.1s <0.1s 0.2s 1.6s 18s

Table 2: E
dar performan
e in analyzing SubSys

Req. 15 Request to enter are ignored for 6 se
onds after

a vehi
le has entered.

Then, Reqs. 9-10-11-15 de�ned the spe
i�
ation CtAG,

shown in Fig. 16, that en
ompasses both assumptions

and guarantees in the same model, using a universal

state to model in
ompatible inputs.

We
he
k with E
dar the
onsisten
y of this subsys-

tem and the
ompatibility between its two
omponents.

The EntryGate
omponent is de�ned using the weaken

operator between the assumptions and the guarantees:

EnA := (EnA1 ∧ EnA2 ∧ EnA3)

EnG := (EnG1 ∧ EnG2 ∧ EnG3)

EntryGate := EnG >> EnA

The subsystem is
onstru
ted using the parallel
ompo-

sition.

SubSys := EntryGate ‖ CtAG

We provide a minimal environment that is build from

the assumptions EnA1, EnA2 and the one des
ribed in

Req. 9, translated into EnvCt1, su
h that Env := EnA1∧
EnA2∧EnvCt1. We
he
k that SubSys ‖ Env is
onsistent
and that no universal state is rea
hed. This proves that

the
omponents are
ompatible and that the assump-

tions Req. 5 and Req. 11 are both satis�ed by the other

omponent. Ben
hmarking results are given in Table 2

for di�erent number of vehi
les in the
ar park. They

show that these tests s
ale well.

23

vehicle_enter!

entry_gate_close?

entry_gate_open?

open

entry_ticket_issue!

entry_ticket_issue!

closed

a) EnA1

vehicle_enter!

entry_gate_close?

idle

entry_ticket_issue! entry_ticket_issue!

car_in_gate

b) EnA2

entry_gate_open!
closed

entry_gate_close!

open

) EnG1

entry_gate_close! entry_gate_close!

entry_gate_open!

entry_ticket_issue?

closed_2

open

entry_gate_close!

entry_open <= 5

entry_open=0

closed_1

d) EnG2

entry_gate_open!

vehicle_enter?

entry_gate_open!

entry_gate_open!

open_1

closed

entry_gate_close!

entry_close <= T_close_entry

entry_close=0

open_2

e) EnG3

vehicle_enter?

vehicle_exit?

request_enter?

vehicle_exit? vehicle_exit?

vehicle_enter? vehicle_exit?

deliver=0

vehicle_enter? entry_ticket_issue!

request_enter?

vehicle_exit?

vehicle_exit?

n==0

deliver <= 10

n==0

n==0

Universal

idle

issued

requestedn−−

n++,deliver=0

n−−

n−−

n==Nmax or
deliver < 6

n>0

n>0

n>0

n<Nmax and
deliver >= 6

f) CtAG

Figure 16: Timed spe
i�
ations of the entry gate subsystem (all models are input-enabled and therefore assume that

self-loops exist for input a
tions that are not represented).

entry_ticket_insert!

coin_insert!

waiting_payment

entry_ticket_insert!

waiting_ticket

a) PayA1

entry_ticket_insert!

exit_ticket_issue?

available

coin_insert! coin_insert!

in_use

b) PayA2

entry_ticket_insert?

coin_insert?exit_ticket_issue!

idle

payment_inserted

exit_ticket=0

ticket_inserted

exit_ticket <= T_ticket_exit

) PayG

Figure 17: Timed spe
i�
ations of payment ma
hine (self-loops with input a
tions are not represented).

24

entry_ticket_insert!

entry_ticket_issue?

m++

entry_ticket_insert!

entry_ticket_issue?no_ticket

m>1

tickets

m−−

m−−

m==1

m++

Figure 18: EnvEnTi
kets: Spe
i�
ation of the environ-

ment w.r.t. entry ti
kets.

11.2 Parking system
orre
tness

We pursue our study by in
luding the
omponents Ex-

itGate and Payment. For ExitGate, Reqs. 1-2-7 yield the

spe
i�
ations of the assumptions ExA1, ExA2 and ExA3,

and Reqs. 3-4-8 yield the guarantees ExG1, ExG2 and

ExG3, in the same manner as were
onstru
ted the ones

of EntryGate. For Payment, Reqs. 12-13-14 yield the spe
-

i�
ations PayA1 (Fig. 17(a)), PayA2 (Fig. 17(b)) and

PayG1 (Fig. 17(
)), respe
tively. Then the system under

study is the following:

ExA := (ExA1 ∧ ExA2 ∧ ExA3)

ExG := (ExG1 ∧ ExG2 ∧ ExG3)

ExitGate := ExG >> ExA

Payment := PayG >> (PayA1 ∧ PayA2)

Sys := EntryGate ‖ ExitGate ‖ Payment ‖ CtAG

This system is however underspe
i�ed, sin
e no for-

mal relation exists between the ti
kets that are issued

and the ones that are inserted. Therefore we add the

following requirements:

Req. 16 An entry ti
ket is inserted only if it has been

issued before.

Req. 17 An exit ti
ket is inserted only if it has been issued

before.

These yield two spe
i�
ations, EnvEnTi
kets in Fig. 18,

and similarly EnvExTi
kets, that are added in
onjun
-

tion to the environment, along with the assumptions of

ExitGate and Payment.

We want to
he
k the
orre
tness of the parking sys-

tem, expressed by the property that no
ar
an exit with-

out paying. Therefore we design a spe
i�
ation Spe
Exp

(Fig. 19(a)), that in
reases its revenue expe
tation e ea
h
time a vehi
le enter, and de
reases it when the payment

is re
eived. If all the vehi
les exit when the number n
of vehi
les in the parking is stri
tly greater than e, that
means that the payment has been re
eived previously.

We
he
k by re�nement that the system satisfy this prop-

erty:

Sys ‖ Env ≤ Spe
Exp

Ben
hmarking results for this property are listed in the

�rst row of Table 3.

vehicle_exit!

n++,e++

coin_insert!

vehicle_enter!

e>−Nmax

n>0 and e<n

e−−

n<Nmax and e<Nmax

n−−

a) Spe
Exp

vehicle_exit!

vehicle_enter!

vehicle_enter!

Idle Entered

vehicle_exit!

time=0

time <= Tmax

b) Spe
Time

Figure 19: System properties.

request_enter!

entry_gate_open?vehicle_enter!

idle

open
entry_gate_close? car_entry <= 30

car_entry=0

requested

Figure 20: EnvEnCar: Spe
i�
ation of the environment

w.r.t. entry
ars.

11.3 Timing
onstraints

In the last part of our study we perform a timing anal-

ysis of the system. Inherent timing
onstraints of the

omponents have already been taken into a

ount in the

guarantees (EnG2,EnG3,ExG2,ExG3,CtAG and PayG). We

would like to
he
k a global timing
onstraint: the time

between a vehi
le entering the parking and a vehi
le ex-

iting is bounded by some maximum delay. For this study

we need to pre
isely spe
ify the timing behaviors of the

environment, that is to say the vehi
le drivers, whi
h

lead us to add or modify some requirements:

Req. 18 A user inserts a
oin within 30 se
onds every

time an entry ti
ket is inserted and only then.

Req. 19 On
e an entry ti
ket is issued, the user inserts

it in the payment ma
hine within 1 hour.

Req. 20 On
e an exit ti
ket is issued, the user inserts it

at the exit gate within 5 minutes.

Req. 21 When a gate opens, a vehi
le passes within 30

se
onds.

Consequently, to satisfy Reqs. 18-19-20 we modify the

spe
i�
ations of the environment PayA1, EnvEnTi
kets

and EnvExTi
kets. To satisfy Req. 21 we add two addi-

tional spe
i�
ations to the environment, EnvEnCar (dis-

played in Fig. 20), and similarly EnvExCar, that des
ribe

the behavior of the users. We
he
k the
ompatibility of

this new environment that is su�
ient to satisfy the as-

sumptions of EntryGate and ExitGate, sin
e no universal

state is rea
hed in Sys ‖ Env.
Finally the timing property is translated into a spe
-

i�
ation Spe
Time displayed in Fig. 19(b). The property

is
he
ked with the re�nement:

Sys ‖ Env ≤ Spe
Time

25

Number of vehi
les 2 4 8 16 32

Spe
Exp <0.1s 0.2s 1.5s 11.5s 90s

Compatibility 0.2s 0.6s 3.5s 17.3s 72.5s

Spe
Time 0.2s 1.5s 19.5s 94s 327s

Table 3: E
dar performan
es in analyzing Sys

We prove that the property is satis�ed for Tmax = 4100.
Table 3 presents the ben
hmarking results for the anal-

ysis of Sys.

12 Con
lusion and future work

This paper presents a
omplete game-based interfa
e

theory for timed systems. Our theory implements all the

good operations for a spe
i�
ation theory, namely:
on-

sisten
y, re�nement, stru
tural/logi
al
omposition, and

quotient. Our results have been implemented in the E
-

dar toolset that is an extension of the well-established

Uppaal model
he
ker. Our tool has been applied to se-

rious size
ase studies (while most of existing frameworks

remain at the theory level).

Our resear
h
an be pursued in various dire
tions,

one of them being to
ontinue intensive testing of E
-

dar and give a
omplete
hara
terization of problems

for whi
h our theory is indeed pra
ti
ally useful. Target-

ing large size systems will
ertainly require to improve

the e�
ien
y of the algorithms implemented in E
dar.

As an example, we postulate that state-spa
e redu
tion

through bisimulation quotient should
onsiderably im-

prove the pruning algorithm. Still, in the
ontext of E
-

dar, developing a user-feedba
k me
hanism is
halleng-

ing, but needed to broaden our user base.

Another promising dire
tion is the one of robust spe
-

i�
ation theories. One says that an implementation is

robust with respe
t to a given spe
i�
ation if it remains

an implementation of the spe
i�
ation under small per-

turbations of time. Studying robustness is
ru
ial as it is

generally not possible to implement a spe
i�
ation with-

out
onsidering perturbations introdu
ed by the exter-

nal environment [62℄ (e.g. hardware
onstraints). We re-

ently investigated this problem for our timed interfa
es

for a �xed value of the perturbation [46℄ and we proposed

a te
hnique to evaluate the maximal perturbation under

whi
h an implementation remains robust [60℄. In the fu-

ture we want to fully integrate this theory in E
dar.

We will also investiguate the problem of stuttering

and hidden a
tions, whi
h we plan to do via an exploita-

tion of imperfe
t information games [18℄.

Finally, it would be worth extending our theory to

systems with both timed and sto
hasti
 aspe
ts, hen
e

proposing the �rst spe
i�
ation theory for probabilisti

timed automata [43,44℄. In a series of re
ent work [35,

16℄, we have proposed spe
i�
ation theories for sto
has-

ti
 systems. We postulate that su
h spe
i�
ation theo-

ries
an be
ombined with our timed interfa
es one, just

like timed automata have been
ombined with Markov

de
ision pro
esses.

A
knowledgements. Work partially supported by VKR Cen-

tre of Ex
ellen
e � MT-LAB, the European proje
t COMBEST,

and ARC (TP)I.

Referen
es

1. Tesnim Abdellatif, Ja
ques Combaz, and Joseph Sifakis.

Model-based implementation of real-time appli
ations.

In EMSOFT, pages 229�238. ACM, 2010.

2. B. Thomas Adler, Lu
a de Alfaro, Leandro Dias da Silva,

Mar
o Faella, Axel Legay, Vishwanath Raman, and Pri-

tam Roy. Ti

: A tool for interfa
e
ompatibility and

omposition. In CAV, volume 4144 of LNCS, pages 59�

62. Springer, 2006.

3. Rajeev Alur and David L. Dill. A theory of timed au-

tomata. Theor. Comput. S
i., 126(2):183�235, 1994.

4. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman,

and Moshe Y. Vardi. Alternating re�nement relations.

In CONCUR, volume 1466 of LNCS. Springer, 1998.

5. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul

Pettersson, and Wang Yi. Times: A tool for s
hedu-

lability analysis and
ode generation of real-time sys-

tems. In FORMATS, volume 2791 of LNCS, pages 60�72.

Springer, 2003.

6. Adam Antonik, Mi
hael Huth, Kim G. Larsen, Ulrik Ny-

man, and Andrzej Wasowski. Modal and mixed spe
i�-

ations: key de
ision problems and their
omplexities.

Mathemati
al Stru
tures in Computer S
ien
e, 20(1):75�

103, 2010.

7. Christel Baier and Joost-Pieter Katoen. Prin
iples of

Model Che
king. The MIT Press, 2008.

8. Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Axel

Legay, and Jirí Srba. Extending modal transition sys-

tems with stru
tured labels. Mathemati
al Stru
tures in

Computer S
ien
e, 22(4):581�617, 2012.

9. Gerd Behrmann, Agnès Cougnard, Alexandre David,

Emmanuel Fleury, Kim G. Larsen, and Didier Lime.

Uppaal-tiga: Time for playing games! In CAV, volume

4590 of LNCS. Springer, 2007.

10. Gerd Behrmann, Alexandre David, Kim Guldstrand

Larsen, Paul Pettersson, and Wang Yi. Developing up-

paal over 15 years. Softw., Pra
t. Exper., 41(2):133�142,

2011.

11. Jasper Berendsen and Frits W. Vaandrager. Composi-

tional abstra
tion in real-time model
he
king. In FOR-

MATS, volume 5215 of LNCS. Springer, 2008.

12. Nathalie Bertrand, Axel Legay, Sophie Pin
hinat, and

Jean-Baptiste Ra
let. A
ompositional approa
h on

modal spe
i�
ations for timed systems. In ICFEM,

LNCS. Springer, 2009.

13. T. Bourke and A. Sowmya. Automati
ally transforming

and relating uppaal models of embedded systems. In

EMSOFT, pages 59�68. ACM, 2008.

26

14. Timothy Bourke, Alexandre David, Kim G. Larsen, Axel

Legay, Didier Lime, Ulrik Nyman, and Andrzej Wa-

sowski. New results on timed spe
i�
ations. In WADT,

volume 7137 of LNCS, pages 175�192. Springer, 2010.

15. Peter Buly
hev, Thomas Chatain, Alexandre David, and

Kim G. Larsen. E�
ient on-the-�y algorithm for
he
k-

ing alternating timed simulation. In FORMATS, volume

5813 of LNCS, pages 73�87. Springer, 2009.

16. Benoit Caillaud, Benoit Delahaye, Kim G. Larsen, Axel

Legay, Mikkel L. Pedersen, and Andrzej W¡sowski. Com-

positional design methodology with
onstraint Markov

hains. In QEST, pages 123�132. IEEE, 2010.

17. Fran
k Cassez, Alexandre David, Emmanuel Fleury,

Kim G. Larsen, and Didier Lime. E�
ient on-the-�y al-

gorithms for the analysis of timed games. In CONCUR,

2005.

18. Fran
k Cassez, Alexandre David, Kim Guldstrand

Larsen, Didier Lime, and Jean-François Raskin. Timed

ontrol with observation based and stuttering invariant

strategies. In ATVA, volume 4762 of LNCS, pages 192�

206. Springer, 2007.

19. Karlis Cerans, Jens Chr. Godskesen, and Kim Guld-

strand Larsen. Timed modal spe
i�
ation - theory and

tools. In CAV, pages 253�267. Springer-Verlag, 1993.

20. Arindam Chakabarti, Lu
a de Alfaro, Thomas A. Hen-

zinger, and Marielle I. A. Stoelinga. Resour
e interfa
es.

In R. Alur and I. Lee, editors, EMSOFT 03: 3rd Intl.

Workshop on Embedded Software, LNCS. Springer, 2003.

21. Arindam Chakrabarti, Lu
a de Alfaro, Thomas A. Hen-

zinger, and Freddy Y. C. Mang. Syn
hronous and bidi-

re
tional
omponent interfa
es. In CAV, volume 2404 of

LNCS, pages 414�427, 2002.

22. Edmund M. Clarke, Orna Grumberg, and Doron A.

Peled. Model Che
king. The MIT Press, 1999.

23. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-

man, and Andrzej Wasowski. Methodologies for spe
i�-

ation of real-time systems using timed i/o automata. In

FMCO, volume 6286 of LNCS, pages 290�310. Springer,

2009.

24. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-

man, and Andrzej Wasowski. Timed i/o automata: a

omplete spe
i�
ation theory for real-time systems. In

HSCC, pages 91�100. ACM ACM, 2010.

25. Alexandre David, Kim Guldstrand Larsen, Axel Legay,

Mikael H. Møller, Ulrik Nyman, Anders P. Ravn, Arne

Skou, and Andrzej Wasowski. Compositional veri�
ation

of real-time systems using e
dar. STTT, 14(6):703�720,

2012.

26. Alexandre David, Kim Guldstrand Larsen, Axel Legay,

Ulrik Nyman, and Andrzej Wasowski. E
dar: An en-

vironment for
ompositional design and analysis of real

time systems. In ATVA, volume 6252 of LNCS, pages

365�370. Springer, 2010.

27. Lu
a de Alfaro. Game models for open systems. In Pro-

eedings of the International Symposium on Veri�
ation

(Theory in Pra
ti
e), volume 2772 of LNCS. Springer,

2003.

28. Lu
a de Alfaro, Leandro Dias da Silva, Mar
o Faella,

Axel Legay, Pritam Roy, and Maria Sorea. So
iable in-

terfa
es. In FroCos, volume 3717 of LNCS, pages 81�105.

Springer, 2005.

29. Lu
a de Alfaro and Mar
o Faella. An a

elerated al-

gorithm for 3-
olor parity games with an appli
ation to

timed games. In CAV, volume 4590 of LNCS. Springer,

2007.

30. Lu
a de Alfaro, Mar
o Faella, Thomas A. Henzinger, Ru-

pak Majumdar, and Mariëlle Stoelinga. The element of

surprise in timed games. In CONCUR, volume 2761 of

LNCS, pages 142�156. Springer, 2003.

31. Lu
a de Alfaro and Thomas A. Henzinger. Interfa
e

automata. In FSE, pages 109�120, Vienna, Austria,

September 2001. ACM Press.

32. Lu
a de Alfaro and Thomas A. Henzinger. Interfa
e-

based design. In In Engineering Theories of Software In-

tensive Systems, Marktoberdorf Summer S
hool. Kluwer

A
ademi
 Publishers, 2004.

33. Lu
a de Alfaro, Thomas A. Henzinger, and Rupak Ma-

jumdar. Symboli
 algorithms for in�nite-state games.

In CONCUR, volume 2154 of LNCS, pages 536�550.

Springer, 2001.

34. Lu
a de Alfaro, Thomas A. Henzinger, and Marielle I. A.

Stoelinga. Timed interfa
es. In EMSOFT, volume 2491

of LNCS, pages 108�122. Springer, 2002.

35. Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen,

Axel Legay, Mikkel L. Pedersen, Falak Sher, and Andrzej

Wasowski. Abstra
t Probabilisti
 Automata. InVMCAI,

pages 324�339. Springer, 2011.

36. José Luiz Fiadeiro and Luis Filipe Andrade. Inter
on-

ne
ting obje
ts via
ontra
ts. In Pro
. of the 38th In-

ternational Conferen
e on Te
hnology of Obje
t-Oriented

Languages and Systems, Components for Mobile Com-

puting (TOOLS'38), pages 182�183. IEEE Computer So-

iety, 2001.

37. José Luiz Fiadeiro and T. S. E. Maibaum. Inter
onne
t-

ing formalisms: Supporting modularity, reuse and in
re-

mentality. In Pro
. of the 3rd ACM SIGSOFT Sym-

posium on Foundations of Software Engineering (SIG-

SOFT FSE'95), pages 72�80. ACM, 1995.

38. Stephen J. Garland and Nan
y A. Lyn
h. The IOA

language and toolset: Support for designing, analyz-

ing, and building distributed systems. Te
hni
al report,

Massa
husetts Institute of Te
hnology, Cambridge, MA,

1998.

39. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli.

Timed transition systems. In REX Workshop, volume

600 of LNCS, pages 226�251. Springer, 1991.

40. Thomas A. Henzinger and Slobodan Mati
. An interfa
e

algebra for real-time
omponents. In IEEE Real Time

Te
hnology and Appli
ations Symposium, pages 253�266.

IEEE Computer So
iety, 2006.

41. Thomas A. Henzinger and Joseph Sifakis. The embedded

systems design
hallenge. In FM, volume 4085 of LNCS,

pages 1�15. Springer, 2006.

42. Dilsun Kirli Kaynar, Nan
y A. Lyn
h, Roberto Segala,

and Frits W. Vaandrager. The Theory of Timed I/O

Automata, Se
ond Edition. Synthesis Le
tures on Dis-

tributed Computing Theory. Morgan & Claypool Pub-

lishers, 2010.

43. M. Z. Kwiatkowska, G. Norman, J. Sproston, and

F. Wang. Symboli
 model
he
king for probabilisti

timed automata. In FORMATS, volume 3253 of LNCS,

pages 293�308. Springer, 2004.

44. M. Z. Kwiatkowska, G. Norman, J. Sproston, and

F. Wang. Symboli
 model
he
king for probabilisti

timed automata. Inf. Comput., 205(7):1027�1077, 2007.

27

45. Kim G. Larsen. Modal spe
i�
ations. In Joseph Sifakis,

editor, Automati
 Veri�
ation Methods for Finite State

Systems, volume 407 of LNCS, pages 232�246. Springer,

1989.

46. Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and

Andrzej Wasowski. Robust spe
i�
ation of real time

omponents. In FORMATS 2011, volume 6919 of LNCS.

Springer, 2011.

47. Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski.

Modal I/O automata for interfa
e and produ
t line the-

ories. In Ro

o De Ni
ola, editor, ESOP, volume 4421 of

LNCS, pages 64�79. Springer, 2007.

48. Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-

Che
king for Real-Time Systems. In Pro
. of Fundamen-

tals of Computation Theory, volume 965 of LNCS, pages

62�88, August 1995.

49. Nan
y Lyn
h. I/O automata: A model for dis
rete event

systems. In Annual Conferen
e on Information S
ien
es

and Systems, pages 29�38, Prin
eton University, Prin
e-

ton, N.J., 1988.

50. Nan
y A. Lyn
h and Mark R. Tuttle. An intro-

du
tion to input/output automata. Te
hni
al Report

MIT/LCS/TM-373, The MIT Press, November 1988.

51. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the

synthesis of dis
rete
ontrollers for timed systems (an

extended abstra
t). In STACS, pages 229�242, 1995.

52. Robin Milner. Communi
ation and Con
urren
y. Pren-

ti
e Hall, 1988.

53. Ro

o De Ni
ola and Roberto Segala. A pro
ess algebrai

view of input/output automata. Theoreti
al Computer

S
ien
e, 138, 1995.

54. Amalinda Post, Jo
hen Hoeni
ke, and Andreas Podelski.

rt-in
onsisten
y: A new property for real-time require-

ments. In FASE, volume 6603 of LNCS, pages 34�49.

Springer, 2011.

55. J.-B. Ra
let, B. Caillaud, D. Ni
kovi
, R. Passerone,

A. Sangiovanni-Vin
entelli, T. Henzinger, and K. G.

Larsen. Contra
ts for the design of embedded sys-

tems part i: Methodology and use
ases. Te
hni
al re-

port. Submitted, http://www.irisa.fr/distrib
om/

benveniste/pub/Pro
IEEE_
ontra
tsPart1.pdf.

56. Eugene W. Stark, Ran
e Cleavland, and S
ott A.

Smolka. A pro
ess-algebrai
 language for probabilisti

I/O automata. In CONCUR, LNCS, pages 189�2003.

Springer, 2003.

57. Jun Sun, Yang Liu, and Jin Song Dong. Model
he
king

sp revisited: Introdu
ing a pro
ess analysis toolkit. In

ISoLA, volume 17 of Communi
ations in Computer and

Information S
ien
e, pages 307�322. Springer, 2008.

58. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi,

and Andre Etienne. Modeling and verifying hierar
hi
al

real-time systems using stateful timed
sp. ACM Trans.

Softw. Eng. Methodol., 2012. A

epted.

59. Alfred Tarski. A latti
e-theoreti
al �xpoint theorem and

its appli
ations. Pa
i�
 Journal of Mathemati
s, 5:285�

309, 1955.

60. Louis-Marie Traonouez. A parametri

ounterexample

re�nement approa
h for robust timed spe
i�
ations. In

FIT, volume 87 of EPTCS, pages 17�33, 2012.

61. Frits W. Vaandrager. On the relationship between pro-

ess algebra and input/output automata. In LICS, pages

387�398, 1991.

62. Martin Wulf, Laurent Doyen, Ni
olas Markey, and Jean-

François Raskin. Robust safety of timed automata.

Formal Methods in System Design, 33:45�84, De
ember

2008.

63. Wang Yi. Real-time behaviour of asyn
hronous agents.

In Jos C. M. Baeten and Jan Willem Klop, editors, CON-

CUR, volume 458 of LNCS, pages 502�520. Springer,

1990.

28

