Schedulability and Energy Efficiency for
Multi-core Hierarchical Scheduling Systems

Abdeldjalil Boudjadar, Alexandre David, Jin Hyun Kim, Kim G. Larsen, Marius Mikucionis, Ulrik Nyman, Arne
Skou
Institute of Computer Science, Aalborg University, Denmark

Abstract—We propose a compositional framework for mod-
eling and analyzing the schedulability and energy efficiency of
embedded hierarchical scheduling systems running on a multi-
core platform. The framework is realized using Parameterized
Stopwatch Automata describing the concrete task behavior. The
schedulability can be verified in a compositional way using UP-
PAAL, and the energy profile can be generated using the statistical
model checking algorithms of UPPAAL SMC. To our knowledge,
our paper is the first one considering hierarchical scheduling,
multi-core platforms and energy consumption simultaneously.
Finally, the framework is applied to an avionics case study.

I. INTRODUCTION

Embedded systems are an essential part of many modern
products including complex safety critical real-time systems.
Within the industrial domains of avionics and automotive,
the safe composition of several embedded features within the
one system can be achieved through the use of hierarchical
scheduling. The separation between features is secured by
using time partition scheduling at the system level [9]. A trend
within embedded systems is to use multi-core platforms in
order to increase performance and to be able to implement
more functionality within one embedded system.

During the design phase of an embedded system, energy
profiles for components could be used by the system design-
ers to communicate requirements for the individual parts of
the system to the OEM (Original Equipment Manufacturer)
companies that produce the parts. In later development stages,
energy profiles can again be used to check that the complete
system satisfies its energy requirements.

In this paper we propose an approach to analyze both
the schedulability and the energy consumption of hierarchical
scheduling systems running on embedded multi-core plat-
forms. This approach is realized using Parameterized Stop-
watch Automata (PSA) [6], which are analyzed using UPPAAL
to check the schedulability and UPPAAL SMC to generate the
energy profiles (Fig. 1).

In the literature, a large amount of work has been devoted
to the description and analysis of scheduling systems [12]
together with energy efficiency [11]. We extend these ap-
proaches by combining, in one framework, important aspects
of modern systems like (1) powerful multi-core execution
platforms together with (2) a hierarchical scheduling structure,
and (3) abstract as well as concrete task behavior. In all

The research presented in this paper has been partially supported by EU
Artemis Projects CRAFTERS and MBAT.

of the previous work, systems can be viewed as a set of
abstract components competing for CPU and other resources,
and having a uniform distribution of energy consumption.
In contrast, our framework enables modeling concrete task
behavior and differentiated energy consumption rates based
on task state.

The rest of the paper is organized as follows: Related work
is discussed in section II. Section III gives a general overview
of our approach. Section IV gives detailed description of
how the approach is implemented in terms of Parameterized
Stopwatch Automata (PSA) and analyzed using UPPAAL and
UPPAAL SMC. The framework is instantiated and applied to
an avionics case study in section VI. Finally the conclusion is
given in section VII.

II. RELATED WORK

A compositional framework for hierarchical scheduling
systems was initially presented in [14] as a formal way to
elaborate a compositional approach for schedulability anal-
ysis of hierarchical scheduling systems [15]. In [13], the
authors dealt with a hierarchical scheduling framework for
multiprocessors based on cluster-based scheduling. They use
analytical methods to perform analysis, however this approach
has difficulty in dealing with complicated behavior of tasks.

In [3], the authors analyzed the schedulability of hierarchical
scheduling single-core systems using the TIMES tool [2]
and implemented their framework in VxWorks [3]. They
constructed an abstract task model as well as scheduling
algorithms focusing on the component under analysis. How-
ever, their approach requires not only timing attributes of the
component under analysis, but also timing attributes of other
components that can preempt the execution of the current
component.

The authors of [5] provided a compositional framework
for the verification of hierarchical scheduling systems using
a model-based approach. They specified the system behavior
in terms of preemptive time Petri nets, and only considered a
single-core execution platform.

In [1], the authors study the schedulability of real-time em-
bedded systems under energy constraints, such as using solar
panels. We extend their approach by considering hierarchy and
a multi-core platform while analyzing the schedulability in a
compositional way. Our framework can also generate energy
profiles for the system components.

III. GENERAL APPROACH

In this paper we structure our system model as a set of
hierarchical components. Each component, in turn, is the
parallel composition of a set of entities with a local scheduler.
A task consists of a sequence of timed actions [7]; computation
steps, input, output, etc. Moreover, we consider multi-core
execution environments where individual timed actions have
different energy consumption rates depending on their type
and the CPU on which they execute.

Figure 1 summarizes our approach. Information on the
scheduling requirements of the system is combined with the
hierarchical structure of the system together with a detailed
description of the task behavior including the energy con-
sumption rates of the individual timed actions. Timed actions
may consume different amount of energy when using different
hardware platforms. A timed action may be specified to
execute on a specific piece of hardware such as the GPU or
I/O unit, thus indirectly the energy consumption of different
processors can be specified. All of this information is used as
parameters for Stopwatch Automata templates that are part of
the framework. Once a specific instance of the framework has
been created, its schedulability can be checked composition-
ally using UPPAAL while the energy profiles of the system
components can be generated using UPPAAL SMC.

An energy profile consists of a graph (Finish after we
have made the models and queries)

1) Concrete behavior and energy consumption of tasks: A
task has a concrete behavior performing a sequence of timed
actions. Each timed action can either be a computation step
(Compute), communication (Input, Output) or particular
statements marking the end of the period (Pend) or the end
of the task execution (End).

Definition 1 (Timed action): Given a set of action names
Acts = {Compute, Input, Output, Pend, End}
and a multi-core platform P, a timed action A is a one step
computation given by the tuple (Act, Proc, BCET,WCET)
where:

e Act € Acts is the action name,

e Proc C P specifies the identifiers of processors on which
the timed action A can be scheduled,

e BCET and WCET are respectively best case and worst
case execution time,

By A we denote the set of all timed actions.

We consider a multi-core platform and associate each timed
action to a set of processors on which it can execute. Moreover,
we associate to each timed action energy consumption rates
specifying how much energy is consumed by this action per
time unit during its execution on a given processor. To this
end, we introduce the rate relation T’ AxP = Rt
which associates to the execution of each action an energy
consumption rate.

Likewise, we define the behavior B of a task as a transition
system (L, 1%, —) specifying the sequence of timed actions
performed by that task, where L is a set of states, [€ L is
the initial state and —C L x A x L is the transition relation.
States can be interpreted in the semantic level as valuations of
the task variables.

The behavior of a component is given by the parallel
composition of the transition systems of its nested tasks.

Definition 2 (Task structure): A task T is given by
(Prd, BCET,WCET, Pri, B,T') where Prd is the task pe-
riod, BCET and WCET are respectively best case and worst
case execution times of 7', Pri is the priority level associated
to task 7', B is the task behavior defined above and I' states
the energy consumption rates of 7”s timed actions.
Therefore, the task specification is given by an interface
Prd, BCET,WCET stating the time constraints, a behavior
B expressed by a sequence of timed actions and a priority
Pri that will be applied for each timed action of the task in
question.

2) Hierarchical scheduling: We structure our system as a
set of concurrent components. Each component, in turn, can
also be a parallel composition of either other components or
tasks, known as the component workload. Accordingly, the
leaves of our system are tasks. A rough sketch of a hierarchical
scheduling system can be seen as a part of Fig. 1 (Hierarchical
System Architecture). A concrete example of a hierarchical
scheduling system is given in Section VI.

Roughly speaking, a component is given by an interface
stating its timing requirements and a local policy for schedul-
ing its nested entities.

Definition 3 (Component): A component C' is a tuple
(Prd, Budget, Pri, s, (e1, .., e,)) where:

e Prd and Pri are the same as for tasks,

e Budget is the amount of resource that the component

guarantees to provide to its workload,

e s€ {EDF,FP,RM,..} is a scheduling policy,

o {e1,..,e,) are component entities, either tasks or compo-

nents (workload).

Similarly, a system is the top level component without tim-
ing requirements (Prd, Budget, Pri). We emphasize the fact
that our framework can be instantiated for any combination of
scheduling algorithms.

IV. COMPOSITIONAL FRAMEWORK

Our analysis for multi-core hierarchical scheduling systems
aims at obtaining verified and specified task designs that
satisfy given resource constraints, e.g. CPU usage and energy
consumption. The analysis framework is compositional in the
sense that the analysis is performed on each component indi-
vidually with respect to its requirements. The schedulability of
each component is verified by checking its timing specification
against the interface of its sub-entities [4]. Using the same
framework, each component can also be analyzed in order to
generate its energy profile.

To this end, we present a behavioral model of hierarchical
scheduling systems. This model consists of components and
task models based on task specifications including energy
profiles. We construct a hierarchical scheduling system model
using Parameterized Stopwatch Automata (PSA). The schedu-
lability is verified by model checking in UPPAAL, and the
energy efficiency is analyzed by statistical model checking in
UppAAL SMC.

The system model in this paper consists of models for dif-
ferent CPUs (including special purpose processors), models of

Schedulabilit
requirements

Energy. n
S consumption
o

Hierarchical RI
system architectur

T @ T T
CPuD (CPU2)

Concrete task behavior

Concrete task behav

Fig. 1. Overview of the analysis framework

scheduling algorithms and models of the individual tasks. We
have in our running example dedicated one of the processor
cores as a specific I/O processor. In general the modeling
framework can be instantiated with any number of special
purpose processing units.

The computation budget of a component includes both
regular execution and I/O actions of tasks. For the regular exe-
cution, the task specification can include for each timed action
on which processor it should be executed. I/O timed actions
are always executed on the special purpose I/O processor. Both
for I/O and computation, the time consumption is part of the
description of each individual timed action. Each processor
has an associated energy consumption rate, so the energy
consumed by a specific timed action is found by multiplying
its actual execution time with the energy consumption rate of
the processor on which it is executed. In the models this is
achieved by the use of stopwatches.

A. Models of System in Parameterized Stopwatch Automata

The system is given in terms of a number of parameterized
stopwatch automata. The important templates are described
and depicted in the following sections. The system model
includes templates for tasks, CPUs, scheduling algorithms,
supplier models, global and local schedulers. Each template
can be instantiated several times as part of the system decla-
rations. As each template is defined with a set of parameters,
it can be tailored to fit a specific application making our
framework highly configurable.

1) Task Model: A task as seen in Fig. 2 serves the purpose
of modeling a task in the real hierarchical scheduling system.
The task interface is specified using two parameters that are
the task ID and a description of the concrete behavior of the
task. The concrete behavior is given as a list of timed actions.
A timed action is used to represent the smallest task step that
we model. It can be a chunk of computation or some I/O
actions. Listing 3 shows the struct data type which is used to
represent a single timed action.

UPPAAL Network of
Parameterized
Stopwatch Automata

Schedulability

analysis

(model
KINdg

Energy efficiency
(Stochastic mode|
checking)

Schedulable:
yes / no

Energy
profile

Listing 1. Data structure for timed action
typedef struct{

cmdtype_t id;

rid_t rid;

time_t bcet;

time_t wcet;

pc_t goto_n;
} cmd_t;

The id field represents the type of the timed action. The
type of timed actions is given by the enumeration: END,
COMPUTE, INPUT, OUTPUT, PEND, GOTO. The sec-
ond field rid is the identifier of the processor on which this
timed action can be executed. The value of rid can be used
both to specify a particular processor or, by giving the value
0, to specify that the timed action can run on any regular
processor. The framework could be made more general to
match situations where the system architecture has groups of
processors. The bcet and wcet are respectively the best and
worst case execution times of the timed action. The goto_n
is used together with END, PEND, GOTO to specify which
timed action is next.

Formally, the task model is given a structure and a stopwatch
automaton. The structure specifies the internal attributes used
to store the task timing requirements like offset, period,
execution time and deadline. The task structure is similar to
that of a timed action. In our framework, the task timing
requirements are given by a list where they are associated to
the task by the task ID. Listing 2 shows the task structure we
consider, where pri field states the priority level associated
to the task. initial_ offset and offset are respectively
the initial and periodic waiting times that the task should wait
for in order to being ready. The task period is given by 2
bounds min_period and max_period stating respectively
the minimum and maximum values that the task period could
be. For task execution, we consider both best and worst
case execution times (bcet, wcet). Moreover, a task could
also be preemptive or not according to the Boolean flag
preemptive.

Listing 2. Task data structure
typedef struct {
pri_t pri;
time_t initial_offset;
time_t offset;
time_t min_period;
time_t max_period;
time_t deadline;
time_t bcet;
time_t wcet;
bool preemptive;
} task_t;

The behavior of our task model is depicted in Fig. 2.
Timed actions are carried out by the task model. When a task
starts a new period and after waiting that the initial offset
and the period offset have been elapsed, the task reaches
location ChkCMD and being ready to check its timed actions.
At this point, if the current timed action type is END the
joins immediately location ClosingExec stating that the task
execution is over. Otherwise, in the case of a COMPUTE,
INPUT or OUTPUT, the task moves to location location
ChkMCSchedPolicy to check which processors are able to be
used to execute the current timed action.

In our framework, the following choice has been made:
if the processor identifier specified by the timed action re-
quirement is equal to O (rid = 0) means that such a timed
action can be executed on any regular processor; otherwise
(rid > 0) the timed action should be executed on the specified
processor. Thus, from location ChkMCSchedPolicy of the task
model, if the timed action does not specify a specific processor
for its execution (cmd[pcl.rid < 0), the task is going to be
scheduled on any available processor. The identifier of such
a processor will be non deterministically determined from
location WaitCorelD by the statements i:rid_t p_assign[tid][i]?
tstat[tid].rid=i. In the case where the timed action provide the
identifier of the required processor (cmd[pcl.rid > 0), such a
processor identifier will be moved to the task level requirement
(tstat[tid].rid=cmd[pc].rid). In both cases, the task moves to
location RegSched waiting to be scheduled on the designated
processor. Once such a requirement is satisfied, the task moves
to location RUN, where it can miss its deadline and joins
location MISSDLINE; or achieves normally the execution of
the current timed action and joins location ChkCMD. While
a task is in the location RUN a number of stopwatches keep
track of the execution time of the individual timed action and
the energy consumed by the task. The energy consumption is
calculated by setting the rate of the energy stopwatch to the
energy consumption rate of the processor.

2) Multi-core Platform Model: The processor model we
consider is depicted in Fig. 3. It consists of a multi-core
platform which encompasses a set of regular processors.
The multi-core model is initially waiting for a processor
request. On the reception of such an event, it triggers the
processor scheduler, shown in Fig. 6, together with the
multi-core scheduling policy to determine which core will
be used for the current request. Once a processor identifier
is determined and communicated to the multi-core platform
(ack_psched[policy][i]?), such a processor identifier will be
communicated to the task having priority (pg.element[0]) in
the waiting list pq by a synchronization over channel p_assign.

p_req?

(@)

Vs

pg.length<=0

pg.length>0

p.
<) C

run_psched[polic

=\

p_assign[pg.element[0]][assigned_rid]!
pdeque()

ack_psched[policy][i]?
assigned_rid =i

©

Multi-core platform model

O

Fig. 3.

Once the first element of waiting list is served, it will removed
and if the list is still non-empty the multi-core template model
rerun the process of selecting other processors to serve to the
waiting tasks.

B. Processor Model

The processor model depicted in Fig. 4 is used to model
system resources that can only be used by one timed action at
a time e.g. processors. From the state Idle the processor model
is waiting for a request for its resource with the corresponding
rid. From the urgent location ReqSched, the processor model
checks how many elements are available in its waiting list
(rg[rid].element[]). If the list is empty the processor model
joins the Idle location. Otherwise, the processor model makes
a call to its associated scheduling policy, waiting for the
return acknowledgment from the local scheduler, indicating
that it has placed the correct element as the first item in the
rg[rid].element[] queue. In the Assign location the processor
model again checks if the waiting list is empty, by making
sure that the first element in the list is not 0. If this is not the
case it executes the element and moves to the InUse location.
In this location, it can be notified by a finished task execution
over the finished|[rid] channel or it can receive a new scheduling
request. By catching a new scheduling request, the processor
model moves to the location ReqSched where it triggers the
scheduling policy for the new waiting list i.e. rq[rid].element[].
When a task requests a resource, it inserts itself in the waiting
list of the corresponding processor.

In our compositional multi-core framework, each core is
individually managed by its corresponding CPU resource
model. Each task can be scheduled on different cores over
its lifetime.

1) Local Scheduler: The local scheduler role consists of
scheduling the different tasks designated to be executed on
a same processor. In the following we will show the EDF
scheduling algorithm, but our framework is highly config-
urable and this model can be replaced by models that im-
plement different scheduling algorithms. In fact, the local
scheduler (Fig. 5) initially waits until one CPU requests the
scheduler to manage its waiting list. After joining location
ChkTaskNumber, the local scheduler checks how many tasks
are available in the waiting list of the given processor. If such

IDLE

@xeTime[tid]‘::O

&& x <= task([tid].initial_offset

curTime[tid]>=task[tid].min_period
curTime[tid]=0, exeTime[tid]=0, twcrt[tid]=0,
tPrdindc[tid] = 2, tstat[tid].rid=

PDone

curTime[tid]=0, exeTime[tid]=0,
twert[tid]=0,tPrdIndc[tid] = 2, x=0

0, x=0 WaitOffset

“exeTime[tid]'==
&& curTime[tid] <= task[tid].max_period
&& twert[tid]'==0

finished[tstat[tid].rid]!
tstat[tid].status = PENDING_PERIOD,
deque(tstat[tid].rid,tid), tPrdIndc[tid] = 0

ClosingExec

ixeTime[tid]‘::
&& x<= task[tid].offset

x== task[tid].offset

(N

cmdIs(END,pc)
pc=0

©
MISSDLINb

exeTime[tid]'==

curTime[tid] >=task[tid].deadline
error=1

cmdExeTime >= cmd[pc].bcet
RUN L && curTimeltid] < task|tid].deadline

Bl

rexeTime[tid]'::isSched(tid, tstat[tid].rid)
&& exeTime[tid] <=task[tid].wcet

&& cmdExeTime <=cmd[pcl.wcet

r_req[tstat[tid].rid]!
ReqSched| enque(tstat(tid].rid, tid),

C finished[tstat[tid].rid]!
deque(tstat[tid].rid,tid), pc+

&& cmdExeTime'==isSched(tid, tstat[tid].rid)

&& energy_used[tid]' == energy_c_rate[tstat[tid].rid]

cmd[pcl.rid>0

ChkCMD

©
cmdIs(COMPUTE,pc)
|| cmdIs(INPUT,pc)

|| cmdIs(OUTPUT,pc)

ChkMCSchedPolicy

medExeTime =0

tstat[tid].rid=cmd[pc].rid

Z

€
cmd[pcl.rid<=0
p_req!
penque(tid)
WaitCorelD

irrid_t
p_assign[tid][i]? p

Fig. 2. Task model

rg[rid].length<=0
r_sup[rid][rq[rid].element[0]]!

tstatftid].rid=i

©

r_preemptive[rid]=preemptive

\dle r_req[rid]?

rg[rid].element[0]== 0
r_sup[rid][rq[rid].element[0]]!

Assign
C\

ack_sched[policy][rid]? Wﬁi;SChFudnfsched[policy][rid]!

rg[rid].length<=0

ReqSched

N\
rg[rid].length>0

¢

rg[rid].element[0]!=0
r_sup[rid]l[rg[rid].element[0]]!

o

Fig. 4. Processor (resource) model

a list contains only one task, the former will immediately be
scheduled and the scheduling process is over for the current
request. Otherwise, the local scheduler moves to location
ChkEarliestDL in order to determine the task having the earliest
deadline in the waiting list of the given processor. Once a
task is designated, the scheduler acknowledges the processor
in question, from location AckSchedReq, and moves to the
initial location.

2) Global Scheduler: The multi-core scheduling algorithm
we consider, as depicted in Fig. 6, is simple and consists of
designating a CPU identifier among a set of processors to be
used for a request. Once a CPU identifier is determined by the

finished[rid]?

N\

r_req[rid]?

run_psched[POL1]?
assigned_rid = psched(1,2)

ack _psched[POL1][assigned_rid]!

Fig. 6. Processors scheduler model

scheduler, it will be communicated to the multi-core platform
via a synchronization over channel ack_psched.

WaitSchedReq

@
&

rg[rid].length<2
ack_sched[EDF][rid]!
rq[rid].element[O]=rq[rid].e|ement[1]r
C

curTime[maxpritid]-task[maxpritid].deadline >
curT\me[rq[r\d].element[i+1]]-taSk[rq[r\d],element[H1]],deadlin;e&\

run_sched[EDFI[i]?

rid=i, j=1,
maxpritid=rq[rid].element[1]
ChkTaskNumber

rg[rid].length>=2

ChkEarliestDL

curTime[maxpritid]-task[makpritid].deadline <=
curTime[ra[rid].element[j+1[]-task[rg[rid].element[j+1]].deadline

j++

hkQ1l j<rg[rid].length

C
j>=rq[rid].length

AckSchedReq

maxpritid=rqg[rid].element[j+1],
j++

j<rg[rid].length ChkQz

C
j>=rq[rid].lengt

)
ack_sched[EDF][rid]!
chkPreemptiveSelTask()

Fig. 5. Local EDF scheduler model

K

9
§
1
q
E
4
El
2
f

0 % @ @ 1 10 10 20 20 20 300 30 30 30 40 40 80 50 S0 50 w0 60 60 60
e

Fig. 7. Cumulated energy consumption for two individual tasks

V. ANALYSIS: SCHEDULABILITY AND ENERGY
EFFICIENCY

In this section we explain the two forms of analysis that
we apply in our framework (Fig. 1). Schedulability of a
system is checked using symbolic model checking (UPPAAL)
and produces a YES or a NO. For the energy consumption
we generate energy profiles for individual components using
statistical model checking (UPPAAL SMC).

A. Generation of Energy Profiles

In its lifetime a task may use different processors for its
execution, so the accumulated energy consumption depends
on the energy consumption rate of the processors it has used.
Fig. 7 shows the individual cumulated energy consumption
for two tasks. This plot is included here to show the detail
with which we model and simulate the hierarchical scheduling
system.

We generate an energy profile for a component by simulat-
ing a large number of runs over a reasonable large time span.
The total cumulated energy consumption for each run is then
plotted in a histogram as shown in Fig. 8. The energy profile
is obtained using the following query:

Probability Distribution

Il probability
E- average

probability

2.0E7 2.08E7 2.16E7
max: total_eneryg_used

2.24E7

2.32E7

Fig. 8. Energy profile for two tasks, 1000 runs, 1000000 time units

E[gClock < simTime;1000](max:total_energy_used)

Fig. 8 can be used to characterize the energy consumption
of a component. In a similar way, we could generate statistical
energy profiles for complex hierarchical scheduling systems.

B. Schedulability Analysis

In the following we will first introduce some classical
notation in order to set this in relation to the work presented
in the paper.

From the viewpoint of the supplier and sub entities, the uti-
lization of resources, such as CPU and energy, can be analyzed
as follows: Let C' be a component, W = (11,75, ...T,,) the
tasks, s a scheduling algorithm, and R any resource model.
I denotes the collective requirements, (Prd and Bud given
in Definition 3). For any resource model R, a scheduling unit
U (W, R, s) is said to be schedulable if and only if:

YVt >0 dbf,(W,t) < sbfg(t)
where dbf,(W,t) is the demand-bound function and sbfy(?)
is the supply-bound function [13].

The interface I of a component C'(W,s) is said to be
schedulable if the scheduling unit U(W, R, s) is schedulable
with R = I, i.e. the resource model R satisfies the interface
I of the component timing requirements.

(10000, 1677, EDF)
[

Target Tracking
T,4(40000,4466,4972,40000)

Targeting

Target Sweetening ‘
T,(40000,1910,2122,40000)

Fig. 10. Detailed view of the Targeting component

For an processor resource CPU € P, the meaning of the
schedulability in [13] is adopted for this framework. To verify
the schedulability, we check the following property:

VvVt >0 dbfAch(VVv t) < SbeCPU(t)

The schedulability of the system is checked using symbolic
model checking the following query:

A[] (error!l=1)

When this analysis is performed we only consider the worst
case execution times and ignore the best case execution time.
The result of the analysis is just a YES or an error trace.

VI. CASE STUDY

In this section we utilize the presented methodology on an
avionics case study.

The original case study as presented in [10] does not contain
any information on the energy and consumption of tasks. With-
out considering energy consumption and BCET, the avionics
system has also been analyzed in [8], [4]. Thus, the energy
consumption rates considered in the paper are constructed for
the sake of the analysis. The energy consumption rate is a
parameter of the timed actions and can be updated to reflect
real measurements. We also consider both WCET and BCET
in our analysis, where the BCET of a task is set to 90% of
the WCET as given in [10]. Again, the BCET and WCET are
given at the level of timed actions and can be modified for
each individual action.

Fig. 9 shows the architecture of the hierarchical scheduling
system, with the interface specifications of each component
and task. In this view of the system the timing attributes
are specified in milliseconds. The original specification [10]
actually specifies the WCET of each timed action, but the
interfaces of the components have been estimated according
to our previous work [4] and verified using the framework
presented in the current paper.

To illustrate the generation of energy profiles we focus on
two components. These components are respectively depicted
in Fig. 10 and Fig. 11. When generating the energy profiles,
we have converted the time units from milliseconds to mi-
croseconds. Fig. 10 and Fig. 11 also show both the WCET
and BCET since both time bounds are used in the generation
of the energy profile.

The timed actions of these two tasks are given the following
listing:

Controls and Display
(10000, 3640, FP)

HUD Display
T4(52000, ,6348, 7084, 52000)

[MPD Display
T,,(52000, 8906, 9894,52000)

MPD Button Resp.
T,,(52000, 2606, 2894, 200000)

Change Display
T;, (52000, 2606, 2894, 200000)

AN N) S

Fig. 11. Detailed view of the Controls and Display component

Probability Distribution

Il probability
E=] average

- i

4.62E7 5.07E7 5.52E7
max: total_eneryg_used

0l
4.1767 5.97E7

6.42E7

6.87E7

Fig. 12. Energy profile for four tasks in the component Controls and Display,
1000 runs, 1000000 time units

Listing 3. Data structure for timed action

const cmd_set_t Target_tracking = {
{ INPUT , 3, 110, 122, 0},
{ INPUT , 3, 164, 182, 0},
{ INPUT , 3, 100, 122, 03},
{ INPUT , 3, 146, 162, 0},
{ COMPUTE, 0, 3600, 4000, 0},
{ ouTPUT , 3, 200, 222, 0%,
{ ouTtpUT , 3, 146, 162, 0},
FIN,FIN,FIN,FIN,FIN

}i

const cmd_set_t Target_sweetening = {
{ IneUT , 3, 110, 122, 0},
{ COMPUTE, 0, 1800, 2000, 0},

FIN,FIN,FIN,FIN,FIN,FIN,FIN,FIN,FIN,FIN
bi

The same analysis as was performed for the Targeting
component is also performed for the Controls and Display
component. Fig. 11 shows the component Controls and Dis-
play, Fig. 12 shows the energy profile and Listing 4 shows the
timed actions of that component.

Listing 4. Data structure for timed action

const cmd_set_t HUD_display = {
{ INPUT , 3, 420, 462, 0},
{ INPUT , 3, 146, 162, 03},
{ INPUT , 3, 164, 182, 0},
{ COMPUTE, 4, 5400, 6000, O},
{ oUTPUT , 3, 218, 242, 0},
FIN,FIN,FIN,FIN,FIN,FIN,FIN

const cmd_set_t MPD_display = {
{ INpUT , 3, 110, 122, 0},
{ InpuT , 3, 452, 502, 0},
{ INPUT , 3, 452, 502, 0},

Avionics

Hard-Subsystem
(25, insuf, EDF)

Controls and Display
(20, 15, FP)

Navigation Targeting
(30, 11, EDF) (40, 23, FP)

Weapon Ctrl.
(10, 8, FP)

HUD Display
T4(50,6,50)

[|

MPD Display

[Flight Data } [Target Tracking }

AUTO/CCIP Toggle

T4(50,8,50) T,(40,4,40) T5(200,1,200)
[Steering } [Target Sweetening } Weapon Trajectory
T,(80,6,80) T,(40,2,40)

T,,(200,1,200)
Change Display

|
[T,0(50,8,50)
|
|

MPD Button Resp. }

T,,(200,1,200)

T,(400,6,400)

insuf : insufficient budget

[Reinitiate Trajectory
[Weapon Release

|
T (100,7,100) }
|
|

Tg(10,1,5)

Fig. 9. Architecture of the hierarchical scheduling system
{ INpUT , 3, 218, 242, 0},
{ INPUT , 3, 146, 162, 0},
{ INPUT , 3, 146, 162, 0},
{ COMPUTE, 4, 7200, 8000, O},
{ oUTPUT , 3, 182, 202, 0},
FIN,FIN,FIN,FIN

const cmd_set_t MPD_button_resp = {

{ INpUT , 3, 110, 122, 0},

{ InpuT , 3, 452, 502, 0},

{ INpPUT , 3, 452, 502, 0},

{ INPUT , 3, 218, 242, 0},

{ INPUT , 3, 146, 162, 0},

{ INPUT , 3, 148, 162, 0},

{ COMPUTE, 0, 900, 1000, 0},
{ ouTrPUT , 3, 182, 202, 0},

F

IN,FIN,FIN,FIN

const cmd_set_t Change_display = {
{ InpuT , 3, 110, 122, 0},
{ INPUT , 3, 452, 502, 0},
{ InpuT , 3, 452, 502, 0},
{ INPUT , 3, 218, 242, 0},
{ INpUT , 3, 146, 162, 0},
{ INPUT , 3, 148, 162, 0},
{ COMPUTE, O, 900, 1000, O},
{ ourpUT , 3, 182, 202, 0},
F

IN,FIN,FIN, FIN
i

The statements FIN in the listing are used as a placeholder
for no command. This is necessary as the list of timed actions
has a static size. The energy profile of these two tasks is the
one that was shown in Fig. 8.

In the case study, the I/O processor has processor ID 3 and
the two regular processors has ID 1 and 2. A value of 0 is used

to signify that a given timed action can run either processor 1
or 2. More complicated setups with different subsets of proces-
sors can be defined for other instantiations of the framework.
It is in practice possible to create a task where timed actions
require to be executed on different processors. The only way
in which we utilize this in the current instantiation of the
framework is in that all I/O action have to run on the I/O
processor.

VII. CONCLUSIONS

We have presented a compositional framework for the
analysis of schedulability and generation of energy profiles
of hierarchical embedded multi-core real-time systems. The
framework has been instantiated as reusable models given
in terms of parameterized stopwatch automata (PSA) which
we analyzed using UPPAAL and UPPAAL SMC. The reusable
models ensure that when modeling a hierarchical scheduling
application only the concrete task behavior and the hierarchical
structure need to be specified by the system engineer. The
framework also allows for instant changes of the scheduling
policy at each given level in the hierarchy. The framework has
been applied to a previously published avionics case-study.

As future work, we plan to study how to use the generated
energy profiles for analyzing the energy efficiency of systems.
To the best of our knowledge, this paper is the first paper
to consider multi-core, hierarchy and energy concepts in the
design of embedded real-time systems. A perspective could
also be to encapsulate the framework in a tool such that it
could be used in a practical development toolchain.

[1]

[3]

[5]

[6]

[7

—

[8

[t

[9

—

[10]

(1]

[12]

[13

[t

[14]

[15]

REFERENCES

Y. Abdeddaim and D. Masson. Real-time scheduling of energy har-
vesting embedded systems with timed automata. In /EEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications RTCSA12, pages 31-40. IEEE Computer Society, 2012.

T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: A
tool for schedulability analysis and code generation of real-time systems.
In K. G. Larsen and P. Niebert, editors, FORMATS, volume 2791 of
LNCS, pages 60-72. Springer, 2003.

M. Behnam, T. Nolte, I. Shin, M. Asberg, and R. Bril. Towards
hierarchical scheduling in VxWorks. In OSPERT 2008, pages 63-72.
A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucionis,
U. Nyman, and A. Skou. Hierarchical scheduling framework based
on compositional analysis using uppaal. In Proceedings of FACS 2013,
Incs. Springer, 2013. To appear.

L. Carnevali, A. Pinzuti, and E. Vicario. Compositional verification
for hierarchical scheduling of real-time systems. IEEE Transactions on
Software Engineering, 39(5):638-657, 2013.

F. Cassez and K. G. Larsen. The impressive power of stopwatches.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in
Computer Science, pages 138—152. Springer, 2000.

A. David, K. G. Larsen, A. Legay, and M. Mikucionis. Schedulability
of herschel-planck revisited using statistical model checking. In ISoLA
(2), volume 7610 of LNCS, pages 293-307. Springer, 2012.

R. Dodd. Coloured petri net modelling of a generic avionics missions
computer. Technical report, Department of Defence, Australia, Air
Operations Division, 2006.

B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A comparison of
partitioning operating systems for integrated systems. In SAFECOMP,
volume 4680 of LNCS, pages 342-355. Springer, 2007.

C. D. Locke, D. R. Vogel, L. Lucas, and J. B. Goodenough. Generic
avionics software specification. Technical report, DTIC Document,
1990.

L. Niu and J. Xu. Improving schedulability and energy performance
for weakly hard real-time systems. In IPCCC, 2012 IEEE 31st, pages
41-50, 2012.

J. Rufino, J. Craveiro, and P. Verissimo. Building a time- and space-
partitioned architecture for the next generation of space vehicle avionics.
In SEUS, volume 6399 of LNCS, pages 179-190. Springer, 2010.

I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for
virtual clustering of multiprocessors. In ECRTS, pages 181-190. IEEE
Computer Society, 2008.

I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In RTSS, pages 2—13. IEEE Computer Society, 2003.

I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

