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Hierarchical Scheduling Framework Based on
Compositional Analysis Using Uppaal?

Abdeldjalil Boudjadar, Alexandre David, Jin Hyun Kim, Kim. G. Larsen,
Marius Mikučionis, Ulrik Nyman, Arne Skou

Computer Science, Aalborg University, Denmark

Abstract. This paper introduces a reconfigurable compositional schedul-
ing framework, in which the hierarchical structure, the scheduling poli-
cies, the concrete task behavior and the shared resources can all be recon-
figured. The behavior of each periodic preemptive task is given as a list of
timed actions, which are some of the inputs for the parameterized timed
automata that make up the framework. Components may have different
scheduling policies, and each component is analyzed independently using
Uppaal. We have applied our framework for the schedulability analysis
of an avionics system.

1 Introduction

Embedded systems are involved in many applications, software systems in cars
and planes, on which our lives depend. Ensuring the continually correct opera-
tion of such systems is an essential task. Avionics and automotive systems consist
of both safety-critical and non safety-critical features, which are implemented in
components that might share resources (e.g. processors). Resource utilization is
still an issue for safety-critical systems, and thus it is important to have both
an efficient and reliable scheduling policy for the individual parts of the system.
Scheduling is a widely used mechanism for guaranteeing that the different com-
ponents of a system will be provided with the correct amount of resources. In
this paper, we propose a model-based approach for analyzing the schedulability
of hierarchical scheduling systems. In fact, our framework is implemented using
parameterized timed automata models.

A hierarchical scheduling system consists of a finite set of components, a
scheduling policy and (global) resources. Each component, in turn, is the parallel
composition of a finite set of entities which are either tasks or other components
together with a scheduling policy to manage the component workload. One can
remark that we do not consider component local resources. System tasks are
instances of the same timed automaton with different input parameters. A special
parameter of the task model is a list of timed actions [5], specifying the concrete
behavior of the given task. This list includes abstract computation steps, locking
and unlocking resources. Thanks to the parameterization, the framework can
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easily be instantiated for a specific hierarchical scheduling application. Similarly,
each scheduling policy (e.g. EDF: Earliest Deadline First, FPS: Fixed Priority
Scheduling, RM: Rate Monotonic) is separately modeled and can be instantiated
for any component.

Compositional analysis has been introduced [4, 10], as a key model-checking
technology, to deal with state space explosion caused be the parallel composition
of components. We are applying compositional verification to the domain of
schedulability analysis.

We analyze the model in a compositional manner, the schedulability of each
component including the top level, is analyzed together with the interface spec-
ifications of the level directly below it. In this analysis, we non-deterministically
supply the required resources of each component, i.e. each component is guar-
anteed to be provided its required resources for each period. This fact is viewed
by the component entities as a contract by which the component is obliged to
supply the required resources, provided by the component parent level, to its
sub entities for each period. The main contribution of the paper is combining:

– a compositional analysis approach where the schedulability of a system relies
on the recursive schedulability analysis of its individual subsystems.

– a reconfigurable schedulability framework where a system structure can be
instantiated in different configurations to fit different applications.

– modeling of concrete task behavior as a sequence of timed actions requiring
CPU and resources.

The rest of the paper is structured as follows: Section 2 introduces related
work. Section 3 is an informal description of the main contribution using a
running example. The section gives an overview of both modeling hierarchical
scheduling systems and how we perform the schedulability analysis in a compo-
sitional way. In section 4, we give the Uppaal model of our framework where we
consider concrete behavior of tasks. Moreover, we show how the compositional
analysis can be applied on the model using the Uppaal and Uppaal SMC ver-
ification engines. Section 5 shows the applicability of our framework, where we
analyze the schedulability of an avionics system. Finally, section 6 concludes our
paper and outlines the future work.

2 Related Work

Hierarchical scheduling systems were introduced in [9, 7]. An analytical compo-
sitional framework for hierarchical scheduling systems was presented in [12] as a
formal way to elaborate a compositional approach for schedulability analysis of
hierarchical scheduling systems [13]. In the same way, the authors of [11] dealt
with a hierarchical scheduling framework for multiprocessors based on cluster-
based scheduling. They used analytical methods to perform analysis, however
both approaches [12, 11] have difficulty in dealing with complicated behavior of
tasks.
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Recent research within schedulability analysis increasingly uses model-based
approaches, because this allows for modeling more complicated behavior of sys-
tems. The rest of the related work presented in this section focuses on model-
based approaches.

In [2], the authors analyzed the schedulability of hierarchical scheduling sys-
tems, using a model-based approach with the TIMES tool [1], and implemented
their model in VxWorks [2]. They constructed an abstract task model as well
as scheduling algorithms, where the schedulability analysis of a component does
not only consider the timing attributes of that component but also the tim-
ing attributes of the other components that can preempt the execution of the
component under analysis.

In [5], the authors introduced a model-based framework using Uppaal for
the schedulability analysis of flat systems. They modeled the concrete task be-
havior as a sequence of timed actions, each one represents a command that uses
processing and system resources and consumes time.

The authors of [3] provided a compositional framework for the verification
of hierarchical scheduling systems using a model-based approach. They specified
the system behavior in terms of preemptive time Petri nets and analyzed the
system schedulability using different scheduling policies.

We combine and extend these approaches [3, 5] by considering hierarchy, re-
source sharing and concrete task behavior, while analyzing hierarchical schedul-
ing systems in a compositional way. Moreover, our model can easily be recon-
figured to fit any specific application. Comparing our model-based approach to
analytical ones, our framework enables to describe more complicated and con-
crete systems.

3 Compositional Scheduling Framework

A hierarchical scheduling system consists of multiple scheduling systems in a
hierarchical structure. It can be represented as a tree of nodes, where each node
in the system is equipped with a scheduler for scheduling its child components.

In this paper, we structure our system model as a set of hierarchical compo-
nents. Each component, in turn, is the parallel composition of a set of entities
(components or tasks) together with a local scheduler and possible local re-
sources. A parent component treats the real-time interface of each one of its child
components as a single task with the given real-time interface. The component
supplies its child entities with resource allocation according to their real-time in-
terfaces. Namely, each component is parameterized by a period (prd), a budget
(budget) specifying the execution time that the component should be provided by
its parent level, and a scheduling policy (s) specifying resource allocations that
are provided by the component to its child entities. The analysis of a component
(scheduling unit) consists of checking that its child entities can be scheduled
within the component budget according to the component scheduling policy. A
component can be also parameterized by a set of typed resources (R) which serve
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as component local resources. An example of a hierarchical scheduling system is
depicted in Fig. 1.

Tasks represent the concrete behavior of the system. They are parameterized
with period (prd), execution time (e), deadline (d), priority (prio) and preemption
(p). The execution time (e) specifies the CPU usage time required by the task
execution for each period (prd). Deadline parameter (d) represents the latest
point in time that the task execution should be done before. The parameter
prio specifies the user priority associated to the task. Finally, p is a Boolean flag
stating whether or not the task is preemptive.

The task behavior is a sequence of timed actions consuming CPU time and
resources. Moreover, task and component parameters prd, budget and e can be
single values or time intervals.

3.1 Motivating Example

In this section and throughout the paper, we present the running example shown
in Fig. 1 to illustrate our system model of hierarchical scheduling systems, and
show the compositional analysis we claim. For the sake of simplicity, we omit
some parameters like priorities and resources and only consider single parameter
values instead of time intervals.

System

Component1 Component2

task1 task2 task3 task4 task5

RM

(100,37)

EDF

EDF

(70,25)

(250,40) (400,50) (140,7) (150,7) (300,30)

Fig. 1. Example of hierarchical scheduling system.

In this example, the top level System schedules Component1, Component2
with the EDF scheduling algorithm. The components are viewed by the top level
System as tasks having timing requirements. Component1, respectively Compo-
nent2, has the interface (100, 37), respectively (70, 25), as period and execution
time. The system shown through this example is schedulable if each component,
including the top level, is schedulable. Thus, for the given timing requirements
Component1 and Component2 should be schedulable by the top level System
according to the EDF scheduling policy. The tasks task1 and task2 should be
schedulable, with respect to the timing requirement of Component1 (100, 37),
also under the EDF scheduling policy. Similarly, task3, task4 and task5 should
be schedulable, with respect to the timing requirements of Component2, under
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the RM scheduling policy. The next section presents the compositional analysis
of the schedulability of our example.

For a given system structure, we can have many different system configu-
rations. A system configuration consists of an instantiation of the model where
each parameter has a specific value. Fig. 1 shows one such instantiation.

3.2 Our Analysis Approach

In order to design a framework that scales well for the analysis of larger hier-
archical scheduling systems, we have decided to use a compositional approach.
Fig. 2 shows how the scheduling system, depicted in Fig. 1, is analyzed using
three independent analysis steps. These steps can be performed in any order.

System
EDF

Component1 Component2

task1 task2 task3 task4

EDF,.RM:.scheduling.policies..A,.A1,.A2:.analysis.processes.

A

A1 A2

task5

EDF RM

Fig. 2. Compositional analysis

The schedulability of each component, including the top level, is analyzed
together with the interface specifications of the level directly below it. Accord-
ingly, we will never analyze the whole hierarchy at once. In Fig. 2, the analysis
process A consists of checking whether the two components Component1 and
Component2 are schedulable under the scheduling policy EDF. In this analy-
sis step, we only consider the interfaces of components in the form of their
execution-time (budget) and period, so that we consider the component as an
abstract task when performing the schedulability analysis of the level above it.
In this way, we consider the component-composition problem similarly to [14]
but using a non-deterministic supplier model for the interfaces. When perform-
ing an analysis step like A1, the resource supplier is not part of the analysis.
In order to handle this, we add a non-deterministic supplier to the model. The
supplier will guarantee to provide the amount of execution time, specified in the
interface of Component1, before the end of the component period. We check all
possible ways in which the resources can be supplied to the subsystem in A1.
The supplier of each component provides resources to the child entities of that
component in a non-deterministic way. During the analysis of A1, the supplier
non-deterministically decides to start or stop supplying, while still guaranteeing
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to provide the required amount to its sub entities before the end of the period.
The analysis A2 is performed in the same way as A1.

Our compositional analysis approach results in an over-approximation i.e.
when performing the analysis of a subsystem, we over-approximate the behav-
ior of the rest of the system. This can result in specific hierarchical scheduling
systems that could be schedulable if one considers the entire system at once,
but that is not schedulable using our compositional approach. We consider this
fact as a design choice which ensures separation of concerns, meaning that small
changes to one part of the system does not effect the behavior of other compo-
nents. In this way, the design of the system is more stable which in turn leads to
predictable system behavior. This over-approximation, which is used as a design
choice, should not be confused with the over-approximation used in the verifi-
cation algorithm inside the Uppaal verification engine (Section 4.4). The result
can either be true (false) or maybe-not (maybe), in the case of true (false) the
result of the analysis is conclusive and exact.

Thanks to the parameterization of system entities; scheduling policies, pre-
emptiveness, execution times, periods and budgets can all easily be changed. In
order to estimate the performance and schedulability of our running example, we
have evaluated a number of different configurations of the system. This allows
us to choose the best of the evaluated configurations of the system.

4 Modeling and Analysis using UPPAAL

The purpose of modeling and analyzing hierarchical scheduling systems is to
check whether the tasks nested in each component are schedulable, with respect
to resource constraints given by the component. This means that the minimum
budget of a component supplier, for a specific period, should satisfy the timing
requirements of the child tasks. For this purpose, we consider a scheduling unit
and use symbolic model checking and statistical model checking methods to
check the schedulability, and to find out the minimum budgets of components.
In fact, a scheduling unit [13] consists of a set of tasks, a supplier and a scheduler,
in [13] known by the terms Workloads, Resource model and Scheduling policy.

This section presents our modeling framework that will be used for the
schedulability analysis. We revisit the running example shown in Fig. 1, which
is built on the instances of four different Uppaal timed automata templates: 1)
non-deterministic supplier 2) periodic task 3) CPU scheduler (EDF, RM), and
4) resource manager. Similarly to [5], we also use broadcast channels where no
sender can be blocked when performing a synchronization. We use stop watches,
writing x′ == e to specify a clock x that can only progress when e evaluates to
1. Uppaal also allows for clocks to progress with other rates but we only use 0
and 1.

4.1 Non-Deterministic Supplier Model

In this section, we present some arguments for why it makes sense to use a
non-deterministic supplier model in our compositional analysis. The hierarchical
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supplying_time[supid]'==0
&& curTime <= sup[supid].prd
                    - sup[supid].budget 
                    + supplying_time[supid]
&& curTime <= sup[supid].prd

stop_supplying[supid]!

replenishment[supid]!

supplying_time[supid]'==1
&& supplying_time[supid]<=sup[supid].budget

curTime <=sup[supid].prd 
&& supplying_time[supid]'==0

NotSupplying

curTime ==sup[supid].prd

curTime < sup[supid].prd -sup[supid].budget + supplying_time[supid]
stop_supplying[supid]!

supplying_time[supid]>=sup[supid].budget

start_supplying[supid]!
supplying_time[supid]<=sup[supid].budget

supplying[supid]=1Supplying

supplying[supid]=1

supplying[supid]=0

Done
supplying[supid]=0

curTime=0, supplying_time[supid]=0,
supplying[supid]=0

Fig. 3. Non-deterministic supplier template

scheduling system structure is a set of scheduling components, each one includes
a single specific scheduling algorithm and a set of entities (tasks or compo-
nents). To analyze a single component by means of a compositional manner,
it is necessary to consider the interrupted behavior of that component by the
other concurrent components within the same system. However, it is hard to
capture the interrupting behavior of the other components that influence the
component under analysis. For this reason, we introduced a non-deterministic
supplier to model all scenarios that the component under analysis can run. Such
a non-deterministic fact simulates the influence of the other system components
on the execution of the component under analysis.

As mentioned earlier, the non-deterministic supplier is a resource model that
provides resources to the component. The scheduling policy within the compo-
nent then allocates the resources to tasks. It also abstracts the possibility that
a task from another part of the system (not part of the current analysis step)
could preempt the execution of tasks of the current component.

Fig. 3 depicts the Uppaal template model of the non-deterministic supplier.
In fact, the non-deterministic supplier assigns a resource, denoted by rid, to a
set of tasks characterized by the timing attributes given in listing 1.1.

Listing 1.1. Component interface

typede f s t r u c t {
t i m e t prd ;
t i m e t budget ;
t i d t t a s k a r r [ t i d t ] ;

} sup t ;

A resource rid can represent a processing unit (CPU) or a any other system
resource, represented in the model by a semaphore. prd is a period and budget is
the amount of resources to be provided. The supplier assigns the budget amount
of resources to tasks in task arr[tid t]. In this model, supplying time[supid] (supid
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Fig. 4. Supplier’s behavior

is the supplier identifier) represents the duration when the supplier provides a
resource. start supplying[supid] and stop supplying[supid] are broadcast channels
that notify tasks of the beginning and completion of the resource supply. curTime
denotes the time elapsed since the beginning of the supplier’s resource supplying.
supplying[supid] contains the supplier’s status, 0 (not supplying) or 1 (supplying).

Fig. 4 shows one particular resource supply pattern of Component1. sup-
plying time[1] is increasing while the supplier is providing resources. supply-
ing time[1] has a long wait while the supplier provides no resource. supplying[1]
indicates whether the supplier provides resources or not. Fig. 4 shows a non-
deterministic supply, in which the values of supplying[1] are irregular in be-
havior. The amount of resource supplied to tasks can be monitored from the
supplying time[1], which for each period supplies the exact amount of resource,
37 time units, given in the timing interface for Component1.

The supplier provides a resource at the location Supplying (Fig. 3). The tran-
sitions between Supplying and NotSupplying are non-deterministically taken un-
til the budget is fulfilled (supplying time[supid] <= sup[supid].budget), or the
remaining time is equal to the remaining amount of resource to be provided
(curtime <= sup[supid].prd− sup[supid].budget+ supplying time[supid]). The
supplier stays at the location Supplying to provide the remaining amount of re-
source when the budget of the supplier is not fully provided, and the remaining
time is equal to the remaining amount of resource to be provided.

4.2 Task model

We only consider a finite set of tasks and refer to them as T = t1, t2, . . . , tn.
Each task is defined by the timing attributes given in listing 1.2.

pri is a task priority. initial offset is an initial offset for the initial release of
the task, and offset represents the offset time of each period before the task is
released. A task has also best execution time and worst-case execution time.

8



Listing 1.2. Task data structure

typede f s t r u c t {
p r i t p r i ;
t ime t i n i t i a l o f f s e t ;
t ime t o f f s e t ;
t ime t min period ;
t ime t max period ;
t ime t dead l i n e ;
t ime t b c e t ;
t ime t wcet ;
boo l preempt ive ;

} t a s k t ;

The timing attributes above are given as a structure associated to a timed
automaton template. The task model is given by the template shown in Fig. 5.

Clock exeTime[tid] denotes the execution time in which the task has executed
with necessary resources. This clock is a stop-watch and its progress depends on
the following condition:

int[0,1] isTaskSched() { return rq[rid].element[0] == tid? 1:0;}

rq[j].element[0], where j is the resource id, contains the task identifier which
is scheduled to use the CPU, and isTaskSched() returns 1 or 0 according to
whether the corresponding task is scheduled or not. Thus, exeTime[tid] increases
only when isTaskSched() returns 1. A clock tWECT[tid] measures the worst-case
execution time for the task. curTime[tid] is the time elapsed since the task ar-
rives. The task is scheduled, according to its priority, by a specific scheduling
algorithm. It can execute only when the supplier provides it with resources. That
is, the supplier provides a specific resource amount, then a scheduling algorithm
assigns the use of that resource to a specific task. Fig. 6 shows the timed be-
havior of task1 and task2; exeTime[1] and exeTime[2] are increasing according to
the resource supply from the supplier. They stop increasing when the supplier
stops supplying the resource, or their corresponding tasks complete executing
within their periods. Clock exeTime[2] starts increasing after exeTime[1] finishes
its execution during its period because task2 has a lower priority than task1.
running[1] and running[2] indicate whether the tasks are running or not.

4.3 Resource Model and Scheduling

Fig 7 shows both the resource manager template and one scheduling algorithm
template. These two templates behave like a function. They process and return
data instantaneously after they receive processing requests. Listing 1.3 depicts
the structure (a queue) used by the resource manager.
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exeTime[tid]'==0
&& x<= task[tid].offset

exeTime[tid]' == 0 
&& tWCET[tid]'==0
&& curTime[tid] <= task[tid].max_period

exeTime[tid]'==0
&& curTime[tid]<=initialOffset()

finished[cpu()]!

WaitingOffset

exeTime[tid]'==isTaskSched()
&& exeTime[tid] <=task[tid].wcet
&& curTime[tid]<=deadline()

Idle

exeTime[tid]'==0
&& curTime[tid] <=task[tid].deadline

PeriodDone

curTime[tid]>=task[tid].min_period

exeTime[tid] ==task[tid].bcet

x== offset()

start_supplying[tstat[tid].pid]?

stop_supplying[tstat[tid].pid]?

curTime[tid]>=task[tid].deadline

r_req[cpu()]!

curTime[tid]>=deadline()

x==initialOffset()

Ready

x=0

x=0

enque(tstat[tid].pid,tid),
tstat[tid].status=RUNNING

MissDeadline

Suspended

error=1,RING=10

tstat[tid].status = PENDING_PERIOD,
deque(cpu(),tid), tWCET[tid]=0

curTime[tid]=0, exeTime[tid]=0, tWCET[tid]=0,
x=0

error=1,RING=10

Fig. 5. Task template

In fact, the resource manager shown in Fig 7(a) receives a scheduling request
from a task, and requests a scheduling algorithm to select the highest priority
task. The scheduling model of Fig 7(b) selects the highest priority task and places
it at the first element of the ready queue. The scheduling model acknowledges
the resource manager after the selection of a task. At this time, the resource
manager notifies the selected task that it is scheduled in order to let it start its
execution.

Thanks to the Uppaal instantiation mechanism, our system structure can
easly be reconfigured. As early mentioned, we have modeled each system entity
(task, resource, supplier, scheduling policy) by a template so that if, for example,
we need to use a scheduling policy instead of another one, we just replace the
scheduling policy name in the system instantiation.
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running[1]

running[2]

exeTime[1]

exeTime[2]

Fig. 6. Task behavior

Listing 1.3. Resource manager data structure

typede f s t r u c t {
i n t [ 0 , t i d n ] l ength ;
i n t [ 0 , LastTid ] element [ t i d n +1] ;

} queue t ;

4.4 Symbolic Model Checking

In this section, we explain how to check the schedulability using the symbolic
reachability engine of Uppaal. We consider the system with various configura-
tions in terms of preemptiveness, scheduling policy, etc.

Let us start with an illustration of the schedulability analysis of Component1,
depicted in Fig. 1. The components are verified with respect to the following
safety property:

A[] error !=1

Here, error is a Boolean variable that will be updated to 1 (true) whenever a
task misses its deadline. Thus, this property expresses the absence of deadline
violation (i.e. all tasks are schedulable). For a given supplier with a timing re-
quirement (100, 37), the verification results of the component including task1
(250, 40) and task2 (400, 50) are stated below:

Table 1. Budget evaluation based on scheduling policy and preemptiveness.

Component1
(100, 31) (100, 37) (100, 44)

Preemptive Preemptive Non-preemptive Preemptive

EDF maybe not Safe maybe not Safe

RM maybe not maybe not maybe not Safe
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rq[rid].length>0

rq[rid].length<=0

sel_tid()== 0

sel_tid()!=0

rq[rid].length<=0

r_preemptive[rid]=preemptive

finished[rid]? r_req[rid]?

r_sup[rid][rq[rid].element[0]]!

ack_sched[policy][rid]?

r_req[rid]?

run_sched[policy][rid]!
WaitSchedAssign

r_sup[rid][rq[rid].element[0]]!

Idle

ReqSched

InUse

(a) Resource manager model template

i:rid_t

rid=i, policy_FPS(i)
run_sched[FPS][i]?ack_sched[FPS][rid]!

(b) FP scheduler

Fig. 7. Resource and scheduling algorithm templates

For the same task set under the EDF scheduling policy, the minimal budget
in our verification framework can be greater than the optimal budget of the
supplier given in [13]. One of the reasons is that the supplier behaves non-
deterministically. The fact that Uppaal uses an over-approximation technique
to analyze models containing stop-watches leads to our framework also being
an over-approximation. This results in the answer maybe-not to some of our
verification attempts. We use the same task set as in [13] where the authors
report that the optimal budget is 31 for the EDF scheduling policy, while the
minimal budget we have computed to satisfy the same task set by symbolic model
checking is 37. The minimal budgets we have computed, for RM scheduling and
the same task set, are the same as the budgets presented in [13].

In order to obtain the upper bound on the WCETs of tasks, with respect
to the EDF policy and a preemptive resource model, we check the following
property:

sup: tWCET[1], tWCET[2]

where the tWCET[1] and tWCET[2] are stopwatches that are increasing while
the corresponding tasks are running. sup is a Uppaal keyword that refers to
a function returning the supprima of the expressions (maximal values in case
of integers; upper bounds, strict or not, for clocks). The verification results in
tWCET[1] ≤ 196 and tWCET[2] ≤ 196, signifying that the WCETs of each task
is less than or equal to 196. So none of the tasks miss their deadline.

4.5 Statistical Model Checking

As stated in [5], the use of stop-watches in Uppaal leads to an over-approximation
which guarantees that safety properties are valid but reachability properties
could be spurious. Thus, symbolic model checking cannot disprove whether tasks
are schedulable but only prove when they are schedulable. For that reason, we
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apply statistical model checking (SMC) to disapprove the schedulability and
estimate the minimum budget of the supplier with respect to a specific period.

SMC is a simulation-based approach which estimates the probability for a
system to satisfy a property by simulating and observing some of its executions,
and then applies statistical algorithms to obtain the result [6]. In this section,
we will show a way not only of checking schedulability but also to reason on the
execution of tasks.

Table 2. Probability of error estimation with 1% level of significance.

Component1: EDF (100, 31) (100,32) (100, 33) (100, 34) (100,35)

Pr[<=10000](<>error) [0.249,0.349] [0.0142,0.114] [0,0.0987] [0,0.0987] [0,0.0987]

For our running example, Table 2 shows the query used to evaluate the prob-
ability of violating a deadline for runs bounded by 10000 time units regarding
different budgets of the supplier. The SMC computed the mentioned results with
certain level of confidence and precision, i.e. each result is given as an interval.
However, if the lower bound is strictly positive, it guarantees that the checker
found at least one witness trace where a task missed its deadline [5]. One may
remark that the probability of tasks missing their deadline is much higher when
the supplier budget is too small. Note that the possibility that tasks will miss
their deadline is between 0.249 and 0.349 for the supplier timing requirement
(100,31) of our example.

To visualize a witness of the deadline violation, we can request the checker
to generate random simulation runs and show the value of a collection of expres-
sions. For example, run the following query on the system:

simulate 100 [<=3000]{3+running[1], exeTime[1],

4.5+running[2], exeTime[2]}: 1: error==1

This query asks the checker to simulate randomly the system execution until
the condition error == 1 becomes satisfied, and to generate the task status and
the accumulated amount of the resource used by the two tasks.

Fig. 8 shows a case where task1 misses the deadline, visualizing the running
status of tasks (running[1] and running[2]) in a Gantt chart and the accumulated
amount of the resource used by tasks in a period (exeTime[1] and exeTime[2]).
Notice that the flat line at the end of the execution of task1 is one value lower
than all the previous tops of task1, indicating that this task misses the deadline
because of the lack of 1 time unit at time 1,250.

We apply the following queries for different supplier requirements to generate
the probability distribution of the worst-case execution time of tasks:

E[globalTime <= 100000;100] (max: tWCET[1])

E[globalTime <= 100000;100] (max: tWCET[2])
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Fig. 8. Unschedulable tasks: task1 misses its deadline at time 1,250.
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Fig. 9. Probability distribution of the WCET of tasks for the supplier (100, 33)

The results are shown in Fig 9 and Fig 10. In fact, Fig 9 shows the probability
distribution of the worst-case execution time of tasks for the supplier timing
requirement (100, 33), where task1 and task2 have 210.026 and 292.126 as worst-
case execution times. For the supplier timing requirement (100, 37), as shown in
Fig 10, task1 and task2 have 181.304 and 276.121 as worst-case execution times.
By means of this reasoning, it can be checked that both cases for the supplier
satisfies the task resource requirements and make them schedulable.

5 Case Study

To show the applicability of our compositional framework, we have modeled
the avionics system introduced in [8, 3], and analyzed its schedulability. The
application is a flat composition of 15 tasks declared with different priorities
and timing requirements. Depending on the features of tasks, we have structured
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Fig. 10. Probability distribution of the WCET of tasks for the supplier (100, 37)

this application in 3 components. Component 1 includes 5 tasks concerning the
fire system like bomb button, weapon release, target tracking, etc. Component
2 encapsulates 5 tasks concerning the navigation system whereas component 3
includes the basic 5 tasks like display and auto-toggle. Each of the component
has a scheduling policy and timing requirements (period, budget). We have also
considered shared resources to perform input/output. In fact, the shared bus for
input/output communication is modeled as a particular instance of the processor
model. This can easily be extended to model multi-core platforms.

Following the analysis method described in section 3, we associate to each
component a non-deterministic supplier. By holding the same timing require-
ments of tasks as [8], our compositional analysis shows that all components,
except the top level one, are schedulable under different scheduling policies with
or without preemptiveness. Component 1 is schedulable with at least 89/100 of
the system resources. Component 2 could be schedulable if we provide 90/100
of the system resources, i.e. supplier interface (100,90), whereas Component 3
needs at least 67/100 of system resources to being schedulable.

In the top level analysis process (A in Fig. 2), the top level component which
consists of a scheduling policy together with the interfaces of the 3 components
cannot be scheduled because the sum of the 3 component supplier budgets ex-
ceeds 100% of the resource utilization. This non-schedulability is probably due
to the existence of tasks having longer execution time than the deadline of the
lowest priority task. Thus, according to our compositional analysis this avion-
ics system is not schedulable. Our schedulability result of this avionics system
matches perfectly with the schedulability result obtained in a non-compositional
way in [8].

A challenge encountered during this application is the estimation of both
period and budget of each supplier such that:

– each supplier provides enough resources to its child tasks.

– the parallel composition of all suppliers is schedulable according to the sys-
tem level scheduling policy.
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We have used a binary search approach to estimate the supplier budgets. In
fact, we check the schedulability of a component by giving a supplier budget,
and if the schedulability property is not satisfied we increase the budget value
and rerun the verification process. A perspective of this work is to study the
estimation of time requirements (periods, budgets) of the system intermediate
levels in an automatic way, making then the checking process much faster.

6 Conclusions

We have defined a compositional framework for the modeling and schedulability
analysis of hierarchical real-time systems. The framework has been instantiated
as reusable models given in terms of timed automata which we analyzed using
Uppaal and Uppaal SMC. The reusable models ensure that when modeling a
hierarchical scheduling application, only the concrete task behavior and the hi-
erarchical structure need to be specified by the system engineer. The framework
also allows for instant changes of the scheduling policy at each given level in the
hierarchy. Comparing our model-based approach to analytical ones, our frame-
work enables the modeling of more complicated and concrete systems. We have
successfully applied our compositional framework to model an avionics system
and analyze its schedulability. As future work, we plan to study how to estimate
the optimal timing requirements of suppliers in an automatic way. We also plan
to consider multi-core platforms as well as energy efficiency.
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