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Abstract. Statistical model-checking is a recent technique used for both
verification and performance analysis of hybrid systems. It does not suf-
fer from decidability issues or state-space explosion compared to tradi-
tional model-checking. Furthermore, it is applicable to more powerful
formalisms such as stochastic hybrid automata. Its principle is simple so
how simple is it really to make it work in practice? In this extended ab-
stract, we raise a number of practical issue, some of them disconnected
from the underlying theory, and show how they are addressed in Up-

paal SMC.

1 Introduction

Statistical model-checking (SMC) [14, 17, 18, 13] is an approach recently intro-
duced as both a validation technique to reason about correctness of systems and
an analysis technique to study performance. The idea behind SMC is to gener-
ate bounded runs of a system and to analyze the outcomes of these runs w.r.t.
some linear temporal logic formula (or some variant of it). Statistical methods
are then used to derive how many runs are necessary to assert with some given
degree of confidence if the formula holds. This has several advantages over tra-
ditional model-checking. Computing the runs, even for a hybrid system, does
not involve manipulating structures to handle symbolic representations of states
such as BDD [6] or zones [4]. In addition, states are not stored and no special
technique to represent the state-space is required. Lastly it is far easier to par-
allelize or distribute SMC [7] compared to traditional model-checking, e.g., no
distributed hash table is necessary. The technique is simpler, cheaper, and scales
well w.r.t. the size of the models and the actual hardware on which it runs.

SMC has a more powerful formalism and can actually work in practice on
large systems without resorting to advanced abstraction techniques [9]. It also
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allows to analyze properties [8, 2] that cannot be expressed or even checked with
classical model-checking. As a consequence, the technique is spreading to various
research areas such as system biology [10, 12] or software engineering [19, 15].

In this paper we are interested in showing how SMC works in practice in
Uppaal SMC. Even if the technique is simpler than model-checking, it still
presents its own challenges. If we compare the formalism used in traditional
model-checking of timed systems, timed automata [1] or timed variants of Petri
nets [16, 5] are used. Uppaal SMC can handle stochastic hybrid automata with-
out being plagued by decidability issues. On the other hand, the generation of
runs must use numerical methods to integrate on-the-fly differential equations.
The first problem is precision. A fined grained integration step affects speed
negatively. The second problem is correctness because this interacts with the
detection of the states we are looking for (through monitors or formulas). If
we compare w.r.t. scalability, SMC faces extra challenges when generating the
runs. In addition to estimating when to take transitions, which model-checking
needs to do as well, SMC has to deal with distributions and has to resolve races
between components. This also interferes with the numerical integration.

First we show some noteworthy technical implementation issues. Then we
take two major points separately, namely how the computation of successors us-
ing our stochastic semantics works together with the integration, and scalability
of the models.

2 Technical Issues

The general architecture of Uppaal is based on a pipeline [3]. To keep the
code uniform and ease the integration of a new engine, SMC follows the same
principle. The different engines follow this structure:

– A main function that initializes the checker (hypothesis testing, probability
estimation, etc . . . ), generates runs, and analyzes the results.

– A function that i) estimates which delay each component of the model can
take and ii) resolves which component should move.

– A function that decides for a given component and delay which transition is
taken and takes it.

– A function to monitor/evaluates if a formula holds.

Now let us dig out the issues.

Checkers. The different checkers, though similar, work very differently. Hypoth-
esis testing is using a sequential method with parameters that are different from
the ones used for probability evaluation. From version 4.1.15, probability estima-
tion is also using a sequential method, though a different one. The challenge is
to fit very different algorithms and parameters into the same framework to reuse
common functionalities. We use a different main function for each checker and
that function reuses the same delay/successor functions. Second, we broadcast
the parameters as < key, value >. The functions that need a certain value listen
on this one, e.g., < α, 0.95 >.



When Do We Stop? A run can be stopped if it reaches its bound, that is either
a time bound, a step bound, or an arbitrary cost bound. Otherwise, a run stops
prematurely if a certain state is detected. Stopping on the right bound means
that any function computing a delay must be aware of this bound. In addition,
reaching this bound must be signaled to the main loop to terminate the run. The
detection of state also interferes with delays. Indeed, if the user wants to detect a
state with a condition on a clock such as 3 ≤ x ≤ 5, the checker should not delay
4 if x = 2 otherwise the state will not be detected. So any function computing
a delay must also be aware of such bounds. Now comes the question: How to
detect these bounds? The formulas may not be that simple and the bounds may
be known only at run-time.

Concrete or Symbolic States? How to compute bounds on-the-fly with a concrete
state? One way would be to use a symbolic state based on difference bound
matrices (DBM) and compute a trajectory from a concrete clock valuation. We
would lose all benefits of not having symbolic states. So we use a cheap version
with the decorator pattern: We wrap our concrete state inside a decorator state
that intercepts all calls that evaluate clock constraints. It evaluates delays from
the current valuation to satisfy or stay within some constraint. This in turn
computes delay intervals. These intervals are used to detect when a formula is
satisfied but also when a guard on a transition holds (and that is used to pick
the actual delay). Not all issues on complex formulas are currently dealt with
but the solution is lightweight and sound.

Precision. Floating-point numbers are only approximations. Any computation
using them is wrong up to some ǫ. It does not make sense to test for equality for
example. Lets go back to our hybrid model that takes root in timed automata.
What do we do with x ≥ 3, x > 4, or x == 3? This is taking into account that
x is not exact. We have to do this up to some ǫ value that is for the moment a
constant in the code. The case x == 3 is interesting because having it on a guard
with a delay up to, say, 4 gives probability 0 to take the transition. But having
it on the same transition with a delay bounded by 3 because of an invariant
gives probability 1 to take it at 3 (which is possible in case of, e.g., time-out
modeling). The current solution is to stick the clock valuation to exact integer
valuations when they get “too close” to integer points (up to some ǫ constant).
The rationale behind this comes from the probability of getting to such a point
in the first place. It is 0 for delays picked according to some distribution but 1
if the delay is forcibly bounded by an integer.

Uppaal Features. Urgent states or transitions are allowed in Uppaal. These
are special cases where delays are not allowed. Invariants in timed automata
have the feature to effectively disable transitions if a certain delay would violate
the invariant of the target state. For example going from A to B with x ≤ 5
on B is not possible from A if x == 6, even if the guard allows this (and the
x is not reset). This is forbidden in SMC and the system will be declared not
sane because this interferes with the stochastic semantics (problem with the



distributions, in particular exponential) and it would make the implementation
needlessly complex.

Memory Consumption. The main idea behind SMC is to generate runs on-
the-fly. The engine generates successor states and does not need to remember
previous ones. This is a major advantage over model-checking. So when do we
need memory? If a user wants to analyze visually the results, a plot is needed.
The plot comes from data generated on-the-fly. Now it is hopeless to store data
of 1000 of runs if some integration step of, say 10−4, is used on runs bounded
by 1000 time units. These are not outrageous number, but multiplied (by the
size of the datum to be stored as well), they are. In fact, we have this issue with
Matlab-Simulink. Instead, Uppaal SMC filters the data on-the-fly according to
some resolution used for plotting.

MPI. The distributed version of SMC is using the message passing interface
(MPI) library. Both hypothesis testing and probability estimation are supported.
The first issue here is theoretical: There may be a bias in the result if some com-
puting nodes deliver their outcomes faster than others. A balancing algorithm for
the result [7] must be implemented. The second issue is practical: A distributed
termination algorithm must be implemented on top to decide on-the-fly when
to terminate.

3 Numerical Integration and Stochastic Semantics

Briefly, when a component can take a transition, a delay is picked according to
a distribution. If the current state has an invariant, the distribution is uniform.
The lower bound is given by the guard on the transition and the upper bound by
the invariant. Guard should not have upper bounds but in the case of uniform
distributions, this will also work. If the current state does not have an invariant,
then the delay is picked according to an exponential distribution whose rate
must be given. Now what if a clock rate is some (arbitrary) expression and not
simply 0 or 1?

The way this problem is solved is to consider another component in parallel
with the system that wants to move in δ time units. It simply races with the
rest of the system with all the rates of the clocks being constant during that
amount of time. Most of the time this component will win the race and then it
updates the rates of all clocks, after which the race resumes. When the system,
or even better the current state, is not using such rates, the delays may be
taken in big steps. Otherwise we have to integrate. The current method used is
Euler’s algorithm for simplicity but we will investigate more efficient ones such as
Runge-Kutta’s. The point is that we can still keep this semantically as another
separated component.

The numerical integration interferes with the global time bound on runs and
the evaluation of invariants (or maximum delays). As an additional difficulty,
invariants of the type x ≥ −1 now make sense and may result in unbounded
delay if x′ ≥ 0. This affects the distribution dynamically.



Another orthogonal issue, which we unfortunately have not solved at the
moment, is numerical stability. If the δ step is taken too large or too small, the
integration will not work. Wrong results or Zeno behaviour will be detected3.
Currently if a run has more than 100000 states consecutively in 0.3 time units
or less, then the engine considers that the run is not making time progress and
declares it as Zeno. We need some heuristic to stop the engine in case of real
Zeno behaviour.

4 Scalability Issues

How to keep up performance even when the number of component increases?
The fundamental step in generating runs is to compute a successor, and before
that the delay for taking a transition. The distribution of the delay is affected by
the guards on the transitions. This means that every component has to evaluate
every guard of every outgoing transition in its current state to figure out the
distribution and which one to take.

The problem is that only one component out of potentially many moves, so
all the computation from all the other components are wasted. The solution is to
remember the choices of all components to avoid to recompute them when it is
possible. A simple update that reflects the delay taken is much cheaper than re-
evaluating the delay from scratch. So when is it possible? If a component moves
independently, which means no side-effect on guards, rates, or invariants, then we
can do it. In practice, Uppaal SMC consider any use of global variable because
its static analyzer is not powerful enough. There are also different solutions
to keep track of dependency between transitions that incur different memory
overheads, e.g., state-based, or transition-based, or expression-based. Obviously
(combinatorial blow-up) we want to limit the amount of pre-computations and
use techniques such as bit-vector operations to efficient set operations, e.g., to
detect if a written x is also read by another component.

The issue of independent moves between components is difficult to implement
but it has a major performance impact.

5 Conclusion

We have shown a number of technical challenges that are faced with statistical
model-checking. They are mostly of numerical nature, which is not an issue
for traditional model-checking because of the symbolic nature of the algorithms
employed. There are still improvements to be done on the numerical solver or
static analyzer of Uppaal that are purely technical. Other more fundamental
improvements are on so called rare events. Our current technique requires huge
amount of runs (billions or more) if we want good confidence that some state is
not reachable, except that it happens rarely.

3 Whenever a run has an infinite number of discrete transitions in a finite amount of
time, it is Zeno.



The SMC technique is not bullet proof but nicely complement model-checking,
in particular for finding bugs. Over-approximation techniques can safely declare
that bad states are not reachable. SMC can safely declare that they are reachable,
up to numerical errors. Numerical issues are starting to be taken into account
[11].

SMC is a promising technique primarily because it bypasses decidability is-
sues faced by model-checking but it does have its own challenges compared to
model-checking and it is certainly not trivial to do it right.
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