
Noname manuscript No.

(will be inserted by the editor)

Efficient Controller Synthesis for a Fragment of MTL0,∞

Peter Bulychev, Alexandre David,

Kim G. Larsen, Guangyuan Li

the date of receipt and acceptance should be inserted later

Abstract In this paper we offer an efficient controller synthesis algorithm for
assume-guarantee specifications of the form ϕ1 ∧ϕ2 ∧ · · · ∧ϕn → ψ1 ∧ψ2 ∧ · · · ∧ψm.
Here, {ϕi, ψj} are all safety-MTL0,∞ properties, where the subformulas {ϕi} are
supposed to specify assumptions of the environment and the subformulas {ψj}

are specifying requirements to be guaranteed by the controller. Our synthesis
method exploits the engine of UppAal-Tiga and the novel translation of safety-
and co-safety-MTL0,∞ properties into under-approximating, deterministic timed
automata. Our approach avoids determinization of Büchi automata, which is the
main obstacle for the practical applicability of controller synthesis for linear-time
specifications. The experiments demonstrate that the chosen specification formal-
ism is expressive enough to specify complex behaviors. The proposed approach
is sound but not complete. However, it succesfully produced solutions for all the
experiments. Additionally we compared our tool with Acacia+ and Unbeast, state-
of-the-art LTL synthesis tools; and our tool demonstrated better timing results,
when we applied both tools to the analogous specifications.

1 Introduction

Automatic controller synthesis is concerned with the algorithmic construction of
a control strategy, that will ensure a given behavioural specification to be satisfied
regardless of the input provided by an environment. This problem was first stated

Peter Bulychev · Alexandre David · Kim G. Larsen
CISS, CS, Aalborg University, Denmark,
E-mail: pbulychev,adavid,kgl@cs.aau.dk

Guangyuan Li
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, P.R. of China,
E-mail: ligy@ios.ac.cn ·

The paper is supported by the Danish National Research Foundation, the National
Natural Science Foundation of China (Grant No.61061130541) for the Danish- Chinese Center
for Cyber Physical Systems and VKR Center of Excellence MT-LAB.

2 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

in a discrete time setting by Church in 1962 in [13] and then theoretically solved
for various specification formalisms in [10] and later works [9,18,27,22,30,31].

The synthesis problem is computationally harder for linear time logics than
the satisfiability and model-checking problems, and has for this reason been con-
sidered to be intractable for a long time. The main problem was that the first
synthesis approaches involve the determinization of Büchi automata that is a com-
putationally hard problem. However, the synthesis problem has recently gained in
practical performance with the development of the so-called Safraless synthesis
algorithm [23], that avoids the Büchi determinization phase. This approach has
been strengthened by using the bounded synthesis [32] and the antichain-based
algorithm in [19] that have resulted in the tools Acacia and Acacia+ that demon-
strate good performance for the reasonable sized formulas arising in practice [20].
Another direction of research tries to restrict the specification formalisms so that
the synthesis problem will be easier to solve [7,29]. We combine both directions,
i.e. restrict ourselves to a formalism that doesn’t require Safra’s procedure.

In the current paper we study the synthesis problem in the real-time setting. We
focus our attention to the Metric Interval Temporal Logic (MITL) [3], a formalism
which has proved to be useful for specifying real-time systems [1]. Unfortunately,
the MITL synthesis problem is undecidable in general [16], but there are subclasses
that render the synthesis problem to be decidable [9,25]. The main challenge for the
real-time controller synthesis is that the Safraless approach is not always applicable
for the timed case, since determinization is not possible in general. Thus it makes
sense to completely avoid the automata determinization phase.

In the current paper we push the boundaries of MITL synthesis forward to an
important class of assume-guarantee properties, i.e. properties of the form Ψ =
ϕ1 ∧ϕ2 ∧ · · · ∧ϕn → ψ1 ∧ψ2 ∧ · · · ∧ψm. Here the implicants {ϕi} are typically used
to specify assumptions of the behaviour of an environment, and the implied part
{ψj} is used to specify the requirements to the controller. We assume that every
ϕi and ψj belong to safety-MTL0,∞, being the positive fragment of MITL where
all until operators should have only upper bounds, and all release operators can
have either upper or lower bound. Still, the safety-MTL0,∞ fragment allows us to
express important bounded-response properties, e.g. �(a → ♦≤1b) that tells that
every a should be followed by b within 1 time unit.

Our approach translates the overall specification Ψ to a network of timed game
automata — one automaton for every requirement ψj and one automaton for the
negation of every assumption ϕi. A central contribution is the extension of the
translation presented in [11], with the advantage that the resulting automata con-
tain no Büchi acceptance conditions and are deterministic by construction. Hence,
there is no need for a determinization phase. However, it is not always possible to
translate MTL0,∞ properties into language-equivalent deterministic automata1,
and in this case we produce a deterministic under-approximation. Thus our ap-
proach is sound but not complete, i.e. it may fail to generate a strategy even if
the specification is realizable. As we shall see, this theoretical incompleteness does
not show up in our case studies.

1 For instance, there is no equivalent deterministic Timed Automata for MTL0,∞ property
♦≤1(p ∧�≤1(¬r) ∧ ♦≤1(q)). This can be proved by adapting the proof of [24] that MITL[a,b]

formula �≤1(p→ ♦[1,2](¬q)) is not determinizable.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 3

req

req

req

grant

grant

(z<5)

(z<5)

ACCEPT

grant

z:=0

z:=0

(5<=z)

(5<=z)

grant

grant

req

req

grant

(x<5)

(5<=x)

REJECT

req

x:=0

x:=0

(x<5)

(5<=x)

grantreq

grant
(5<y)

REJECT

req

y:=0

grant

(y<=5)

req

grant

req

req

req

(z>=5)

(z<5)

ASSUMPTIONS
VIOLATED

z:=0,y:=0

z:=0,y:=0 (x<5)
x:=0

(z<5)

Fig. 1: Deterministic monitors for ¬�(req → �̂<5¬req), �(grant→ �̂<5¬grant) and �(req →

¬reqÛ≤5grant), and the winning strategy (from left to right)

It now remains to use UppAal-Tiga [5] to synthesize a control strategy for
the resulting timed game fulfilling all the requirements {ψj} or violating at least
one of the assumptions {ϕi}. Additionally, the synthesized strategy should avoid
generating Zeno behaviour (playing infinite number of actions in a finite amount
of time). We do this by either forcing Uppaal-Tiga to generate non-Zeno strategy
using Büchi winning condition; or by proving that no Zeno strategy will be win-
ning for the controller. Finally, having synthesized a winning strategy, it may be
transformed into executable code.

As an illustration, consider the specification2:

�(req → �̂<5¬req) → �(grant→ �̂<5¬grant) ∧�(req → (¬req)Û≤5(grant))

This specification says that every request (req) should be served (grant) within
5 time-units under the assumption that the environment does not make repeated
requests with less than a separation of 5 time-units. Also, the specification for-
bids grants to be issued too frequently – again a minimum time-separation of 5
time-units is required. Figure 1 contains the network of deterministic timed game
automata generated by our approach for this specification, together with a winning
strategy for this network synthesized by Uppaal-Tiga. Here, the dashed transi-
tions are uncontrollable, and in the strategy the controller always proposes to take
the earliest enabled controllable transition. Although some formulas are defined
over single actions, the corresponding automata use both actions since ¬req ren-
ders to grant (and the other way round) under the assumption that only these two
actions are available.

1.1 Related work

The paper [26] is the first work that proposed the algorithms for the controller syn-
thesis based on the timed games. In this work the game rules (i.e. what controller
and environment can potentially do) were defined as timed game automaton. The
winning goals (i.e. what controller should achieve) were expressed as Rabin condi-
tions. This differs from our setup since we use linear-time specifications to define
both parts. Later the authors of [12] restricted their attention to timed games with
reachability and safety properties. They proposed an efficient symbolic on-the-fly
algorithm that has been implemented in Uppaal-Tiga tool [5].

2 As we will define in section 2, �̂ and Û are modifications of the “classical” globally and
until operators that don’t take into account the first observation of a trace

4 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

The paper [25] was the first work that studied the controller synthesis problem
for the case when the specification itself is given as a linear-time temporal formula
and a system works in real time. This work proposes an algorithm for the synthesis
of the properties of the form �ϕ, where ϕ is a safety-MITL≤ property, that can also
contain past formulas. Our approach works well for assume-guarantee properties
and it might be hard to fit such properties into the logic of [25]. Additionally,
[25] makes the bounded variability assumption, i.e. it assumes that the number of
times a signal changes per one time unit is bounded by some preknown constant
k. This might be too strict in the dense time setting and we do not make this
assumption.

The paper [9] and [16] present a series of decidability and undecidability results
for the synthesis and realizability for different fragments of real-time logics MTL,
ECL and LTL⊳. However it is an open question whether the synthesis problem for
our fragment of MTL is decidable or not. If we limit the resources of the controller
(i.e. the number of clocks he can have and the maximum constants), then the
problem is decidable according to [9].

The paper [15] proposes the Safraless procedure for the synthesis of LTL⊳

properties. The translation procedure of [15] involves the solution of a timed game

with k2
|ϕ|

locations (contrary to 2|ϕ| in our method), where k depends on the
specification itself and can be relatively large.

Outline. The rest of the paper is organized as following. Section 2 provides
all the necessary definitions. In section 3 we formally state the problem being
solved. Section 4 describes the novel translation of safety- and co-safety-MTL0,∞

properties into exact non-deterministic monitoring Timed Automata and under-
approximation deterministic Timed Automata. Section 5 describes how we use
Uppaal-Tiga to solve the synthesis games. Section 6 contains the case studies.

2 Definitions & Problem Statement

2.1 Timed words and MTL0,∞ logic

A timed word over a finite set of actions Σ is a finite or infinite sequence of time
points and actions (t1, a1)(t2, a2)(t3, a3) . . . , where for every i we have ai ∈ Σ,
ti ∈ R≥0 and for any non-last i we have ti+1 ≥ ti. Let Runs(Σ) denote the set of
all finite timed words over Σ and InfRuns(Σ) the set of all infinite timed words
over Σ.

A timed word is called Zeno iff it contains infinitely many discrete actions
during a finite amount of time. Certainly, the controllers that produce Zeno timed
words are not implementable in real life. In our modeling formalism Zeno behavior
can be also forced by the environment (if it emits uncontrollable actions infinitely
often). In order to distinguish these two situations we define Zeno behavior over
sets of actions. A timed word (t1, a1)(t2, a2)(t3, a3) . . . is called Zeno for Σ′ ⊆ Σ,
if it is time-bounded (i.e. ti < t for some t and for all i) and there are infinitely
many actions from Σ′ in it (i.e. for any j there exists i > j such that ai ∈ Σ′). Let
Zeno(Σ′) denote the set of all infinite timed words that are Zeno for Σ′.

Definition 1 A MTL0,∞ formula ϕ over actions Σ is defined by the grammar

ϕ ::= true | a | ¬ϕ |ϕ1 ∧ ϕ2 |Oϕ |ϕ1U∼dϕ2 |ϕ1Û∼dϕ2

Efficient Controller Synthesis for a Fragment of MTL0,∞ 5

where a ∈ Σ, ∼∈ {<,≤,≥, >} and d ∈ N.

The common abbreviations are: false =¬ true, (ϕ1∨ϕ2) = ¬(¬ϕ1∧¬ϕ2), (ϕ1 →

ϕ2) = (¬ϕ1)∨ϕ2, ϕ1R∼dϕ2 = ¬(¬ϕ1U∼d¬ϕ2), ϕ1R̂∼dϕ2 = ¬(¬ϕ1Û∼d¬ϕ2), ♦∼dϕ

= true U∼dϕ, ♦̂∼dϕ = true Û∼dϕ, �∼dϕ = false R∼dϕ, and �̂∼dϕ = false R̂∼dϕ.
The temporal operators R and R̂ are called release operators, and U and Û are

called until operators. The release and until operators are called bounded if they
have a bound “< d” or “≤ d”, otherwise unbounded. We will omit writing a bound
when the bound is “≥ 0” (e.g. write ϕ1Uϕ2 instead of ϕ1U≥0ϕ2).

Safety-MTL0,∞ (co-safety-MTL0,∞) is the fragment of MTL0,∞ that con-
sists of all the formulas in the positive normal form that don’t use unbounded
until (release, correspondingly) operator [28]. For instance, �♦≤1a is in safety-
MTL0,∞, ♦�≤1a is in co-safety-MTL0,∞, �≤1 ♦≤1a is both in safety- and co-
safety-MTL0,∞, �♦a is in none of them. It’s easy to see that a MTL0,∞-formula
ϕ is in safety-MTL0,∞ iff its negation is in co-safety-MTL0,∞.

The semantics of MTL0,∞ is defined over infinite timed words. Let wi be the
i-th suffix of the timed word w. For a given infinite timed word w = (t1, a1)(t2,
a2)(t3, a3) . . . and a MTL0,∞- formula ϕ, the satisfaction relation wi |= ϕ is defined
inductively:

1. wi |= true

2. wi |= a iff ai = a

3. wi |= ¬ϕ iff wi 2 ϕ

4. wi |= ©ϕ iff wi+1 |= ϕ

5. wi |= ϕ1 ∧ ϕ2 iff wi |= ϕ1 and wi |= ϕ2

6. wi |= ϕ1U∼dϕ2 where ∼∈ {<,≤,≥, >} iff there exists j such that j ≥ i, wj |= ϕ2,
tj − ti ∼ d, and wk |= ϕ1 for all k with i ≤ k < j

7. wi |= ϕ1Û∼dϕ2 where ∼∈ {<,≤,≥, >} iff there exists j such that j > i, wj |= ϕ2,
tj − ti ∼ d, and wk |= ϕ1 for all k with i < k < j

An infinite timed word w satisfies a MTL0,∞-formula ϕ iff w1 |= ϕ. The lan-
guage L(ϕ) of ϕ is the set of all infinite timed words that satisfy ϕ.

2.2 MTL0,∞ synthesis problem

A synthesis problem is defined by a triple (ϕ,Σc, Σu), where Σc and Σu are disjoint
sets of elements (that are called controllable and uncontrollable actions), and ϕ is
a MTL0,∞ formula over Σc∪Σu. This triple defines the rules of the game between
the controller and the environment. The game is played in rounds, and at each
round the controller proposes to play some controllable action after some delay,
and then the environment can let the controller to do this, or it can overtake the
controller’s choice with a smaller or equal delay and some uncontrollable action.
The behavior of the controller is determined by a strategy, a function that during
the course of the game constantly gives information as to what the controller
should do in order to satisfy the specification.

More formally, a strategy of the controller in (ϕ,Σc, Σu) is a function f that
maps the finite timed words from Runs(Σc ∪ Σu) to the pairs (τ, a), where τ ∈

R≥0 and a ∈ Σc. An infinite timed word (t1, a1)(t2, a2)(t3, a3) . . . is consistent
with the strategy f , if for any i, if f((t1, a1)(t2, a2) . . . (ti, ai)) = (τ, a), then either

6 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

(τ, a) = (ti+1− ti, ai+1), or ai+1 ∈ Σu and ti+1− ti ≤ τ . Let Outcomes(f,Σc, Σu) ⊆
InfRuns(Σc ∪ Σu) be the set of all infinite timed words over Σc ∪ Σu that are
consistent with the strategy f .

Since the synthesis games are played in dense real time, we should prevent
the controller from blocking time by using the Zeno strategies. We assume, that
a Zeno run is losing for the controller iff there are infinitely many uncontrollable
actions among it (i.e. the controller doesn’t block time by itself). This means that
if the environment emits infinitely many actions among a finite amount of time,
then it loses even if controller also emits infinitely many actions.

We come to the following definition:

Definition 2 A controller’s strategy f is called a solution for the synthesis problem
(ϕ,Σc, Σu), iff for any run ω ∈ Outcomes(f,Σc, Σu)\Zeno(Σu) we have ω ∈ (L(ϕ)\
Zeno(Σc))

Obviously, for the practical application of the automatic synthesis method,
a controller’s strategy should be implementable and thus it should have a finite
representation. In the current paper we assume, that a strategy in the synthesis
problem is defined by a deterministic Timed Automata, i.e. a controller has finitely
many clocks that can record time passed since some events, and finitely many
control states that define the reaction to the input events.

2.3 Timed Automata

Let X be a set of real-valued variables called clocks. A clock bound over X has the
form x ∼ n where x ∈ X, ∼∈ {<,≤,≥, >} and n ∈ Z≥0. We denote the set of all
possible clock bounds over X by B(X), and F(X) is the set of all boolean formulas
over B(X) (including conjunctions and disjunctions). A valuation over X is a an
element of RX≥0, i.e. it is a function v : X → R≥0. We let 0 be the valuation that
assigns 0 to any clock from X. For a given valuation v, clock set Y ⊆ X and real
number τ ∈ R≥0 we let v + τ to be the valuation such that (v + τ)(x) = v(x) + τ

for every clock x ∈ X; and v[Y] is equal to the valuation such that v[Y](x) = 0 if
x ∈ Y and v[Y](x) = v(x) otherwise.

Definition 3 [2] A Timed Automaton (TA) over actions Σ is a tuple (L, l0, X,E)
where:

– L is a finite set of locations,
– l0 is the initial location,
– X is a finite set of clocks,
– E ⊆ L×Σ ×F(X)× 2|X| × L is the finite set of edges.

The semantics of TA is defined by Labeled Transition System (LTS) (S, s0,→).
A set of states L× R

X
≥0 of a TA consists of pairs of locations and valuations over

X. The initial state is (l0, 0). There exists a delay transition (l, v1)
τ
−→ (l, v2), iff

τ ∈ R≥0 and v2 = v1 + τ . There exists a discrete transition (l1, v1)
a
−→ (l2, v2) if

there exists a transition (l1, a, g, Y, l2) such that v1 |= g and v2 = v1[Y]. In the
latter case we say that a transition e is enabled in the state (l1, v1).

Efficient Controller Synthesis for a Fragment of MTL0,∞ 7

A TA is called total for a set of actions Σ′ ⊆ Σ if for any action a ∈ Σ′ and for
any state s ∈ S there exists at least one state s′ such that s

a
−→ s′. A TA is called

deterministic iff not more than one such state s′ exists for any pair of s and a.
A run of a TA is an infinite sequence of alternating delay and discrete transi-

tions s0
τ1−→ s1

a1−−→ s2
τ2−→

A timed word w = (t1, a1)(t2, a2)(t3, a3) . . . over Σ is accepted by timed au-
tomaton A iff there is an infinite sequence of states s0, s1, s2, . . . such that s0 is the
initial state of A and s0

τ1−→ s1
a1−−→ s2

τ2−→ . . . is a run of A, where τi = ti − ti−1 for
every i > 1 and t1 = τ1. We use L(A) to denote the set of all timed words that are
accepted by A.

We use TA to define synthesis game arenas (where both players have freedom
to choose time delays and actions); and to define the controller’s winning strategies
in which the controller always takes the earliest enabled controllable transition.
The latter TA define winning strategies in the synthesis problems as the following:

Definition 4 Let (ϕ,Σc, Σu) be a synthesis problem and let A be a total for Σu
and deterministic TA. We say that A implements the strategy fA in (ϕ,Σc, Σu)
defined in the following way. Let ω = (t1, a1)(t2, a2) . . . (tn, an) be an arbitrary

finite timed word over Σc∪Σu. Let s0
τ1−→ s1

a1−−→ s2 . . . s2n be a unique run of A on

ω. Let τn+1 be the minimal delay such that there exist transitions s2n
τn+1
−−−→ s2n+1

and s2n+1
an+1
−−−→ s2n+2 for some controllable action an+1 ∈ Σc. Then we define the

value of the strategy fA on ω as fA(ω) = (τn+1, an+1).

3 Problem Statement

Consider the sets Σc and Σu of controllable and uncontrollable actions. Consider
a MTL0,∞ property ϕ over Σc ∪Σu such that

Ψ ≡ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn → ψ1 ∧ ψ2 ∧ · · · ∧ ψm

where all ϕi and ψj are safety-MTL0,∞ properties. Our goal is to construct a TA
A such that A implements a solution fA for the synthesis problem (Ψ,Σc, Σu).

4 From Safety- and co-Safety- MTL0,∞ to Timed Automata

In our paper [11] we presented a procedure to translate MITL≤ formulas, the
bounded fragment of MTL0,∞, into Timed Automata. For a given formula, the
procedure can build language-equivalent nondetermenistic timed automata, as well
as deterministic under- and over-approximations.

In the current work we will extend the procedure of [11] to the case of safety and
co-safety MTL0,∞. Basically, we use the classical tableau-based translation from
linear-time temporal formulas into Büchi automata, with two important modi-
fications. First, we avoid using Büchi acceptance condition because we consider
safety and co-safety fragments of MTL0,∞ on non-Zeno runs only (e.g. we can’t
express �♦a that certainly needs Büchi acceptance condition). Second, in order
to handle timed properties, we introduce an auxiliary clock for each subformula of
the form ϕ1U∼dϕ2, ϕ1R∼dϕ2, ϕ1Û∼dϕ2 or ϕ1R̂∼dϕ2(where ∼∈ {<,≤,≥, >} and
∼ d is not ≥ 0). When a timed formula, for example, ϕ1U≤dϕ2 is expected to be

8 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

satisfied, the automaton will reset the corresponding clock x, rewrite this formula
into ϕ1U≤d−xϕ2 and in future observations compare the value of x with d, and
check if the promise ϕ1U≤d−xϕ2 has been fulfilled within the time bound.

In the rest of this section, we assume that ϕ is a MTL0,∞-formula over Σ and
has been transformed into positive normal form, where the negation operator (¬)
is not allowed (¬true is replaced by false and ¬a is replaced by

∨
b∈Σ\{a} b when

a is an action in Σ). For the sake of simplicity, we also make an assumption that
all temporal operators occurring in ϕ are included in {U≤d, R≤d, U≥d,R≥d}.

4.1 Closures & Extended Formulas

We use Sub(ϕ) to denote all the subformulas of ϕ. For each ϕ1U≤dϕ2 ∈ Sub(ϕ),
we assign a clock x(ϕ1U≤dϕ2) to it. Let XU≤ be the set of all U≤d-clocks, i.e.
{x(ϕ1U≤dϕ2) | ϕ1U≤dϕ2 ∈ Sub(ϕ)}. Similarly we assign the clocks to the other
until and release operators, and define XU≥, XR≤ and XR≥. We do not assign
clocks to formulas ϕ1Uϕ2 and ϕ1Rϕ2, therefore we always assume that d > 0
when we write U≥d or R≥d in this section.

The set of basic formulas for ϕ, written as BF(ϕ), is a finite set defined by the
following rules:

1. If ©ϕ1 ∈ Sub(ϕ), then ϕ1 ∈ BF(ϕ)
2. If ϕ1Uϕ2 ∈ Sub(ϕ) or ϕ1U≥dϕ2 ∈ Sub(ϕ), then ϕ1Uϕ2 ∈ BF(ϕ)
3. If ϕ1Rϕ2 ∈ Sub(ϕ) or ϕ1R≥dϕ2 ∈ Sub(ϕ), then ϕ1Rϕ2 ∈ BF(ϕ)
4. If ϕ1U∼dϕ2 ∈ Sub(ϕ) and x is the clock assigned to ϕ1U∼dϕ2, then ϕ1U∼d−xϕ2,

x ∼ d ∈ BF(ϕ), where ∼∈ {≤,≥}.
5. If ϕ1R∼dϕ2 ∈ Sub(ϕ) and x is the clock assigned to ϕ1R∼dϕ2, then ϕ1R∼d−xϕ2,

x ∼ d ∈ BF(ϕ), where ∼∈ {≤,≥} and x ∼ d is the negation of x ∼ d (for
example, x ≤ d = x > d and x ≥ d = x < d)

The meaning of U≤d−x, U≤d−x, R≤d−x and R≥d−x will be given in Definition 5.

Since a conjunction of basic formulas can be regarded as a subset of BF(ϕ), for
simplification, we use 2BF(ϕ) for the set of all subsets of BF(ϕ) as well as the set
of all conjunctive formulas over BF(ϕ). Because a conjunction with zero conjuncts
is true, so true ∈ 2BF(ϕ).

We define CL(ϕ), the closure of ϕ, to be the set of all positive boolean com-
binations (i.e., without negation) over BF(ϕ). Obviously, CL(ϕ) has only finitely
many different non-equivalent formulas.

For a clock x ∈ XU≥ ∪XR≤, we use rst(x) to represent that x will be reset at
current step. Similarly, for x ∈ XU≤∪XR≥, we use unch(x) to represent that x will
not be reset at current step. Now we defined Ext(ϕ), the set of extended formulas
for ϕ, with the following rules:

1. Sub(ϕ) ⊆ Ext(ϕ)
2. If φ ∈ CL(ϕ), then φ, ©φ ∈ Ext(ϕ)
3. If x ∈ XU≤ or x ∈ XR≥, then unch(x) ∈ Ext(ϕ)
4. If x ∈ XU≥ or x ∈ XR≤, then rst(x) ∈ Ext(ϕ)
5. If x ∼ d ∈ BF(ϕ), then x ∼ d ∈ Ext(ϕ)
6. If Φ1, Φ2 ∈ Ext(ϕ), then Φ1 ∧ Φ2, Φ1 ∨ Φ2 ∈ Ext(ϕ)

Efficient Controller Synthesis for a Fragment of MTL0,∞ 9

Extended formulas can be interpreted over extended timed words. An ex-

tended timed word ω = (t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . is a sequence where w =
(t1, a1), (t2, a2)(t3, a3) . . . is a timed word over Σ, and for every i ∈ N, vi is a clock
valuation over X=XU≤ ∪ XU≥ ∪ XR≤ ∪ XR≥ such that for each x ∈ X, either
vi+1(x) = vi(x) + ti+1 − ti or vi+1(x) = ti+1 − ti.

The semantics for extended formulas is naturally induced by the semantics of
MTL0,∞formulas:

Definition 5 Let ω = (t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . be an extended timed
word and Φ ∈ Ext(ϕ). The satisfaction relation ωi |=e Φ is inductively defined
as follows:

1. ωi |=e x ∼ d iff vi(x) ∼ d, where ∼∈ {<,≤, >,≥}.
2. ωi |=e rst(x) iff vi+1(x) = ti+1 − ti
3. ωi |=e unch(x) iff vi+1(x) = vi(x) + ti+1 − ti
4. ωi |=e φ iff wi |= φ, if φ ∈ Sub(ϕ)
5. ωi |=e ϕ1U∼d−xϕ2 iff there exists j such that j ≥ i, wj |= ϕ2, tj− ti ∼ d−vi(x),

and wk |= ϕ1 for all k with i ≤ k < j, where ∼∈ {≤,≥}.
6. ωi |=e ϕ1R∼d−xϕ2 iff for all j ≥ i such that tj − ti ∼ d− vi(x), either w

j |= ϕ2

or there exists k with i ≤ k < j and wk |= ϕ1, where ∼∈ {≤,≥}.
7. ωi |=e Φ1 ∧ Φ2 iff ωi |=e Φ1 and ωi |=e Φ2

8. ωi |=e Φ1 ∨ Φ2 iff ωi |=e Φ1 or ωi |=e Φ2

9. ωi |=e ©Φ iff ωi+1 |=e Φ

ωi is a model of Φ if ωi |=e Φ. Two extended formulas are said to be equivalent if
they have exactly the same models.

4.2 Constructing non-deterministic automata

Let us show how we construct a timed automaton Aϕ=(L, l0, X,E) for ϕ. L is
defined to be {ϕ} ∪ 2BF(ϕ), l0 is ϕ, and X is XU≤ ∪XU≥ ∪XR≤ ∪XR≥.

For each ψ ∈ L, we will define how to compute the set of outgoing transitions
from ψ. The core of the computation is a rewriting function β that tells what
formula should be satisfied in the next observation and which clocks should be
reset when we see this observation. β is defined inductively for all formulas in
Sub(ϕ)∪CL(ϕ), as follows.

1. β(ϕ1 Uϕ2) = β(ϕ2) ∨ (β(ϕ1) ∧©(ϕ1 Uϕ2))
2. β(ϕ1 U≤d ϕ2) = β(ϕ2) ∨ (β(ϕ1) ∧©((x ≤ d) ∧ (ϕ1 U≤d−xϕ2))) , where x is the

clock assigned to ϕ1 U≤d ϕ2

3. β(ϕ1 U≤d−x ϕ2) = β(ϕ2) ∨ (β(ϕ1) ∧ unch(x) ∧©((x ≤ d) ∧ (ϕ1 U≤d−xϕ2)))
4. β(ϕ1 U≥dϕ2) = β(ϕ1)∧rst(x)∧©((ϕ1 U≥d−xϕ2)∨((x ≥ d)∧(ϕ1 Uϕ2))), where

x is the clock assigned to ϕ1 U≥d ϕ2

5. β(ϕ1 U≥d−x ϕ2) = β(ϕ1) ∧©((ϕ1U≥d−xϕ2) ∨ ((x ≥ d) ∧ (ϕ1Uϕ2)))
6. β(ϕ1 Rϕ2)= β(ϕ2) ∧ (β(ϕ1) ∨©(ϕ1 Rϕ2))
7. β(ϕ1 R≤d ϕ2) = β(ϕ2) ∧ (β(ϕ1) ∨ rst(x) ∧©((ϕ1 R≤d−xϕ2) ∨ (x > d))) , where

x is the clock assigned to ϕ1 R≤d ϕ2

8. β(ϕ1 R≤d−x ϕ2) = β(ϕ2) ∧ (β(ϕ1) ∨©((ϕ1 R≤d−xϕ2) ∨ (x > d)))
9. β(ϕ1 R≥d ϕ2) = β(ϕ1) ∨ ©(((x < d) ∧ (ϕ1 R≥d−xϕ2)) ∨ (ϕ1 Rϕ2)), where x is

the clock assigned to ϕ1R≥d ϕ2

10 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

10. β(ϕ1 R≥d−x ϕ2) = β(ϕ1)∨ (unch(x)∧©(((x < d)∧ (ϕ1 R≥d−xϕ2))∨ (ϕ1 Rϕ2)))
11. β(ϕ1 ∧ ϕ2) = β(ϕ1) ∧ β(ϕ2)
12. β(ϕ1 ∨ ϕ2) = β(ϕ1) ∨ β(ϕ2)
13. β(©ϕ1) = ©(ϕ1)
14. β(ϕ1) = ϕ1, if ϕ1 is an action or a clock bound
15. β(true) = true

16. β(false) = false.

It is obviously that β(ψ) is an extended formula in Ext(ϕ).
From the semantics given in Section 2 for MTL0,∞, we know that (

∨
a∈Σ a) ≡

true and for any a, b ∈ Σ, if a 6= b, then a∧ b ≡ false. Using these facts and that ©
distributes over disjunction and conjunction, we can show by induction that β(ψ)
can be transformed equivalently into a disjunction of the following form:

k∨

j=1

(
aj ∧ gj ∧ rst(Xj) ∧ unch(Yj) ∧©(ψj)

)

where for every j between 1 and k: aj ∈ Σ is an action, gj is a conjunction of

clock bounds, Xj ⊆ XU≥ ∪XR≤ and Yj ⊆ XU≤ ∪XR≥, ψj ∈ 2BF(ϕ), rst(Xj) is the
abbreviation of

∧
x∈Xj

rst(x) and unch(Yj) is the abbreviation of
∧
x∈Yj

unch(x).

We call each aj ∧ gj ∧ rst(Xj) ∧ unch(Yj) ∧©(ψj) a basic conjunction of β(ψ).
From each basic conjunction aj ∧ gj ∧ rst(Xj)∧unch(Yj)∧©(ψj), we can define

a group of transitions from ψ to ψj :

(ψ, aj , gj , r, ψj) ∈ E iff Xj ⊆ r ⊆ (X \ Yj)

Theorem 1 Let ϕ be a safety MTL0,∞ formula over Σ, and Aϕ be a TA for ϕ built

according to the procedure given above. Then L(Aϕ) \ Zeno(Σ) = L(ϕ) \ Zeno(Σ).

Theorem 2 Let ϕ be a co-safety MTL0,∞ formula over Σ, and Aϕ be a TA for ϕ

built according to the procedure given above. Then Lreach(Aϕ, {true}) \ Zeno(Σ) =
L(ϕ) \ Zeno(Σ), where Lreach(Aϕ, {true}) denote the timed words that are accepted

by a run that eventually reaches the location true(that is, the empty subset of BF(ϕ)).

4.3 Proofs for Theorem 1 and Theorem 2

In this subsection we will provide proofs for theorem 1 and theorem 2. The follow-
ing two lemmas proves the validity of the rewrite rules.

Lemma 1 Let ω be an extended timed word and ψ ∈ Sub(ϕ) ∪ CL(ϕ). If ω |=e β(ψ),
then ω |=e ψ.

Proof. We prove this by induction on the structure of ψ.
1. If ψ is an action or a clock bound, then β(ψ) = ψ and the conclusion is true.
2. Assume that the conclusion is true for all the subformulas of ψ.
Case 1. ψ = ψ1 ∧ ψ2:
Since β(ψ) = β(ψ1) ∧ β(ψ2), it is easy to see that the conclusion is true for ψ.
Case 2. ψ = ϕ1U≤dϕ2:
(1). If ω |=e β(ϕ2), then ω |=e ϕ2, and so ω |=e ϕ1U≤dϕ2.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 11

(2). If ω 2e β(ϕ2), then from ω |=e β(ψ) and β(ψ)= β(ϕ2) ∨ (β(ϕ1) ∧ ©((x ≤

d)∧(ϕ1 U≤d−xϕ2))), we know that ω |=e β(ϕ1)∧©((x ≤ d)∧(ϕ1 U≤d−xϕ2)). Hence
ω |=e β(ϕ1) and ω |=e ©((x ≤ d)∧ (ϕ1 U≤d−xϕ2)). From the induction assumption
we get that ω |=e ϕ1. From ω |=e ϕ1 and ω |=e ©((x ≤ d) ∧ (ϕ1 U≤d−xϕ2))) we
then get the conclusion that ω |=e ϕ1U≤dϕ2.

The proof for the rest of the cases is quite similar and is omitted.
�

Definition 6 Given a timed word w = (t1, a1), (t2, a2)(t3, a3) . . . and a clock valu-
ation v1=0, an extended timed word w=(t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . can be
defined inductively as follows:

1. If x is the clock assigned to ϕ1U≤d ϕ2 ∈ Sub(ϕ), then

vi+1(x) =

{
vi(x) + ti+1 − ti, if vi(x) ≤ d, wi |= ϕ1U≤d−vi(x)ϕ2 and wi 2 ϕ2;

ti+1 − ti, otherwise.

2. If x is the clock assigned to ϕ1U≥d ϕ2 ∈ Sub(ϕ), then

vi+1(x) =

{
ti+1 − ti, if wi |= ϕ1U≥dϕ2;

vi(x) + ti+1 − ti, otherwise.

3. If x is the clock assigned to ϕ1R≤d ϕ2 ∈ Sub(ϕ), then

vi+1(x) =

{
ti+1 − ti, if wi |= ϕ1R≤dϕ2 and wi 2 ϕ1;

vi(x) + ti+1 − ti, otherwise.

4. If x is the clock assigned to ϕ1R≥d ϕ2 ∈ Sub(ϕ), then

vi+1(x) =

{
vi(x) + ti+1 − ti, if vi(x) < d, wi |= ϕ1R≥d−vi(x)ϕ2 and wi 2 ϕ1;

ti+1 − ti, otherwise.

Lemma 2 Let w be a timed word, and w be the extended timed word defined in Defi-

nition 6, then for every ψ ∈ Sub(ϕ) ∪ CL(ϕ), if w |=e ψ then w |=e β(ψ).

Proof. By induction on ψ.
�

Lemma 3 For each ψ ∈ Sub(ϕ)∪CL(ϕ), β(ψ) can be transformed equivalently into a

disjunction of basic conjunctions:

k∨

j=1

(
aj ∧ gj ∧ rst(Xj) ∧ unch(Yj) ∧©(ψj)

)

where for each j between 1 and k: aj ∈ Σ, gj is a conjunction of clock bounds, Xj ⊆

XU≥ ∪XR≤, Yj ⊆ XU≤ ∪XR≥, and ψj ∈ 2BF(ϕ).

Proof. We first define Length(ψ) for each ψ ∈ Sub(ϕ) ∪ CL(ϕ) as follows.

(1). Length(true)=0;
(2). Length(false)=0;

12 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

(3). Length(ψ1)=0, if ψ1 is an action or a clock bound;
(4). Length(©ψ1)=0;
(5). Length(ψ1 op ψ2)= Length(ψ1)+ Length(ψ2)+1, where op is an operator in

the set {∧, ∨, U, U≤d, U≥d, U≤d−x, U≥d−x, R, R≤d, R≥d, R≤d−x, R≥d−x}.

Now we prove the conclusion by induction on Length(ψ).

1. Since β(true) = true ≡
∨
a∈Σ a ≡

∨
a∈Σ

(
a ∧ ©(true)

)
, the conclusion is true

for the case of ψ = true.
2. Since β(false) = false is the disjunction of zero disjuncts, the conclusion is also

true for the case of ψ = false.
3. If ψ = a and a is an action, then β(ψ) =a ≡ (a ∧©(true)), and the conclusion

is true for the case of ψ = a.
4. If ψ is a clock bound x ∼ d, then β(ψ) =(x ∼ d) ≡

∨
a∈Σ

(
a∧(x ∼ d)∧©(true)

)
.

The conclusion is true for the case of ψ = (x ∼ d).
5. If ψ = ©ψ1, then β(ψ) =©(ψ1) ≡

∨
a∈Σ

(
a∧©(ψ1)

)
, the conclusion is true for

this case.
6. If ψ = ϕ1 ∧ ϕ2, then β(ψ) = β(ϕ1) ∧ β(ϕ2). By the induction assumption, we

have that

β(ϕ1) ≡

k1∨

i=1

(
a
′
i ∧ g′i ∧ rst(X ′

i) ∧ unch(Y ′
i) ∧©(ψ′

i)
)

and

β(ϕ2) ≡

k2∨

j=1

(
a
′′
j ∧ g′′j ∧ rst(X ′′

j) ∧ unch(Y ′′
j) ∧©(ψ′′

j)
)
,

then

β(ψ) ≡

k1∨

i=1

k2∨

j=1

(
(a′i ∧a

′′
j)∧ (g′i ∧ g′′j)∧ rst(X ′

i ∪X
′′
j)∧unch(Y ′

i ∪Y
′′
j)∧©(ψ′

i ∧ψ
′′
j)
)

Since a′i ∧ a
′′
j is either equals to a′i or false, it can be concluded that the con-

clusion is true for the case of ψ = ϕ1 ∧ ϕ2.
7. The other cases can be proved similarly.

�

Now let us begin to prove the theorem 1.
Proof of Theorem 1:

1. L(Aϕ) \ Zeno(Σ) ⊆ L(ϕ) \ Zeno(Σ).

Let w = (t1, a1), (t2, a2), (t3, a3) . . . be a non-Zeno timed word in L(Aϕ), then
there exist ψ1, ψ2, ψ3, . . . ∈ L, (ψ1, a1, g1, r1, ψ2), (ψ2, a2, g2, r2, ψ3) . . . ∈ E and
v1, v2, v3, . . . ∈ R

X
≥0 such that ψ1 = ϕ, and for each i ≥ 1: there are Xi ⊆ XU≥∪XR≤

and Yi ⊆ XU≤ ∪ XR≥ such that ai ∧ gi ∧ rst(Xi) ∧ unch(Yi) ∧ O(ψi+1) is a basic
conjunction of β(ψi), Xi ⊆ ri ⊆ (X \ Yi), vi |= gi, and vi+1 = (vi[ri]) + (ti+1 − ti).

Then we get an extended timed word ω = (t1, a1, v1), (t2, a2, v2), (t3, a3, v3), . . .,
and ωi |=e ai ∧ gi ∧ rst(Xi) ∧ unch(Yi).

For each i >= 1, using ωi and ψi+1, we can define an assignment µi(ψ) ∈

{true, false} for all extended formulas in Ext(ϕ) as follows.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 13

1. For each a ∈ Σ, µi(a) = true iff a = ai
2. µi(x ∼ d) = true iff vi(x) ∼ d

3. µi(rst(x)) = true iff vi+1(x) = ti+1 − ti.
4. µi(unch(x)) = true iff vi+1(x) = vi(x) + ti+1 − ti
5. For each ϕ1 ∈ BF(ϕ), µi(©(ϕ1)) = true iff ϕ1 ∈ ψi+1 (please noted that ψi+1

is a subset of BF(ϕ))
6. µi(ϕ1 ∧ ϕ2) = µi(ϕ1) ∧ µi(ϕ2)
7. µi(ϕ1 ∨ ϕ2) = µi(ϕ1) ∨ µi(ϕ2)
8. µi(ϕ1 Rϕ2)= µi(ϕ2) ∧ (µi(ϕ1) ∨ µi(©(ϕ1 Rϕ2)))
9. µi(ϕ1 R≤d ϕ2) = µi(ϕ2)∧(µi(ϕ1)∨µi(rst(x))∧(µi(©(ϕ1 R≤d−xϕ2))∨µi(©(x >

d)))) , where x is the clock assigned to ϕ1 R≤d ϕ2

10. The other cases for µi(ϕ1 U≤d ϕ2), µi(ϕ1 U≤d−x ϕ2), µi(ϕ1 R≤d−x ϕ2) can be
defined similarly, according to the rewriting rules in Section 4.2.

It is easy to show that if a∧g∧rst(X1)∧unch(Y1)∧©(ψ′) is a basic conjunction
of β(ψ), and µi(a ∧ g ∧ rst(X1) ∧ unch(Y1) ∧©(ψ′)) is true, then µi(ψ) is true.

Thus for each i ≥ 1, we get that µi(ψi) = true, and furthermore, for each basic
formula ψ ∈ ψi, we have that µi(ψ) = true.

Now we show that for each ψ ∈ Sub(ϕ)∪CL(ϕ), if µi(ψ) = true, then ωi |=e ψ.

1. If ψ is an action or a clock bound, the conclude is true obviously.
2. If ψ = ©(φ), and µi(ψ) = true,

then φ ∈ ψi+1, and µi+1(φ) = true.
By induction, we get that ωi+1 |=e φ.
So ωi |=e ©(φ).

3. If ψ = φ1 ∧ φ2 and µi(ψ) = true,
then µi(φ1) = µi(φ2) = true.
By induction, we get that ωi |=e φ1 and ωi |=e φ2.
Thus we get the conclusion that ωi |=e φ1 ∧ φ2.

4. If ψ = φ1 ∨ φ2 and µi(ψ) = true,
then µi(φ1) = true or µi(φ2) = true.
By induction, we get that ωi |=e φ1 or ωi |=e φ2.
Thus ωi |=e φ1 ∨ φ2.

5. If ψ = φ1Rφ2 and µi(ψ) = true,
then µi(ϕ2) ∧ (µi(ϕ1) ∨ µi(©(ϕ1 Rϕ2))) is true.
Thus we get that µi(ϕ2) = true, and that µi(ϕ1) = true or ϕ1 Rϕ2 ∈ ψi+1.
By induction, we get that ωi |=e ϕ2, ω

i |=e ϕ1 or ϕ1 Rϕ2 ∈ ψi+1.

Case 1. If ωi |=e ϕ2 and ωi |=e ϕ1, then ωi |=e φ1Rφ2, and the conclusion is
true.

Case 2. If ωi |=e ϕ2 and ϕ1 Rϕ2 ∈ ψi+1, then from ϕ1 Rϕ2 ∈ ψi+1 we know
that µi+1(ϕ1 Rϕ2) = true, thus µi+1(ϕ2) = true, and µi+1(ϕ1) = true or
ϕ1 Rϕ2 ∈ ψi+2.
By induction, we have that ωi+1 |=e ϕ2, ω

i+1 |=e ϕ1 or ϕ1 Rϕ2 ∈ ψi+2.

(2.1). If ωi+1 |=e ϕ2 and ωi+1 |=e ϕ1, then from the fact that ωi |=e ϕ2, we
know that ωi |=e φ1Rφ2. So the conclusion is true.

(2.2). If ωi+1 |=e ϕ2 and ϕ1 Rϕ2 ∈ ψi+2, then we have that µi+2(ϕ1 Rϕ2) =
true.
Thus µi+2(ϕ2) = true, and µi+2(ϕ1) = true or ϕ1 Rϕ2 ∈ ψi+3.
By induction, we have that ωi+2 |=e ϕ2, ω

i+2 |=e ϕ1 or ϕ1 Rϕ2 ∈ ψi+3.

14 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

.......

This procedure can stop or proceed infinitely; in both case, we could get
that ωi |=e φ1Rφ2.

6. We omit the proof for the other cases.

Since µ1(ϕ) = true, from the above conclusion we get that ω1 |=e ϕ, thus we
finish the proof for L(Aϕ) \ Zeno(Σ) ⊆ L(ϕ) \ Zeno(Σ).

2. L(ϕ) \ Zeno(Σ) ⊆ L(Aϕ) \ Zeno(Σ).

Let w = (t1, a1), (t2, a2), (t3, a3) . . . be a non-Zeno timed word in L(ϕ) and
w=(t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . be the extended timed word defined in Defi-
nition 6.

From w ∈ L(ϕ), we know that w |=e ϕ.

Let ϕ1 = ϕ, by Lemma 2, w |=e β(ϕ1). Since β(ϕ1) can be written as a disjunc-
tion of some basic conjunctions, so there is a basic conjunction α1 ∧ g1 ∧ rst(X1)∧
unch(Y1) ∧O(ϕ2) of ϕ1 such that w |=e α1 ∧ g1 ∧ rst(X1) ∧ unch(Y1) ∧O(ϕ2).

Thus α1 = a1, v1 |= g1, and w |=e rst(X1) ∧ unch(Y1), and w2 |=e ϕ2.

Let r1={x |x ∈ X \ Y1, and v2(x) = t2 − t1}, then X1 ⊆ r1 ⊆ (X \ Y1).

So from the construction in Section 4.2, (ϕ1, a1, g1, r1, ϕ2) ∈ E is a transition
of Aϕ, w

2 |= ϕ2, and v2 = v1[r1] + (t2 − t1)

Similarly, from w2 |=e ϕ2, by Lemma 2, we know that there is a basic conjunc-
tion α2 ∧ g2 ∧ rst(X2)∧ unch(Y2)∧O(ϕ3) of ϕ2 such that w2 |=e α2 ∧ g2 ∧ rst(X2)∧
unch(Y2) ∧O(ϕ3).

Thus α2 = a2, v2 |= g2, and w2 |=e rst(X2) ∧ unch(Y2), and w3 |=e ϕ3.

Let r2={x |x ∈ X \ Y2, and v3(x) = t3 − t2}, then X2 ⊆ r2 ⊆ (X \ Y2).

Thus (ϕ2, a2, g2, r2, ϕ3) ∈ E is a transition of Aϕ, w
3 |=e ϕ3, and v3 = v2[r2] +

(t3 − t2).

By repeating above reasoning, we can get a run of Aϕ that accepts w =
(t1, a1), (t2, a2), (t3, a3) This completes our proof for Theorem 1. �

Now we turn to the proof for theorem 2.

Proof of Theorem 2:

1. Lreach(Aϕ, {true}) \ Zeno(Σ) ⊆ L(ϕ) \ Zeno(Σ)

Let w = (t1, a1), (t2, a2), (t3, a3) . . . be a non-Zeno timed word in Lreach(Aϕ,
{true}), then there are ψ1, ψ2, ψ3, . . . ∈ L and v1, v2, v3, . . . ∈ R

X
≥0 such that ψ1 = ϕ,

(ψi, ai, gi, ri, ψi+1) ∈ E is a transition of Aϕ, and ai∧gi∧rst(Xi)∧unch(Yi)∧O(ψi+1)
is a basic conjunction of β(ψi), Xi ⊆ ri ⊆ (X \ Yi), vi |= gi, and vi+1 = (vi[ri]) +
(ti+1 − ti).

Then we get an extended timed word ω = (t1, a1, v1), (t2, a2, v2), (t3, a3, v3), . . .,
and ωi |=e ai ∧ gi ∧ rst(Xi) ∧ unch(Yi).

Because ψ1, ψ2, ψ3, . . . could reaches the location true, we assume that ψn =
true.

Now we prove by induction that for all i ≤ n: ωi |=e ψi.

1. If i = n, then ψn = true and ωn |=e ψn.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 15

2. Assume ωi |=e ψi is true for all i >= k+1, now we show that ωk |=e ψk is true.
From (ψk, ak, gk, rk, ψk+1) ∈ E, we know that ωk |=e ak ∧ gk ∧ rst(Xk) ∧

unch(Yk) ∧O(ψk+1), so ω
k |=e β(ψk).

Then from Lemma 1, we get the conclusion that ωk |=e ψk.

2. L(ϕ) \ Zeno(Σ) ⊆ Lreach(Aϕ, {true}) \ Zeno(Σ).

Let w = (t1, a1), (t2, a2), (t3, a3) . . . be a non-Zeno timed word in L(ϕ) and
w=(t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . be the extended timed word defined in Defi-
nition 6.

From w ∈ L(ϕ), we know that w |=e ϕ.

Let ϕ1 = ϕ, there is a basic conjunction α1 ∧ g1 ∧ rst(X1)∧ unch(Y1)∧O(ϕ2) of
ϕ1 such that w |= α1 ∧ g1 ∧ rst(X1) ∧ unch(Y1) ∧O(ϕ2).

Then α1 = a1, v1 |= g1, and w |= rst(X1) ∧ unch(Y1), and w
2 |= ϕ2.

Let r1={x |x ∈ (X \ Y1), and v2(x) = t2 − t1}, then X1 ⊆ r1 ⊆ (X \ Y1).

So from the construction in Section 3.2, (ϕ1, a1, g1, r1, ϕ2) ∈ E is a transition
of Aϕ, w

2 |= ϕ2, and v2 = (v1[r1]) + (t2 − t1).

Similarly, we can get a sequence ϕ2, ϕ3, ϕ4, . . . of formulas from 2BF(ϕ) such
that (ϕi, ai, gi, ri, ϕi+1) ∈ E is a transition of Aϕ and wi |= ai ∧ gi ∧ rst(Xi) ∧
unch(Yi) ∧O(ϕi+1) for all i ∈ N .

Now, it suffices to prove that there exists some k such that ϕk = true.

To do this, we define the depth dep(φ) for formulas in Sub(ϕ)∪2BF(ϕ).

1. dep(a)=dep(x ∼ d)=dep(true)=0;
2. dep(φ1 ∨ φ2)=dep(φ1 ∧ φ2)=max{dep(φ1), dep(φ2) };
3. dep(Oφ)=dep(φ1)+1;
4. dep(φ1 U≤d φ2)=dep(φ1 R≤d φ2)=max{dep(φ1), dep(φ2)}+2;
5. dep(φ1 U≥d φ2)=max{dep(φ1), dep(φ2)}+3;
6. dep(φ1 U≥d−x φ2)=max{dep(φ1), dep(φ2)}+2;
7. dep(φ1 Uφ2)=max{dep(φ1), dep(φ2)}+1;
8. dep(φ1 U≤d−x φ2)=dep(φ1 R≤d−x φ2)=max{dep(φ1), dep(φ2)}+1.

Then dep(ϕ1) ≥ dep(ϕ2) ≥ dep(ϕ3)≥ . . . , and there exists N such that for all
i >= N : dep(ϕi) = dep(ϕN).

If dep(ϕN) > 0, then some φ1 U≤d−x φ2 , φ1 R≤d−x φ2, φ1 U≥d−x φ2 or φ1 Uφ2
will remain in ϕi for all i >= N .

1. If φ1 U≤d−x φ2, or φ1 R≤d−x φ2, or φ1 U≥d−x is remain in ϕi for all i >= N ,
then we get that x will not be reset and will not exceed d.

This is not possible, because the extended timed word w is assumed to be
non-Zeno.

2. If φ1 Uφ2 is remain in ϕi for all i >= N , then wi |= φ1 Uφ2 will be true for
all i >= N , and wi |= φ2 is false for all i >= N . This is also not possible!

Thus dep(ϕN) must be zero, and so ϕN+1 = true, and w ∈ Lreach(Aϕ, {true})\
Zeno(Σ).

�

16 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

4.4 Reducing the transitions in Aϕ

Not all of the transitions defined in Section 4.2 are necessary to our construction.
In fact, for each basic conjunction aj ∧ gj ∧ rst(Xj)∧unch(Yj)∧©(ψj) of β(ψ), one
transition (ψ, aj , gj , λ, ψj) with λ = (Xj ∪ ((XU≤ ∪ XR≥) \ Yj)) is suffice for our
purpose.

Definition 7 Let ϕ be an MTL0,∞ formula over Σ, we can define a timed au-
tomaton Aϕ= (L, l0, X,E) for ϕ as follows.

– L = {ϕ} ∪ 2BF(ϕ) is the set of locations, and l0 = ϕ is the initial location;
– X = XU≤ ∪XU≥ ∪XR≤ ∪XR≥ is the set of all clocks.
– (ψ1, a, g, λ, ψ2) ∈ E iff there exist X1 ⊆ XU≥ ∪ XR≤ and Y1 ⊆ XU≤ ∪ XR≥

such that a∧ g∧ rst(X1)∧ unch(Y1)∧O(ψ2) is a basic conjunction of β(ψ1) and
λ = (X1 ∪ ((XU≤ ∪XR≥) \ Y1)).

Theorem 3 Let ϕ be a safety MTL0,∞ formula over Σ, then L(Aϕ) \ Zeno(Σ) =
L(Aϕ) \ Zeno(Σ).

Proof It suffices to prove that L(Aϕ) \ Zeno(Σ) ⊆ L(Aϕ) \ Zeno(Σ).

Let w = (t1, a1), (t2, a2), (t3, a3) . . . be a non-Zeno timed word in L(Aϕ), then
there exist ψ1, ψ2, ψ3, . . . ∈ L, (ψ1, a1, g1, r1, ψ2), (ψ2, a2, g2, r2, ψ3), ... ∈ E and
v1, v2, v3, . . . ∈ R

X
≥0 such that ψ1 = ϕ, and for each i ≥ 1: there are Xi ⊆ XU≥∪XR≤

and Yi ⊆ XU≤ ∪ XR≥ such that ai ∧ gi ∧ rst(Xi) ∧ unch(Yi) ∧ O(ψi+1) is a basic
conjunction of β(ψi), Xi ⊆ ri ⊆ X \ Yi, vi |= gi, and vi+1 = (vi[ri]) + (ti+1 − ti).

For each i ≥ 1, let λi = (Xi∪ ((XU≤∪XR≥)\Yi)), then (ψi, ai, gi, λi, ψi+1) ∈ E

is a transition in Aϕ.

We define v′1, v
′
2, v

′
3, . . . ∈ R

X
≥0 inductively as follows:

v′1 = v1, v
′
2 = v′1[λ1] + (t2 − t1), . . . , v

′
i+1 = (v′i[λi]) + (ti+1 − ti),

Then by induction on i we can prove that the following Assertion 1 is true.

Assertion 1: For each i ≥ 1 and x ∈ X, if x ∈ XU≥ ∪XR≤ then vi(x) ≤ v′i(x);
otherwise, vi(x) ≥ v′i(x).

From the rewrite rules in Section 4.2 , it is easy to find that the following
Assertion 2 is also true.

Assertion 2: For each x ∈ X, if x ∈ XU≥ ∪XR≤, then x > d and x ≥ d will
not occur in gi; otherwise, x < d and x ≤ d will not occur in gi.

From Assertion 1, Assertion 2 and vi |= gi, we can conclude that v′i |= gi. Thus

(ψ1, 0)
t1−→ (ψ1, v

′
1)

a1−−→ (ψ2, v
′
1[λ1])

t2−t1−−−−→ (ψ2, v
′
2)

a2−−→ (ψ3, v
′
2[λ2])

t3−t2−−−−→ (ψ3,
v′3) . . . will be a run of Aϕ that accepts the timed word w = (t1, a1), (t2, a2),
(t3, a3) This completes our proof.

⊓⊔

Theorem 4 Let ϕ be a co-safety MTL0,∞ formula over Σ, then Lreach(Aϕ, {true})\
Zeno(Σ) = Lreach(Aϕ, {true}) \ Zeno(Σ).

Theorem 4 can be proved similarly as Theorem 3.

�

Example. Let Σ = {a, b} and F = (♦≥1a) ∨�≤2b, then

Efficient Controller Synthesis for a Fragment of MTL0,∞ 17

F

F4

b , {x1} F1

a , { x 0 } b , {x0}

F2

a , { x 0 } b , {x0}

F3

 b , {x1}

1

a , x 1 > 2 b , x 1 > 2

 b a

a b

a , x 0 > = 1 < > a

b , x 0 > = 1

 b

 b

 a b

 a

 b

Fig. 2: A timed automaton for (♦≥1a) ∨ �≤2b

β(F) = (rst(x0) ∧©(F1 ∨ F2)) ∨ (b ∧ rst(x1) ∧©(F3 ∨ F4))

= (a ∧ rst(x0) ∧©F1) ∨ (a ∧ rst(x0) ∧©F2) ∨

(b ∧ rst(x0) ∧©F1) ∨ (b ∧ rst(x0) ∧©F2) ∨

(b ∧ rst(x1) ∧©F3) ∨ (b ∧ rst(x1) ∧©F4),

where F1 = ♦≥1−x0
a, F2 = (x0 ≥ 1) ∧ ♦a, F3 = (�≤2−x1

b) and F4 = (x1 > 2).
So F has 6 outgoing transitions: (F, a, true, {x0}, F1), (F, a, true, {x0}, F2), (F, b,

true, {x0}, F1), (F, b, true, {x0}, F2), (F, b, true, {x1}, F3), (F, b, true, {x1}, F4). Simi-
larly, we can continues compute the outgoing transitions for F1, F2, etc. The whole
timed automaton constructed for F is presented in Fig.2.

4.5 Constructing deterministic under-approximation automata

The construction in Definition 7 might produce non-deterministic automata. In
fact, as stated earlier, there exist MTL0,∞-formulas for which no equivalent de-
terministic timed automaton exists. However, if ϕ is a safety or co-safety MTL

0,∞-formula, then we can construct a deterministic under-approximation timed
automaton Auϕ for ϕ with the construction that we already presented in [11].

Auϕ can be defined as follows.

1. The initial location of Auϕ is ϕ, the other locations of Auϕ are formulas from
CL(ϕ).

2. The actions of Auϕ are same as that of ϕ.
3. The clocks of Auϕ are the set X defined for ϕ in Section 4.1.

18 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

4. Let ψ be a formula in {ϕ} ∪CL(ϕ). To define the outgoing transitions from ψ,
we further translate β(ψ) in disjunctive form into the following deterministic
form by repeated use of the logical equivalence p⇔ (p ∧ q) ∨ (p ∧ ¬q).

Fψ =
n∨

i=1

(
ai ∧ gi ∧

mi∨

k=1

(rst(Xik) ∧ unch(Yik) ∧©(ψik))
)

where for all i ∈ {1, . . . , n}: ai ∈ Σ is an action, gi is a conjunction of clock
bounds, mi is a positive integer, Xik ⊆ XU≥ ∪XR≤ and Yik ⊆ XU≤ ∪XR≥ are
sets of clocks, ψik ∈ CL(ϕ), and for all i 6= j: ai 6= aj or gi ∧ gj is false.
Using the facts that © distributes over ∨, and rst(Y) and unch(Y) are mono-
tonic in Y , the following formula Fuψ is an under-approximation of Fψ:

F
u
ψ =

n∨

i=1

(
ai ∧ gi ∧ rst(

mi⋃

k=1

Xik) ∧ unch(

mi⋃

k=1

Yik) ∧O(

mi∨

k=1

ψik)
)

Then ψ has n outgoing transitions in Auϕ, that is, {(ψ, ai, gi, (
⋃mi

k=1Xik) ∪

((XU≤ ∪ XR≥) \ (
⋃mi

k=1 Yik)),
∨mi

k=1 ψik) | 1 ≤ i ≤ n}. We use Tran(Auϕ) to
denote the set of all transitions in Auϕ.

Please noted that each ai∧gi∧rst(Xik)∧unch(Yik)∧©(ψik) is a basic conjunction
of β(ψ), so each transition in Auϕ can be considered as a collection of several
transitions from the automaton Aϕ(Section 4.2). Now we show that every timed
word accepted by Auϕ is also accepted by Aϕ.

Theorem 5 Let ϕ be a safety MTL0,∞ formula over Σ, then L(Auϕ) \ Zeno(Σ) ⊆

L(Aϕ) \ Zeno(Σ).

Proof Let w = (t1, a1), (t2, a2), (t3, a3) . . . be a non-Zeno timed word in L(Auϕ), then
there exist ψ1, ψ2, ψ3, . . . ∈ {ϕ} ∪ CL(ϕ), (ψ1, a1, g1, r1, ψ2), (ψ2, a2, g2, r2, ψ3), ... ∈
Tran(Auϕ), and v1, v2, v3, . . . ∈ R

X
≥0 such that ψ1 = ϕ, and for each i ≥ 1: vi |= gi,

and vi+1 = (vi[ri]) + (ti+1 − ti).
For each i ≥ 1, since (ψi, ai, gi, ri, ψi+1) is a transition of Auϕ, there exist Xi1,

Xi2, . . ., Ximi
∈ 2XU≥∪XR≤ , Yi1, Yi2, . . ., Yimi

∈ 2XU≤∪XR≥ , and ψi1, ψi2, . . .,
ψimi

∈ 2BF(ϕ) such that
ri = (

⋃mi

k=1Xik)∪ ((XU≤∪XR≥)\ (
⋃mi

k=1 Yik)), ψi+1 =
∨mi

k=1 ψik, and for every
k ∈ {1, 2, . . . ,mi}: ai ∧ gi ∧ rst(Xik) ∧ unch(Yik) ∧©(ψik) is a basic conjunction of
ψi.

Now we can defined an infinite tree T using the formulas from {ϕ} ∪ 2BF(ϕ) as
follows.

1. (0, ϕ) is the root of T .
2. For each i ≥ 1 and k ∈ {1, 2, . . . ,mi}, (i, ψik) is a node at level i.
3. For each i ≥ 2 and k ∈ {1, 2, . . . ,mi}, since ai∧gi∧rst(Xik)∧unch(Yik)∧©(ψik)

is a basic conjunction of β(ψi) and ψi =
∨m(i−1)

k=1 ψ(i−1)k, then there exists a ni
such that 1 ≤ ni ≤ m(i−1) and ai ∧ gi ∧ rst(Xik)∧ unch(Yik)∧©(ψik) is a basic
conjunction of β(ψ(i−1)ni

). We define (i− 1, ψ(i−1)ni
) to be the only parent of

(i, ψik).

Efficient Controller Synthesis for a Fragment of MTL0,∞ 19

F

F1 | F2 | F3 | F4

b ,{x0 ,x1}

F1 | F2

a , { x 0 } b & x0<1 & x1<=2

a & x 0 < 1 & x 1 < = 2

1

(b & x1>2) | (a & x1>2) | (a & x0>=1) F 3 | F 4 | < > a

b & x 0 > = 1 & x 1 < = 2

 (b & x0<1) | (a & x0<1)

a & x 0 > = 1 < > a

b & x 0 > = 1

 b | a

(b & x1>2) | a

 b & x 1 < = 2

 a

 b

Fig. 3: Under-approximation automaton for (♦≥1a) ∨ �≤2b

Since T is an infinite tree, by König’s Lemma, T has an infinite branch (0, ϕ)
(1, ψ1l1) (2, ψ2l2) Because ai∧gi∧ rst(Xili)∧unch(Yili)∧©(ψili) is a basic con-
junction of β(ψ(i−1)l(i−1)

) and Xili ⊆ ri ⊆ (X \Yili), thus (ψ(i−1)l(i−1)
, ai, gi, ri, ψili)

is a transition of Aϕ. Then from the fact that vi |= gi and vi+1 = (vi[ri]) +

(ti+1 − ti), we know that (ϕ, 0)
t1−→ (ϕ, v1)

a1−−→ (ψ1l1 , v1[r1])
t2−t1−−−−→ (ψ1l1 , v2)

a2−−→

(ψ2l2 , v2[r2])
t3−t2−−−−→ (ψ2l2 , v3)

a3−−→ (ψ3l3 , v3[r3]) . . . is a run of Aϕ that accepts
w = (t1, a1), (t2, a2), (t3, a3),

⊓⊔

Theorem 6 Let ϕ be a co-safety MTL0,∞ formula over Σ, then Lreach(A
u
ϕ, {true})\

Zeno(Σ) ⊆ Lreach(Aϕ, {true}) \ Zeno(Σ).

Theorem 6 can be proved similarly as Theorem 5.

Example. The automaton in Fig.3 is a deterministic under-approximation timed
automaton for ψ = (♦≥1a) ∨�≤2b.

5 Finding a Winning Strategy Using Uppaal-Tiga

Let us first consider that the specification contains exactly one requirement and
one assumption, i.e. we are solving the synthesis problem (ϕ → ψ,Σc, Σu), where
ϕ and ψ are safety-MTL0,∞ formulas over Σc ∪Σu.

The negation ¬ϕ is in co-safety-MTL0,∞ and we apply the algorithm de-
scribed in the previous section to build the deterministic TA A¬ϕ such that
Lreach(A¬ϕ, {true}) \ Zeno(Σc ∪ Σu) ⊆ L(¬ϕ). ψ is in safety-MTL0,∞ and we
build deterministic TA Aψ such that L(Aψ) \Zeno(Σc ∪Σu) ⊆ L(ψ). Next we add
a location false to both A¬ϕ and Aψ and add the transitions to it that are enabled
when none of other outgoing transitions from the current location is enabled. In
other words, we make Aψ and A¬ϕ complete so that they end up in false if they
can’t accept the input word. This syntactic transformation can be done in linear

20 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

time. In the rest of this section we describe how we apply Uppaal-Tiga to A¬ϕ

and Aψ to generate a solution for the synthesis problem.

Uppaal-Tiga [5] is a tool that checks whether there exists a strategy for the
controller to satisfy the given reachability or safety winning condition for all un-
controllable moves of the opponent player. Such a strategy can be syntactically
represented by a timed automaton S derived from the input timed automata A

where the guards of the controllable transitions are restricted. The semantics of
strategy TA S is urgent for the controller, i.e. a controller always proposes to
take the earliest enabled controllable transition. Thus this semantics is essentially
the same as we gave in definition 4 when we described how a timed automaton
implements a strategy for a synthesis problem.

Thus if A is deterministic and complete, and together with the winning condi-
tion it encodes the input specification ϕ→ ψ, then the winning strategy generated
by Uppaal-Tiga implements a solution for the synthesis problem (ϕ→ ψ,Σc, Σu).

We construct such A by forming a parallel composition of A¬ϕ and Aψ , i.e.
A ≡ A¬ϕ||Aψ. This parallel composition is synchronized on actions and time delays,

i.e. a transition (s1, s2)
d
−→ (s′1, s

′
2) exists in A for some d ∈ R≥0 ∪Σc ∪Σu iff there

exists a transition s1
d
−→ s′1 in A¬ϕ and there exists a transition s2

d
−→ s′2 in Aψ. Let

L
¬ϕ
true be the set of locations of this parallel composition such that A¬ϕ is in its

location true, and let Lψ
false

be the set of locations such that Aψ is in its location
false.

The goal of the controller in A¬ϕ||Aψ in Uppaal-Tiga is to:

– violate the assumption ϕ by visiting a location from L
¬ϕ
true, or

– satisfy the requirement ψ by avoiding visiting the locations from L
ψ
false

.

Unfortunately Uppaal-Tiga doesn’t support winning conditions of the form
♦(L¬ϕ

true)∨�(¬Lψ
false

). Thus we use a stricter winning condition of (Lϕtrue)R(¬Lψ
false

),
that is more hard to control for the controller.

If the input specification contains more than one assumption and/or require-
ment, i.e it is of the form ϕ1∧ϕ2∧· · ·∧ϕn → ψ1∧ψ2∧· · ·∧ψm, then we can still con-
sider ϕ = ϕ1∧ϕ2∧· · ·∧ϕn as a single assumption and ψ = ψ1∧ψ2∧· · ·∧ψm as a single
requirement (since safety-MTL0,∞ is closed under conjunction). However, in our
implementation we construct a separate automaton for every formula, and search
for a winning strategy in the parallel composition A¬ϕ1 || . . . ||A¬ϕn ||Aψ1

|| . . . ||Aψm
.

It is more efficient since we can avoid the full exploration of the game state space
thanks to the on-the-fly game solution algorithm used by Uppaal-Tiga.

Additionally, we have to make sure that the generated strategy of Uppaal-Tiga

is non-Zeno (otherwise, we can’t guarantee that monitoring TA approximates the
specification due to theorems 1 and 2). We do this in either of two different ways.

The first way is to try to prove that all Zeno strategies are losing for the
controller. We do this by adapting the construction of [21]. And second, we can
force Uppaal-Tiga to generate a non-Zeno strategy by using a Büchi acceptance
condition [14]. The second way requires a more expensive algorithm for the solution
of timed games with Büchi objectives, thus it’s advisable to try the first way first.
We describe both approaches in details in the next subsection.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 21

a2

a1

a3

L2L1

x:=0

x>=1

x<=1

Fig. 4: A test automaton AZ for the detection and forcing of non-Zeno behavior

5.1 Avoiding and detecting Zeno loops in Uppaal-Tiga

Our goal is to avoid generating strategies that can produce the timed words from
Zeno(Σc) \ Zeno(Σu), we call such strategies non-Zeno.

Let’s first describe the way of proving that all Zeno strategies are losing for the
controller. We say that there is a controllable Zeno loop in A¬ϕ||Aψ iff there exists

a run s0
τ1−→ s1

a1−−→ s2 . . . such that this run is Zeno, all its actions are controllable
starting from some point, and the run doesn’t visit locations from L

ψ
false

. It’s easy
to see that if there are no controllable Zeno loops in A¬ϕ||Aψ, then there are also
no winning Zeno strategies in it. In order to detect controllable Zeno loops, we
put A¬ϕ||Aψ in parallel with a test automaton depicted in Fig. 4 (we consider
here that Σu = {a1,a2,a3}). This test automaton AZ has two locations L1 and
L2, and location L2 is urgent (see [6]), i.e. automaton arrives in location L2, it
should leave it at the next transition without time being elapsed. Additionally,
the location L1 has an invariant x ≤ 1 which states that the TA should leave this
location as soon as the value of x reaches 1. We use Uppaal (basic version) to
check that A¬ϕ||Aψ||AZ satisfies property �(L1 → ♦L2), that can be expressed as
L1 --> L2 in Uppaal. It’s easy to see that there exists a controllable Zeno loop in
A¬ϕ||Aψ iff this property is not satisfied by A¬ϕ||Aψ||AZ .

If there exists a controllable Zeno loop in A¬ϕ||Aψ, then we prevent controller
from playing a Zeno strategy by adding a requirement that the time should always
progress. We do this by again considering a parallel composition A¬ϕ||Aψ||AZ
and asking Uppaal-Tiga to find a winning strategy for the winning condition
((Lϕtrue)R(¬Lψ

false
)) ∧�♦L2 (see [14]).

6 Case Studies

We present three case studies, and for some of them we compare the performance
of our tool to the performance of Acacia+ [8] and Unbeast [17] that are state-of-
the art synthesis tools for LTL. The comparison with Unbeast is of special interest
because it is designed for the assume-guarantee properties, just like our approach.
Acacia+ is especially efficient for the compositional specifications being of the
form

∧
i φ, thus we use the compositional synthesis in Acacia+ and transform the

specifications ϕ1∧· · ·∧ϕn → ψ1∧· · ·∧ψm into (ϕ1∧..∧ϕn → ψ1)∧· · ·∧(ϕ1∧· · ·∧ϕn →

ψm). We experimentally checked that Acacia+ is more efficient in this case, even if
the input specification is larger. For Acacia+ and Unbeast we use LTL3BA tool [4]
as it gives smaller automata for our specification than LTL2BA tool.

22 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

Assumption ϕ1 The jobs do not to arrive too often

�(job→ (�̂≤1¬job))
Requirement ψ1 A computational unit should be assigned immediately to every incoming job

�(job→ ((¬job)Û≤0(
∨

i=1..N ui)))
Requirement ψ2 The assignments should be preceded by requests

�((
∨

i=1..N ui) → ¬X((¬job)U(
∨

i=1..N ui))) ∧ ¬(
∨

i=1..N ui)
Requirement ψ3 There should be a time gap of N between the assignments

of the same computation unit∧
i=1..N �(ui → (�̂≤N ¬ui))

Fig. 5: Specification for the job scheduling problem

For all the case studies our implementation managed to produce exact monitor-
ing Timed Automata for the input specifications. Additionally, our implementation
detected for all the specifications that there are no winning Zeno strategies (the
timing results include this check). However, for the comparison reasons we also
present the results for the Büchi-based approach. We report the number of rules
(transitions) of a strategy graph as a strategy size.

The experiments were held in Amazon Elastic Cloud on a High-Memory Quadru-
ple Extra Large Instance (64 Gb of memory, processor power equivalent to 3.25
GHz 2007 Xeon processor). The timeout is fixed to 1 hour.

6.1 Job Scheduling Problem

Consider the following online job scheduling problem. There are N computational
units, and computation of a job on a single unit takes T time units. New jobs can
arrive sporadically, and we assume that the minimal time between the arrivals of
two jobs is 1 time unit.

The goal of the scheduler is to assign new jobs to the computational units,
so no two jobs overlap in time on the same computational unit. We require that
this assignment should happen immediately after a job arrives, and jobs can’t be
moved from one computational unit to another.

Obviously, the problem has a solution iffN ≥ T . We study the borderline case of
N = T . Our specification is defined over a set of uncontrollable actions Σu = {job}

and a set of controllable actions Σc = {u1, u2, . . . , uN}. The environment triggers
action job, when a new job arrives, and the controller can assign a computation unit
i to it by triggering ui. The specification is ϕ1 → ψ1∧ψ2∧ψ3, where the components
are defined in Fig. 5. The time results are given in Fig. 7. This specification is
essentially based on time, thus we didn’t apply Acacia+ and Unbeast to it.

Fig. 6 contains solution for the N = 2. For simplicity, we removed one extra
clock whose value is always equal to the value of x.

6.2 Dining Philosophers Problem

Consider that there are N philosophers (that are a part of the environment).
A philosopher may indicate that he is hungry (event hungryi for philosopher i).
The controller can tell a philosopher to take his left or right fork, or tell him

Efficient Controller Synthesis for a Fragment of MTL0,∞ 23

job

job

job

job
job

job

jobjob

job

job

y:=0

job u1 u2 u1

(x<1)
(x<1)

(y<2)&&(x>=1)(y>=2)&&(x>=1)

(x<1)
(x<1)

ASSUMPTIONS_VIOLATED

(z>=2)&&(x>=1)

(z<2)&&
(y<2)&&
(x>=1)

(z<2)&&(y>=2)&&(x>=1)

a:=0

x:=0 x:=0

x:=0

z:=0

x:=0

x:=0

(x<1)

(x==0)

x:=0

(x==0) (x==0)

Fig. 6: Synthesized strategy for the jobs scheduling problem for N = 2

N 2 3 4 5 6 7 8

time
Zeno behavior is proved to be losing <1s <1s <1s <1s 7s 4m44s timeout
Zeno behavior is avoided by Büchi <1s <1s 4s 1m38s timeout timeout timeout

strategy size 12 28 60 124 252 508 —

Fig. 7: Results for the job scheduling problem

Assumption ϕ1 A philosopher can’t say too often that he is hungry∧
i=1..N �(hungryi → (�̂<N¬hungryi))

Assumption ϕ2 A philosopher can’t say that he is hungry while he is eating,
and he should finish eating within 1 time units∧

i=1..N �(eati → ((¬hungryi) U<1finishi)))
Assumption ϕ3 A philosopher can’t finish eating without starting eating∧

i=1..N �(finishi → ¬© ((¬eati) U finishi))) ∧
∧

i=1..N ¬((¬eati) U finishi)
Requirement ψ1 A philosopher will start eating within N − 1 time units after he became hungry∧

i=1..N �(hungryi → ((¬hungryi)Û≤N−1eati)))
Requirement ψ2 Once a fork is taken, it should be not taken again until it’s put on the table∧

i=1..N �((rforki ∨ lforki+1%N) →
¬© ((¬finishi ∧ ¬finishi+1%N) U (rforki ∨ lforki+1%N)))

Requirement ψ3 A philosopher can’t start eating if he doesn’t hold his left fork∧
i=1..N �(eati → ¬© ((¬lforki) U eati))) ∧

∧
i=1..N ¬((¬lforki) U eati)

Requirement ψ4 A philosopher can’t start eating if he doesn’t hold his right fork∧
i=1..N �(eati → ¬© ((¬rforki) U eati))) ∧

∧
i=1..N ¬((¬rforki) U eati)

Fig. 8: Specification for the dining philosophers problem

to start eating (events lforki, rforki and eati for philosopher i). A philosopher
may indicate that he finished eating (event finishi), and at the same time he
puts both forks on the table. Thus the set of uncontrollable actions is Σu =
{hungry1, . . . , hungryN , finish1, . . . , finishN}, and the set of controllable actions
is Σc = {lfork1, . . . , lforkN , rfork1, . . . , rforkN , eat1, . . . , eatN}.

We also transformed this MTL0,∞ specification into the untimed LTL specifi-
cations for Acacia+ and Unbeast (basically, we removed all the timing constraints
from the formula). As it can been seen from Fig. 11, Acacia+ and Unbeast scaled
only up to N = 2, while our tool scaled up to N = 4. One can argue that the LTL
specification for certainly requires Büchi acceptance condition, while our MTL0,∞

specification is a boolean combination of safety formulas. Therefore we made an-
other LTL specification for Acacia+ and Unbeast where we discretized time (i.e.
assumed bounded variability), and this specification doesn’t contain until oper-

24 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

ators and thus doesn’t require Büchi acceptance condition. For this specification
Acacia+ can also handle only the case of N = 2 with the maximal time granularity
of 2, and Unbeast can additionally handle N = 2 and time granularity 3. We don’t
report strategy sizes for Unbeast because we were not able to extract them.

Our specification is given in Fig. 8, and the experimental results are presented
in Fig. 11. The Acacia+ and Unbeast LTL specifications for the Dining Philoso-
phers problem are described in details in the next two subsections.

6.2.1 Dining Philosophers Specification for Acacia+ and Unbeast: LTL Specification

The synthesis game in Acacia+ and Unbeast is played in rounds, and in each
round one player (i.e. controller or environment) always plays first, and the other
(second) player plays second. In each round the first player proposes some subset
Σ1 of his actions, and the second player observes Σ1 and proposes some subset
Σ2 of his actions. Thus together they produce the next element of a run that is
Σ1 ∪Σ2.

Thus in total we face three imprecisions when we translate our Dining philoso-
phers specification from MTL0,∞ into LTL:

– Our tool supports time constraints, while Acacia+ and Unbeast don’t. Thus we
drop all the timing constraints in the LTL specification. Additionally, in LTL
we are not available to specify the fact that a philosopher can’t say hungry too
often (assumption ϕ1). Thus instead of saying this we use an assumption that
a philosopher can’t say hungry twice without being eating in between. We also
consistently change ϕ2 and ψ1 to reflect this fact.

– At each round in LTL synthesis game each player can propose a set of actions,
not just a single action. Although we can force each player propose not more
than one action at a time (by adding additional requirements and assumptions),
it will make it more difficult for Acacia+ and Unbeast to synthesize a controller
due to its algorithm that counts the number of times an automaton visits the
Büchi acceptance locations. Thus we let each player to propose several actions
at once (e.g. tell two different philosophers to start eating). However, we don’t
allow a philosopher to say that he is hungry and say that he finished eating at
the same time slot, since the order of these events is crucial and it is unspecified
in this case (assumption ϕ4). Similarly, a controller can’t tell a philosopher to
start eating and to take fork at the same time (requirement ψ5). Additionally,
we have to modify the requirement ψ2 to prevent the controller from giving
the same fork simultaneously to two neighbor philosophers.

– The notion of the next state in our turn-based semantics is different for the
first and the second players. We assume that at each round the environment
is making the first move (by using the option “-p 1” of Acacia+). We also
modify ϕ3 to handle the fact that in the semantics of Acacia+ and Unbeast
the actions of the controller and the environment are mixed together at each
round.

LTL specification for the Dining Philosophers problem is given in Fig.9.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 25

Assumptions ϕ1 A philosopher can’t say that he’s hungry twice without finishing eating∧
i=1..N �(hungryi → ¬© ((¬finishi) U hungryi)))

Assumptions ϕ2 A philosopher can’t say that he is hungry while he is eating, and he should
eventually finish eating∧

i=1..N �(eati → ©♦finishi))
Assumptions ϕ3 A philosopher can’t finish eating without starting eating∧

i=1..N �(finishi → (eati ∨ ¬© ((¬eati) U finishi))) ∧
∧

i=1..N ¬((¬eati) U finishi)
Assumptions ϕ4 finishi and hungryi can’t be emitted simultaneously for the same i

�(¬(hungryi ∧ finishi))
Requirements ψ1 A philosopher will eventually eat after he is hungry∧

i=1..N �(hungryi → ♦eati)
Requirements ψ2 Once a fork is taken by a philosopher, it should be not taken again until it’s put on the table

(here putforki is an abbreviation for finishi ∨ finishi+1%N , for simplicity)∧
i=1..N �((rforki) → (¬lforki+1%N) ∧ ¬© ((¬putforki) U ((¬putforki) ∧ (rforki ∨ lforki+1%N))))∧∧
i=1..N �((lforki+1%N) → (¬rforki) ∧ ¬© ((¬putforki) U ((¬putforki) ∧ (rforki ∨ lforki+1%N))))

Requirements ψ3 A philosopher can’t start eating if he doesn’t hold his left fork∧
i=1..N �(eati → ¬© ((¬lforki) U eati))) ∧

∧
i=1..N ¬((¬lforki) U eati)

Requirements ψ4 A philosopher can’t start eating if he doesn’t hold his right fork∧
i=1..N �(eati → ¬© ((¬rforki) U eati))) ∧

∧
i=1..N ¬((¬rforki) U eati)

Requirements ψ5 We can’t emit eati and lforki (or rforki) simultaneously for the same i
�(¬(eati ∧ (lforki ∨ rforki))

Fig. 9: Untimed LTL specification for the dining philosophers problem

6.2.2 Dining Philosophers Specification In LTL Using Time Discretization

We define a discretized version of Until operator:

ϕU∗
≤dψ ≡ ψ ∨ (ϕ ∧©ψ) ∨ · · · ∨ (ϕ ∧©ϕ ∧ · · · ∧© . . .©︸ ︷︷ ︸

d−1

ϕ ∧© . . .©︸ ︷︷ ︸
d

ψ)

.
We define ♦∗

≤dϕ to be equal to trueU∗
≤dφ, and �∗

≤dϕ to be equal to ¬♦∗
≤d¬ϕ.

Like in the previous (untimed) specification, in our LTL specification for fixed
time granularity we also assume that at each slot(round) the environment plays
first. Thus we use ϕ4 and ψ5 from the previous untimed specification.

Let’s fix an integer k being a time granularity (i.e. a number of times a signal
can change during one time unit). Our LTL specification for the Dining Philoso-
phers problem with discretized time is given in Fig. 10.

6.3 Generalized Buffer Controller

[20] describes a generalized buffer controller synthesis problem described and in-
cludes the Acacia+ LTL specification. This specification describes a system that
contains several senders and receives, and a buffer in between them. The spec-
ification is of the form (ϕs → ψs) ∧ (ϕr → ψr), where ϕs (ϕr, correspondingly)
is the assumption over the behavior of the senders (receivers) and ψs (ψr, corre-
spondingly) is the requirements over the behavior of the controller with respect to
senders (receivers). We transformed the specification into (ϕs ∧ ϕr) → (ψs ∧ ψr),
since the former specification (ϕs → ψs) ∧ (ϕr → ψr) is not supported by our
tool. Thus in the experiments for our tool we study a weaker specification than
Acacia+’s, and our MTL0,∞ specification requires the buffer to behave correctly
only if both senders and receivers follow their assumptions.

26 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

Assumption ϕ1 A philosopher can’t say too often that he is hungry∧
i=1..N �(hungryi → ©�∗

≤k−2(¬hungryi))

Assumption ϕ2 A philosopher can’t say that he is hungry while he is eating,
and he should finish eating within 1 time units∧

i=1..N �(eati → ((¬hungryi) U∗
≤k−1finishi)))

Assumption ϕ3 A philosopher can’t finish eating without starting eating∧
i=1..N �(finishi → (eati ∨ ¬© ((¬eati) U finishi)))) ∧

∧
i=1..N ¬((¬eati) U finishi)

Assumptions ϕ4 finishi and hungryi can’t be emitted simultaneously for the same i
�(¬(hungryi ∧ finishi))

Requirement ψ1 A philosopher will start eating within N − 1 time units after he became hungry∧
i=1..N �(hungryi → ((¬hungryi)U

∗
≤k(N−1)eati)))

Requirements ψ2 Once a fork is taken by a philosopher, it should be not taken again until it’s put on the table
(here putforki is an abbreviation for finishi ∨ finishi+1%N , for simplicity)∧

i=1..N �((rforki) → (¬lforki+1%N) ∧ ¬© ((¬putforki) U ((¬putforki) ∧ (rforki ∨ lforki+1%N))))∧∧
i=1..N �((lforki+1%N) → (¬rforki) ∧ ¬© ((¬putforki) U ((¬putforki) ∧ (rforki ∨ lforki+1%N))))

Requirement ψ3 A philosopher can’t start eating if he doesn’t hold his left fork∧
i=1..N �(eati → ¬© ((¬lforki) U eati))) ∧

∧
i=1..N ¬((¬lforki) U eati)

Requirement ψ4 A philosopher can’t start eating if he doesn’t hold his right fork∧
i=1..N �(eati → ¬© ((¬rforki) U eati))) ∧

∧
i=1..N ¬((¬rforki) U eati)

Requirements ψ5 We can’t emit eati and lforki (or rforki) simultaneously for the same i
�(¬(eati ∧ (lforki ∨ rforki))

Fig. 10: LTL specification for the dining philosophers problem with discretized time

N

Our tool
time strategy

Zeno is proved to be losing Zeno is avoided size
2 3s 11s 1931
3 14s timeout 65868
4 14m4s timeout 2107776

N
Acacia+ Acacia+ Unbeast Unbeast Unbeast
(untimed) (time granularity 2) (untimed) (time granularity 2) (time granularity 3)

time strategy time strategy time time time
size size

2 2m12s 439 41s 212 1m13s 21s 2m53s

Fig. 11: Results for the dining philosophers problem

Consider that there are N senders and M receivers. Acacia+ specification is
defined over controllable signals {b2s ack i} and {b2r req j} and uncontrollable
signals {s2b req i} and {r2b ack j} where i ranges in 1..N and j ranges in 1..M .
{b2r req j} and {s2b req i} are dealt as continuous signals that can be turned on
for some duration of time. Thus in the specification for our tool we model each of
these signals with two actions, one for the start of a signal and one for its end, i.e.
we defined the actions b2r req j on, b2r req j off and s2b req i on, s2b req i off .
The signal b2r req j (s2b req i) is assumed to be turned on in between the actions
b2r req j on and b2r req j off (s2b req i on and s2b req i off). {b2s ack i} and
{r2b ack j} are instantaneous signals, thus we leave them as actions as it is.

The goal of this case study is to demonstrate that our tool can be applied to a
specification already used with another tool. Thus we don’t translate the formula
in the format of Unbeast and also use only the specifications sizes provided in the
Acacia+ distribution.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 27

Assumption ϕ1 s2b req i off comes only after s2b req i on∧
i=1..N (�(s2b req i off → ¬© ((¬s2b req i on)U(s2b req i off)))) ∧ ¬((¬s2b req i on)U(s2b req i off))

Assumption ϕ2 A request is not lowered until it is served∧
i=1..N �(s2b req i on→ ¬((¬b2s ack i)U(s2b req i off)))

Assumption ϕ3 The sender should immediately deassert s2b req i after getting the acknowledgment∧
i=1..N �(b2s ack i→ ♦x≤0s2b req i off)

Assumption ϕ4 Acknowledgment from the receiver can come only after the request from the buffer∧
j=1..M (�(r2b ack j → ¬© ((¬b2r req j on)U(r2b ack j)))) ∧ ¬((¬b2r req j on)U(r2b ack j))

Assumption ϕ5 Acknowledgment from the receiver will come within 1 time units after the request from the buffer∧
j=1..M �(b2r req j on→ ♦x≤1r2b ack j))

Requirement ψ1 b2r req j off comes only after b2r req j on∧
j=1..M (�(b2r req j off → ¬© ((¬b2r req i on)U(b2r req i off)))) ∧ ¬((¬b2r req i on)U(b2r req i off))

Requirement ψ2 A buffer should immediately acknowledge a request from the sender∧
i=1..N �(s2b req i on→ ♦x≤0b2s ack i))

Requirement ψ3 Acknowledgment from buffer can come only request from the sender∧
i=1..N (�(b2s ack i→ ¬© ((¬s2b req i on)U(b2s ack i)))) ∧ ¬((¬s2b req i on)U(b2s ack i))

Requirement ψ4 Only one sender sends data at any one time∧
i=1..N �(b2s ack i→ ¬((¬s2b req i off)U(

∨
k 6=i b2s ack k)))

Requirement ψ5 A request is not lowered until it is served∧
j=1..M �(b2r req j on→ ¬((¬r2b ack j)U(b2r req j off)))

Requirement ψ6 The buffer should immediately deassert b2r req j after getting the acknowledgment∧
j=1..M �(r2b ack j → ♦x≤0b2r req j off))

Requirement ψ7 The buffer will not make two consecutive requests to any receiver∧
j=1..M �(b2r req j on→ ¬© ((¬

∨
k 6=j b2r req k on)U(b2r req j on)))

Requirement ψ8 The buffer does not request two receivers simultaneously∧
j=1..M (b2r req j on→ ¬((¬b2r req j off)U(

∨
k 6=j(b2r req k on))))

Fig. 12: MTL0,∞ specification for the generalized buffer controller problem of [20]

Our tool Acacia+
time strategy time strategy

Zeno is proved to be losing Zeno is avoided by Büchi size size
2 senders, 2 receivers 2s 5s 18871 <1s 219
2 senders, 3 receivers 3s 13s 35748 1s 317
2 senders, 4 receivers 5s 26s 57239 3s 417
2 senders, 5 receivers 9s 48s 83618 8s 744
2 senders, 6 receivers 14s 1m23s 114885 23s 955
2 senders, 7 receivers 22s 2m13s 151040 1m34s 1067

Fig. 13: Results for the generalized buffer specification

Our specification is given in Fig. 12. Basically, we added time constraints to
the unbounded “eventually” operators, so that the specification fits the format
supported by our tool.

Fig. 13 contains the experimental results for this problem. Here, Acacia+
spends most of the time in the game solution phase, and our tool scales better
because we don’t need to determinize Büchi automata.

7 Conclusions

We present an algorithm for the synthesis of the specifications of the form ϕ1 ∧

ϕ2 ∧ · · · ∧ ϕn → ψ1 ∧ ψ2 ∧ · · · ∧ ψm, where all ϕi and ψj are safety-MTL0,∞ for-
mulas. The algorithm is based on a novel translation procedure from safety and
co-safety MTL0,∞ into under-approximation deterministic timed automata. This

28 Peter Bulychev, Alexandre David, Kim G. Larsen, Guangyuan Li

allows our approach to scale well to large specifications, and have a comparable
or better performance to state of-the-art LTL synthesis tool Acacia+. We believe
that our approach can be extended to the specifications being arbitrary boolean
combinations of safety-MTL0,∞ properties.

Our approach is sound but not complete. This incompleteness comes from the
fact that the generated monitoring TA can be non-exact (underapproximate the

input specification). Additionally we use the winning condition (Lϕtrue)R(¬Lψ
false

)

in Uppaal-Tiga that is stronger than the minimally required ♦(L¬ϕ
true)∨�(¬Lψ

false
).

However, our tool managed to produce the solutions for all the specifications we
studied. In the future work we may address the decidability of the original problem
(i.e. is it possible to provide a complete algorithm), and provide an algorithm with
better coverage.

References

1. Rajeev Alur. Formal verification of hybrid systems. In Proceedings of the ninth ACM
international conference on Embedded software, EMSOFT ’11, pages 273–278, New York,
NY, USA, 2011. ACM.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

3. Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116–146, January 1996.

4. Tomás Babiak, Mojmı́r Kret́ınský, Vojtech Rehák, and Jan Strejcek. LTL to Büchi au-
tomata translation: Fast and more deterministic. CoRR, abs/1201.0682, 2012.

5. Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen,
and Didier Lime. Uppaal-tiga: Time for playing games! In Proceedings of the 19th
International Conference on Computer Aided Verification, number 4590 in LNCS, pages
121–125. Springer, 2007.

6. Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. pages 200–236.
Springer, 2004.

7. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Specify,
compile, run: Hardware from PSL. In 6th International Workshop on Compiler Optimiza-
tion Meets Compiler Verification, 2007.

8. Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin.
Acacia+, a tool for LTL synthesis. In Proceedings of the 24th international conference on
Computer Aided Verification, CAV’12, pages 652–657, Berlin, Heidelberg, 2012. Springer-
Verlag.

9. Patricia Bouyer, Laura Bozzelli, and Fabrice Chevalier. Controller synthesis for MTL
specifications. In In Proc. 17th International Conference on Concurrency Theory (CON-
CUR’06, 2006.

10. J. Richard Buchi and Lawrence H. Landweber. Solving Sequential Conditions by Finite-
State Strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

11. Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel Legay, Guangyuan Li,
Danny Bøgsted Poulsen, and Amélie Stainer. Monitor-based statistical model checking for
weighted metric temporal logic. In LPAR, 2012.

12. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR’05, volume
3653 of LNCS, pages 66–80. Springer–Verlag, August 2005.

13. A. Church. Logic, Arithmetic, Automata. In Proc. International Mathematical Congress,
1962.

14. Alexandre David, Gerd Behrmann, Peter Bulychev, Joakim Byg, Thomas Chatain, Kim G.
Larsen, Paul Pettersson, Jacob Illum Rasmussen, Jǐŕı Srba, Wang Yi, Kenneth Y. Joer-
gensen, Didier Lime, Morgan Magnin, Olivier H. Roux, and Louis-Marie Traonouez. Tools
for model-checking timed systems. In Olivier H. Roux and Claude Jard, editors, Com-
municating Embedded Systems – Software and Design, pages 165–225. ISTE Publishing /
John Wiley, October 2009.

Efficient Controller Synthesis for a Fragment of MTL0,∞ 29

15. B. Di Giampaolo, G Geeraerts, J.F. Raskin, and N. Sznajder. Safraless procedures for
timed specifications. In Springer, editor, Proceedings of FORMATS 2010, 8th Interna-
tional Conference on Formal Modelling and Analysis of Timed Systems, volume 6246 of
Lecture Notes in Computer Science, pages 2–22, 2010.

16. L. Doyen, G. Geeraerts, J.F. Raskin, and J. Reicher. Realizability of real-time logics. In
Proceedings of FORMATS 2009, 7th International Conference on Formal Modeling and
Analysis of Timed Systems, volume 5813 of Lecture Notes in Computer Science, pages
133–148. Springer, 2009.

17. Rüdiger Ehlers. Symbolic bounded synthesis. In T. Touili, B. Cook, and P. Jackson,
editors, 22nd International Conference on Computer Aided Verification, volume 6174 of
LNCS, pages 365–379. Springer Verlag, 2010.

18. E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to syn-
thesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

19. Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An antichain algorithm for LTL
realizability. In CAV, pages 263–277, 2009.

20. Emmanuel Filiot, Naiyong Jin, and Jean-Franois Raskin. Exploiting structure in LTL
synthesis. International Journal on Software Tools for Technology Transfer (STTT),
pages 1–21. 10.1007/s10009-012-0222-5.

21. Rodolfo Gómez and Howard Bowman. Efficient detection of zeno runs in timed automata.
In Proceedings of the 5th international conference on Formal modeling and analysis of
timed systems, FORMATS’07, pages 195–210, Berlin, Heidelberg, 2007. Springer-Verlag.

22. Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333 – 354, 1983. Special Issue Ninth International Colloquium on Automata, Lan-
guages and Programming (ICALP) Aarhus, Summer 1982.

23. O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. In 18th
Conference on Computer Aided Verification, pages 31–44, 2006.

24. Oded Maler, Dejan Nickovic, and Amir Pnueli. Real time temporal logic: Past, present,
future. In FORMATS, pages 2–16, 2005.

25. Oded Maler, Dejan Nickovic, and Amir Pnueli. On synthesizing controllers from bounded-
response properties. In CAV, pages 95–107, 2007.

26. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems. In in E.W. Mayr and C. Puech (Eds), Proc. STACS’95, LNCS 900, pages
229–242. Springer, 1995.

27. Zohar Manna and Pierre Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Trans. Program. Lang. Syst., 6(1):68–93, January 1984.

28. Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, LICS
’05, pages 188–197, Washington, DC, USA, 2005. IEEE Computer Society.

29. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In Proc.
Verification, Model Checking, and Abstract Interpretation (VMCAI 06), pages 364–380.
Springer, 2006.

30. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’89, pages 179–190, New York, NY, USA, 1989. ACM.

31. P. Ramadge and W. Wonham. Supervisory control of a class of discrete event processes.
SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

32. Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In ATVA, volume 4762 of Lecture
Notes in Computer Science, pages 474–488. Springer, 2007.

