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This paper proposes a new efficient approach to optimize energy consumption
for energy aware buildings. Our approach relies on stochastic hybrid automata
for representing energy aware systems. The model is parameterized by several
cost values that need to be optimized in order to minimize energy consumption.
Our approach exploits a stochastic semantic together with simulation in order
to estimate the best value for such parameters. Contrary to existing techniques
that would estimate energy consumption for each value of the parameters, our
approach relies on a new statistical engine that exploits ANOVA, a technique
that can reduce the number of runs needed by the comparison algorithm to
perform the estimates. Our approach has been implemented and our experiments
show that we clearly outperform the naive approach.

1 Introduction

Cyber-Physical Systems. Cyber-physical systems are large-scale distributed sys-
tems, often viewed as networked embedded systems, where a large number of
computational components are deployed in a physical environment. Each com-
ponent collects information about and offers services to its environment (e.g.,
environmental monitoring and control, health-care monitoring and traffic con-
trol). This information is processed either at the component, in the network or
at a remote location (e.g., the base station), or in any combination of these.

Characteristic for cyber-physical systems is that they have to meet a mul-
titude of quantitative constraints, e.g., timing constraints, power consumption,
memory usage, communication bandwidth, QoS, and often under uncertainty
of the behavior of the environment. Existing model-driven methodologies for
embedded systems are rather sophisticated in handling functional requirements,
and some methods are good at handling special kinds of quantitative constraints.
However, there is a lack of a mathematical foundation and supporting tools allow-
ing to handle the combination of quantitative aspects concerning, for example,
time, stochastic behavior, hybrid behavior including energy consumption.

In our previous work [10, 11] we have proposed to capture the behavior of
cyber-physical systems with Priced Timed Automata (PTA). Those models are
extensions of timed automata [2], where clocks may have different rates (even



potentially negative) in different locations. Several projects at the EU level pro-
moted PTA as an adequate model for energy-aware systems. PTAs are as ex-
pressive as linear hybrid automata [1] providing high expressive power useful
for modeling complex cyber-physical systems, but also rendering most problems
either undecidable or too complex to be solved with classical model checking ap-
proaches. To overcome these limitations, we proposed in [10] to give a stochastic
semantics to PTAs and then apply Statistical Model Checking (SMC) tech-
niques [17, 24, 21, 14, 13], which is a highly scalable simulation-based approach.
SMC consists in randomly generating and monitoring simulation runs of the sys-
tem and verify whether they satisfy a given property written in some temporal
logic. The results are then used by statistical algorithms in order to compute
an estimate of the probability for the system to satisfy the property with some
level of significance. Our work has been implemented in Uppaal SMC, that is,
an extension of Uppaal that relies on verifying metric interval temporal logic
(MITL) properties using our stochastic semantic and statistical model checking
algorithms. Our tool comes together with a friendly user interface that allows a
user to specify complex problems in an efficient manner as well as to get feedback
in the form of probability distributions and compare probabilities to analyze per-
formance aspects of systems. Uppaal SMC has been applied to a wide range
of examples from networking and Nash equilibrium [5] to system biology [9],
real-time scheduling [8], and energy-aware systems [7]. A major difference with
classical Matlab Simulink® approaches is that ours relies on formal models
for both the system and the requirements, hence allowing to express eventually
complex properties and behaviors in a straight-forward way.

As a main contribution we improve over the framework presented in [7] for
modeling, analyzing and in particular optimizing control strategies for energy
aware buildings. The framework consists of several parameterized components
(rooms, building, heaters, weather, user, . . . ) as well as a collection of properties
for evaluating comfort, and energy profiles of various control strategies, i.e.,
various values for the parameters. The challenge is to find the best value of a
parameter to optimize a given property.

We then propose a systematic approach to encode the problem via stochastic
hybrid automata. Our approach relies on a new framework to optimize param-
eters of the controller given in the Hybrid Systems Verification Benchmark of
[12] to control temperatures of rooms in a given building.

We address the problem by working with a refined technique called analysis
of variance (ANOVA) to compare many distributions in one method potentially
more efficient than many pair-wise Student’s t-test [18] applications and thus
generalizes t-test for many distributions. There can be many different arrange-
ments of those distributions and in particular we are interested in a so called
two-factor factorial experiment design [18], where our two parameters become
the two factors (two orthogonal dimensions), the parameter values become fac-
tor levels (discrete values on those two dimensions), and a cost (discomfort or
energy) is the measured outcome value. We can then reuse the data gathered
by ANOVA to estimate the energy and discomfort for interesting values of pa-
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rameters. “Discomfort” is interpreted as a distance between a desired range of
temperature and the current temperature.

We have implemented our technique and show that it works faster than the
naive statistical model checking approach.

2 Stochastic Hybrid Automata

In [11], we proposed Uppaal SMC that is a new release of Uppaal that supports
verification of probabilistic timed automata via simulation-based approaches [22].
Details can be found in [10]. In [7] we generalized the model to stochastic hybrid
automata (SHA) that are timed automata whose clock rates can be changed
to be constants or expressions depending on other clocks, effectively defining
ordinary differential equations (ODEs). Uppaal SMC4 supports fully hybrid
automata with ODEs and a few built-in complex functions (such as sin, cos,
log, exp and sqrt) since version 4.1.10. We only recall informally the modeling
language of SHA through an example because it is not a contribution in this
paper.

A Simple 2-Room Example To illustrate the SHA model as supported by Up-

paal SMC, we consider the case of two independent rooms that can be heated
by a single heater shared by the two rooms, i.e., at most one room can be heated
at a time. Figure 1a shows the automaton for the heater in Uppaal notation
where the circle inscribed means initial location and U inscribed means urgent
location (no time delay is allowed). The heater starts in location OFF and turns
itself on after picking a delay between [0, 4] as there is no guard controlling lower
bound and only an invariant x ≤ 4 is setting the upper bound for time delay us-
ing clock x. The delay is chosen with a uniform probability distribution over that
interval. Then one of the weighted transitions is taken: the plain edge transition
from the location OFF is branched into either room 0 or room 1 (dashed edge).
The dashed edges have probabilistic weights 1 and 3: the room 0 is chosen with
probability 1

1+3
and room 1 with probability 3

1+3
. The heater stays on (location

ON 0 or ON 1) for some time, potentially forever. The delay in this case is picked
with an exponential probability distribution, for which we have to define the rate.
We use rate 2 for room 0 and rate 1 for room 1 and the interpretation is that the
stochastic controller is more eager to initiate the heating of room 1 than room 0,
as well as less eager to stop heating room 1. Both rooms are similar and are mo-
deled by the same template instantiated twice. Figure 1b shows an automaton for
room 0. The room is initialized to its initial temperature T=INIT[0] by leaving its
initial location Init which is also a committed location (inscribed with C). Then
the temperature T evolves by the derivatives T ′ = −T/10 or T ′ = K − T/10
depending on whether the heater is turned on or off. The equations are defined
as part of invariant expressions. Furthermore, when the heater is turned on, its
heating is not exact and is picked with a uniform distribution of K ∈ [9, 12],
realized by the update K=9+random(3). The variables T and K are clocks but

4 http://www.uppaal.org/.
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are used more generally as floating point numbers in the hybrid model. For this
purpose we stop K with the derivative expression K’==0. Furthermore, the us-
age of ODEs, such as T ′ = −T/10, prompts the checker to integrate the value
of T.

x=0

x=0

1

x<=4

2

off[1]!

on[0]!

1

3

on[1]!
ON_1

off[0]!

ON_0

OFF

(a) Stochastic heater.

Init

ONOFF
T’==K−T/10 &&
K’==0T’==−T/10

on[0]?

off[0]?

K=9+random(3)T=INIT[0]

(b) Room 0.

Fig. 1: A simple two room example.

Statistical Model Checking We use SMC [16, 21, 23, 3] to estimate and test on the
probability that a random run of a network of SHAs will satisfy a given property.
Given a model H and a trace property ϕ (e.g. expressed in LTL [19] or MTL
[15]), SMC refers to a series of simulation-based techniques that can be used to
answer two questions: (1) Qualitative: is the probability that a random run of H
will satisfy ϕ greater or equal to a certain threshold θ (or greater or equal to the
probability to satisfy another property ϕ′)? and (2) Quantitative: what is the
probability that a random run of H will satisfy ϕ? In both cases, the answer will
be correct up to a user-specified level of significance or level of confidence that
bounds the probability of making a wrong conclusion. Our Uppaal SMC tool-
set implements a wide range of SMC algorithms for answering qualitative and
quantitative questions on networks of SHAs. The tool supports not only classical
reachability and safety properties, but also general weighted MTL properties
[6, 4]. One can exploit the quantitative engine of SMC to do parameter sweep
in order to optimize some quantity. In this paper, we will rather exploit the
statistical method called ANOVA that will ease the estimation of parameters in
a single step.

SMC on the 2-Room Example First we visualize the behaviour of our stochastic
controller by checking the property simulate 1 [<=120] { Room(0).T, Room(1).T }.
Figure 2 shows the evolution of both temperatures (shown with the short names
T0 and T1). The results are in accordance with the controller automaton. Based
on this plot we can now do some quantitative analysis by checking the query

Pr[<=120]([] Room(1).Init || Room(1).T >= 10)
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Fig. 2: Evolution of room temperatures.

This query asks for an estimate of the
probability that the temperature of
room 1 stays above 10 degrees for runs
bounded by 120 time units. After 4239
runs the checker returns the interval
[0.36, 0.42] with 99% confidence level.
The tool can also test the hypothe-
sis that this probability is greater or
equal than 0.37. After 2523 runs, this
is confirmed with a level of signifi-
cance of 0.01 and an indifference re-
gion of size ±0.01.

3 The Energy-Aware Building Challenge

We consider the case of an energy-aware building where rooms are modeled
according to the layout shown in Fig. 3. A number of heaters are available and

H1

H2H3
R5

R2

R4

R3R1

Fig. 3: Layout of the rooms Ri

with the heaters Hk.

can be moved between rooms. The rooms can
transfer heat between each other and an ad-
jacency matrix gives the heat transfer coeffi-
cients (not shown here for brevity). The goal
is to design a controller that will maintain the
room temperatures within acceptable comfort
ranges despite adverse weather conditions.

This case-study reproduces the model-
checking challenge of hybrid systems proposed
in HSCC [12]. In this paper, we focus on one
type of controller for which we want to find good parameters to minimize energy
consumption and maximize comfort. Furthermore, the weather model is fixed,
though every run has an uncontrollable range of temperatures.

The room temperature dynamics is described by a differential equation:

T ′
i =

∑

j 6=i

ai,j(Tj − Ti) + bi(u− Ti) + cihi

where Ti and Tj are the temperatures in room i and j respectively, u is the envi-
ronment temperature, and hi is equal to 1 when the heater is turned on in room
i and 0 otherwise. The adjacency matrix a gives the heat exchange coefficients
ai,j between rooms i and j. The heat exchange with the environment is encoded
in a separate vector b, where bi is a energy loss coefficient for room i. The power
supply from heaters is encoded in a vector c, where ci is a power coefficient for
room i. The corresponding hybrid automaton is shown in Fig. 4a. The automa-
ton is maintaining its own Boolean need[id] to inform the central controller that
a heater is needed and cold[id] to keep track of uncomfortable rooms. This im-
proves over the model of [7] since we can accumulate the discomfort over all the
rooms with the (dynamic) rate in the (more compact) automaton of Fig. 5b. The
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cold[id]=false

need[id]=falseneed[id]=true

cold[id]=true

T[id]=T0[id]

30
T[id]’==(cvec[id]*h[id] + 
  bvec[id]*(u+−T[id]) + 
  sum(j:rid_t)(Amat[id][j]*(T[j]+ −T[id])))/scale

cold[id] &&
T[id] >= Tlow[id]

need[id] &&
T[id] > Tget[id]

!need[id] &&
H[id]==0 && 
T[id]<=Tget[id]

!cold[id] &&
T[id] < Tlow[id]

(a) Room template.

off[r]!

on[r]!

h[r]=0,
r=target

move[r]?

move[r]?off[r]!

c’==0

On

r=target

h[r]=0

c’==5

h[r]=1
Off

60 60

T[r]<=Ton[r]

T[r]>=Toff[r]

(b) Heater template.

Fig. 4: Stochastic hybrid automata model.

change in modeling discomfort allows us to avoid local optima when searching
for good parameters (in the next section) where one room could be heated with
low energy while another room would be cold. There are two levels of heater con-
trol: primary (local) controller at the individual heaters and secondary (central)
controller which determines how the heaters are switched over from one room to
another. The local controllers use a bang-bang strategy, i.e., when the controlled
value (here the temperature T[r]) goes below or above a threshold, the controller
changes action. In our case, when the temperature T[r] is below Ton[r], the heat-
ing is turned on (with h[r]=1), and when the temperature T[r] is above Toff[r],
the heating is turned off (with h[r]=0). The hybrid automaton of the heater is
shown in Fig. 4b. The central controller can switch over the heating from one
room to another. The room is said to be needing a heater if the temperature
drops below its Tget threshold and it is said to be outside the comfort zone if the
temperature drops below Tlow. We used the thresholds according to [12], based
on the heuristics that the temperature difference between rooms should not be
too high. This controller is shown in Fig. 5a.

Whenever the heating is turned on, the heaters consume some energy whose
rate is determined by the vector pow (power). The monitor automaton keeping
track of discomfort (accumulated time spent when rooms are cold) and this
energy consumption is shown in Fig. 5b.

Figure 6 shows the automaton used for the user profile: the room parameters
are changed based on the time of the day and whether the room is occupied or
not. For example, the room is preheated starting from 5o’clock in the morning

!need[target] || H[target]>0

need[i] && H[i]==0 &&
H[j]>0 && T[j]>=Tget[j] 100

j:rid_t

i:rid_t, j:rid_t

need[target] && H[target]==0 &&
H[j]>0 && T[j]>=Tget[j]

i:rid_t

importance[i]*
(H[i]==0)*need[i]

H[target]=H[j], H[j]=0
move[j]!

target=i

100

choosingidle

(a) Central controller.

i: onRange_t,
j: getRange_t
setOnGet(i,j)

energy’==(sum(i:hid_t) 5*h[i]) &&
discomfort’==(sum(i:rid_t) cold[i])

1

(b) Discomfort and en-
ergy monitor.

Fig. 5: Stochastic hybrid model for controller and outcome monitor.
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t<=13 x<=1

t<=5

arrive

leave

Tlow[id]=tday[id].Tlow
t<=18t<=9

t<=24

x=0, 
bvec[id]++

t>=17

t==24

x>0t>=12
afternoonlunch

t==5

morning

absent

t>=8
x=0,
bvec[id]−−

t=0

Toff[id]=tnight[id].Toff,
Ton[id]=tnight[id].Ton,
Tget[id]=tnight[id].Tget,
Tlow[id]=tnight[id].Tlow

Toff[id]=tday[id].Toff,
Ton[id]=tday[id].Ton,
Tget[id]=tday[id].Tget

Toff[id]=tnight[id].Toff,
Ton[id]=tnight[id].Ton,
Tget[id]=tnight[id].Tget,
Tlow[id]=tnight[id].Tlow

Fig. 6: Stochastic hybrid automaton of the user profile.

and the user arrives between 8 and 9 which increases the Tlow threshold require-
ment. The energy leakage into environment is increased by bvec[id]++ when the
user opens a window before entering location lunch and is decreased by bvec[id]−−

when the user comes back and closes the window.
The weather model in this study is fixed to be a daily cycle of temperatures

varying between ±A+B where the amplitude A is picked uniformly in [0, 2] and
the offset B in [0, 1].

In order to optimize the energy consumption we also model a user profile
which assumes that at night it is acceptable for the temperatures to drop to 8◦C.
Furthermore, in the morning the rooms should be preheated to about 20◦C and
should not be lower than 17◦C when the user arrives between 8 and 9 o’clock
(with a uniform distribution).

Parameters The goal of this study is to find optimal values for temperature
thresholds Ton (primary controller) and Tget (secondary controller) with respect
to energy consumption and user discomfort time. The method is simply to pa-
rameterize the model by varying the Ton and Tget between the values [16, 22]◦C,
and estimate energy consumption and comfort time for various configurations
using Uppaal SMC. The parameter value variation is modeled as a uniform
choice during the first discrete stochastic transition in the automaton shown
in Fig. 5b. Then the energy and discomfort time is computed using derivative
expressions over all rooms by the same automaton.

4 Optimizing Control Strategies

First, we explain the methodology of our approach and then we present the
empirical results following the methodology.

4.1 Methodology

We are interested in two aspects of the system: discomfort time and energy
consumed – two notions of a cost that are in conflict if we try to optimize both
of them, i.e. lowest energy might imply large discomfort and vice-versa, while
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some configurations are better compromises. Thus our goal is to identify the best
configurations when preferring a lower discomfort for some energy ranges or a
lower energy consumption for some ranges of discomfort – the so called Pareto-
optimal frontier. But before we find the Pareto frontier, we need to estimate
both costs for every configuration.

A simple approach would be to estimate confidence intervals (average ± stan-
dard error) for both costs with some given confidence level (say 95%) and for each
configuration of the parameter values, and then compare them. The problem is
that it can take a lot of measurements to achieve confidence for every configura-
tion and even then the intervals may still overlap due to higher variance in some
combinations. A better suited technique for comparisons is a pair-wise Student’s
t-test [18] which reduces the comparison of two distributions to checking that
the mean of their differences is below, above or equal to zero. The improvement
here is that if two distributions are significantly different then we would observe
earlier with less samples that the confidence interval for the differences does not
include zero and thus we could conclude with fewer measurements compared to
estimating all the individual means. However, the Student’s t-test is a pair-wise
test but we have many more than just two configurations, thus we would need
to apply this test at least n · log(n) times with the best sorting algorithm.

Statisticians developed a more refined technique called analysis of variance
(ANOVA) to compare many distributions in one method potentially more effi-
cient than many t-test applications and thus generalizes t-test for many configu-
rations. There can be different arrangements, but we are interested in a so called
two-factor factorial experiment design [18] in particular: our two parameters be-
come the two factors (two orthogonal dimensions), the parameter values become
factor levels (discrete values on those two dimensions) and the cost (discomfort
or energy) is the measured outcome value. In such design, we are interested
in all pair-wise combinations of parameter values, and those combinations can
be arranged on a two dimensional grid. In this experiment design, ANOVA is
based on estimating the parameters for a linear model5 and computing how
much influence each factor has on the outcome. The computed measure, called
the F-statistic, is a ratio of a mean square for a particular factor and an error
square. The F-statistic is then translated into a P-value by looking up the ta-
bles of F-distribution. P-value is called the factor significance: the probability of
making an error by stating that the factor has influence on the outcome, thus
the smaller the P-value the more confidence that the factor is significant.

An important assumption of this experiment design is that the measurements
should be balanced (the amount of samples is the same across all configurations),
therefore the minimum amount of data is one sample per each configuration, and
at least two samples per configuration if we are also interested in the interaction
between factors. Our overall method is described by the following steps:

1. Using Uppaal SMC, generate enough runs to provide enough measurements
for each parameter configuration so that the data is balanced. At least two

5 a linear equation predicting the outcomes given the concrete factor values.
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runs per configuration are required, but our parameter values are chosen
stochastically by Uppaal SMC, thus there might be some negligible balanc-
ing overhead.

2. Apply ANOVA on the gathered and balanced data so far. For this pilot
study we use the implementation from the statistical tool R [20], but it is
well known in textbooks and simple to implement in any other tool.

3. If our factors are significant then stop data generation and proceed to the
next step, otherwise loop back to Step 1 and append more samples.

4. Reuse the gathered samples so far and compute the confidence intervals
(average with standard error) for the means of cost (discomfort and energy)
for each pair-wise parameter value combination.

5. Compute the Pareto frontier of discomfort and energy over configurations.
6. Present the Pareto frontier as a set of optimal parameter values the user can

choose from as a compromise between energy consumption and discomfort.

Figure 7 shows a pipeline overview of operations performed with some steps
marked where data is visualized by rectangles and operations as rounded rectan-
gles. The dashed arrows indicate the change of control flow in Step 3. In general,
Step 2 is not guaranteed to show factor significance so that Step 3 could proceed
to Step 4, even if lots of data is presented. For example significance will not be
reported if some factor/parameter has no influence on the measured outcome.
Therefore an alternative test is needed to detect the independence in order to
terminate the data generation (there can be several options to explore, thus we
leave this generalization as a future work).

R−tool

ANOVA
perform

Significance:

P−value
F−statistic

UPPAAL SMC

stochastic runs
generate

Last state:

values & cost
parameter

Balance
cost by

param.values

Model

parameters
with

R−tool

means & error
compute

Pareto−optimal

& cost
param.values

Pareto alg.
compute
frontier

1. 2.

4. 5.

3.

Fig. 7: Pipeline for finding the Pareto-optimal configurations of parameters.

In addition, we pick out a few configurations, estimate means using Up-

paal SMC probabilistic query and compare them to validate some of the results.
We also compare the performance of ANOVA based method with a simple mean
value estimation method.

4.2 Results

We have parameterized the model with two parameters (factors in our experi-
ment design) represented by temperature thresholds Ton and Tget each varying
between 7 values (factor levels resp.), thus yielding 49 distinct pair-wise com-
binations to be tested. We instrumented Uppaal SMC simulator to record the
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Fig. 8: Scatter plot of measurements colored by parameter value configuration.

last values from a run. Consequently the query simulate 100 [<=2∗day] { Ton,

Tget, discomfort, energy } generates 100 runs and stores the values of Ton, Tget,
discomfort and energy as tuples. The gathered results can be plotted in terms of
discomfort and energy. However, the individual data is scattered so much that it
is impossible to distinguish individual clusters. An example plot of 3136 points is
displayed in Fig. 8, where a different color used for every combination, but most
configurations result in overlapping clusters (except one on the right), configu-
rations are visually indistinguishable and thus the results need to be processed
further.

In our setup the newly produced simulation results are streamed into a small
C++ program which balances the data across parameter combinations, i.e. it
outputs the data when all combinations have enough data. The balanced data is
then analyzed using R scripts applying ANOVA. Table 1 shows an output from
ANOVA performed on 98 measurements (two measurements per each combina-
tion, and there are 7 · 7 combinations): the first column shows factors, the fifth
contains F-statistic and the sixth – P-value. The coefficients of underlying linear
model are appended at the bottom of the table, which means that the model

Table 1: ANOVA table with coefficients of the linear model provided by R [20].

Analysis of Variance Table

Response: discomfort

Df Sum Sq Mean Sq F value Pr(>F)

Ton 1 4159.3 4159.3 63.8874 3.303e-12 ***

Tget 1 0.4 0.4 0.0063 0.9369

Ton:Tget 1 4.1 4.1 0.0629 0.8026

Residuals 94 6119.7 65.1

---

(Intercept) Ton Tget Ton:Tget

60.8283113 -2.2867466 1.0029695 -0.0510851
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Table 2: Summary of sequential applications of ANOVA.

Number Discomfort time Energy consumption
of runs Factor F value P-value F value P-value

2 · 49 Ton 63.8874 3.30e-12 0.7147 0.4000
Tget 0.0063 0.9369 17.5777 6.24e-05

Ton : Tget 0.0629 0.8026 0.7181 0.3989

4 · 49 Ton 136.1676 <2e-16 1.1647 0.2818
Tget 0.1537 0.6955 17.9283 3.55e-05

Ton : Tget 0.0003 0.9869 0.0582 0.8096

8 · 49 Ton 315.7978 <2e-16 2.4425 0.1189
Tget 0.1202 0.7290 35.8938 4.76e-09

Ton : Tget 0.0096 0.9218 0.8253 0.3642

16 · 49 Ton 629.1384 <2e-16 6.5909 0.01044
Tget 0.5895 0.4429 90.9612 <2e-16

Ton : Tget 0.2852 0.5935 5.3053 0.02152

32 · 49 Ton 1263.5390 <2e-16 27.9527 1.42e-07

Tget 1.0840 0.2980 172.3296 <2.2e-16

Ton : Tget 0.5401 0.4625 3.2632 0.07104

64 · 49 Ton 2575.3208 <2e-16 65.6245 7.74e-16

Tget 4.6682 0.0308 405.4892 <2.2e-16

Ton : Tget 0.5949 0.4406 0.1926 0.6608

predicts the mean discomfort with expression 60.82 − 2.29 · Ton + 1.00 · Tget −
0.05 · Ton · Tget.

In our setup, we apply the ANOVA method each time new simulation data
is appended. Table 2 displays a summary of ANOVA results for discomfort time
and energy consumption when the amount of measurements is increased with
each row. The first iteration with just one sample per configuration is not reliable
to detect interactions, thus we start with two. The table shows that even in the
first step Ton is significant for discomfort (since P<0.05) and get is significant
for energy. Later more significance emerges as more data is supplied. We stop
at iteration of 64 samples per configuration (64 · 49 = 3136 simulations) where
both factors Ton and Tget are significant (since P<0.05) in both outcomes. Their
interaction (Ton:Tget) is still not significant in distinguishing outcomes (since
P>0.05). Figures 9a and 9b show the planes of linear models learned by ANOVA:
higher Ton and Tget values are preferred to lower the discomfort, but smaller
values are preferred for lower energy. Discomfort and energy are clearly in a
conflict. Perhaps a compromise can be found in upper Ton and lower Tget levels
as the plane seems more tilted in the opposite corner which should be avoided.
Next, we look at the individual cost estimates.

Figure 9c shows estimated means with standard error bars (95% confidence
intervals) aggregated by configurations. The plot shows Pareto-optimal frontier
of mean values: points which dominate others by yielding smaller discomfort and
energy values. We also plot the dominating minimum values to illustrate that
original data is widely scattered.
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Fig. 9: Estimated energy and discomfort for various parameter combinations.

Figure 10 shows level maps of averages as shades of gray and contours sig-
nifying equal levels. Discomfort is greatest on the bottom-left and there is a
valley of small preferred values around (17;17) and (18;18) (discomfort=7.29,
energy=219.6). The energy consumption is greatest on the top-right with a val-
ley at around (17;18). Pareto-optimal means are marked by larger circles and
it seems that configuration (22;18) (discomfort=7.83, energy=219.0) offers nice
compromise between discomfort and energy, it is also further from steep slopes
which might be at risk of yielding long discomfort time.

The plots show that four (more than half) of Pareto-optimal configurations
are in the bottom-right corner as predicted by the ANOVA linear model and
the other three are found closer to the center – the surface curving which could
not be predicted by a linear model. Thus ANOVA can be used to detect the
significant parameters and provide a linear model of overall tendencies.

4.3 Comparison with Estimation

Next we evaluate the efficiency of ANOVA in discriminating the means of all the
configurations in contrast to estimating simple costs (energy and discomfort).
Two configurations are chosen for more detailed comparison: a Pareto-optimal
configuration (22; 18; 7.83± 0.23; 218.99± 2.32) and a non-optimal configuration
worse than this optimal (21; 18; 8.16 ± 0.26; 221.38 ± 2.33). To validate our re-
sults we would like to use our SMC technique in Uppaal SMC to evaluate the
means and compare them but we cannot directly do that. Instead we check the
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Fig. 10: Level maps of estimated mean values where Pareto-optimal configura-
tions marked as: small circles for the minimum values and larger circles for mean.

following queries Pr[discomfort<=100] (<> time>=2∗day) and Pr[energy<=1000](<>

time>=2∗day). The actual probability is not interesting here (will be close to
one), but rather the resulting distribution over discomfort and energy. We can
then derive the mean that we want from this data as shown in Fig. 11.

Table 3: Estimated means.

Ton Tget discomfort energy Optimal?

22 18 7.83 220.0 Pareto
21 18 7.86 222.1 no
22 19 8.57 226.8 no
22 17 11.22 214.8 Pareto

The results for the Pareto-optimal config-
uration is in solid red lines. A summary
of estimated means is described in a Ta-
ble 3. The estimated means for combina-
tion (22;18) (discomfort 7.83 and energy
220.0) are smaller than in alternative con-
figuration (21;18) (7.86 and 222.1 resp.),
and thus (Ton=22; Tget=18) is a slightly
better choice than (Ton=21; Tget=18). Another Pareto-optimal configuration
(Ton=22;Tget=17) uses less energy, but the discomfort is noticeably larger, thus
incomparable with (22;18).

Uppaal SMC used 738 runs (80s) for each query to compute the cost with
95% confidence level (the confidence interval still needs to be computed). In
principle it would take 7 · 7 such queries to estimate discomfort for each con-
figuration (plus the same amount for energy), thus in total 36162 simulation
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(a) Over discomfort.
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Fig. 11: Probability of reaching 2 days.
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runs (≈ 3920s ≈ 1h 5min6). The ANOVA-based analysis required only 3136
simulation runs (≈ 366s = 6min 6s) – an improvement of 11.5 times. Thus we
conclude that ANOVA method requires less measurements and consequently less
simulations in order to differentiate and pick the optimal configurations.

5 Conclusion

The analysis of variance has been used in a sequential manner to decide if there
is enough data for distinguishing the effects of two factors on two different costs
in a two-factor factorial design. The ANOVA method can identify the significant
factors by computing the F-statistic, however it can be problematic if the chosen
factor has no influence on the outcomes (the P-value does not converge), thus
an alternative test is needed to conclude independence to ensure termination.

We have demonstrated the technique on an energy aware buildings example
and have identified Pareto-optimal configurations in terms of both discomfort
and energy consumption. Thus SMC can be used to analyze complex models and
determine cost-optimal parameter values using statistically efficient methods.
The approach can also be distributed across a cluster of computers, but the load
balancing algorithm need also to be fair with respect to parameter values as
required by the analysis of variance.

There are many other experiment design variations including more factors
and thus in the future it would be interesting to generalize the ANOVA method
and implement the support for parametric SMC using general factorial designs
inside the model checker.
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