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Abstract Cyber-physical systems are to be found in numerous applications throughout society. The principal

barrier to develop trustworthy cyber-physical systems is the lack of expressive modelling and specification for-

malisms supported by efficient tools and methodologies. To overcome this barrier, we extend in this paper the

modelling formalism of the tool Uppaal-smc to stochastic hybrid automata, thus providing the expressive power

required for modeling complex cyber-physical systems. The application of Statistical Model Checking provides

a highly scalable technique for analyzing performance properties of this formalisms.

A particular kind of cyber-physical systems are Smart Grids which together with Intelligent, Energy Aware

Buildings will play a major role in achieving an energy efficient society of the future. In this paper we present a

framework in Uppaal-smc for energy aware buildings allowing to evaluate the performance of proposed control

strategies in terms of their induced comfort and energy profiles under varying environmental settings (e.g.

weather, user behaviour, ...). To demonstrate the intended use and usefulness of our framework, we present an

application to the Hybrid Systems Verification Benchmark of [10].
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1 Introduction

Trustworthy Cyber-Physical Systems The term cyber-physical systems [13] refers to the tight

conjoining of and coordination between computational and physical entities. Cyber-physical systems are

large-scale distributed systems, often viewed as networked embedded systems, where a large number of

computational components are deployed in a physical environment. Each component collects information

about and offers services to its environment (e.g., environmental monitoring and control, health-care

monitoring and traffic control). This information is processed either at the component, in the network

or at a remote location (e.g., the base station), or in any combination of these.

Cyber-physical systems are to be found in numerous applications throughout the society, ranging from

automated highway systems (AHS) [9], air traffic control systems [16], personal and medical devices

[11], Smart Grids and energy aware buildings to mention a few. Being as such omnipresent, it is utmost

important that these systems are trustworthy, in terms of adaptability, autonomy, efficiency, functionality,

reliability, safety, security and usability. However, there are a number of challenges that have to be

addressed before such a vision can be realized. The principal barrier to develop trustworthy cyber-physical

systems is the lack of modelling and specification formalisms with supporting tools and methodologies

that comprehend cyber and physical resources in a single unified framework.

A characteristic of cyber-physical systems is that they have to meet a multitude of quantitative con-

straints, e.g., timing constraints, power consumption, memory usage, communication bandwidth, QoS,

and often under uncertainty of the behaviour of the environment. Existing model-driven methodologies

for embedded systems are rather sophisticated in handling functional requirements, and some methods

are good at handling special kinds of quantitative constraints; however, there is a lack of a mathematical

foundation and supporting tools allowing to handle the combinations of quantitative aspects concerning,

such as time, stochastic behaviour, energy consumption.

Stochastic Hybrid Systems and Statistical Model Checking In our previous work [7, 8] we have

proposed the formalism of Priced Timed Automata (PTA), that are extensions of timed automata [2],

where clocks may have different rates (even potentially negative) in different locations. PTAs are as

expressive as linear hybrid automata [1] providing high expressive power useful for modelling complex

cyber-physical systems, but also rendering most problems either undecidable or too complex to be solved

with classical model checking approaches. To overcome these limitations, we proposed in [7] to apply

Statistical Model Checking (SMC) techniques [14, 18, 15, 12], which is a highly scalable simulation-based

approach. Of course, in contrast to an exhaustive model-checking approach, a simulation-based solution

does not guarantee a correct result with 100% confidence. However, it is possible to bound the probability

of making an error by increasing the simulation effort. Simulation-based methods are known to be far

less memory and time intensive than exhaustive ones, and are sometimes the only option [3]. Also,

several interesting properties – including performance properties – that cannot be expressed in classical

temporal logic may be analyzed. SMC consists in randomly generating and monitoring simulations runs

of the system and verify whether they satisfy a given property. The results are then used by statistical

algorithms in order to compute among others an estimate of the probability for the system to satisfy

the property. Such an estimate is correct up to some confidence that can be parameterized by the user.

Several SMC algorithms that exploit a stochastic semantics for PTAs have recently been implemented

in Uppaal-smc [7, 8, 5], including a distributed implementation demonstrating linear speed-up, thus

providing additional scalability.

In the present paper, we significantly extend the modelling formalisms of Uppaal-smc to stochastic

hybrid automata (SHA), which are (stochastic) timed automata whose clock rates can be changed into

be constants or expressions depending on other clocks, effectively defining ODEs. As we shall see this

extension enables the elegant modelling and efficient analysis of cyber-physical systems with complex

stochastic and continuous behaviour of the environment.
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Figure 1: A simple NSHA illustrating races.

Energy Aware Buildings A particular kind of cyber physical systems are Smart Grids which together

with intelligent, energy aware buildings will play a major role in the society in the future by balancing the

growing amount of distributed renewable energy plants towards the varying amount of consumer demands.

Major world governments led by EU, China and U.S. have defined plans for the further developments

of Smart Grids until 2020 [4, 6, 17]. In these plans, energy aware buildings are supposed to plan their

energy consumption/production on a 24 hour basis based on forecasts for weather, prices and desired

comfort level. The challenge of developing such plans is addressed in a number of international and

national projects, and the authors are currently collaborating with the Danish national defense building

administration in a pilot study on providing an estimate of the potential energy savings through intelligent

forecast and control of energy.

Contribution and Outline As a contribution within the general area of energy aware buildings and

the specific pilot study, we offer in this paper a framework in Uppaal-smc for modelling and analyzing

energy aware buildings. In Section 2 we first present the tool Uppaal-smc and its modelling and

validation features. In Section 3 we present the energy aware building framework, which consists of

several parameterized components (rooms, building, heaters, weather, user, . . . ) as well as a collection

of properties for evaluating comfort and energy profiles of various control strategies. To demonstrate

the intended use and usefulness of our framework, we present in Section 4 an application to the Hybrid

Systems Verification Benchmark of [10] addressing the control of the temperature of rooms in a given

building. In addition to the original challenge we offer evaluation of performance properties related to

comfort and energy consumption in more complex environmental settings. We also demonstrate the

scalability of the performance analysis offered by Uppaal-smc. Finally we offer a conclusion including

future work in Section 5.

2 Statistical Model Checking

Uppaal-smc supports the analysis of stochastic hybrid automata (SHA) that are timed automata whose

clock rates can be changed to be constants or expressions depending on other clocks, effectively defining

ODEs. This generalizes the model used in our previous work [8, 7] where only linear priced automata

were handled. Our new release Uppaal-smc 4.1.101 supports fully hybrid automata with ODEs and a

few built-in complex functions (such as sin, cos, log, exp, sqrt)!

We assume that SHA are input-enabled, deterministic (with a probability measure defined on the sets

of successors), and non-zeno. SHA communicate via broadcast channels and shared variables to generate

Networks of SHA (NSHA).

Fig. 1(a) provides an NSHA with three components A, B, and T as specified using the Uppaal GUI.

One can easily see that the composite system (A|B|T ) has the transition sequence:

1www.uppaal.org.
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,

demonstrating that the final location T3 of T is reachable. As shown in Fig. 1(b), location T3 is reachable

within cost 0 to 6 and within total time 0 and 2 in (A|B|T ) depending on when (and in which order)

A and B choose to perform the output actions a! and b!. Assuming that the choice of these time-delays

is governed by probability distributions, a measure on sets of runs of NSHA is induced, according to

which quantitative properties such as “the probability of T3 being reached within a total cost-bound of

4.3” become well-defined.

In our early work [7], we provide a natural stochastic semantics, where SHA components associate

probability distributions to both the time-delays spent in a given state as well as to the transition be-

tween states. In Uppaal-smc uniform distributions are applied for bounded delays and exponential

distributions for the case where a component can remain indefinitely in a state. In an NSHA the compo-

nents repeatedly race against each other, i.e. they independently and stochastically decide on their own

how much to delay before outputting, with the “winner” being the component that chooses the minimum

delay. For instance, in the NSHA of Fig. 1(a), A wins the initial race over B with probability 0.75.

In addition, ODEs are solved by an internal (invisible) automaton that naturally races against all the

other automata with a small discrete time step. Every time this internal automata wins, it forces the

re-computation of all clock rates, achieving a linear piece-wise approximation of the actual function given

by the ODEs.

As observed in [7], though the stochastic semantic of each individual SHA in Uppaal-smc is rather

simple (but quite realistic), arbitrarily complex stochastic behavior can be obtained by their composition

when mixing individual distributions through message passing. The beauty of our model is that these

distributions are naturally and automatically defined by the NSHA.

A Simple 2-Room Example To illustrate the various aspects of the (extended) modeling formalism

supported by Uppaal-smc, we consider the case of two independent rooms that can be heated by a single

heater shared by the two rooms, i.e., at most one room can be heated at a time. Figure 2(a) shows the

automaton for the heater. It turns itself on with a uniform distribution over time in-between [0, 4] time

units. With probability 1/4 room 0 is chosen and with probability 3/4 room 1. The heater stays on for

some time given by an exponential distribution (rate 2 for room 0, rate 1 for the room 1). In summary,

one may say that the controller is more eager to initiate the heating of room 1 than room 0, as well as less

eager to stop heating room 1. The rooms are similar and are modelled by the same template instantiated

twice. Figure 2(b) shows room 0. The room is initialized to its initial temperature and then depending

on whether the heater is turned on or not, the evolution of the temperature is given by T ′ = −T/10 or

T ′ = K − T/10. Furthermore, when the heater is turned on, its heating is not exact and is picked with

a uniform distribution of K ∈ [9, 12], realized by the update K=9+random(3).

This example illustrates the support for NSHA in Uppaal-smc with extended arithmetic on clocks

and generalized clock rates.
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Figure 2: A simple two room example.
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Extended Input Language Uppaal-smc takes as input NSHA as described above. Additionally,

there is support for other features of the Uppaal model checker’s input language such as integer variables,

data structures and user-defined functions, which greatly ease modelling. Uppaal-smc allows the user to

specify arbitrary rates for the clocks, which includes a mix of integer and clock expressions on any location.

In addition, the automata support branching edges where weights can be added to give a distribution

on discrete transitions. It is important to note that rates and weights may be general expressions that

depend on the states but not just simple constants.

Checking Queries The fundamental principle in Uppaal-smc is to generate runs and evaluate some

expression on the states along the obtained run. Runs are always bounded, either by time, by a number

of steps, or more generally by cost (when using a clock explicitly). The engine has a built-in detection of

Zeno behaviours to stop the generation of such runs. Examples of the syntax for the different types of

bounds are [<=100] for 100 time units since the beginning of the run, [#<=50] for 50 discrete transitions

taken from the initial state, and [x<=200] until the clock x reaches 2002.

Uppaal-smc supports simulations with monitoring custom expressions, probability evaluation, hy-

pothesis testing, and probability comparison. We can simulate and plot the temperatures with the query

simulate 1 [<=120]{Room(0).T,Room(1).T}

The query asks the checker to simulate one run over 120 time units and plot the temperatures of Room(0)

and Room(1). The heater in this example is purely stochastic and does not meet any particular require-

ment. Still, the simulation obtained from this query in Figure 2(c) shows that the heater is able to

maintain the temperatures within (mostly) distinct intervals.

We can evaluate on a shorter time scale the probability for the temperature of Room(0) to stay below

15 and the temperature of Room(1) to stay above 10 with the queries

Pr[<=100]([] Room(0).Init || Room(0).T <= 15)

Pr[<=100]([] Room(1).Init || Room(1).T >= 10)

The results are respectively in [0.32, 0.43] and [0.38, 0.49]. The precision and confidence of these so-called

confidence intervals are user-defined and influence the number of runs needed to compute the probability.

In this example, to set the precision to ±0.05 with a confidence of 95%, we need 738 runs. In fact if we

are only interested in knowing if the second probability is above a threshold it may be more efficient to

test the hypothesis

Pr[<=100]([] Room(1).Init || Room(1).T >= 10) >= 0.42

which is accepted in our case with 1109 runs for a level of significance of 95%. To obtain an answer at

comparable level of precision with probability evaluation, we would need to use a precision of ±0.005,

which would require 73778 runs instead.

The tool can also compare probabilities without needing to compute them individually. We can test

the hypothesis that the heater is better at keeping the temperature of Room(1) above 10 than keeping

the temperature of Room(0) below 15:

Pr[<=100]([] Room(1).Init || Room(1).T >= 10) >=

Pr[<=100]([] Room(0).Init || Room(0).T <= 15)

which is accepted in this case with 95% level of significance with 1432 runs.

3 Framework for Energy Aware Buildings

This section describes our framework for modeling and evaluating control systems for energy aware

buildings. The framework consists of a number of templates and queries which can be instantiated

2It is up to the modeler to ensure that the clock eventually reaches the bound.
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Figure 3: Layout of a building and its representation.

and composed to reflect a particular building configuration with customizable control strategies. The

templates are parameterized hybrid stochastic automata accepted by Uppaal and the queries address

probabilistic properties over time, comfort and energy counters, providing insights about the comfort and

energy consumption. The framework is our set of templates and analysis methodology describing how

to model and analyze the building models using Uppaal-smc. In this paper we explore a number of

configurations using different templates and parameter settings. There are three parameter-dimensions:

• Environment temperatures: We use different patterns to model fixed values, abstract oscilation

covering ranges of values, and a simple daily weather.

• Strategies for secondary controllers: We use three different strategies of switching over the heating

between the rooms.

• User temperature profiles: We use different thresholds of temperatures to define user preferences

that are either static or presence-based.

We examine 3× 3× 2 = 18 combinations in total and draw some conclusions based on data provided by

the tool. First, we describe our assumptions about the building setup and then proceed how this setup

is modeled and analyzed using integrated Uppaal toolkit.

3.1 Heated Building Setup

As a starting point, consider a setup proposed by [10] as a benchmark challenge for hybrid systems

model-checkers. The benchmark consists of a building layout with temperature dynamics, autonomous

heaters and a central controller deciding which room gets a heater. The room temperature dynamics is

described by a differential equation:

T ′
i =

∑

j 6=i

ai,j(Tj − Ti) + bi(u− Ti) + cihi

room 1 2 3 4 5

off 21 21 21 21 21

on 19 19 19 19 19

get 16 17 18 17 16

low 15 16 16 16 15

dif 1.0 1.0 1.0 1.0 1.0

imp 1 30 2 3 4

pow 5 5 5 5 5

Table 1: Temperature thresholds.

where Ti and Tj are the temperatures in room i and j respec-

tively, u is the environment temperature and hi is equal to 1 when

the heater is turned on in the room i and 0 otherwise. The build-

ing layout is encoded by an adjacency matrix a where ai,j is a heat

exchange coefficient between rooms i and j. The heat exchange

with an environment is encoded in a separate vector b, where bi is a

energy loss coefficient for room i. An energy supply from a heater

is encoded in a vector c, where ci is a power coefficient for room

i. Figure 3 shows a benchmark building configuration instance

(HEAT15 in [10]) with rooms and heaters, where the wall thickness

corresponds to an isolation defined by a and b. Each heater is

equipped with a bang-bang controller configured to turn on the

heating (hi := 1) when the temperature Ti is below threshold oni
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and turn off (hi := 0) when the temperature Ti is greater than offi . Whenever the heating is turned on,

the heaters consume the amount of power denoted by vector pow. The central controller can switch-over

the heating from one room to another. The room is said to be needing a heater if the temperature drops

below its get threshold and it is said to be outside comfort zone if the temperature drops below low.

Table 1 shows a list of temperature thresholds for each room. Table 2 describes three strategy variations

of when the heating can be switched over. Strategy 1 is the original one from [10], which is based on

heuristics that the temperature difference between rooms should not be too high. Strategy 2 is based on

assumption that one should not take heating away from a room which also needs heating. Strategy 3 tells

that the heating can be taken away if the heater may potentially be turned off without disturbing the

local control objective. To reduce the non-determinism further, we consider probabilistic choices between

the possible room destinations denoted by probabilistic weights imp.

Table 2: Strategies for switching-over the heating from room j to room i.

Strategy 1 Strategy 2 Strategy 3

room i has no heater room i has no heater room i has no heater

room j has a heater room j has a heater room j has a heater

temperature Ti 6 geti temperature Ti 6 geti temperature Ti 6 geti

difference Tj − Ti > difi threshold Tj > getj threshold Tj > onj

Further we propose to augment this setup with specific weather conditions and a user profile to make a

more realistic case and consider more options for optimizing the energy consumption. The benchmark [10]

assumes that the environment temperature is within a range between 0◦C and −2◦C without any specific

dynamics. We consider three cases of temperature curves: constantly at −2◦C (worst case scenario),

rapidly changing between 0◦C and −2◦C and slowly changing between 0◦C and −2◦C (as in a night and

day cycle). Figure 4(a) shows one daily cycle.
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Figure 4: Temperature dynamics over one day and night cycle.

3.2 Modeling in Uppaal-smc

The goal is to provide a flexible and scalable modeling framework, which is achieved through modular

composition of separate SHA processes. The complete model consists of the following SHA processes

composed in parallel: weather environment, rooms, heaters, central controller and a user profile for each

room. Each room has its own identifier from room-identifier type domain rid t which is an integer

ranging from 1 to the number of total rooms in the building. Similarly the heaters are identified by

hid t type. Then the building layout (room adjacency matrix) is encoded by two dimensional array over

rid t×rid t. The dynamical coefficients, threshold vectors and temperatures are represented by arrays

of integers and clocks over rid t domain. Our model assumes that the model time units are in hours

and the coefficients are specified as scaled integers with scale == 100.

SHA model of a room with an identifier id is shown in Fig. 5(a). The first (urgent) transition sets the

temperature to the initial value (T0[id]) and moves to Normal location where the temperature changes



8 David, Du, Larsen, Mikucionis, Skou

according to the dynamics specified as invariant (cvec[id] amount of contribution from the heater when

h[id] == 1, bvec[id] is a contribution from an environment with temperature u and the rest is from

adjacent rooms). The room may move to location Low and set the variable need[id] to true showing that

it needs a heater if the temperature drops below get[id] threshold. Similarly the room may return from

Low to Normal if the temperature becomes higher than the threshold. The exponential rate of 30 specifies

that the guards on the edges are evaluated according to exponential delay distribution, on average of 30

times per time unit (hour). Figure 5(b) shows the heater controller model which moves between locations

T[id]>get[id]

T[id]=T0[id]

H[id]==0 && 
T[id]<=get[id]

need[id]=trueneed[id]=false
ASAP!

T[id]’==(cvec[id]*h[id] + 
  bvec[id]*(u+−T[id]) + 
  sum(j:rid_t)(Amat[id][j]*(T[j]+ −T[id])))/scale

30

30
Low

T[id]’==(cvec[id]*h[id] + 
  bvec[id]*(u+−T[id]) + 
  sum(j:rid_t)(Amat[id][j]*(T[j]+ −T[id])))/scale

Normal

(a) Template for Room temperature.

move[r]?

move[r]?
T[r]<=on[r]

T[r]>=off[r] 6060
c’==0

h[r]=0,
r=target

r=target

On

c’==h[r]

Off
h[r]=1

h[r]=0

(b) Template for Heater control.

i:rid_t, j:rid_t

j:rid_t

i:rid_t100

move[j]!

100
need[i] && H[i]==0 &&
H[j]>0 && T[j]−T[i]>=dif[i]

need[target] && H[target]==0 &&
H[j]>0 && T[j]−T[target]>=dif[target]

H[target]=H[j], H[j]=0

target=i

idle

imp[i]*need[i]
*(H[i]==0)

choosing

(c) Template for strategy 1 (as in [10]).

i:rid_t
T[i]<low[i]

10001000
OK

comfort’==0 &&
energy’==sum(i:hid_t) 
                   pow[i]*h[i]

Discomfort
forall(i:rid_t) 
  T[i]>=low[i]

comfort’==1 &&
energy’==sum(i:hid_t)
                  pow[i]*h[i]

(d) Template of Monitor for comfort and en-

ergy.

Figure 5: The main stochastic hybrid automata templates use in our case-study.

Off and On based on the temperature thresholds on[r ] and off [r ] where r is the room number that the

heater is in. The guards are evaluated 60 times per hour on average and the energy cost of individual

heater is computed by local clock variable c increasing with a rate h[r] in location On. The heating can

be switched over to another (target) room by a message move[r], which is trivial in location Off but it

requires switching the heater off in location On.

The central controller decides how to move the heater from one room to another room. If more than one

room need the heater at the same time, the central controller will choose one candidate room according to

the importance of the rooms. Figure 5(c) shows the template for the first strategy described in Table 2.

The second and third strategies follow the same template except for the last condition given in the table.

The idea of this strategy template is to monitor all possible heating switch-overs from room i to j, choose

a particular destination based on stochastic choice (dashed edge with a stochastic weight imp[i]) and

then issue a request to move the heater from room j to target. The variable H[i] denotes the heater

identifier if it has a heater and 0 otherwise.

We consider two templates for the user profile requirements, a static profile as in [10]) and a dynamic

profile. Fig. 4(b) shows our dynamic profile that models a more realistic office-user like behavior:

• the cycle starts with night settings (lower temperature thresholds),

• at 6 the settings are switched to a day mode for early preheating,

• between 8 and 9 a room user arrives and sets the low threshold,
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• between 12 and 13 the user goes for a lunch and thus opens a ventilation (bvec is increased) for one

hour,

• between 17 and 18 the user leaves and sets the night mode back and the cycle starts over again.

3.3 Properties

Uppaal-smc supports to visualize the values of expressions along runs, which helps the user monitor

the behavior of the system. The query simulate 1 [<=2*day] { T[1], T[2], T[3], T[4], T[5] }

computes one simulation trace and monitors the temperature of the environment and the five rooms. The

result is shown in Fig. 6. The movements of heaters can be traced similarly.
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time
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Figure 6: Sample simulation of room temperature dynamics.

The comfort requirement says that all temperatures in the building should be higher than the low

threshold, thus the probability of a discomfort over two days can be estimated by the following query:

Pr[<=2*day](<> time>0 && exists(i:rid_t) T[i]<low[i])

This property can only estimate the chance of observing the temperature below a threshold, which may

potentially last for very short time and thus a better metric is to estimate the duration of a comfort time,

which requires a monitoring variable encoding this time.

For monitoring purpose we add an additional process Monitor to encode the notion of comfort as shown

in Fig. 5(d). The idea of the monitor that it stays in the location OK while all the room temperatures

are above their low threshold and it moves to discomfort whenever there is a room with temperature

below low , then it would move back to OK when all temperatures are above their low threshold. Now the

probability of a discomfort over two days can be estimated by the following query:

Pr[<=2*day](<> time>0 && Monitor.Discomfort)

Furthermore, location OK monitors the comfort time by specifying that the clock comfort is increased by

rate 1, while it is being stopped in location Discomfort. Thus the comfort time can be estimated by the

following queries:

E[time<=2*day; 1000] (<> max: comfort)

Pr[comfort<=2*day] (<> time>=2*day)

They both compute the same thing: the first computes the estimated value of comfort time over 1000

traces within a span of two days (the number of traces is explicit), and the second computes the probability

of reaching time beyond two days within a large energy bound – which is trivially true, but in addition the

tool provides a probability distribution of the energy values (the number of traces is implicit, determined

by the tool parameters).

Similarly to comfort time, the consumed energy is estimated by a clock energy , which increases with a

rate of current total power consumption. The currently drawn total power is a sum of pow [i ] ∗ h[i ] over

all heaters (see constraints for energy ′ in Fig. 5(d)), where pow [i ] is the power of a heater i and h[i] is 1

when the heater i is on. The following two queries estimate the value of the energy variable:

E[time<=2*day; 1000] (<> max: energy)

Pr[energy<=1000000] (<> time>=2*day)
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4 Application of the Framework

This section describes the application of our framework to the Hybrid System Verification Benchmark,

which addresses the control of the temperature of rooms in a given building. Some experiments have

been carried out with Uppaal-smc, which demonstrates how to estimate and compare the performance

of various control strategies proposed in Section 3. According to the factorial design space, there are six

various scenarios given in Table 3. Each scenario has different weather conditions and user profiles. Our

Table 3: Different scenarios for the energy aware buildings.

Case1A Case1B Case2A Case2B Case3A Case3B

Daily Weather Daily Weather Rapid Weather Rapid Weather Flat Weather Flat Weather

Static User Dynamic User static User Dynamic User Static User Dynamic User

aim is to analyze and compare three control strategies for each scenario. The capabilities of our tool

allows us, for each scenario, to

• estimate and compare the probability of experiencing discomfort within a certain time bound,

• estimate and compare the distribution of the accumulated time of comfort,

• and estimate and compare the distribution of energy consumption.

4.1 Analyzing the Probability of Experiencing Discomfort

We expect that users will experience discomfort when the room temperature drops below a low thresh-

old. Given a specific scenario and control strategy, we want to estimate the probability of experiencing

discomfort within a certain time bound. With the query

Pr[<=2*day](<> time>0 && Monitor.Discomfort)

the probability of discomfort for each room with various strategies is evaluated. The superposed plots of

the cumulative probability distribution for each scenario are shown in Fig. 7. We show the results of the

different strategies side-by-side to compare them and to identify the best strategy. For example, Fig. 7(b)

shows that Strategy3 is superior with lowest probability of discomfort. Furthermore, we want to know

what the effect of the user profile is on the probability of discomfort. For example, with daily weather, the

difference between static user and dynamic user should be inspected according to Fig. 7(c) and Fig. 7(f).

From an overall point of view, if users are allowed to change the setting of room temperature (i.e. dynamic

user), the probability distribution is concentrated in the time interval [8.0,8.8], but, for the static users

the discomfort may be experienced at any time during two days. It is obvious that a dynamic user will

experience much more comfort than a static user. According to the other sub-figures in Fig. 7, the same

conclusion should be reached for the other scenarios.

As main conclusion we state the following:

• For dynamic users, the three strategies are indistinguishable in terms of the probability of ex-

periencing discomfort.

• For static users, Strategy 3 gives the lowest probability of experiencing discomfort with daily

weather model.

4.2 Analyzing Accumulated Comfort Time

Accumulated comfort time is an important performance property to be estimated, which tells the total

comfort time that a user may have been exposed to. The probability distributions of accumulated comfort

time within an overall time-bound of 2 days are estimated with the query:
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Figure 7: Cumulative probability distribution of discomfort for different cases.

Pr[comfort<=2*day] (<> time>=2*day)

Each sub-figure in Fig. 8 shows the superposed plots of the probability density distribution of comfort

time for different strategies. For example, Fig. 8(f) shows that Strategy 1 gives the maximum accumulated

comfort time when the setting is daily weather with dynamic user. For Strategy 2 and Strategy 3, there

is no distinguishable difference in terms of the distribution of accumulated comfort time over 2 days.

s3

s2

s1

comfort time

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y

0

2

4

6

8

10

12

14

47.30 47.52 47.74 47.96

(a) Flat weather, Static user.

s3

s2

s1

comfort time

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y

0

4

8

12

16

20

24

47.34 47.55 47.76 47.97

(b) Rapid weather, Static user.

s3

s2

s1

comfort time

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y

0

9

18

27

36

45

54

47.45 47.62 47.79 47.96

(c) Daily weather, Static user.

s3

S2

s1

comfort time

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y

0

0.15

0.30

0.45

0.60

0.75

0.90

37.4 38.7 40.0 41.3 42.6

(d) Flat weather, Dynamic user.

s3

s2

s1

comfort time

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

39.9 40.7 41.5 42.3 43.1

(e) Rapid weather, Dynamic user.

s3

s2

s1

comfort time

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y

0

0.2

0.4

0.6

0.8

1.0

1.2

41.68 42.66 43.64 44.62

(f) Daily weather, Dynamic user.

Figure 8: Probability density distribution of comfort time for different cases.
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As main conclusion we state the following:

• For static users, the three control strategies are indistinguishable in terms of the distribution of

accumulated comfort time over 2 days;

• For dynamic users, Strategy 1 gives the maximum accumulated comfort time regardless of the

weather model.

4.3 Analyzing Energy Consumption of Strategies

For the energy aware buildings, it is very important to analyze and minimize the energy consumption

under different scenarios. In this subsection, the performance analysis of the various strategies in terms

of their energy consumption will be provided. By verifying the query:

Pr[Monitor.energy<=1000000](<> time>=2*day)

the probability distribution of the total energy consumption over 2 days is estimated. The superposition

of the plots for the three strategies are shown in Fig. 9. Concerning energy consumption, the situations

with the dynamic user are much better than the one with static user. The difference between three

strategies with the same environment and user profile are shown in each sub-figure. For example, the
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Figure 9: Energy consumption for different cases over two days.

superposed plots in Fig. 9(c) show that Strategy 1 consumes least energy. The detailed evaluation data

are shown in Table 4.

Table 4: Energy consumption with daily weather and static user.

Strategy Minimum Maximum Mean

Strategy 1 290.419 312.14 301.157

Strategy 2 294.462 314.08 303.82

Strategy 3 292.75 311.805 303.048
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We make the following main conclusions:

• For static users, there is no significant difference between the average energy consumption of the

three strategies, independent of the weather condition;

• For dynamic users, Strategy 2 consumes least energy, independent of the weather condition.

4.4 Analyzing Performance Effect of User Profile

We attempt to evaluate the effect of users profile on the overall energy consumption. For each strategy,

we compare the difference of energy consumption between static users and dynamic users. The results

are shown in Fig. 10, where the legend dynamic represents dynamic user and static represents static user.

Here, the weather is daily changing with day and night.
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Figure 10: Probability density distribution of energy consumption for static and dynamic user.

We state the following main conclusion:

• All three control strategies demonstrate significant reduction in energy consumption (approxi-

mately 40%) by taking the dynamic behavior of users into account.

5 Conclusion

In this paper we have presented a modelling framework for energy aware buildings, which allows to

evaluate the performance of proposed control strategies in terms of their induced comfort and energy

profiles under varying environmental settings. The framework is realized in the tool Uppaal-smc, which

has been extended with stochastic hybrid systems as a new and expressive modeling formalism offering

a range of statistic model checking algorithms for their efficient analysis. Also the framework has been

applied to the Hybrid Verification Tool Benchmark of [10]. In particular we have identified an energy

optimal strategy (Strategy 2), which is even superior from a (accumulated) comfort point of view. Also,

we have demonstrated that taking the dynamic requirements of a user into account may significantly

lower the energy consumption. The framework is easily extendable with other environmental features

such as changeable price of energy, as well as forecast of available renewable energy (wind, solar, . . . ).

Within the ongoing pilot project with the Danish national defense building administration we also plan to

extend the framework to incorporate information from alarm-systems, ventilation systems, light systems

in order to identity even more energy saving strategies.
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