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Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

Timed-arc Petri nets (TAPN) are a well-known time extension of the Petri net model and several

translations to networks of timed automata have been proposed for this model. We present a direct,

DBM-based algorithm for forward reachability analysis of bounded TAPNs extended with transport

arcs, inhibitor arcs and age invariants. We also give a complete proof of its correctness, including

reduction techniques based on symmetries and extrapolation. Finally, we augment the algorithm

with a novel state-space reduction technique introducing a monotonic ordering on markings and

prove its soundness even in the presence of monotonicity-breaking features like age invariants and

inhibitor arcs. We implement the algorithm within the model-checker TAPAAL and the experimental

results document an encouraging performance compared to verification approaches that translate

TAPN models to UPPAAL timed automata.

1 Introduction

Time-dependent models and their formal analysis have attracted a considerable research activity. No-

table formalisms include timed automata (TA) [3], time Petri nets (TPN) [18] and timed-arc Petri nets

(TAPN) [7]. A comparison of the different modelling formalisms is provided in [23].

We shall focus on the TAPN model where tokens are assigned a nonnegative real number represent-

ing their age and input arcs of transitions contain time intervals restricting the usable ages of tokens for

transition firing. The state-space of the model is in general infinite in two dimensions: the number of

tokens in a marking can be unbounded, and the continuous time aspect induces infinitely many clock val-

uations. Indeed, the reachability problem for the model is undecidable [21], while coverability remains

decidable [2]. Moreover, for modelling purposes additional features like inhibitor/transport arcs and age

invariants are needed but they cause the undecidability also of the coverability problem [14].

We restrict our focus to bounded TAPNs where the maximum number of tokens in all reachable

markings is fixed. This model is equally expressive to networks of timed automata [22] and efficient

translations from TAPN into UPPAAL timed automata [16] have been implemented and employed in

the model-checker TAPAAL [9]. The translation approach has though some drawbacks: experimenta-

tion with state-space reduction techniques is difficult and the engine does not return error traces when

symmetry reduction is enabled.

We therefore design a novel reachability algorithm for extended TAPN that incorporates an efficient

extrapolation, symmetry reduction and monotonic inclusion techniques to optimize its performance,

while at the same time returning error traces with concrete time delays. We give a complete proof

of the algorithm correctness, including all the optimization techniques. We provide an efficient (C++),

open-source implementation of the algorithm and integrate the new engine into the tool TAPAAL. The

experiments confirm a high efficiency of the new reachability algorithm and we document this by two

larger case-studies.
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Related work. Verification techniques for TAPNs include a backward coverability algorithm based on

existential zones [2] (notably terminating also for unbounded nets) and a forward reachability algorithm

based on region generators presented in [1]. Both algorithms rely on the monotonic behavior of the

generated transition systems, however, inhibitor arcs and age invariants break this monotonicity [14] and

hence the techniques are not applicable for extended TAPNs. Backward algorithms are generally rather

inefficient for on-the-fly state-space exploration and for the employment of state-space reductions while

the forward algorithm from [1] is based on a less efficient region construction instead of a zone-based

one. The algorithms were implemented in prototype tools with no GUI and are not maintained any more.

There are efficient tools like TINA [6] or Romeo [12] for model-checking Time Petri nets (TPN).

The tools are based on abstractions using state-class graphs but even though bounded TPN are essentially

equally expressive as bounded TAPNs (see [23] for an overview), the translations are exponential and

do not allow to perform a direct performance comparison because the modelling capabilities and the

treatment of time in TPN and TAPN are very different.

The definition of our extrapolation (abstraction) operator is following [4] where a similar operator

was suggested for timed automata; our extension (apart from its adaptation to the TAPN setting) is

the handling of dynamic maximum constants depending on the current marking (see also [13] for a

dynamic extrapolation on timed automata). The main novelty is our definition of an inclusion operator

that incorporates symmetry reduction and works also for nets with monotonicity-breaking features.

2 Timed-Arc Petri Nets

Let N be the set of natural numbers and let N0 = N∪{0}. By R≥0 we denote the set of non-negative

real numbers. The set of time intervals I is given by the abstract syntax (a ∈ N0,b ∈ N and a < b):

I ::= [a,a] | [a,b] | [a,b) | (a,b] | (a,b) | [a,∞) | (a,∞). The set of invariant intervals, IInv, consists of

intervals that include 0.

Let C = {0,1,2, . . . ,n} be a finite set of real-valued clocks whose elements (numbers) represent

names of clocks. The clock 0 is a special pseudoclock that has always the value 0. A (clock) valuation

over C is a function v : C → R≥0 such that v(0) = 0. The set of all valuations over the clocks C is

denoted by W
C . Let v be a valuation and d a nonnegative real. We let v + d be the valuation such that

(v+d)(i) = v(i)+d for every i ∈ C \{0} and (v+d)(0) = 0. Further, for a subset of clocks R ⊆ C , we

let vR=0 be the valuation such that vR=0(i) = 0 if i ∈ R and vR=0(i) = v(i) otherwise.

p1
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3.4

p3

inv: < 3
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t
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6]

Figure 1: A TAPN with Pairing(t) =
{(p1, p4),(p2, p3),(⊥, p5),(⊥, p6)}

Let W ⊆ W
C be a set of valuations and let R ⊆ C . We define

the delay operation as W ↑ = {v+d | v ∈W and d ∈R≥0} and the

reset operation as W R=0 = {vR=0 | v ∈W}.

A timed labeled transition system (TLTS) is a tuple

(S,Lab,−→) where S is a set of states (or processes), Lab =
Act∪R≥0 is a set of labels, consisting of discrete actions and time

delays, and −→⊆ (S×Lab×S) is the transition relation. We of-

ten write s
α

−→ s′ instead of (s,α ,s′) ∈−→ and if the label is not

important, we simply write s −→ s′.

We shall now define the Timed-Arc Petri Net (TAPN) model,

restricting ourselves to k-bounded nets (where every reachable

marking has at most k tokens). An example of a 4-bounded TAPN

is given in Figure 1. It consists of six places (circles), one transition (rectangle) and two tokens of age 2.1

and 3.4 representing the current marking. Input arcs to the transition t contain time intervals and because
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both tokens belong to the corresponding interval, the transition can fire, consume the two tokens in p1

and p2, and produce a new token of age 0 to each of the places p3, p5 and p6. Because the place p1 is

connected to p4 via a pair of transport arcs (denoted by a diamond tip), the token of age 2.1 is moved to

p4 while its age is preserved. Should there be more pairs of transport arcs connected to the transition t,

we label them with numbers so that the routes on which tokens travel are clearly marked. Finally, note

that the place p4 has an associated age invariant, restricting the possible ages of tokens in the place to

strictly less than 3. Should we in the current marking first delay 0.9 time units, both tokens in p1 and p2

would still fit into their intervals but the transition t is not enabled any more due to the age invariant in

the place p4.

Definition A TAPN is a 7-tuple (P,T, IA,OA,c,Type, ι) where

• P is a finite set of places,

• T is a finite set of transitions such that P∩T = /0,

• IA ⊆ P×T is a finite set of input arcs,

• OA ⊆ T ×P is a finite set of output arcs,

• c : IA → I assigns intervals to input arcs,

• Type : IA∪OA −→ {Normal, Inhib}∪{Transporti | i ∈N} is a function assigning a type to all arcs

such that

– Type(a) = Inhib ⇒ a ∈ IA∧ c(a) = [0,∞),

– Type(p, t) = Transportℓ ⇒∃!(t, p′) ∈ OA .Type(t, p′) = Transportℓ and

– Type(t, p′) = Transportℓ ⇒∃!(p, t) ∈ IA .Type(p, t) = Transportℓ, and

• ι : P → Iinv assigns age invariants to places.

For notational convenience, we write Type(a) = Transport if Type(a) = Transportℓ for some ℓ. For a

transition t ∈ T , we define the preset of t as •t = {p ∈ P | (p, t) ∈ IA,Type(p, t) 6= Inhib} and the postset

of t as t• = {p ∈ P | (t, p) ∈ OA}.

We denote by P⊥ the set P∪{⊥} where ⊥ is a special symbol representing a pseudo-place that holds

the currently unused tokens. The augmented preset and augmented postset of a transition t are defined

as the multisets

◦t = {p1, . . . , pm | {p1, . . . , pℓ}=
•t, pi =⊥ if ℓ < i ≤ m}

t◦ = {p1, . . . , pm | {p1, . . . , pℓ}= t•, pi =⊥ if ℓ < i ≤ m}

where m = max(|•t|, |t•|). This guarantees that |◦t| = |t◦| for any transition t, a convenient technical

detail used in the algorithms. We also extend the definition of c and ι such that c(⊥, t) = [0,∞) whenever

⊥ ∈ ◦t and ι(⊥) = [0,∞).
A token in a k-bounded TAPN is an element from the set {1,2, . . . ,k}. A marking is a pair M = (pl,v)

where pl : {1,2, . . . ,k} → P⊥ is the placement function and v : {1,2, . . . ,k} → R≥0 is the age function.

The placement determines the current location of each token (it returns ⊥ if the token is unused) and the

age function represents the age of each token. The placement function will be sometimes written as a

vector where e.g. [p1, p2, p1] represents the fact that tokens 1 and 3 are located in the place p1 and token

2 is located in p2. The set of all markings on a k-bounded TAPN N is denoted by M (N). A marked

k-bounded TAPN is a pair (N,(pl0,v0)) where N is a k-bounded TAPN and (pl0,v0) is the initial marking

where v0(i) = 0 for all i, 1 ≤ i ≤ k.
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Since there are always k tokens in any marking (unused ones are in ⊥), it is for algorithmic purposes

convenient to fix for each transition the paths from input to output places. This is formalized in the

function Pairing : T → 2P⊥×P⊥ such that for every transition t we have

Pairing(t) = {(p1, p′1), . . . ,(pℓ, p′ℓ) | {p1, . . . , pℓ}=
◦t,{p′1, . . . , p′ℓ}= t◦ and

Type(pi, t) = Type(t, p′j) = Transportℓ ⇒ i = j} .

An example of a possible pairing function is given in Figure 1.

The effect of moving tokens in a placement pl by firing a transition t with the pairing Pairing(t) =
{(p1, p′1), (p2, p′2), . . . ,(pℓ, p′ℓ)} is defined in the expected way as follows. Let IN = {i1, i2, . . . , iℓ} ⊆
{1,2, . . . ,k} be a set of tokens placed in the places p1 to pℓ and used for firing t. Formally, pl(i j) = p j

for all 1 ≤ j ≤ ℓ. The move function move(pl, IN, t) : {1,2, . . . ,k}→ P⊥ is now given by

move(pl, IN, t)(i) =

{

pl(i) if i /∈ IN

p′j if i ∈ IN such that i = i j .

Consider Figure 1 and let pl =
[

p1, p2,⊥,⊥
]

. Then move(pl,{1,2,3,4}, t) =
[

p4, p3, p5, p6

]

.

Transition Enabledness A transition t ∈ T is enabled by a set of tokens IN ⊆ {1,2, . . . ,k} in a marking

(pl,v) if

(i) ◦t = {pl(i) | i ∈ IN}

(ii) v(i) ∈ c(pl(i), t) for all i ∈ IN

(iii) Type(pl(i), t) = Transport implies v(i) ∈ ι(move(pl, IN, t)(i)) for all i ∈ IN

(iv) (pl(i), t) ∈ IA implies Type(pl(i), t) 6= Inhib for all i ∈ {1,2, . . . ,k}\ IN.

A transition t is hence enabled if there is a token in each of its input places (i), the ages of these tokens

fit into the intervals on the input arcs (ii), the age of the token that is moved along a pair of transport arcs

does not break the age invariant of the place where is it moved to (iii), and there is no token in any place

connected via inhibitor arc to the transition t (iv).

Transition Firing A transition t enabled in a marking (pl,v) by the set of tokens IN can fire, producing

a marking (move(pl, IN, t),vR=0) where R = {i ∈ IN | Type(pl(i), t) 6= Transport}.

Time Delay A time delay of d ∈R≥0 time units is possible in a marking (pl,v) if v(i)+d ∈ ι(pl(i)) for

all i ∈ {1,2, . . . ,k}. By delaying d time units, we reach the marking (pl,v+d).

The concrete execution semantics of a TAPN N = (P,T, IA,OA,c,Type, ι) is given by a TLTS T (N) =
(M (N),T ∪R≥0,−→) where states are markings on N and labels are transition names and time delays.

The transition relation −→ is defined so that M
t

−→ M′ if by firing t in the marking M we reach the

marking M′, and M
d

−→ M′ if by delaying d time units in the marking M we reach the marking M′.

3 Symbolic Semantics

The concrete execution semantics is not suitable for the actual verification as there are infinitely (in fact

uncountably) many reachable markings. Therefore we give a symbolic semantics of k-bounded TAPNs

with respect to some given abstraction operator and show that the symbolic semantics preserves the

answer to the reachability question.
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A symbolic marking of a k-bounded TAPN is a pair (pl,W) where pl : {1,2, . . . ,k} → P⊥ is a place-

ment function and W ⊆ W
C is a set of valuations.

In order to guarantee the finiteness of the state-space in the abstract semantics, we consider abstrac-

tion operators that can enlarge (extrapolate) the possible sets of valuations in symbolic markings. Instead

of considering global abstraction operators like for example in the timed automata theory (see e.g. [4]),

our abstraction operators depend also on the current placement.

Definition An abstraction operator is a function α : [{1,2, . . . ,k}→ P⊥]×2W
C

−→ 2W
C

such that W ⊆
α (pl,W) for all symbolic markings (pl,W).

An example of an abstraction operator is the identity abstraction operator αid where αid (pl,W) =W

for all symbolic markings (pl,W).
Our aim is of course to find an operator that for a given net abstracts as much as possible. To do

so, we use the function mci : I → N0 that returns, for an interval I, the maximum constant different

from ∞ appearing in I. Let gc be the maximum constant different from ∞ that appears in intervals or

invariants of the given TAPN. The function mc : P⊥ → N0 now returns, for each place p, the maximum

constant appearing in the guards of outgoing arcs from p or in the invariant of p; if there are transport

arcs connected to p, the constant is gc.

mc(p) =







gc if there exists (p, t) ∈ IA s.t. Type(p, t) = Transport

max

(

mci(ι(p)), max
(p,t)∈IA

(mci(c(p, t)))

)

otherwise.

Following [4], we proceed to define an equivalence on valuations. The addition in our paper is that

we take the placement function into account, thereby allowing for dynamic maximum constants. Let pl

be a placement function and let v and v′ be valuations. We write v ≡pl v′ if for all i ∈ C \{0}

1. v(i) = v′(i), or

2. v(i)> mc(pl(i)) and v′(i)> mc(pl(i)).

Hence two related valuations are indistinguishable from each other in the sense that they can be used

to fire the same transitions. Now we can define an abstraction operator based on the relation above.

Definition Let α≡ (pl,W) = {v′ | v′ ≡pl v and v ∈ W} for a set of valuations W ⊆ W
C and a placement

function pl.

Clearly, W ⊆ α≡ (pl,W) for any set of valuations W ⊆ W
C and any placement function pl as the

relation is reflexive. For two abstraction operators α and α ′ we write α ⊆ α ′ if α (pl,W)⊆ α ′ (pl,W) for

all placement functions pl and all W ⊆ W
C .

We are now ready to give the symbolic semantics of TAPNs. Let g be a function that takes a place-

ment function pl, a set of tokens IN and a transition t as its arguments (assuming that ◦t = {pl(i) | i∈ IN})

and it returns the set of all valuations such that the tokens in IN satisfy all guards on the input arcs of t.

Formally, g(pl, IN, t) =
⋂

i∈IN{v ∈ W
C | v(i) ∈ c(pl(i), t)}. Similarly, we define a function I that takes

a placement function as its argument and returns the set of all valuations satisfying the age invariants.

Formally, I(pl) =
⋂

i∈C \{0}{v ∈ W
C | v(i) ∈ ι(pl(i))}.

Symbolic Semantics Let (N,(pl0,v0)) be a marked k-bounded TAPN and let α be an abstraction oper-

ator. The symbolic semantics of (N,(pl0,v0)) is given by a TLTS T (N) = (S,L, α) where

• S = [{1,2, . . . ,k}→ P⊥]× (2W
C

\ /0),
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• L = T ∪{ε}, and

• (pl,W)
t
 α (pl′,α (pl′,W ′)) if t is a transition and there is a set of tokens IN such that

– ◦t = {pl(i) | i ∈ IN}

– pl′ = move(pl, IN, t)

– W ′ def
= (W∩g(pl, IN, t))R=0∩ I(pl′) is consistent (W ′ 6= /0) where R = {i ∈ IN | Type(pl(i), t) 6=

Transport}

– (pl(i), t) ∈ IA implies Type(pl(i), t) 6= Inhib for all i ∈ {1, . . . ,k}\ IN

• (pl,W)
ε
 α (pl,α

(

pl,W ↑∩ I(pl)
)

).

The initial symbolic marking is (pl0,{v0}) where v0(i) = 0 for all i ∈ C .

Let us define
T
 α

def
= ∪t∈T

t
 α . We can now state the main theorem of this section, which establishes

soundness and completeness of the symbolic semantics for any abstraction operator between αid and α≡.

In fact, we allow to dynamically change the abstraction operators during a computation in the symbolic

semantics. Hence we consider a new transition relation αid,α≡

def
=

⋃

αid⊆α⊆α≡
 α allowing us to apply

in any step an arbitrary abstraction operator between the identity and α≡.

Theorem 3.1 Let (N,(pl0,v0)) be a marked k-bounded TAPN. Then

• (Soundness) (pl0,{v0})  
∗
αid,α≡

(pl,W) implies that there exists a valuation v ∈ W such that

(pl0,v0)−→
∗ (pl,v), and

• (Completeness) (pl0,v0)−→
∗ (pl,v) implies, for any abstraction operator α where αid ⊆ α ⊆ α≡,

that (pl0,{v0})
ε
 α ◦ (

T
 αid

◦
ε
 α)

∗ (pl,W) for some W where v ∈W.

Note that the completeness part of the theorem imposes that the symbolic semantics can reach the

given placement via a strictly alternating sequence of time elapsing and transition firing steps where the

transition firing steps are not extrapolated (using the identity abstraction operator); this reflects how the

successors are computed in the reachability algorithm discussed in Section 6.

4 Extrapolation via DBMs

For the use in our reachability algorithm, we need to represent infinite sets of valuations W in a finite

way. However, it is not known how to effectively deal directly with the α≡ abstraction operator. Instead,

we suggest a slightly less general abstraction (extrapolation) operator and a way to finitely represent

infinite sets of valuations in order to guarantee a finite and effectively searchable state-space of symbolic

markings.

For this purpose we use Difference Bound Matrices (DBM), a well-known technique for verifica-

tion of real-time systems (see e.g. [5, 10]) that allows us to store constraints on single clocks and on

differences of two clocks in a compact matrix-based data structure.

Difference Bound Matrix (DBM) A Difference Bound Matrix D over the set of clocks C is a |C |×|C |
matrix such that

Di j ∈ (Z×{<,≤})∪{(∞,<)}

where i, j ∈ C and for all i ∈ C we have

1. if D0i = (m,⊳) then m ≤ 0, and ⊳ ∈ {<,≤},
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2. if Di0 = (m,⊳) then m ≥ 0, and ⊳ ∈ {<,≤}, and

3. Dii = (0,≤).

A solution to a DBM D is a valuation v such that for all i, j ∈ C we have v(i)− v( j)⊳m where Di j =
(m,⊳). The set of all solutions to a DBM D (alternatively, the zone over D) is denoted by [D].

We refer to the elements Di j as bounds. A bound D0i = (m,⊳) where m ≤ 0 (by Condition 1) is

called the lower bound for the clock i. Such a constraint means v(0)−v(i)⊳m for any valuation v ∈ [D],
which is equivalent to −m⊳v(i). Similarly, a bound Di0 = (m,⊳) where m ≥ 0 (by Condition 2) is called

the upper bound for the clock i and it means that v(i)− v(0)⊳m which is the same as v(i)⊳m. Finally,

a bound Di j where i 6= 0 6= j is called a diagonal constraint.

For notational convenience, we introduce an alternative notation lb and ub for the lower and upper

bound of a clock i. Formally, lbD(i) = (−m,⊳) if D0i = (m,⊳) and ubD(i) = Di0. We further define a

notation for the individual elements in a bound such that lb
η
D(i) = m and lb⊳D(i) = ⊳ if lbD(i) = (m,⊳).

We use the same notation ub
η
D and ub⊳D also for upper bounds.

A DBM D is consistent if [D] 6= /0. We say that D is in canonical form if Di j � Dik +Dk j for all

i, j,k ∈ C . It is well known that for every consistent DBM D there is a unique canonical DBM Dc such

that [D] = [Dc] [10].

We now define a variant of one of the abstraction (extrapolation) operators on DBMs in order to

abstract sets of valuations represented by a DBM. The definition is inspired by [4], the main difference

being the use of dynamic maximum constants in our operator.

Extrapolation The extrapolation of a canonical DBM D in a placement pl is the DBM D′, called

extpl (D), and defined as follows (here i, j ∈ C \{0} such that i 6= j):

1. D′ := D

2. if mc(pl(i))< lb
η
D(i) then lbD′(i) := (mc(pl(i)),<) and ubD′(i) := (∞,<)

3. if ub
η
D(i)> mc(pl(i)) then ubD′(i) := (∞,<)

4. if mc(pl(i))< lb
η
D(i) or mc(pl( j))< lb

η
D( j) then D′

i j := (∞,<)

5. if Di j = (m,⊳) and m > mc(pl(i)) then D′
i j := (∞,<)

Intuitively, the extrapolation works by removing all upper bounds greater than the maximum constant

of a given place and by replacing any lower bound greater than the maximum constant with the value

(mc(pl(i)),<). Additionally, whenever the lower bound is above the maximum constant of a given

place, any diagonal constraint involving that clock are also removed. An example of a DBM D and its

extrapolation extpl (D) together with their graphical representations (clock 1 is on the x-axis and clock 2

on the y-axis) is given in Figure 2. We can see that the extrapolation operator enlarges the set of valuations

represented by D such that there are only finitely many extrapolated DBMs.

Lemma 4.1 The set {extpl (D) | D is a canonical DBM} is finite.

We can now conclude with the main result stating that the extrapolation provides an abstraction

which is between identity and α≡; a crucial and nontrivial fact needed for proving correctness of the

reachability algorithm.

Theorem 4.2 Let D be a canonical DBM and let pl be a placement function. Then [D] ⊆ [extpl (D)] ⊆
α≡ (pl, [D]).
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(0,≤) (−1,≤) (−3,≤)

(5,≤) (0,≤) (1,≤)

(6,≤) (3,≤) (0,≤)

(a) Canonical DBM D

(0,≤) (−1,≤) (−2,<)

(∞,<) (0,≤) (∞,<)

(∞,<) (∞,<) (0,≤)

(b) The DBM extpl (D)

(c) The zone [D]

mc(pl(1))

mc(pl(2))

(d) The zone [extpl (D)]

Figure 2: Example of the extrapolation operator for mc(pl(1)) = 1,mc(pl(2)) = 2

5 Monotonicity of Bounded TAPNs

It is a well-known fact that the behaviour of the basic TAPN model is monotonic [11] with respect to the

standard marking inclusion, intuitively meaning that adding more tokens to the net does not restrict its

behaviour. However, the use of age invariants and inhibitor arcs breaks the monotonicity property [14].

In this section, we introduce a more refined inclusion relation on symbolic markings that preserves

monotonicity even in the presence of age invariants and inhibitor arcs. Moreover, the inclusion relation

allows for reordering of tokens in the net and hence it implements the symmetry reduction. The inclusion

relation is then exploited in the reachability algorithm presented in Section 6.

Let us fix a marked k-bounded TAPN (N,(pl0,v0)). For a place p ∈ P, we define a boolean predicate

untimed(p) ≡ (ι(p) = [0,∞))∧∀t ∈ p• .(Type(p, t) 6= Transport ∧ c(p, t) = [0,∞)). If the predicate is

true, we do not need to keep track of the ages of tokens in this place. For a symbolic marking M we now

define the set INCM representing the set of tokens eligible for the inclusion checking.

Definition Let M = (pl,W) be a symbolic marking. We define INCM ⊆ {1,2, . . . ,k} as the largest subset

of tokens such that for any token i ∈ INCM ,

1. pl(i) 6=⊥,

2. ι(pl(i)) = [0,∞),

3. pl(i) has no outgoing inhibitor arcs, and

4. either untimed(pl(i)) or

• inf(Vi) ∈Vi ⇒ mc(pl(i))< inf(Vi), or

• inf(Vi) /∈Vi ⇒ mc(pl(i))≤ inf(Vi),

where Vi = {v(i) | v ∈W}.

Let us briefly comment on Condition 4. If a place is untimed then the ages of tokens in that place are

irrelevant and we can consider them for inclusion checking. Otherwise, the lower bound of clock i in

W is calculated by inf(Vi) and the two subconditions distinguish whether this bound is included or not1.

1In the DBM representation we can read these bounds directly from the matrix.
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The point is that if the lower-bound for the token i is above the maximum constant for the place where i

is placed, then its concrete age is irrelevant for the firing of transitions.

Let Pinc ⊆ P be a set of places that we want to consider for the inclusion checking (typically we set

Pinc = P but the user can restrict some places from the application of the inclusion operator by excluding

them from Pinc). We can now partition all tokens in the marking M = (pl,W) into three categories

• inc(M) = INCM ∩{i | pl(i) ∈ Pinc}

• bot(M) = {i | pl(i) =⊥}

• eq(M) = {1,2, . . . ,k}\ (bot(M)∪ inc(M))

where inc(M) contains all tokens eligible for inclusion checking, bot(M) contains all unused tokens and

eq(M) is the set of all tokens that have to be checked for equality. Let us now introduce some notation.

Let pl be a placement function, p a place and let X ⊆{1,2, . . . ,k} be a set of tokens. We define countX
pl(p)

= |{i ∈ X | pl(i) = p}|. Intuitively, countX
pl(p) tells us how many tokens from X are in the place p. We

are now ready to introduce the refined ordering relation.

Inclusion Ordering Let M = (pl,W) and M′ = (pl′,W ′) be symbolic markings. We say that M is in-

cluded in M′, written M ⊑ M′, if

1. There exists a bijection h : eq(M)→ eq(M′) such that

(a) pl(i) = pl′(h(i)) for all i ∈ eq(M),

(b) for all v ∈W there exists a v′ ∈W ′ such that for all i ∈ eq(M)

(i) v(i) = v′(h(i)), or

(ii) v(i)> mc(pl(i)) and v′(h(i))> mc(pl′(h(i))),

2. count
inc(M)
pl (p)≤ count

inc(M′)

pl′
(p) for all p ∈ P.

Hence two symbolic markings M and M′ are related by ⊑, if they agree on the sets eq(M) and

eq(M′) via the bijection h (this gives us the possibility to employ symmetry reduction), and moreover,

the number of tokens in any place p from the set inc(M′) in the marking M′ must be larger than or equal

to the number of tokens in the place p in the marking M. We finish this section by a theorem proving

monotonicity with respect to the ordering relation ⊑ for any abstraction operator below α≡.

Theorem 5.1 Let α be an abstraction operator such that αid ⊆α ⊆α≡ and M1,M2 ∈Mα(N,(pl0,{v0}))
be reachable symbolic markings such that M1 ⊑ M2. If M1  α M′

1 then M2  α M′
2 for some M′

2 such

that M′
1 ⊑ M′

2.

6 Implementation of the Reachability Algorithm

Before we present the reachability algorithm, let us first introduce a reachability fragment of CTL that is

used in the algorithm. A formula of the logic is given by the abstract syntax:

φ ::= EFψ | AGψ

ψ ,ψ1,ψ2 ::= (p ⊲⊳ n) | ψ1 ∧ψ2 | ψ1 ∨ψ2 (1)

where p ∈ P, n ∈ N0 and ⊲⊳ ∈{<,≤,=, 6=,≥,>}.

The semantics of formulae is given in terms of a TLTS (S,Lab,−→) and a labeling function µ : S →
2AP assigning sets of true atomic propositions to states. We define the set of atomic propositions AP
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and the labeling function µ as AP
def
= {(p ⊲⊳ n) | p ∈ P,n ∈N0 and ⊲⊳ ∈{<,≤,=, 6=,≥,>}} and µ(M)

def
=

{(p ⊲⊳ n) | count
{1,2,...,k}
pl (p) ⊲⊳ n and ⊲⊳∈{<,≤,=, 6=,≥,>}}. The intuition is that a proposition (p ⊲⊳ n)

is true in a marking M if the number of tokens in the place p satisfies the proposition with respect to n.

Since atomic propositions only depend on the discrete part of a marking, we adopt the same definition

of µ for symbolic markings. For a state s ∈ S and a formula φ , we define the satisfaction relation s |= φ

inductively as follows:

s |= (p ⊲⊳ n) iff (p ⊲⊳ n) ∈ µ(s)

s |= ¬ψ iff s 6|= ψ

s |= ψ1 ∧ψ2 iff s |= ψ1 and s |= ψ2

s |= ψ1 ∨ψ2 iff s |= ψ1 or s |= ψ2

s |= EFψ iff s −→∗ s′ and s′ |= ψ

s |= AGψ iff s 6|= EF¬ψ .

As the AG and EF temporal operators are dual, it is enough to design an algorithm for deciding the

validity of EFψ . Note that because the predicates do not allow us to query the ages of tokens in the

net, the presence of age invariants in the TAPN model adds an expressive power (otherwise we could

conjunct the age invariants with the intervals on input arcs and add to the formulae the requirement that

no place contains any token exceeding the invariant bound).

We say that a place p in a boolean predicate ψ defined according to Equation (1) is monotonicity-

breaking if ψ contains an atomic proposition of the form p < n, p ≤ n, p = n or p 6= n. In other words,

the inequality imposes some upper bound or an exact comparison to a concrete number in the place p.

Lemma 6.1 Let M and M′ be symbolic markings and let ψ be a boolean predicate defined by Equa-

tion (1) and let the set Pinc of inclusion places do not contain any monotonicity-breaking place. If M |= ψ

and M ⊑ M′ then M′ |= ψ .

Proof By structural induction on ψ . The induction step is trivial; we discuss here only the base case

for a proposition of the formi ψ = p ⊲⊳ n. Let (pl1,W1) and (pl2,W2) be symbolic markings such that

(pl1,W1)⊑ (pl2,W2). Let (pl1,W1) |= ψ .

If p is a monotonicity-breaking place than p 6∈ Pinc and all tokens in the place p belong to the set

eq((pl1,W1)). By Condition 1 of the inclusion ordering there exists a bijection h such that for all i ∈
eq((pl1,W1)) we have pl1(i) = pl2(h(i)) and hence in the marking (pl2,W2) the number of tokens in the

place p is equal to the number of tokens in the place p in the marking (pl1,W1) and we get (pl2,W2) |= ψ .

If p is not a monotonicity-breaking place, the constraint on p has the form p ≥ n or p > n. If the

tokens in the place p belong to eq((pl1,W1)) we are done by the arguments as above. If the tokens in

the place p belong to inc((pl1,W1)) then by Condition 2 of the inclusion ordering the number of tokens

placed in p in the marking (pl2,W2) is at least the number of tokens in the marking (pl1,W1) and because

the proposition on p states only a lower-bound, we can again conclude that (pl2,W2) |= ψ .

In order to present an efficient reachability algorithm, we need a finite representation for the poten-

tially infinite sets of valuations discussed in Section 5. We will thus use DBMs. However, we have to

implement the operations used on the sets of valuations, such as delay, clock reset and intersection, on

DBMs. Similarly, we need to define a DBM which represents a guard or invariant of the form i ∈ [(a,b)]
where i is a clock and [(a,b)] is a well-formed interval—here [( is either closed or open left parenthesis

and similarly for )].
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Proposition 6.2 Let D1 and D2 be canonical DBMs over the clocks C . Then the following operations

and DBMs can be computed efficiently

1. (Delay) D
↑
1 is a canonical DBM s.t. [D↑

1] = [D1]
↑.

2. (Reset) DR=0
1 where R ⊆ C is a canonical DBM s.t. [DR=0

1 ] = [D1]
R=0.

3. (Intersection) D1 ∩D2 is a canonical DBM s.t. [D1 ∩D2] = [D1]∩ [D2].

4. (Interval DBM) Di∈[(a,b)] is a canonical DBM s.t. [Di∈[(a,b)]] = {v ∈ W
C | v(i) ∈ [(a,b)]}.

5. (Discrete Inclusion) Let pl1 and pl2 be placement functions. The expression (pl1, [D1])⊑ (pl2, [D2])
can be computed efficiently.

All these operations can be efficiently implemented for DBMs (see e.g. [5, 20]) for details on operations

1–4; the fifth operator can be implemented using DBMs, as showed in the full version of the paper.

We can now perform a standard search through the state-space of symbolic markings using the

passed/waiting list approach. We start by adding the initial marking to the waiting list. As long as

the waiting list is nonempty, a symbolic marking M is removed from the waiting list, added to the passed

list, and all symbolic extrapolated successors of M are explored. If a successor M′ of M is below (w.r.t.

the ordering ⊑) some marking on the passed or waiting list, we ignore it. Otherwise we add M′ to the

waiting list and remove from the waiting and passed lists all markings that are below M′. We stop with

a positive answer once we find a marking satisfying a property we are searching for. If the whole state-

space is searched without finding such a marking, we return a negative answer. The search is performed

only upto k tokens in the net where this number is supplied by the user (it is undecidable whether there is

some k such that the net is k-bounded [14]). If the net is k-bounded for the given k (this can be automat-

ically verified) then this gives a conclusive answer, otherwise the search can give a conclusive answer

only if it finds a marking satisfying the given property.

The successor generation algorithm is presented in Algorithm 1 and the reachability algorithm is

given in Algorithm 2. Observe, as remarked above, that the algorithm will discard any generated succes-

sor marking if a larger marking is already present in the PASSED or WAITING list (line 11). Similarly,

if a generated successor marking is larger than some marking in the PASSED or WAITING list, then it

will remove all such smaller markings from the PASSED and WAITING list (lines 12 to 13).

Lemma 6.3 Algorithm 2 terminates.

Proof Let N be a k-bounded TAPN. We must argue that the state-space of the symbolic semantics is

finite. Since N is a k-bounded TAPN, it follows that there are only finitely many placement functions.

Further, from Theorem 4.1 we know that there are only finitely many extrapolated DBMs for a given

placement function. Thus, we may conclude that there are only finitely many symbolic markings in the

symbolic semantics using the extrapolation operator. Observe that Algorithm 2 will add each symbolic

marking to the WAITING list at most once. Thus, it follows that the algorithm terminates.

Lemma 6.4 If Algorithm 2 returns ”YES”, then (pl0,v0) |= EFψ .

Proof Assume that Algorithm 2 returns ”YES”. We must show that (pl0,v0) −→
∗ (pl,v) such that

(pl,v) |= ψ . We define αext(pl, [D])
def
= [extpl (D)] for any placement function pl and canonical DBM D

(for any set of valuations W that cannot be represented by a DBM we assume αext (pl,W)
def
= W).

Since the algorithm returned ”YES”, it must have found some symbolic marking (pl,D) such that

(pl,D) |= ψ . Observe that Algorithm 2 (and Algorithm 1) will alternate between using the iden-

tity abstraction for discrete transition firings and αext for time delays. Thus, from the way the al-

gorithm searches through the state-space, we may conclude that there must exist symbolic markings
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Algorithm 1: Successor generation algorithm

1 Name: succ(N,(pl,D));
Input: A k-bounded TAPN N and a symbolic marking (pl,D).
Output: The set of successor markings for (pl,D).

2 begin

3 successors := /0;

4 forall the t ∈ T do

5 Let ∆ := {i ∈ {1,2, . . . ,k} | pl(i) ∈ ◦t};

6 forall the sets IN ⊆ ∆ where ◦t = {pl(i) | i ∈ IN} and

∀i ∈ {1,2, . . . ,k}\ IN .(pl(i), t) ∈ IA ⇒ Type(pl(i), t) 6= Inhib do

7 Let R := {i ∈ IN | Type(pl(i), t) 6= Transport};

8 pl′ := move(pl, IN, t);

9 D′ :=
(

D∩
⋂

i∈IN Di∈c(pl(i),t)

)R=0
∩
⋂

i∈{1,...,k} Di∈ι(pl′(i));

10 if D′ is consistent then

11 successors := successors ∪
{(

pl′,extpl′

(

(D′)↑∩
⋂

i∈{1,2,...,k} Di∈ι(pl′(i))

)c)}

;

12 return successors;

Algorithm 2: Reachability algorithm

1 Name: Reach(N,(pl0,v0),EFψ);

Input: A marked k-bounded TAPN (N,(pl0,v0)), a formula EFψ and a set Pinc ⊆ P not

containing any monotonicity-breaking place in ψ .

Output: YES if (pl0,v0) |= EFψ , NO otherwise.

2 begin

3 PASSED := /0;

4 Create DBM D0 such that [D0] = {v0};

5 if (pl0,extpl0

(

D
↑
0 ∩

⋂

i∈{1,2,...,k} Di∈ι(pl0(i))

)c

) |= ψ then return YES;

6 WAITING := {(pl0,extpl0

(

D
↑
0 ∩

⋂

i∈{1,2,...,k} Di∈ι(pl0(i))

)c

)};

7 while WAITING 6= /0 do

8 Remove some (pl,D) from WAITING;

9 PASSED := PASSED∪{(pl,D)};

10 forall the (pl′,D′) ∈ succ(N,(pl,D)) do

11 if ¬∃(pl′′,D′′) ∈ PASSED∪WAITING .(pl′, [D′])⊑ (pl′′, [D′′]) then

12 PASSED := PASSED\{(pl′′,D′′) ∈ PASSED | (pl′′, [D′′])⊑ (pl′, [D′])};

13 WAITING := WAITING\{(pl′′,D′′) ∈ WAITING | (pl′′, [D′′])⊑ (pl′, [D′])};

14 if (pl′,D′) |= ψ then return YES;

15 WAITING := WAITING∪{(pl′,D′)};

16 return NO;
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Delay TAPAAL TAPAAL incl. Broadcast Deg.2 Broadcast

28 10.8 10.4 11.6 11.6

24 12.1 12.0 102.3 48.8

20 17.0 16.4 456.2 88.0

16 92.6 90.7 207.4 137.7

Table 1: PMS case study scaled by the sampling delay (time in seconds)

(pl1,D1),(pl2,D2), . . . ,(pl,D) such that

(pl0, [D0]) αid,αext
(pl1, [D1]) αid,αext

· · · αid,αext
(pl, [D])

where [D0] = {v0}. By Theorem 4.2 and Theorem 3.1, we have that αext
is sound. Thus, there exists

a concrete marking (pl,v) such that (pl0,v0)−→
∗ (pl,v) and v ∈ [D]. Since atomic propositions depend

only on the discrete part of a marking (placement function), it follows that (pl,v) |= ψ .

Lemma 6.5 If (pl0,v0) |= EFψ then Algorithm 2 returns ”YES”.

Proof Assume that (pl0,v0) |= EFψ . This means that (pl0,v0) −→
∗ (pl,v) and (pl,v) |= ψ . We must

show that Algorithm 2 returns ”YES”. We define αext(pl, [D])
def
= [extpl (D)] as before. By Theorem 4.2

and Theorem 3.1, we get that  αext
is complete. Thus, there exists a symbolic marking (pl, [D]) |= ψ

such that (pl0, [D0])
ε
 αext

◦ (
T
 αid

◦
ε
 αext

)∗ (pl, [D]) where [D0] = {v0} and v ∈ [D].
We will now argue that Algorithm 2 will find a symbolic marking (pl′,D′) such that (pl, [D]) ⊑

(pl′, [D′]). It is easy to see that Algorithm 2 together with Algorithm 1 implements a symbolic exploration

of the form
ε
 αext

◦ (
T
 αid

◦
ε
 αext

)∗. However, notice that the algorithm discards some of the discovered

symbolic markings (lines 11 to 13 in Algorithm 2). If the algorithm finds a symbolic marking (pl′,D′) for

which (pl′, [D′])⊑ (pl′′, [D′′]) for some (pl′′,D′′) in the PASSED or WAITING list, it will discard (pl′,D′)
(line 11). Similarly, if (pl′′, [D′′])⊑ (pl′, [D′]) for some (pl′′,D′′) in the PASSED or WAITING list, it will

remove all markings (pl′′, [D′′])⊑ (pl′, [D′]) from both the PASSED and WAITING list (lines 12 to 13).

However, by Theorem 5.1 it is safe to skip these symbolic markings since the future behaviour of the

smaller symbolic markings is included in the larger symbolic marking. Thus, it follows that Algorithm 2

will find a symbolic marking (pl′,D′) such that (pl, [D]) ⊑ (pl′, [D′]). By Theorem 6.1, we have that if

the smaller marking satisfies ψ then the larger marking (pl′, [D′]) also satisfies ψ . Thus, Algorithm 2

returns ”YES”.

The correctness of the reachability algorithm is hence established.

7 Experiments

We implemented the reachability algorithm in C++ and fully integrated it into the tool TAPAAL [9]

(www.tapaal.net), an open-source and platform-independent editor, simulator and verifier of extended

timed-arc Petri nets. In order to document the performance of our proposed algorithm, we present two

larger case studies of Patient Monitoring System (PMS) and a communication protocol from the WS-

Business Activity standard [19]. Both models can be downloaded from the tool’s homepage.

The patient monitoring system (PMS) is a case study taken from [8]. The system monitors the pulse

rate and the level of oxygen saturation via sensors applied on the skin of a patient. It consists of three

components: sampling subsystem, signal analyzer and alarm. The purpose of the PMS model is to verify
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Messages TAPAAL TAPAAL incl. Broadcast Deg.2 Broadcast

2 2.5 0.6 2.9 2.3

3 11.6 2.1 12.0 7.8

4 46.3 8.0 46.2 24.9

5 164.1 29.1 165.0 73.5

6 >400.0 109.6 >400.0 197.7

7 >400.0 330.4 >400.0 >400.0

Table 2: BAwPC scaled by number of retransmission messages (time in seconds)

that abnormal situations dangerous for the patient’s health are detected within given deadlines. We have

verified the model for deadline violation both in the sampling component and the signal analyzer. The

sampling delay has been varied from 28 down to 16 seconds. This increased the complexity of the

verification, as the queries were still satisfied and the whole state-space had to be searched.

In the second case study we verify the correctness of one of the web services coordination protocols

called Business Activity with Participant Completion (BAwPC) [19]. Our model is based on the work

presented in [17] where an enhanced protocol that avoids reaching any invalid states is given. We mod-

elled the protocol in TAPAAL and considered asynchronous communication where messages can be lost;

the model is scaled by the number of extra messages that can be used for retransmissions. The protocol

is correct and hence the whole state-space is searched.

We compare the performance of our implementation with the UPPAAL engine where the timed

automata models were obtained by automatic translations (called broadcast and degree 2 broadcast;

see [15, 16] for the details) from the TAPN models. We remark that the verification times of the trans-

lated TAPN models are in general comparable with native UPPAAL models and in some examples the

translated models verify even faster than the native ones [16]. A direct comparison with other Petri net

tools extended with time like Romeo [12] and TINA [6] is not possible due to the radically different

semantics of the Petri net models used in these tools.

All experiments were run on Macbook Pro with 2.7 GHz Intel Core i7 with 8 GB RAM using BFS

search strategy and the results are presented in Tables 1 and 2. The column TAPAAL refers to our

algorithm where the set of inclusion places has been set to empty and TAPAAL incl. is our algorithm

with the largest possible inclusion set. The user has the possibility to choose between these algorithms

(or even manually select the concrete inclusion places) because for example in the case of 1-safe Petri

nets where the inclusion is only rarely applied, the algorithm with the maximum inclusion can be slower

due to the implementation overhead connected with inclusion checking of markings on the passed and

waiting list. Indeed, in situations like in Table 1 the full inclusion checking is not that beneficial opposite

to nets like in Table 2 where we have many tokens (messages) in the same place.

8 Conclusion

We presented a reachability algorithm for extended timed-arc Petri nets and implemented it within the

tool TAPAAL. The algorithm includes efficient extrapolation and symmetry reduction techniques that

show a very encouraging performance even on larger case-studies. We would like to emphasize the fact

that all features that are implemented in the tool are formally defined and proved correct. We believe that

our tool, available at www.tapaal.net, is one of a rather few reasonably-sized model checkers with a com-

plete correctness proof taking into account all implemented optimizations and reduction techniques. In
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the future work we shall look at extending the technique to liveness properties and at further performance

improvements by using for example the LU-extrapolation [4].
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