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Abstract We present a specification theory for timed

systems implemented in the Ecdar tool. We illustrate

the operations of the specification theory on a running
example, showing the models and verification checks. In

order to demonstrate the power of the compositional

verification we perform an in depth case study of a

leader election protocol; Modeling it in Ecdar as Timed
Input/Output Automata Specifications and performing

both monolithic and compositional verification of two

interesting properties on it. We compare the execution
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time of the compositional to the classical verification

showing a huge difference in favor of compositional ver-

ification.
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1 Introduction

Programs are intrinsically component based, they are
built from simple commands, and when we reason about

their correctness, we intuitively think in terms of what

we can assume about the program state before the com-
mand is performed and what it guarantees about the

state afterwards. This simple fact was formalized early

on in terms of Floyd assertions [18] and led to Floyd-
Hoare logic [20] and is really the foundation of program

verification, which led to much fruitful research in the

following years. In particular, the challenge of composi-

tional analysis of concurrent programs was pursued first
in 1976 by Owicki and Gries [32], who extended Floyd-

Hoare logic to parallel programs with shared variables,

and later in 1981 by Jones [23], who introduced the rely-
guarantee method, allowing for a compositional ver-

sion of the Owicki-Gries method. Yet, there are larger

components in software applications: subroutines from
libraries, classes in object-oriented languages, service

modules in service-oriented architectures, control mod-

ules in embedded systems, etc.

Common for such larger scale components are the
characteristics made explicit by Szyperski [36]:

a unit of composition with contractually specified
interfaces and fully explicit context dependencies

that can be deployed independently and is a sub-

ject to third party composition.
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We shall not consider deployment or component imple-

mentation. These are interesting questions, but we get
to grips with composition at the level of interfaces, be-

cause this is essential for getting a useful product out

of gluing components together and deploying them. In-
terfaces are essentially specifications of what we assume

about the environment of the component and what the

implementation guarantees to deliver. In order to have
a good theory for reasoning about component interface

specification, we expect that for a given specification,

we can determine:

Consistency. When a specification is satisfied by at least

one implementation it is consistent. Consistency is need-
ed to verify that specifications are well-formed and do

not contain contradictory statements. Without consis-

tency, we can specify miraculous components which no

one can deliver.

Conjunction. Specifications are essentially logics, and
when composing them using conjunction this should

give exactly the intersection of feasible implementations

of the constituents. Should the intersection be empty,

that is, the conjunction is not consistent, it is useless
to put those components together.

Composition.When actual components are deployed to-
gether they form a new composite component. A sim-

ilar parallel composition operation is needed for their

specifications in order to build systems in a stepwise
manner.

Refinement.There is a natural partial order on compo-
nents defined by replacement of one by another while

maintaining the functionality of the system as a whole.

When such substitutions are possible, the more detailed
and constraining specification refines the one for the

component that is replaced.

Specification theories with refinement were pioneered
by Jones [24] in a setting of sequential program com-

ponents and it has lead to further development of such

theories, most recently in the area of object-oriented

programming with design by contract and for instance
the Java Modeling Language (JML) [28].

However, since we wish to deal with a context of dis-

tributed, communicating components, a specification
theory with the state given by program variables is not

well suited. Specifications for such systems are better

built on process algebras [5] and their underlying tran-

sition system semantics. Transition systems are also in-
timately linked to automata models. Since transition

systems generate traces of events or actions, specifica-

tion logics describe properties of traces, and here a very

liberal use of assumptions and guarantees may lead to

unsound reasoning. Essentially a guarantee can spec-
ify that the past is changed to fit an assumption, or

an assumption can speak about a future that the guar-

antee contradicts. This was investigated by Abadi and
Lamport [1]. However, since the specification formal-

ism employed here is automata based, it does not suffer

from these anomalies.
An interesting question with (parallel) composition

of components is whether one can find a strongest speci-

fication for an unknown component that composes with

a given one to give a desired result. It is the question
of finding a quotient or a weakest prespecification. This

can be done for the current theory, a result that origi-

nates in [26,27,4]. Similar results in a logic based refine-
ment theory are found in [21], although this solution is

more a proof of existence than an actual construction.

1.1 Related Work

In a series of recent work, it has been advocated that

specifications can be represented by interface automata,

that are automata whose transitions are typed with in-
put and output . The semantics of such an automaton is

given by a two-player game: the input player represents

the environment, and the output player represents the
component itself. Contrary to the input/output model

proposed by Lynch [30], this semantic offers an opti-

mistic treatment of composition: two interfaces can be

composed if there exists at least one environment in
which they can interact together in a safe way. In [16], a

timed extension of the theory of interface automata has

been introduced, motivated by the fact that time can be
a crucial parameter in practice, for example in embed-

ded systems. In this paper, we represent specifications

by timed input/output automata [25], i.e., timed au-
tomata whose sets of discrete transitions are split into

Input and Output transitions. Contrary to [16] and [25]

we distinguish between implementations and specifica-

tions by adding conditions on the models. This is done
by assuming that implementations have fixed timing

behavior and they can always advance either by pro-

ducing an output or delaying. Also, we provide a game-
based methodology to decide whether a specification is

consistent, i.e. whether it has at least one implementa-

tion. An implementation exists when there is a strategy
that despite the behavior of the environment will avoid

states that cannot possibly satisfy the implementation

requirements.

Our theory is rich in the sense that it captures all
the good operations for a compositional design theory

discussed above. Also, all the algorithms have been im-

plemented in the Ecdar tool set. This implementa-
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tion (available at ecdar.cs.aau.dk) is build on top of

the Uppaal-tiga tool-set [7]. Uppaal-tiga is a tool
that implements a series of algorithms for solving timed

games [10] as well as checking timed temporal logic prop-

erties. Ecdar uses Uppaal-tiga to solve various games
that arise in computing the composition operations and

refinements.

The first part of the paper presents an overview of

the theory implemented in the Ecdar tool set. The
second, and maybe most interesting part of the pa-

per, applies Ecdar theory to a leader election protocol.

More precisely, we show how compositional design can
be used to check two important properties of the proto-

col in an incremental manner, outperforming classical

model checking techniques for timed automata that are

working on the entire system directly. The incremental
approach used is based on the concept of independent

implementability [15], in which a specification can be

refined into a more detailed specification independently
of what it is composed with. This method is correct be-

cause our refinement operator is a precongruence with

respect to parallel composition [13].

Another tool supporting refinement is PAT [34,35].
Unlike Ecdar, it builds on CSP with a failures, di-

vergences and refusal semantics which makes a direct

comparison difficult. However, the CSP theory does not

support quotienting nor simple conjunction of specifi-
cations. And thus in contrast to Ecdar, PAT does not

support assume/guarantee reasoning about systems.

1.2 Structure

The rest of the paper falls in three parts: Theory, Case-

study and Conclusion. The theory is presented in Sec-
tion 2 on page 3. The theory with its definitions is in-

cluded in order to make the paper self-contained. The-

orems and proofs can be found in [13]. The case-study,
a leader election protocol, is presented in Section 3 on

page 10. While conclusion and future work is given in

Section 4 on page 16.

2 Timed Input/Output Automata
Specifications

Before we proceed to discuss our case study, let us

present the main concepts and constructions of the spec-

ification theory for real time systems supported by the

Ecdar tool. We only focus on the designer-facing as-
pects of the framework. A reader interested in the the-

oretical discussions is referred to [13].

The main concept in our modeling framework is that

of a specification—an abstract, usually under-specified,

description of an implementation of a system. Each

specification normally admits multiple implementations
that can be derived by different resolutions of detailed

design choices.

We use the syntax of Timed I/O Automata (TIOA)
to represent specifications. We will now recall their def-

inition and only then proceed to define specifications

themselves along with a notion of satisfaction of a speci-
fication by an implementation, notion of refinement be-

tween specifications, and the compositional design op-

erators that allow manipulating and combining specifi-
cations.

TIOAs are essentially the usual Timed Automata

[2] extended with two types of edges: inputs and out-
puts. Input edges are drawn as solid arrows labeled by

actions followed by a question mark. Output edges are

dashed and their actions are suffixed with an exclama-

tion point. Fig. 1 shows an example of a TIOA describ-
ing the main research process at a hypothetical univer-

sity, that, given grants as inputs produces patents as

outputs.

The kind of communication an automaton can en-

gage in is limited by its sort—a signature of available

input and output actions. In Fig. 1, the sort is depicted
as incoming arrows (inputs) and outgoing arrows (out-

puts) incident with the border surrounding the automa-

ton. The initial location is indicated by a doubly circled
outline. In this initial location, after the university re-

ceives the grant input, it will output a patent.

The colors used in the figures do not carry seman-
tic meaning but are used consistently in order to in-

crease the readability of the models. These colors—

guards (green), resets (navy blue), invariants (violet),

and actions (turquoise)—are the same as used in the
editor of Ecdar and in related tools such as Uppaal.

Additional labels on edges denote timing constraints

over clocks (known as guards) and clock resets. For ex-
ample, the grant must be received before the clock u ex-

ceeds two time units (u ≤ 2). This clock is reset imme-

diately upon reception of the grant (u = 0). Then the
patent is issued within 20 time units, as the automaton

can only reside in the target location for twenty time

units as indicated by the location invariant u ≤ 20. Any
further grants received within this time interval are ig-

nored through the grant input loop that has no guard

and no resets. When the patent is issued the clock u is

again reset.

If the first grant arrives after more than two time

units, or if any subsequent grant arrives later than two

time units after a patent has been filed, then the behav-
ior of the university automaton becomes unpredictable.

This is captured by the leftmost location in the figure,

a so called universal location, in which any communica-
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tion can appear at any time; the location has outgoing

edges for any available action and imposes no timing
constraints. Strictly speaking the behavior of the au-

tomaton is still completely specified, but since it pro-

vides no guarantees about its output in a universal lo-
cation we also call this unpredictable.

Let us now recall a formal definition of a TIOA:

Definition 1 A Timed I/O Automaton (TIOA) is a

tuple A = (Loc, q0,Clk, E,Act, Inv) where Loc is a fi-

nite set of locations, q0 ∈ Loc is the initial location,

Clk is a finite set of clocks, E ⊆ Loc × Act × B(Clk) ×
P(Clk) × Loc is a set of edges with B(Clk) being a

set of clock constraints, P(Clk) is the set of clocks

to reset, Act = Acti ⊎Acto is a finite set of actions,
partitioned into inputs and outputs respectively, and

Inv : Loc 7→ B(Clk) is a set of location invariants.

As we have intuitively sketched above, TIOA syn-
tax has a semantic interpretation as a timed execution

of a branching process. This is formally captured by a

Timed I/O Transition System (TIOTS), which is like a
usual discrete automaton but infinitely branching and

over an infinite state space. In a TIOTS, time delays

are modeled as continuously many ’discrete’ actions.

Definition 2 (TIOTS) A Timed I/O Transition Sys-

tem (TIOTS) is a quadruple S = (StS , s0, Σ
S ,−→S),

where StS is an infinite set of states, s0 ∈ St is the

initial state, ΣS = ΣS
i
⊕ ΣS

o
is a finite set of actions

partitioned into inputs (ΣS
i
) and outputs (ΣS

o
) and

−→S : StS × (ΣS ∪ R≥0) × StS is a transition relation.
We write s a−→Ss′ instead of (s, a, s′) ∈ −→S and use i?,

o! and d to range over inputs, outputs and R≥0 respec-

tively. We sometimes omit the transition system name
(s a−→s′) if obvious from the context and we omit the

target location (s a−→S) if we only need to know the ex-

istence but not the identity of the target location. In
addition any TIOTS satisfies the following:

[time determinism] whenever s d−→Ss′ and s d−→Ss′′ then

s′=s′′

[time reflexivity] s 0−→Ss for all s ∈ StS

[time additivity] for all s, s′′∈ StS and all d1, d2 ∈ R≥0

we have s d1+d2−−−−→Ss′′ iff s d1−−→Ss′ and s′ d2−−→Ss′′ for an
s′ ∈ StS

A state of the TIOTS derived from a TIOA A is a
pair (q, V ) where q is a location and V : Clk 7→ R≥0 is

a valuation function that assigns a non-negative value

to each clock in Clk. We use u, u′ to range over clock

valuations. We write u + d, where d ∈ R≥0 is a delay,
to denote a valuation such that for any clock r we have

(u+ d)(r) = x+ d iff u(r) = x. Given c ⊆ Clk, we write

u[r 7→ 0]r∈c for a valuation which agrees with u on all

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpec

Fig. 1 University specification UniSpec.

values for clocks not in c, and returns 0 for all clocks in

c. We use 0 to denote the constant function mapping all
clocks to zero. The initial state of A is the pair (q0,0).

The semantics of a TIOA A = (Loc, q0,Clk, E,Act,

Inv) is a TIOTS [[A]]sem = (Loc × (Clk 7→ R≥0), (q0,0),
Act,−→), where −→ is the transition relation defined by

the following rules:

– Each (q, a, ϕ, c, q′) ∈ E gives rise to (q, u) a−→(q′, u′)

for each clock valuation u ∈ [Clk 7→ R≥0] such that
u |= ϕ and u′ = u[r 7→ 0]r∈c and u′ |= Inv(q′).

– Each location q ∈ Loc with a valuation u ∈ [Clk 7→ R≥0]

gives rise to a transition (q, u) d−→(q, u+ d) for each
delay d ∈ R≥0 such that u+ d |= Inv(q).

We only consider deterministic TIOAs, so TIOAs

whose semantics results in a deterministic TIOTS: for

each action–state pair at most one action is enabled.

2.1 Specifications

We now define specifications in terms of TIOAs.

Definition 3 A specification automaton is a TIOA that
is input-enabled, i.e., in each state all the inputs should

be available at all times.

The assumption of input-enabledness, also seen in
many interface theories [29,19,33,37,31], reflects our be-

lief that an input cannot be prevented from being sent

to a system, but it might be unpredictable how the

system behaves after receiving it. The idea is actually
quite old, and can be traced to the notion of a CHAOS

process in CSP [22].

Input-enabledness encourages explicit modelling of

unpredictability, and compositional reasoning about it;

for example, deciding if an unpredictable behavior of
one component induces unpredictability of the entire

system. Observe that it is easy to check whether a TIOA

is input-enabled. In practice tools can interpret absent

input transitions in at least two reasonable ways. First,
they can be interpreted as ignored inputs, correspond-

ing to location loops in the automaton. Second, they

may be seen as unavailable (’blocking’) inputs, which
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can be achieved by assuming implicit transitions to a

designated error state.
We note that our example of Figure 1 can always ac-

cept grant? from any location. It is also deterministic.

Thus UniSpec TIOA is a well-formed specification.

2.2 Implementations

The role of specifications in a specification theory is to

abstract, or under-specify, sets of possible implementa-
tions. Implementations are concrete executable realiza-

tions of systems. We will assume that implementations

of timed systems have fixed timing behavior (outputs
occur at predictable times) and systems can always ad-

vance either by producing an output or delaying. An

implementation that cannot voluntarily output or de-
lay would have to block passage of time, which is not

realistic.

Definition 4 An implementation P is a specification

whose underlying TIOTS satisfies the following condi-
tions:

1. Independent progress: in each state either an out-

put is possible or one can delay until an output is
enabled.

either (∀d ≥ 0. p d−→P ) or

∃ d∈R≥0. ∃ o!∈ΣP
o
. p d−→p′ and p′ o!−−→P .

2. Output urgency: an available output cannot be de-
layed:

∀ p′, p′′ ∈ StP if p o!−−→P p′ and p d−→P p′′ then d = 0

(and consequently, due to determinism and time re-
flexivity we have p = p′′)

Example. Figure 2(a) specifies a vending machine that

can serve tea or coffee. We will use this as a compo-
nent in our example. A possible implementation of this

machine can be found in Figure 2(b). The implementa-

tion refines the specification, which is defined in the
next section. Both automata are deterministic. Note

that the output transitions of the implementation Impl

arrive at a fixed moment in time and cannot be de-
layed, which guarantees output urgency (the invariant

guarantees progress and the guard constrains the tran-

sition). Each time the output tea! from Idle to Idle is

taken, the clock y is reset. Without this reset, indepen-
dent progress would not be guaranteed for valuations

of the clock y that are greater than 6.

2.3 Satisfaction and Refinement

Refinement is always a pivotal element of a specification

theory. Akin to entailment for logical specifications, re-

finement allows to start with very abstract models, and

elaborate them towards more specific ones. An early

abstract specification would typically allow a large set
of diverse implementations. This set is monotonically

reduced in a stepwise refinement process towards a de-

tailed, more fine grained and concrete specification that
can be implemented directly.

Any refinement should satisfy the following substi-

tutability condition: If AS refines AT , it should be pos-

sible to replace AT with AS in every context and obtain

a safe system. It is well known from the literature [14,
15,8] that in order to give these kind of guarantees a

refinement should have the flavor of alternating (timed)

simulation [3].

In our theory we define the refinement between spec-

ifications, by requiring a suitable refinement relation in
their semantic expansion (TIOTS).

Definition 5 (Refinement relation) Let AS and AT

be two specification automata and S = (StS , s0, Σ,

−→S) and T = (StT, t0, Σ,−→T ) be their corresponding

timed transition systems. We say that AS refines AT ,

written AS ≤AT , iff there exists a binary relation R⊆
StS×StTcontaining (s0, t0) and for all states sRt implies:

1. Whenever t i?−−→
T t′ for some t′∈StT then s i?−−→

Ss′ and

s′Rt′ for some s′∈StS

2. Whenever s o!−−→
Ss′ for some s′ ∈ StS then t o!−−→

T t′ and
s′Rt′ for some t′ ∈ StT

3. Whenever s d−→
Ss′ for d ∈ R≥0 then t d−→

T t′ and s′Rt′

for some t′ ∈ StT

Intuitively, if AS refines AT then it can delay at

most as much as AT can, and it can only produce out-
puts that AT produces—not others. It, however, may

admit more inputs than AT , as long as all AT ’s inputs

are handled. This construction ensures substitutability,
because then, if placed in the same context, AS will en-

gage in less computations than AT , while maintaining

ability to always receive the same inputs. This means
that safety properties will be preserved.

In the example of Figure 2, Machine2 (c), Machine3
(d), and Machine4 (e) refine Machine (a). Machine6 (f)

refines both Machine3 (d) and Machine4 (e). Machine7

(h) refines Machine4 (e).

Definition 5 is non-constructive in the sense that it

cannot be directly used to decide refinement between
two automata. Discussion of a proper efficient refine-

ment checking algorithm is out of scope for this work.

See [8,13] for details.

We relate specifications to implementations using

a notion of satisfaction. A proper implementation of
a specification is said to satisfy it. Technically, in our

framework the satisfaction is a special case of the refine-

ment, when the left hand side is an implementation (it
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a)

teacoin cof

coin?

tea!

tea!

y=0cof! coin?

Idle

y<=6

Serving

y=0 y=0

y>=2

y>=4

y=0Machine

b)

teacoin cof

coin?

tea!

y=0cof! coin?

Idle

y<=5

Serving

y=0

y=0 y==6

y==5

Impl.

c)

teacoin cof

coin?

tea!

y=0cof! coin?

Idle

y<=5

Serving

y=0

y=0 y>=4

y>=5

Machine2

d)

teacoin cof

coin?

tea!

y=0 tea!coin?

Idle

Serving

y=0

y=0

y<=6

y>=4Machine3

e)

teacoin cof

coin?

tea!

tea!

y=0cof! coin?

Idle

y<=4

Serving

y=0 y=0

y>=4

y>=4

y=0Machine4

f)

teacoin cof

coin?

tea!

y=0 tea!coin?

Idle

Serving

y=0

y=0

y<=4

y>=4Machine6

g)

teacoin cof

coin?

tea!

y=0cof! coin?

Idle

y<=4

Serving

y=0

y=0 y>=4

y>=5

Machine5

h)

teacoin cof

tea!

coin?

y=0cof! coin?

Idle

Serving

y=0 y=0

y<=4

y>=4

Machine7

Fig. 2 a) Specification of a coffee/tea Machine, b) an implementation, and c) d) e) f) g) h) more specifications of a coffee/tea
machine.

satisfies independent progress and output urgency—see

Def. 4).

The set of all implementations of A is denoted [[A]]mod.
In [13], we have shown that the refinement relation is

complete for our implementation model, i.e., AS refines

AT if and only if the set of implementations that satisfy
AS is included in the set of implementations that satisfy

AT . This is an important usability criterion for tools. It

means that if you indeed elaborated AT into AS such
that any implementation of the latter implements the

former, the tool will never report a false positive when

checking AS ≤ AT .

Consistency. It can happen that a specification can-

not be implemented, for example, because it enforces
reachability of a stuck state, which violates indepen-

dent progress. As all implementations satisfy indepen-

dent progress, they can never satisfy such a specifica-
tion. We say that a specification which admits at least

one implementation is (globally) consistent. For exam-

ple coffee machine of Figure 2, the implementation 2(b)

refines 2(a). Since 2(a) admits at least one implemen-
tation, it is a consistent specification.

In the example of Figure 2, Machine5 (g) is in fact

inconsistent since, in the state Serving no output is
available and time cannot diverge, thus violating inde-

pendent progress.

Inconsistency of a specification in a stepwise design
process is normally unintended—an error on behalf of

the specifier. Thus it is important for tools to provide

feedback on consistency. In [13], we have shown that

this question can be answered automatically using an
algorithm that decides if there exists a strategy for the

system (output) to avoid reaching stuck states in the

specification. Furthermore we added a facility called

pruning that removes from the TIOA all behaviors that

are not covered by such a maximal strategy. Pruning

thus reduces the size of the TIOA specification by re-
moving inconsistent parts, while maintaining the same

set of implementations (Theorem 5 in [13]).

2.4 Step-wise Refinement

We decompose and refine our University specification

of Figure 1 in a top-down manner. The refinement is
based on a knowledge of how the system under design is

supposed to meet the overall requirements. We decom-

pose our specification into three components in parallel:
a Coffee/Tea machine, a Researcher, and an Adminis-

tration. The Machine (Figure 2(a)) needs coins to func-

tion and provides the Researcher with coffee and tea.
In addition it may offer tea for free. The Researcher

(Figure 3(a)) produces publications with some guaran-

teed timing constraints when provided with coffee and

tea regularly, otherwise the publication output is not
guaranteed any more. The Administration is in charge

of turning grants into coins to enable the use of the

Machine and also to file patents when publications are
produced by the Researcher. We could make one TIOA

to specify this behavior but it is naturally expressed as

a conjunction and making this TIOA manually is er-
ror prone. Instead we specify our Administration as a

conjunction of HalfAdm1 and HalfAdm2, each in charge

of one of the tasks. Figure 3(b) shows the alternation

between coin! and grant? while Figure 3(c) shows the
alternation between patent! and pub?. We note that

since both automata are parts of the administration,

HalfAdm1 always allows patent! and HalfAdm2 always
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a)

coftea
pub

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researcher

b)

grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1 c)

grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

Fig. 3 Specification of (a) the Researcher, and the Administration as a conjunction of two components (b) HalfAdm1 and
(c) HalfAdm2.

allows coin!. Both sub-specifications are also input-

enabled and can always accept grant? and pub?.

Verification of this refinement is carried out step-
wise using pruning at every step. In this example, the

components are checked for consistency individually and

pruned to valid behaviors. Then they are combined
step-wise, first with the conjunction operator (explained

later), the result being pruned, and then with the com-

position operator, and then pruned. The resulting state
graphs for both specifications are finally checked for re-

finement.

The result here is that the refinement does not hold,

which may seem surprising. It turns out that the orig-
inal specification of Figure 1 does not allow for “free”

patents: grants must be received before a patent is pro-

duced. However, given that the Machine can produce
free tea, free publications may appear, and therefor free

patents as well, which was not specified. It is possible

to correct this by either allowing for free patents or re-
moving free tea in the Machine.

In the following sections we will elaborate how the

specifications are composed in the framework.

2.5 Combining Specifications

In our example we used parallel composition and con-
junction intuitively. Now we give more details on all

available operators, namely parallel composition, con-

junction, and quotient. In the rest of the section, we will
consider two specification automata AS = (Loc1, q

1
0 ,

Clk1, E1, Act
1, Inv1) and AT = (Loc2, q

2
0 ,Clk2, E2, Act

2,

Inv2). For technical reasons, we also assume that Clk1∩
Clk2 = ∅.

There are two main ways of composing specifica-

tions in our framework: conjunction and parallel com-

position. The latter is the well known structural combi-
nation of components—parallel composition is meant to

combine specifications of two separate interacting com-

ponents into a single box. In our example the Researcher

specification is composed with the beverage dispensing

Machine specification in this manner.

The other operator, conjunction, is meant to com-

bine two different specifications for the same compo-

nent. The two specifications can typically represent re-

quirements from a different viewpoint. In our example
HalfAdm1 represented requirements with respect to pro-

viding funding (coins); HalfAdm2 represented require-

ments on producing patents.

Conjunction. In our framework, conjunction can only

be defined if ActS
i
= ActT

i
and ActSo = ActTo (the ex-

tension to dissimilar alphabets is straightforward). The

operation reduces to check whether the two specifica-

tions can progress in the same way. Formally, the con-
junction of AS and AT , denoted AS ∧AT , is the TIOA

A = (Loc, q0,Clk, E,ActS , Inv) given by: Loc = LocS ×
LocT , q0 = (qS0 , q

T
0 ), Clk = ClkS ⊎ClkT , Inv((qS , qT )) =

Inv(qS) ∧ Inv(qT ). The set of edges E is generated by
the following rule:

(qS , a, ϕS , cS , q
′
S
) ∈ ES (qT , a, ϕT , cT , q

′
T
) ∈ ET

((qS , qT ), a, ϕS ∧ ϕT , cS ∪ cT , (q
′
S
, q′

T
)) ∈ E

The conjunction operator may introduce locally in-
consistent states. For example, assume that AS reaches

a state from s where the only available action is the

output a and AT reaches a state t from where the only
available action is the output b. Assume also that AS

and AT cannot delay in s and t. In (s, t), the conjunc-

tion will not issue any output and will not be able to
delay, which violates the independent progress property.

As stated above the locally inconsistent states are re-

moved by Ecdar using the pruning facility.

In the example of Figure 2, Machine5 (g) is a con-
junction of Machine2 (c) and Machine4 (e) (though it

is an inconsistent conjunction). Furthermore, Machine6

(f) is a conjunction of Machine3 (d) and Machine4 (e).
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Parallel Composition. This operation computes the clas-

sical product between timed specifications [25], where
components synchronize on common inputs/outputs.

Two components are composable iff the intersection be-

tween their output alphabets is empty.

Formally, the parallel composition of AS with AT ,
denoted AS ||AT , is the TIOA A = (Loc, q0,Clk, E,Act,

Inv) given by: Loc = LocS × LocT , q0 = (qS0 , q
T
0 ), Clk =

ClkS ⊎ ClkT , Inv((qS , qT )) = Inv(qS) ∧ Inv(qT ) and the

set of actions Act = Acti ⊎ Acto is given by Acti =
ActSi \ActTo ∪ActTi \ActSo and Acto = ActSo ∪ActTo . The

set of edges E is generated by the following rules:

1. Whenever (qS , a, ϕS , cS , q
′
S
)∈ES

with a ∈ ActS\ActT then for each qT ∈ LocT
also ((qS , qT ), a, ϕS , cS , (q

′
S
, qT )) ∈E

2. Whenever (qT , a, ϕT , cT , q
′
T
) ∈ ET

with a ∈ ActT \ ActS then for each qS ∈ LocS
also ((qS , qT ), a, ϕS , cS , (qS , q

′
T
)) ∈E

3. Whenever (qS , a, ϕS , cS , q
′
S
)∈ES and

(qT , a, ϕT , cT , q
′
T
)∈ET with a∈ActS∩ActT then

also ((qS , qT ), a, ϕS∧ϕT , cS∪cT , (q
′
S
, q′

T
)) ∈ E.

The first rule represents all the cases where AS makes
an individual move, be it input or output, because a is

not in the signature of AT . Similarly the second rule

handles all individual moves by the second component

AT . The third rule handles all synchronizations between
the two components. The possibilities are input/input

which again gives an input or input/output which gives

an output.

Quotient. The operation of quotienting is radically dif-

ferent from the other composition operators. It is a

differencing operator [17] that can be used to synthe-

size requirements for missing components in a project.
Two fix attention, let’s assume that we have an abstract

specification AT for the entire system, and a specifica-

tion AS of an existing available component. The quo-
tient synthesizes a specification AT \\AS for the missing

component—the component that when composed with

AS would implement AT .

The use of quotient simplifies independent design of

components. Assume that X is the missing component
that needs to be designed by another person, or even

another vendor than the rest of the system. The cor-

rectness requirement for X is AS ||X ≤ AT . In general
this requirement might be a rather complicated verifica-

tion expression. Fortunately, it is sufficient to separate

the concerns using quotienting. The new designer does

not need to have access to the entire system, nor does
he need to perform the verification of the entire system

each time he checks his current design for X. It suffices

to synthesize the quotient AT \\AS and he can simply

check whether X ≤ AT \\AS . This latter specification

effectively captures all contextual requirements for X.

Summarizing, quotienting allows for factoring out
behavior from a larger component. If one has a large

component specification AT and a small one AS then

AT \\AS is the specification of exactly those components
that when composed with AS refine AT .

Quotienting for specifications is defined in the fol-

lowing way. Consider two specifications AT = (LocT , q
T
0 ,

ClkT , ET , ActT , InvT ) and AS = (LocS , q
S
0 ,ClkS , ES ,

ActS , InvS) with ActSi ⊆ ActTi ∪ActTo and ActSo ⊆ ActTo .
The quotient, which is denoted AT \\AS is the TIOA

given by: Loc = LocT × LocS ∪ {lu, l∅}, q0 = (qT0 , q
S
0 ),

Clk = ClkT ⊎ClkS⊎{xnew}, Inv((qT , qS)) = Inv(lu) = tt

and Inv(l∅) = {xnew ≤ 0}. The two new locations lu
and l∅ are respectively universal and inconsistent. The

set of actions Act = Acti ⊎ Acto is given by Acti =
ActTi ∪ ActSo ∪ {inew} and Acto = ActTo \ ActSo .

The set of edges E is generated by the following

rules:

– Whenever qT ∈ LocT , qS ∈ LocS and a ∈ Act

then also ((qT , qS), a,¬InvS(qS), {xnew}, lu) ∈ E.
– Whenever qT ∈ LocT , qS ∈ LocS then also

((qT , qS), inew,¬InvT (qT )∧InvS(qS), {xnew}, l∅)∈E.

– Whenever (qT , a, ϕT , cT , q
′
T
) ∈ ET

and (qS , a, ϕS , cS , q
′
S
) ∈ ES

then ((qT , qS), a, ϕT ∧ ϕS , cT ∪ cS , (q
′
T
, q′

S
)) ∈ E

– Each (qS , a, ϕS , cS , q
′
S
) ∈ ES with a ∈ ActSo

gives rise to ((qT , qS), a, ϕS∧¬GT , {xnew}, l∅) where
GT =

∨
{ϕT | (qT , a, ϕT , cT , q

′
T
)}

– Each (qT , a, ϕT , cT , q
′
T
) ∈ ET and a /∈ ActS

gives ((qT , qS), a, ϕT , cT , (q
′
T
, qS)) ∈ E

– Each (qT , a, ϕT , cT , q
′
T
) ∈ ET with a ∈ ActSo

gives rise to ((qT , qS), a,¬GS , {}, lu) where GS =
∨
{ϕS | (qS , a, ϕS , cS , q

′
S
)}

– Each a ∈ Acti gives rise to (l∅, a, xnew = 0, {}, l∅)
– For each a ∈ Act gives rise to (lu, a, tt, {}, lu)

Just like conjunction, the quotient operation may

produce (locally) inconsistent specifications. Hence, each

quotient operation is followed by pruning.

In the following we will illustrate the quotienting
through a very simple example. The example consists

of three Timed Input/Output Automata Specifications

as shown in Fig. 4. We start with a simple specifica-
tion, shown in Fig. 4a) of a system with two buttons.

The specification states that as long as only button1 is

pressed then only good output will be produced. If at
some point button2 is pressed then the system could

start to produce bad output.

The following definition defines an operator known

as weaken or weakening, that is used for easier specifi-

cation of assume guarantee specifications.
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a)

bad good button1 button2

button1?

button2?

bad!

good!

s1 s2

button2?

button1?
good!

ButtonSpec
b)

bad good button1 button2

button1!

good?

bad?

ButtonA
c)

bad good button1 button2

button2?

good!button1?
G

ButtonG

Fig. 4 Specification of (a) the ButtonSpec, (b) the assumption ButtonA (c) the guarantee ButtonG.

Definition 6 Weaken >>:

For any two Timed Input/Output Automata specifica-

tions A and G we define G >> A as follows:

G >> A ≡ (A||G)\\A

In our simple example we would like to express the
assumptions and guarantees that we have to the system

separately. In Fig. 4b) we specify the assumption that

button2 is never pressed while in Fig. 4c) we specify the
guarantee that the system never produces bad output.

Even though, in this example, our ButtonSpec is quite

simple the assumption ButtonA and guarantee ButtonG
are even simpler and extremely easy to understand.

For this example we can use Ecdar to prove the

following two refinements:

refinement: (ButtonG >> ButtonA) <= ButtonSpec

refinement: ButtonSpec <= (ButtonG >> ButtonA)

Thus effectively being able to substitute ButtonG

>> ButtonA for ButtonSpec in any context.

The possibility of splitting assumptions from guar-

antees becomes even more appealing when having mul-

tiple assumptions and guarantees that are conjoined.

2.6 Syntactic Extensions

The Ecdar tool offers a range of syntactic extensions

build over the core language described above. These ex-

tensions do not affect the theoretical expressiveness of

the language, but instead they enable more natural de-
scription of systems using primitives such as finite do-

main types, variables, constants, channels, committed

locations, and arrays. These are the same extensions as
known from Uppaal, but adapted to the two player

semantics.

Types, variables and constants. Ecdar allows to intro-

duce finite domain variables ranging over restricted in-

teger types. The variables are more concise descriptions

of counters and value placeholders than finite state ma-

chines. Named constants allow easy parameterization

of models, for example with allowed delays.

Channels and arrays. Actions are defined using the syn-

tax: “broadcast chan a” which gives both the input
label a? and the output label a!. Actions are, as defined

in the theory, broadcast and thus outputs are never

blocked.

Channels can be organized in arrays. This is very

convenient to encode local communication—for exam-

ple a two dimensional n×n array of channels can model

individual two-ended channels between n processes.

Select statements. The modeling language of Ecdar

also allows for using select statements of the form e:id_t

on a transition. This translates into a set of transitions

with e having each of the possible values that the type

id_t can assume. This is only syntactic sugar which
allows for much more compact models.

Templates. Templates are specifications parameterized

with named but unresolved constants. Templates can
be instantiated by providing values for constants, and

the semantics is given by macro expansion. Templates

are useful for instantiating many similar processes, per-
haps with different initial conditions. They interplay

well with constants and channel array.

Instantiating templates allows not only to change
timing properties, but also to configure various com-

munication topologies. For example, parameterize the

template with the name (index in an array) of a chan-

nel to be used for communication. Then instantiate the
parameters so that the instances create trees, rings, and

other layouts. We will use this technique to model rings

in the case study in the following section.



10 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and Wąsowski

3 The Leader Election Protocol

We analyze a variant of the leader election protocol that

operates on a ring topology. The protocol can be instan-

tiated for an arbitrary number of nodes. Each node in
the ring has both a place in the ring represented by its

id and, apart from this, also a unique priority. The pro-

tocol performs one round of leader election selecting the
node with the highest priority as the leader. When the

protocol is initiated all nodes know that the election has

started and can thus start to send their own priority to

the next node in the ring topology. Figure 5 illustrates
an instantiation of the protocol for six nodes, with their

initial priorities and the communication channels used

between the nodes. If a node receives a priority that is
lower than its own priority it will just discard the re-

ceived priority. If it receives a priority that is higher

than its own priority it will keep a copy of the new pri-
ority and then send it on at the same time stopping to

send its own priority. If at some point a node receives

its own priority, it will know that it is the leader, since

this priority has traveled one full round on the ring
topology without being discarded and thus is greater

than all other priorities.

Fig. 5 Overview of the ring topology and communication
channels in a ring with 6 nodes. Each node has both an id
given by its name (e.g. N0) and a priority (e.g. pr5). Between
each set of nodes in the ring there is a set of communication
channels used to mimic value passing.

The execution of the protocol is illustrated in Fig. 6
which shows how the information flows in a ring of

6 nodes, in the case where all nodes just happen to

send the information at exactly the same time (syn-
chronously).

We proceed to specify the protocol using Timed I/O

Automata in the Ecdar tool. Let N be a constant that

determines the number of nodes in the ring.

const int N = 6;

We also declare a constant for the maximum delay be-

fore a node sends the maximal priority that it has seen
to the next node in the ring.

const int MaxD = 2;

Finally we declare a data type id_t which is used for
all the variables containing ids and priorities.

typedef int[0,N-1] id_t;

Using the constant N we declare two global arrays of

channels that are used to communicate the information
in the model.

broadcast chan send[N][N];

broadcast chan leader[N];

The send channel is actually an array of N by N chan-

nels. In the channel expression send[4][3]! the first

index (in this case node number 4) represents the id of

the node that is the receiver of the message. The second
index (in this case 3) represents the priority pr that is

being send as the message. This is the standard way of

modeling value passing in Timed (I/O) Automata.

3.1 Specification model for the nodes

Figure 7 shows the template for specifying the nodes.

Each node is instantiated with an identifier id and a
priority pr. Each node uses a local variable cur of type

id_t to store the current priority value, initialized with

the value of the pr constant:

id_t cur := pr;

The node consists of three locations. The top location

which is also the initial location represents the normal

operation of the protocol. This state has an invariant
x<=MaxD ensuring that the node will send the maximal

priority that it has seen so far, stored in the local vari-

able cur to the next node in the ring with intervals of
no more that MaxD time units.

Each node receives on the set of channels send[id][e]?
where e can be any priority. Similarly it sends on a set

of channels send[(id+1)%N][e] to the next node in

the ring (the % is the modulus operator). On a given
edge in the template, say the top leftmost one in Figure

7, the select statement e:id_t semantically translates

into the instantiated template being able to receive any
priority which is then bound to the variable e.

The node template has three input transitions in its
initial location. The one leading to the second location

is taken exactly in the case where the priority received

matches the priority of the node itself. If this transition
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Fig. 6 Illustration of one scenario of how the information could be passed around the ring using the protocol. For the sake of
illustration every node happens to send the information to the next node at exactly the same time thus giving us six distinct
steps. Notice that the maximum priority will travel exactly once around the ring. In this case giving a total of 30 messages.

send[id][e]?

send[id][pr]?

leader[id]!

send[id][e]?

send[id][e]?

send[(id+1)%N][cur]!

send[id][e]?

e:id_t

e:id_t

x<=MaxD

Leader

x=0

e<=cur &&
    !(e==pr)

cur=e

e:id_t
e>cur

e:id_t

Fig. 7 Node template used for each of the nodes in the ring
topology.

is taken the node will declare itself leader. The other

two represents the two cases where the local variable

cur should be updated or not.

Both the second and third location are input en-

abled but does nothing with the input. The second lo-

cation, marked with a u meaning that it is urgent, will
immediately send out the leader[id]! output.

3.2 Verification

The correctness of a ring of N nodes we are interested
in has both a functional part—i.e. the correct leader is

elected—as well as a non-function part—i.e. the leader

is elected within an acceptable upper time bound. For
this we formulate and verify the two general properties

elaborated below.

The first property S , shown in Fig. 8, states that
only the correct node, the one with the lowest priority,

can declare itself leader.

leader[0]!

Fig. 8 The most basic specification S stating that only the
correct node declares itself leader.
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The second property T , shown in Fig. 9, states that

a leader will be elected within x<=(N+1)*MaxD time
units, being equal to the maximal priority traveling ex-

actly one round as slowly as possible.

leader[e]!

leader[e]!

x<=(N+1)*MaxD

e:id_t

e:id_t

Fig. 9 A property T stating that a leader is elected within
the specified time-bound.

These overall properties of the ring of nodes can be

verified with the following refinement checks:

refinement:

(N0 || N1 || N2 || N3 || N4 || N5) <= S

refinement:

(N0 || N1 || N2 || N3 || N4 || N5) <= T

We call this type of verification monolithic, since

it constructs and explores the specification represent-
ing the entire systems in order to settle the suggested

refinements. In the present case with 6 nodes Ecdar

quickly proves the refinements and provides a witness-
ing strategy which can be exercised interactively. How-

ever, it is clear that the monolithic approach will suffer

from the exponential growth of the states in the number
of nodes in the ring.

3.3 Compositional Verification

In order to combat the state-space explosion problem

and enable verification of the correctness of the proto-

col for larger numbers of nodes we will apply compo-

sitional verification for both the functional correctness
property S and the non-functional correctness property

T . The idea is to create N sub-specifications Si (and

Ti) that may be shown to capture the behavior of the
sub-ring NN || . . . ||Ni inductively, by demonstrating the

following sequence of refinements:

NN ≤ SN (1)

Si+1||Ni ≤ Si for i = (N − 1) . . . 1 (2)

S1||N0 ≤ S (3)

As mentioned in the introduction this compositional
verification is sound because our refinement operator

is a precongruence with regards to parallel composi-

tion[13].

Using the that the refinement relation ≤ is a precon-

gruence with respect to parallel composition and tran-
sitive it may be concluded that the ring is a refinement

of S. Given six nodes (1), (2) and (3) amounts to per-

forming the following series of refinement checks:

refinement: N5 <= S5

refinement: ( S5 || N4 ) <= S4

refinement: ( S4 || N3 ) <= S3

refinement: ( S3 || N2 ) <= S2

refinement: ( S2 || N1 ) <= S1

refinement: ( S1 || N0 ) <= S

The series of refinement checks is illustrated in Fig.
10. Though greater in number than the single mono-

lithic verification each of the six refinement checks only

involve three small components, thus making the over-
all verification effort linear rather than exponential in

the number of nodes in the ring.

Fig. 10 Overview of how the induction hypothesis ϕ1 is used
to prove the property for a larger and larger set of nodes.

In order to obtain the sub-specifications Si and Ti as

instances of general templates, we define the following
set of Boolean arrays which are simply used as a reverse

look up of which ids are included in the set of nodes

that a given instantiation of the induction hypothesis

covers.

const bool S5[N] = { 0, 0, 0, 1, 0, 0};

const bool S4[N] = { 0, 0, 1, 1, 0, 0};

const bool S3[N] = { 0, 0, 1, 1, 1, 0};

const bool S2[N] = { 0, 1, 1, 1, 1, 0};

const bool S1[N] = { 1, 1, 1, 1, 1, 0};

These Boolean arrays are then used as input pa-

rameters to the corresponding instantiations of the in-
duction hypotheses. The sub-specifications Si used to

inductively prove the functional property S is shown in

Figure 11, and may be informally described as follows:
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send[0][e]!

send[i][e]?

leader[e]!

S[e]==0

send[i][e]?

send[i][e]?send[0][e]!

e : id_t

e : id_t

e : id_t

S[e]==1

e>=i

e : id_t

e : id_t
e : id_t

Fig. 11 The sub-specification Si. The nodes covered by the
sub-specification (NN , . . . , Ni) can only declare themselves
leader after having received a priority also covered by the
sub-specification.

Si first and final version:
Whenever the sub-ring NN || . . . ||Ni receives pri-
orities outside those belonging to one of its nodes,

no leader is declared. If a priority belonging to

one of the nodes of the sub-ring is received, it is

allowed for any of the nodes to declare leader-
ship.

The sub-specification does not restrict that it has
to be the same node that declares itself leader as the

one that receives its own id. It is worth noting that

the sub-specification is this way captures the part of

the behavior that is important to prove exactly this
property, while ignoring other aspects. In particular,

nothing is said about timing of events.

3.3.1 Timing property

Now let us apply the compositional approach to estab-

lish the non-functional property T , i.e. that a leader will

be elected within (N+1)*MaxD time units. Thus, we are
searching a (timed) sub-specification Ti, for i = N . . . 1

satisfying the following set of refinements:

NN ≤ TN (4)

Ti+1||Ni ≤ Ti for i = (N − 1) . . . 1 (5)

T1||N0 ≤ T (6)

The first attempt at defining the timed sub-specifi-

cation is shown in Fig. 12 and may informally be read
as follows:

Ti first attempt:
Whenever the sub-ring NN || . . . ||Ni receives a
priority larger than any one belonging to one of

its nodes, this priority will be delivered to N0 be-

fore (N-i+1)*MaxD time-units.

Note the use of the local variable g for ensuring that

the priority delivered is the one received. However, this
proposal for a sub-specification Ti turned out to be too

erroneous (too strong) as it is too strong to be used as

the induction hypothesis as it is possible to prove the
final step but neither the iterative step nor the base

case.

In particular, the base case does not hold as there is
no guarantee that a “large” priority received will even-

tually be delivered to N0 as an even “priority” may be

received by the sub-ring in the mean-time. An attempt

of correcting this is given in Fig. 13, and may be read
informally as follows:

Ti second attempt:
Whenever the sub-ring NN || . . . ||Ni receives a
priority larger than any one belonging to one of

its nodes, this priority will be delivered to N0

before (N-i+1)*MaxD time-units, unless another
priority is received before.

As desired, the modified sub-specification validates

the refinements required in the base case and the final

case. Unfortunately, though seemingly a true property,
it turns out that it is too weak for the refinement of the

iterative step to hold.

Figure 14 is an attempt of finding a sub-specification
for which the refinements of the iterative steps are valid.

Here, the behavior after having received a priority and

storing it in g is made dependent on whether the pri-
ority received is equal to the one stored in g. Unfortu-

nately this renders all the refinement checks incorrect.

After three (and in fact several) more failing at-

tempts, we finally obtain the satisfactory sub-specifica-
tion in Fig. 15, that radically differs from the previous

in that it only keeps track of what happens to the mes-

sages that contains the maximum priority. Informally,
the sub-specification reads as follows:

Ti final version:
Whenever the sub-ring NN || . . . ||Ni receives the
maximum priority before i*MaxD time-units - and

unless one of the nodes of the sub-ring declares

itself leader - the maximum priority will be de-

livered to N0 before (N-i+1)*MaxD time-units.

Fortunately, this make the sub-specification strong

enough to prove the final property T as well as the

iterative refinement steps, yet weak enough to be able
to prove the base case and pass the consistency check.

3.4 Assume/Guarantee Specifications

In order to make the hunt for the correct sub-specifica-

tions easier we will specify S and T in the form of a pair
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leader[e]!

leader[e]!leader[e]!

send[i][e]? send[0][e]!

x=0, g=e

send[i][e]?

leader[i]!send[0][e]!

(exists (j : id_t) S[j] && e<=j)
send[i][e]?

send[0][g]!

send[i][e]?

send[0][e]!

send[0][e]!

send[i][e]? e:id_t

e:id_te:id_t

e : id_t e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_te:id_t

( forall (j:id_t) S[j] imply e>j)

e>=i

e>=ie>=i

e != ge : id_t

e : id_te : id_t

e : id_t

e>=i

e : id_t

Fig. 12 The first version of Ti turned out to be too strong.

send[i][e]?leader[e]!

send[0][e]!

send[0][g]!x=0, g=e
leader[e]!

leader[e]!

(exists (j : id_t) S[j] && e<=j)
send[i][e]?

send[i][e]?

send[0][e]!

send[0][e]!
send[i][e]?

e : id_t
e:id_t

e : id_t

e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_t

( forall (j:id_t) S[j] imply e>j)

e>=i

e>=i

e != g
e : id_t

e : id_t e : id_t

e>=i

e : id_t

Fig. 13 The second version of Ti, which turns out to be too weak.

leader[e]!

leader[e]!

leader[e]! send[i][e]?

(exists (j : id_t) S[j] && e<=j) send[i][e]?

x=0, g=e

x=0, g=e

(forall (j:id_t) S[j] imply e>j)

send[i][e]?

send[0][e]!

send[0][e]!

send[0][g]!

send[i][e]?

send[i][e]?

send[0][e]!

e : id_te:id_t

e : id_t

e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_t

e:id_t

e != g

e>=i

e>=i

e>=i

(forall (j:id_t) S[j] imply e>j)

e : id_t

e : id_t e : id_t

(exists (j : id_t) S[j] && e<=j)e : id_t

Fig. 14 Third version of Ti
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send[i][e]?leader[e]!

send[0][e]!

send[0][(N−1)]!

send[i][(N−1)]?

leader[e]!

leader[e]!

e<(N−1)
send[i][e]? send[i][e]? send[0][e]!

send[0][e]!
send[i][(N−1)]?

e : id_te:id_t

e : id_t

e : id_t

x<=(N+1)* MaxD

e:id_t

e:id_t

x<=i*MaxD

e>=i

e>=i

e<(N−1)
e : id_te : id_t

e : id_t

e>=i

x>i*MaxD

Fig. 15 Final version of Ti, which only keeps track of the timing regarding messages carrying the maximum priority.

of an assumption and a guarantee part. The assumption
and guarantee equivalents of S are shown in Fig. 16 and

Fig. 17 respectively.

leader[e]?

S[e]==0
send[0][e]? send[i][e]!

e:id_t
e>=i

e:id_t e:id_t

Fig. 16 The simple assumption SAi that no input will be
sent with priorities that belong to the set of nodes represented
by the sub-specification.

SAi first and final version:
We will never send any priority to the sub-ring

NN || . . . ||Ni with priorities belonging to one of

its nodes.

send[0][e]!

send[i][e]?
e:id_t

e:id_t

Fig. 17 The simple guarantee SGithat no leader output will
be generated.

SGi first and final version:
The sub-ring NN || . . . ||Ni will never generate any

leader output.

These two very simple Timed I/O Automata can be

combined into a contract using the weakening operator
>>.

The following two refinements hold (for each i):

refinement: S1 <= (SG1 >> SA1)

refinement: (SG1 >> SA1) <= S1

Thus we have shown that the S that we have come
up with is identical to the more easily understandable

assumption and guarantee.

The assumption and guarantee equivalents of T are
shown in Fig. 18 and Fig. 19 respectively.

leader[e]?

send[i][e]!

leader[e]?send[i][(N−1)]!

e<(N−1)

send[0][e]?

send[i][e]!

send[0][e]?

e:id_t

e:id_t

e:id_t

x<=i*MaxD

e>=i

e>=i

e:id_t

e : id_t

e : id_t

Fig. 18 The assumption T Ai that a message with the maxi-
mum priority will be delivered to the sub-specification before
i ∗MaxD time units.

T Ai first and final version:
The maximum priority will be delivered to the

sub-ring NN || . . . ||Ni before i∗MaxD time units.

T Gi first and final version:
The sub-ring NN || . . . ||Ni deliver a message with

the maximum priority to the node 0 before (N +

1) ∗MaxD time units.
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send[i][e]?

send[0][e]!

leader[e]!

leader[e]!

e<(N−1)

send[0][(N−1)]!

send[0][e]!

send[i][e]?

e:id_t

e : id_t
e:id_t

x<=(N+1)* MaxD e>=i

e>=i

e : id_t

e : id_t

e : id_t

Fig. 19 The guarantee T Gi the sub-specification will deliver
a message with the maximum priority within (N+1)∗MaxD

time units.

Similarly as for the other case we can now combine

these two specifications into a contract. For this case
only one way of the refinements hold (for each i):

refinement: (TG1 >> TA1) <= T1

This means that in this case we can conclude that

the composed sub-specification T that we have come up

with refines the contract composed from the assumption
and guarantee and thus we can use T when performing

the verification and still rely on the fact the guarantee

will hold.

3.5 Performance comparison of analysis methods

In order to compare the efficiency of regular monolithic

and compositional verification we timed the verification

of the two properties S and T for several different values
of N. All the verification was performed on the same

machine and all verification instances where allowed a

maximum of five minutes to terminate. The choice of

exactly five minutes as the upper bound is arbitrary and
will not effect the shape of the graphs that we obtain,

but only determine the point at which the graphs stop.

The upper bound is needed in order to be able to run
a large amount of experiments efficiently. The results

are listed in Fig. 20. For both the properties in the

monolithic cases they took more than five minutes to
verify for rings with 7 nodes.

As can be seen from the graph the compositional
verification method is capable of handling much larger

instances within a reasonable time bound. Besides this

the compositional method also has a much larger the-

oretical upper bound. It will only verify one step at
a time and thus will not suffer from lack of available

memory as long as a single step can be handled with

the available memory.

4 Conclusion & Further Work

Conclusion. In this paper we have presented the com-

plete specification theory for timed systems underlying

the Ecdar tool. Being powered by the game solving en-
gine of the branch Uppaal-tiga, the Ecdar tool pro-

vides support for refinement and consistency checking

between specifications as well as allow for the logical
and structural composition. In particular, as demon-

strated in our treatment of the Leader Election Pro-

tocol example, the theory and tool allow for efficient

compositional verification of systems by the exploita-
tion of engineer-provided sub-specifications. As such,

the compositional usage of the tool is not fully auto-

mated, and the design of appropriate sub-specifications
– strong enough to entail an overall specification and

sufficiently weak to be entailed themselves – is a major

challenge. We believe that engineers will always be un-
familiar with any new specification formalism. However,

we believe that engineer-provided sub-specifications are

not only necessary in the development of realistic sys-

tems, but also extremely useful for raising the overall
understanding of the systems. In order for the method

to be applicable in large scale projects it needs to be

supported by a mature tool that is as intuitive as possi-
ble to use. As demonstrated in the Leader Election Pro-

tocol, tool support is vital in establishing a coherent set

of sub-specifications. The need for programmer gener-
ated specifications is in no way unique to our approach

and is also needed in frameworks such as SPEC# [6] in

which assertions (invariants) written by the program-

mer about a C# program are checked by a range of
different analysis techniques.

An important feature of our theory is the existence

of a quotient construct (i.e. weakest property trans-
former with respect to parallel composition), which in

particular allows for sub-specifications to be obtained

from pairs of assumptions and guarantees. As demon-
strated, this often allow for substantially simpler spec-

ifications of sub-systems.

Performance Analysis. The specification theory present-

ed and the tool Ecdar provide support for establishing
hard real-time guaranteed properties from TIOA mod-

els. However, as we will sketch in the following, it is pos-

sible to also derive soft real-time properties in terms of
expected behavior from the same TIOA models. E.g. in

the extensive treatment of the Leader Election Protocol

of Section 3, we have firmly established that the correct

leader is guaranteed to be declared within (N+1)*MaxD

time-units, given a ring of N nodes each implementing

the TIOA specification of Fig. 7, i.e. 14 time-units for a

ring with 6 nodes. The specification theory presented in
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Fig. 20 Timing results of verification of S and T for the compositional and monolithic cases.

this paper, assumes that implementations are concrete

executable realizations of specifications. In particular
implementations are assumed to have fixed timing be-

havior, meaning that outputs occur at predictable and

exact time moments. However, in a richer setting the
timing behavior of implementations could be stochas-

tic, with timing delays of components being chosen by

distributions.

In a line of recent work [12,11,9] such a stochastic

semantics has been put forward for networks of TIOA,
giving a probability measure on sets of runs. This allows

for refined probabilistic performance properties to be

defined and analyzed, such as the property “the proba-

bility of the set of runs where a leader is declared within
4 time-units is greater than 0.3”, which could be highly

interesting for the Leader Election Protocol. The new

Uppaal-smc branch offers a simulation engine allow-
ing to settle such probabilistic properties within desired

levels of confidence based on a number of random runs

of the system. Assuming that the delay of each node is
given by uniform distribution on the interval [0,MaxD]

Fig. 21 (a) gives the estimated probability, that the

leader (node N2) is declared within T time-units, with T

ranging from 0 to 14. Knowing from our previous verifi-
cation effort that 14 is the guaranteed upper bound, it is

interesting to see that the average time before election

is significantly lower, namely 4.42624 time-units Using

(a)

(b)

Fig. 21 Performance Analysis of the Leader Election Pro-
tocol, giving the probability that the leader will be declared
(a) within T time-units and (b) within M messages being send,
estimated by Uppaal-smc.

Uppaal-smc we obtain [0.38241, 0.402412] as a 95%
confidence interval for the probability of that the leader

is elected within 4 time-units using 18,445 random runs.

On the other hand, directly testing whether this prob-
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ability is greater than 0.3 with significance level 0.05

is confirmed with only 266 runs, using the sequential
testing method implemented in Uppaal-smc.

Extending the model slightly, we may also estimate

the “probability that a leader is declared within a given
number M of messages being send”. Fig. 21 (b) gives

an estimation of this probability for M ranging from 0

to 50. We note that on average transmission of some 25
messages is needed.

Following the sketch above for the Leader Election

Protocol, we believe that a semantically well-founded

extension of the presented TIOA-based specification the-
ory to allow for stochastic implementation would be ex-

tremely interesting. In particular, it would enable the

refinement of hard real-time guarantees with soft per-
formance statistics in a consistent manner, and allow

for the analysis and development of mixed-criticality

systems.
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