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Abstract. Complex computational systems are ubiquitous and their
study increasingly important. Given the ease with which it is possible to
construct large systems with heterogeneous technology, there is strong
motivation to provide automated means to verify their safety, efficiency
and reliability. In another context, biological systems are supreme exam-
ples of complex systems for which there are no design specifications. In
both cases it is usually difficult to reason at the level of the description of
the systems and much more convenient to investigate properties of their
executions.
To demonstrate runtime verification of complex systems we apply sta-
tistical model checking techniques to a model of robust biological oscil-
lations taken from the literature. The model demonstrates some of the
mechanisms used by biological systems to maintain reliable performance
in the face of inherent stochasticity and is therefore instructive. To per-
form our investigation we use two recently developed SMC platforms:
that incorporated in Uppaal and Plasma. Uppaal-smc offers a generic
modeling language based on stochastic hybrid automata, while Plasma

aims at domain specific support with the facility to accept biological
models represented in chemical syntax.
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1 Introduction

It is conceivable to design systems in such a way that makes their analysis easier,
but it is most usually the case that they are optimised for other constraints
(efficiency, size, cost, etc.) and that they evolve over time, developing highly
complex and unforeseen interactions and redundancies. These phenomena are
epitomised by biological systems, which have absolutely no inherent need to be
understandable or analysable. The discovery that the genetic recipe of life is
written with just four characters (nucleotides Adenine, Cytosine, Guanine and
Thymine) that are algorithmically transcribed and translated into the machinery
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of the cell (RNA and proteins) has led scientists to believe that biology also works
in a computational way. The further realisation that biological molecules and
interactions are discrete and stochastic then suggests the idea that biological
systems may be analysed using the same tools used to verify, say, a complex
aircraft control system.

Using formal methods to investigate natural systems can thus be seen as a
way to challenge and refine the process of investigating man-made systems. It is
very difficult to reason about systems of this type at the level of their descrip-
tions, however. It is much more convenient to directly analyse their observed
behaviour. In the context of computational systems we refer to this approach
as runtime verification, while in the case of biological systems this generally
takes the form of monitoring the simulation traces of executable computational
models.

To demonstrate runtime verification of biological systems we apply advanced
statistical model checking (SMC) techniques to a model of robust biological oscil-
lations taken from the literature. SMC works by verifying multiple independent
simulation traces of a probabilistic model against a property specified in linear
temporal logic. The results are then used in an hypothesis test or to estimate the
probability of the property. In adopting this approach, SMC avoids constructing
the generally intractable explicit representation of the state space of the system.
The price paid is that results are only known within confidence intervals, how-
ever these may be made arbitrarily tight by increasing the number of simulation
runs. SMC can thus be seen as a specific instance of runtime verification.

The model we have chosen to investigate demonstrates some of the mecha-
nisms used by biological systems to maintain reliable performance in the face of
inherent stochasticity. These mechanisms are literally vital and have relevance
beyond biology (e.g. amorphous computing). To perform our investigation we
use two recently developed SMC platforms: that incorporated in Uppaal and
Plasma. Uppaal-smc offers a generic modelling language based on stochas-
tic hybrid automata, while Plasma aims at domain specific support and here
accepts biological models represented in chemical syntax. Although our chosen
model was conceived to be stochastic, its original description and analysis were
in the continuous (ODE) domain. We therefore compare the behaviour of de-
terministic and stochastic models by performing a frequency domain analysis,
taking advantage of Uppaal’s recently implemented ability to work with ODE
representations. We verify various interesting temporal properties of the model
and compare Plasma’s direct implementation of bounded LTL with Uppaal’s
monitor- and rewrite-based implementations of weighted MITL.

2 Beyond Runtime Verification with SMC

Runtime verification (RV) [10,21] refers to a series of techniques whose main
objective is to instrument the specification of a system (code, ...) in order to
disprove potentially complex properties at the execution level. The main problem



of the runtime verification approach is that it does not permit to assess the overall
correctness of the entire system.

Statistical model checking (SMC) [4,26,23] extends runtime verification capa-
bilities by exploiting statistical algorithms in order to get some evidence that
a given system satisfies some property. Given a program B and a trace-based
property3 φ , Statistical model checking refers to a series of simulation-based
techniques that can be used to answer two questions: (1) Qualitative: is the
probability for B to satisfy φ greater or equal to a certain threshold θ (or greater
or equal to the probability to satisfy another property φ′)? and (2) Quantita-

tive: what is the probability for B to satisfy φ?
We briefly review SMC approaches, referring the reader to [4,26] for more

details. The main approaches [26,23] proposed to answer the qualitative question
are based on hypothesis testing. Let p be the probability of B |= φ, to determine
whether p ≥ θ, we can test H : p ≥ θ against K : p < θ. A test-based solution
does not guarantee a correct result but it is possible to bound the probability of
making an error. The strength (α, β) of a test is determined by two parameters,
α and β, such that the probability of accepting K (respectively, H) when H
(respectively, K) holds is less or equal to α (respectively, β). Since it impossible
to ensure a low probability for both types of errors simultaneously (see [26] for
details), a solution is to use an indifference region [p1, p0] (with θ in [p1, p0]) and
to test H0 : p≥ p0 against H1 : p≤ p1. Several hypothesis testing algorithms
exist in the literature. Younes[26] proposed a logarithmic based algorithm that
given p0, p1, α and β implements the Sequential Ratio Testing Procedure (SPRT)
(see [25] for details). When one has to test θ≥1 or θ≥0, it is however better
to use Single Sampling Plan (SSP) (see [26,4,23] for details) that is another
algorithm whose number of simulations is pre-computed in advance. In general,
this number is higher than the one needed by SPRT, but is known to be optimal
for the above mentioned values. More details about hypothesis testing algorithms
and a comparison between SSP and SPRT can be found in [4].

In [11,17] Peyronnet et al. propose an estimation procedure (PESTIMA-

TION) to compute the probability p for B to satisfy φ. Given a precision δ,
Peyronnet’s procedure computes a value for p′ such that |p′ − p|≤δ with confi-

dence 1− α. The procedure is based on the Chernoff-Hoeffding bound [13].

3 Model and Properties

3.1 A genetic oscillator

It is well accepted that molecules are discrete entities and that molecular in-
teractions are discrete. It is further accepted that molecules move randomly as
a result of collisions with other molecules (thermal noise). From this it can be
inferred that chemical reactions are the result of random interactions and can be
modelled as stochastic processes. Biological organisms based on chemical reac-
tions are thus supreme examples of complex stochastic systems. The means by

3 i.e., a property whose semantics is trace-based.



which they overcome low level non-determinism and achieve apparent high level
determinism is the subject of much ongoing research and informs such fields as
amorphous computing [1].

Oscillation, arising from the execution loops in computer programs, is of
great relevance to runtime verification of automated systems. Oscillation also
plays a crucial role in biology - life being an essentially cyclic process. One of
the key oscillatory behaviours in biology is the circadian rhythm that allows
an organism to take advantage of periods of day and night to optimise when
to maximise activity and recovery. In light of this, we have chosen the genetic
circadian oscillator of [3,24] as the focus of our analysis. This synthetic model
distils the essence of several real circadian oscillators and demonstrates how
a reliable system can be constructed in the face of inherent stochasticity. In
particular, the model has been shown in [12] to exhibit a kind of regularity
referred to as stochastic coherence.

Though the authors of the model were interested in its stochastic properties,
they nevertheless chose to represent it in the form of a system of ordinary differ-
ential equations (ODEs, reproduced in Figure 1). Each of the equations describes
the infinitesimal rate of change of a particular molecular species; the functions
being the sums of the rates of all reactions involving the species, weighted by
the direction (positive or negative, corresponding to creation and consumption)
and size of the corresponding change. ODEs are commonly used to represent the
dynamics of chemically reacting systems and it is traditional to consider con-
centrations (numbers of molecules per unit volume). Trajectories of ODEs can
closely approximate stochastic dynamics when the system operates near to the

thermodynamic limit (infinite population sizes). This is rarely the case with bio-
logical models of cellular processes, which frequently consider molecular species
in very low copy numbers. An obvious example is that within a cell there is often
just a single copy of a particular gene (as in the case of the genetic oscillator we
describe here). The ODE trajectory is often considered (informally) to be the
‘average’ of the stochastic traces, implying that the noise is somehow superim-
posed on top of a deterministic trajectory. In fact, the noise is an inherent part

of the stochastic trajectory and the ODE describes the behaviour of the limit of
the stochastic process as populations are taken to infinity while maintaining the
same concentrations [7,9]. We demonstrate this using frequency domain analysis
in Section 3.4.

Using a standard translation between deterministic and stochastic semantics
of chemically reacting systems (see, e.g., [8]), it is possible to transform the ODEs
given in Figure 1 into the chemical reaction syntax of Equations (1-16). These
can then be visualised as a stochastic Petri net (Figure 2). The model comprises
two genes (DA and DR) that are transcribed (Equations (5-8)) to produce two
micro-RNA molecules (MA and MR, respectively) that are translated (Equations
(9,10)) to produce two proteins (A and R, respectively). A acts as a promoter
for its own gene (Equation (1)) and for that of R (Equation (3)) by reacting
with DA and DR to produce their more efficient active forms D′

A and D′
R. A and

R dimerise (Equation (11)) to form complex protein C that eventually degrades



dDA/dt = θAD
′

A − γADAA

dDR/dt = θRD
′

R − γRDRA

dD′

A/dt = γADAA− θAD
′

A

dD′

R/dt = γRDRA− θRD
′

R

dMA/dt = α′

AD
′

A + αADA − δMA
MA

dMR/dt = α′

RD
′

R + αRDR − δMR
MR

dA/dt = βAMA + θAD
′

A + θRD
′

R

− A(γADA + γRDR + γCR+ δA)

dR/dt = βRMR − γCAR+ δAC − δRR

dC/dt = γCAR− δAC

Fig. 1: System of ordinary differential
equations describing the genetic oscilla-
tor example.

Fig. 2: Petri net representation of
the initial state of the genetic oscil-
lator example.

back to D. Oscillation arises from the fact that A is part of a positive feedback
loop involved in its own production and promotes the production of R that, in
turn, sequesters A (i.e., removes it) via the production of C (Equation (11)).
This mechanism and other mechanisms of biological oscillation are discussed in
more detail in a recent review of synthetic oscillators [19].

A+DA

γ
A−→ D′

A (1)

D′

A

θ
A−→ DA +A (2)

A + DR

α
R−→ D′

R (3)

D′

R

θ
R−→ DR +A (4)

D′

A

α′

A−→ MA +D′

A (5)

DA

α
A−→ MA +DA (6)

D′

R

α′

R−→ MR +D′

R (7)

DR

α
R−→ MR +DR (8)

MA

β
A−→ MA +A (9)

MR

β
R−→ MR +R (10)

A + R
γ
C−→ C (11)

C
δ
A−→ R (12)

A
δ
A−→ ∅ (13)

R
δ
R−→ ∅ (14)

MA

δ
MA−→ ∅ (15)

MR

δ
MR−→ ∅ (16)

Each equation describes a possible productive interaction between types of

molecules (molecular species). Monomolecular reactions of the form A
k
→ · · ·

have the semantics that a molecule of type A will spontaneously decay to some
product(s) following a time delay drawn from an exponential distribution with

mean k. Bimolecular reactions of the form A + B
k
→ · · · have the semantics

that if a molecule of type A encounters a molecule of type B they will react
to become some product(s) following a time delay drawn from an exponential
distribution with mean k. It is usually assumed that the system is ‘well stirred’
[8,7,9], such that the probability of a molecule occupying a particular position is
uniform over the physical space of the system. This rarely represents reality in the
case of biological cells, however it is a widely used mathematical expedient that



is common to both deterministic and stochastic treatments. The consequence is
that molecules lose their individuality (populations are treated as multisets) and
the rate of molecular interactions is simply the product of a rate constant (k in
the examples) and a combinatorial factor arising from population sizes [8,7,9].
This is known as mass action kinetics [8,7,9]. Referring to molecular species A
and B in the example reactions given above, for populations of instantaneous
size A and B the overall rates of monomolecular and bimolecular reactions are
given by kA and kAB, respectively.

3.2 Properties

The language we use to describe properties is based on the dense timed logic
MITL, having the form

φ = φ ∨ φ | φ ∧ φ | ¬φ | ⊤ | ⊥ | φU[a;b]φ | φR[a;b]φ | Xφ | α

where a, b ∈ IN, a < b and alpha is a proposition of the model. In the case of
the genetic oscillator we consider in this paper, the propositions are numeric
comparisons of the variables in question.

An expression as φ1U[a; b]φ2 means that φ1 should be true until φ2 is true
and this should occur between a and b time units. The expression φ1R[a; b]φ2
means φ2 should be true until either b time units has passed or both φ1 and φ2
is true and that occurs between a and b time units. Xφ means that φ should
be true in the next state of the system. The remaining operators have their
standard interpretation from propositional calculus. The derived eventuality op-
erator ♦[a;b]φ is introduced as short for ⊤U[a;b]φ and the always operator �[a;b]φ
as short for ⊥R[a;b]φ.

3.3 Properties of the Oscillator

The model exhibit an oscillatoric behaviour in which a peak of one protein is
followed by the increase of another protein. The increase of one protein also
appears to be governed by highly regularity in the sense that one peak level is
followed by another peak level in a specific amount of time.

In order to detect peaks we first define the shape of a peak. We say there is
a peak if the protein level is above a threshold thresL and within l time units
drops below another threshold thresR.

Using MITL≤ we can express that we at the given time is in a peak of the
N variable as

φpeakN ≡ N > thresL ∧ ♦[0;l]N < thresR.

Expressing that there is a periodicity in the peaks of a single variable N
within the first 1000 time units can be done using the formula:

�≤1000(φpeakN =⇒ ♦≤pφpeakN ),

where p is the maximum time between peaks. The same form of expression can of
course also be used to express that a peak on the N variable should be followed
by a peak on the M variable.



3.4 Frequency domain analysis

Frequency domain analysis provides a rigorous yet intuitive means to quantify
the behaviour of stochastic systems from observations of their executions. This
methodology is particularly relevant for oscillatory biological systems [14], but is
not limited to these and is able to characterise the distance in behaviour between
different models, different systems and different parts within the same system.
It can also measure the difference between different simulation algorithms or
semantics applied to the same system.

Our technique is to generate N simulation traces sampled at constant time
intervals, δt, resulting in K sampled points per simulation. From each set of
sampled points and for each state variable of interest we calculate a complex fre-
quency spectrum using a ‘fast Fourier transform’ (FFT) algorithm. From these
we generate N corresponding magnitude spectra and then calculate the point-
wise average magnitude spectrum. The average magnitude spectrum often gives
a visually compact notion of the complex stochastic behaviour of the system
and can also be used to quantify a distance between behaviours using standard
statistical metrics.

K and δt are chosen according to the temporal characteristics of the phe-
nomenon of interest: Kδt is the maximum observed simulated time; (Kδt)−1

is the low frequency resolution (the spacing between spectral components) and
(2δt)−1 is the maximum observable frequency. It is generally desirable to increase
K and reduce δt, but note that an optimal value of δt is usually significantly
greater than the minimum time between successive update events, since these
often do not apply to the same variable and the highest part of the spectrum is
often uninformative. N is chosen according to the stochasticity of the system in
relation to the desired discrimination of the metric; large N being desirable.

4 UPPAAL-SMC

The verification tool Uppaal [18] provide support for modeling and efficient
analysis of real-time systems modeled as networks of timed automata [2]. To
ease modeling, the tool comes equiped with a user-friendly GUI for defining and
simulating models. Also, the modelling formalism extends basic timed automata
with discrete variable over basic, structured and user-defined types that may be
modified by user-defined functions written in a Uppaal specific C-like imper-
ative language. The specification language of Uppaal is a fragment of TCTL
supporting a range of safety, liveness and bounded liveness properties.

Uppaal-smc is a recent branch of Uppaal which support statistical model
checking of stochastic hybrid systems, based on a natural stochastic semantics.
Uppaal-smc extends the basic timed automata formalism of Uppaal by al-
lowing rates of clocks to be defined by general expressions possibly including
clocks, thus effectively defining ODEs. An overview of the architecture is given
in Figure 3. The GUI of the tool allows the user to draw automata templates in
the editor, instantiate and compose these into a system, simulate the system for



easy validation, verify queries, and visualize quantitative answers in the form of
plots in the plot composer. The execution engine of Uppaal-smc implements the
stochast semantics of interacting hybrid automata, and includes a proprietary
virtual machine for the execution of imperative code of the model.

The specification formalism of Uppaal-smc is that of (weighted) MITL,
with respect to which four different statistical model checking components are
offered: hypothesis testing, probability estimation, probability comparison and
simulation. Here the user may control the accuracy of the analysis by a num-
ber of statistical parameters (size of confidence interval, significance level, etc.).
Uppaal-smc also provides distributed implementations of the hypothesis testing
and probability estimation demonstrating linear speed-up [5].

The results generated by the analyses can be processed for visualization in
various ways: Gannt charts for individual runs monitoring desired variables,
plots of density functions and accumulated distribution functions with respect
to given (W)MITL properties. Typically the simulation results in gigabytes of
data which are filtered on-the-fly to plot only the relevant points.

Graphical Interface

Editor

Simulator

Verifier

Plot composer

Stochastic Engine

Hypothesis 

Testing

Probability 

Evaluation

Probability 

Comparison

Simulation 

Engine

Data

processing

engine
Compiler

Virtual 

Machine

Execution

Engine

Server

Fig. 3: Architecture of Uppaal-smc.

4.1 Modeling and Checking in UPPAAL-SMC

A Bouncing Ball Example. To illustrate the expressive power of the stochastic
hybrid automata language supported by Uppaal-smc, we consider a simple,
yet interesting variant of a bouncing ball. Figure 4(a) gives the principle of a
ball bouncing on a floor and being hit by a piston. The hybrid model of the
ball is given in Fig. 4(b) where three cases are visible: (i) it can be hit while
going up (v<=0), (ii) hit while going down (v<0), or (iii) it bounces on the
floor. The invariant on the location describes the trajectory of the ball in the
form of two differential equations (v’ and p’). The piston in Fig. 4(c) can hit
the ball only if its position is high enough (p>=6). The ball will rebound with
a random dampening coefficient both on the floor and the piston (given by the
random function). The delays between hits of the piston are chosen stochastically
according to an exponential distribution of rate 5/2. Semantically, the effect of
ODE expressions is achieved by an implicit auxiliary process integrating the
values based on a given fixed time step and thus directly competing with the
rest of processes when the rest of invariant and guard expressions are evaluated.



hit?

bounce!

hit?

p==0 && v < 0

p=10 v = −(0.85+random(0.1))*v − 4

v=−(0.8+random(0.12))*v

v=−4.0

v’==−9.81 &&
p’==1*v

p >= 6 && v < 0 && v >= −4

p >= 6 && v >= 0

(a) (b)

hit!
5:2

time

va
lu

e

0

1.6

3.2

4.8

6.4

8.0

9.6

0 3.3 6.6 9.9 13.2 16.5 19.8

(c) (d)

Fig. 4: The bouncing ball and the hitting piston (a), the automata for (b) the
ball and (c) the piston, and (d) 5 trajectories of the ball in function of time.

Five different trajectories of the ball are obtained by the query simulate

5 [<=20]{p} and shown in Fig. 4(d). We may also ask the model-checker to
estimate the probability that the ball is still bouncing above the height of 4
after 12 time units with the query:

Pr[<=20](<>(time >= 12 && p >= 4))

Here <>(time>=12 && p>=4) is the Uppaal-smc syntax for the MITL property
ψ = ♦(time ≤ 12 ∧ p ≥ 4) and Pr[<=20]ψ denote the probability π that ψ
will hold within 20 time-units for a random run. Given this query, the inter-
val [0.152, 0.163] is returned as an estimate for π with confidence 99.9% after
generating 152020 runs. We can also test the hypothesis:

Pr[<=20](<> time >= 12 && p >= 4) >= 0.15

with a region of indifference of ±0.005 and level of significance of 0.1% after
generating 18543 runs.

For the analysis of more general MITL properties properties, Uppaal-smc

generates monitoring automata to be put in parallel with the system. Statistical
model checking requires that these monitors are determinstistic timed automata.
Unfortunately, not all MITL properties may be monitored by determinstic timed
automata. Thus Uppaal-smc offers a safe confidence interval based on two
monitors corresponding to under- and over-approximations of the set of runs
satisfying the particular formula [5]. Experimental results have shown that we
obtain an exact monitor, and most recently this method has been replace by an
exact rewrite technique.



gammaR=0, betaA=0, deltaA=0, ... ,

A=0, C=0, R=0, DR=1, ...

gammaR'==0 && betaA'==0 && deltaA'==0 && ... &&

A’== betaA*MA+thetaA*D_A+thetaR*D_R

−A*(gammaA*DA+gammaR*DR+gammaC*R+deltaA) &&

R’== betaR*MR−gammaC*A*R+deltaA*C−deltaR*R &&

C’== gammaC*A*R−deltaA*C && ...

(a) ODE model.

A>0 && DA>0

A*DA*gammaA

A−−, DA−−,
D_A++

MA>0

MA*betaA

A++
C>0

C*deltaA

C−−, R++

(b) Stochastic model.

Fig. 5: Snippets of the Uppaal models of the genetic oscilator.

Figure 5a shows a snippet from an ODE model of the genetic oscilator,
where the coefficients (gammaR, betaA, deltaA) and variables (A, C, R, DR)
are initialized with the first urgent transition and then the trajectories are com-
puted based on the ODEs (the last three equations from Fig. 1). A snippet from
stochastic genetic oscilator model is shown in Fig. 5b, where each reaction (from
Eq. 1, 9 and 12) is modeled by a separate automaton. For example, the first
automaton can be read as follows: reaction requires positive quantities of A and
DA (guard conditions), one of each is consumed (A-- and DA--), and one D A is
produced (D A++) with an exponential rate gammaA times the available quantities
of A and DA.

5 PLASMA

Plasma is designed to be a high performance and flexible platform for statis-
tical model checking, able to work with multiple modelling and property spec-
ification languages. Its basic architecture is shown in Figure 6 and comprises a
user interface, a simulation management module, a virtual machine and modules
that compile the model and property specifications. Models and properties are

Property 
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Language
LogicVM SimVM

Bytecode

Bytecode

Hypothesis 

Testing

Importance Sampling

Confidence 

Bounds

Modelling 

Language

Model Compiler

Virtual Machine

Simulation Management

User 

Interface

Property

Compiler

Modelling

Language

Module

Specification

Language Module

Fig. 6: The architecture of Plasma

compiled into proprietary bytecode and executed on Plasma’s inbuilt virtual
machine. Overall control of the verification process is maintained by the simu-
lation management module according to the options specified by the user. The
simulation management module contains various statistical model checking al-
gorithms that implement confidence bounds, such as the Chernoff bound of [11]



and the sequential hypothesis test of [27], plus an importance sampling engine
[16] that improves the performance when simulating rare properties. For simu-
lating discrete and continuous time Markov models the virtual machine uses the
‘method of arbitrary partial propensities’ (MAPP [22,15]) that is an optimised
version of the ‘direct method’ of [8]. The simulation management module ex-
ecutes the property bytecode that, in turn, executes the model bytecode until
sufficient simulation steps are generated. In this way simulation traces contain
the minimum number of states necessary to decide a property and the simu-
lation management ensures that the minimum number of simulation traces are
requested of the simulator.

5.1 Modeling and Checking in Plasma

Modelling languages are built on an underlying semantics of guarded commands

[6] extended with stochastic rates to resolve non-determinism. These have the
form (guard, rate, action), where guard is a logical predicate over the state of
the system which enables the command, action updates the state of the system
and rate is a function over the state of the system that returns the stochastic rate
at which an enabled command is executed. This semantics is equally applicable
when the rate is actually a probability and time plays no part.

Plasma is designed to be language neutral, so for the present investiga-
tion Plasma adopts a simple chemical syntax modelling language that closely
mirrors the style of Equations (1-16). The structure of the model file follows
the form: constant initialisations, species initialisations, list of reactions. In the
present context there is an implicit assumption ofmass action kinetics [8,7,9] and
rate specifies the mean of an exponential random variable that models the time
between successive reaction events; non-determinism being resolved by races be-
tween realisations of the random variables of competing reactions. Reactions of

the abstract form A+B
k
→ C+D have the concrete form A + B k-> C + D with

guarded command semantics (A > 0 ∧B > 0, kAB,A = A− 1;B = B − 1;C =
C + 1;D = D + 1).

Plasma verifies properties specified in bounded linear temporal logic of the
kind described in Section 3.2. The logic accepts arbitrarily nested temporal for-
mulae and Plasma achieves this using a buffer to store sequences of values of
the variables of interest. When formulae are not nested, no buffer is required.
Algorithms 1 and 2 illustrate the basic notions of checking non-nested temporal
formulae, employing discrete time for clarity. Algorithm 3 is a naive implemen-
tation of a nested formula to illustrate the purpose of the buffer and how we
improve efficiency.

Algorithms 1 and 2 generate and consider states in turn, returning a result as
soon as φ is satisfied or not satisfied, respectively. These algorithms store nothing
and generate the minimum number of states necessary. Algorithm 3 also only
generates new states as required, but since the inner loop requires states further
into the future than the outer loop, states are stored by the inner loop for
subsequent use by the outer loop. As written, Algorithm 3 is naive because the



inner loop re-checks states that it has checked on previous iterations of the outer
loop. Plasma therefore records where the decision on the previous iteration was
made and then needs only check the states after that. The case with continuous
time is more complex because the length of the buffer is not known a priori (there
may be an arbitrary number of steps to achieve a given time bound). Plasma
overcomes this by creating an initial buffer and then extends it as required.

Algorithm 1: ♦≤tφ

for i = 0 to i = t do
generate statei;
if statei |= φ then return ⊤

return ⊥

Algorithm 2: �≤tφ

for i = 0 to i = t do
generate statei;
if statei 6|= φ then return ⊥

return ⊤

Algorithm 3: ♦≤t1�≤t2φ

create buffer of length t2;
for i = 0 to i = t1 do

inner = ⊤;
for j = i to j = i+ t2 do

if statej /∈ buffer then

generate statej ;
bufferj mod t2 = statej ;

if statej |= ¬φ then

inner = ⊥;
break

if inner then return ⊤
return ⊥

5.2 Rare Events

Rare events pose a challenge to simulation-based approaches, so Plasma in-
cludes an importance sampling engine that makes it possible to estimate the
probability of a rare property by simulating under a distribution that makes the
property less rare. Given a property φ, with true probability γ under distribution
P , the standard Monte Carlo estimator of γ is given by γ̃ = 1

N

∑N
i=1 z(ωi), where

ωi is the trace of a simulation made underP and z(ω) ∈ {0, 1} indicates whether
ω |= φ. In general, N must be chosen significantly greater than 1

γ
to accurately

estimate γ, hence this is computationally expensive when γ is small. By contrast,

the importance sampling estimator is given by γ̃ = 1
N

∑N
i=1 z(ωi)

P (ωi)
Q(ωi)

, where

Q is ideally a distribution under which traces that satisfy φ are uniformly more
likely and ωi is now the trace of a simulation performed under Q. P

Q
is called

the likelihood ratio and in a discrete event simulation can usually be calculated
on the fly in constant time. Since Q is chosen to reproduce φ more frequently, N
may be significantly less than 1

γ
. The effectiveness of importance sampling relies

on finding a suitable Q.
An optimal importance sampling distribution is one under which traces that

satisfy the rare property are uniformly more likely, to the exclusion of all traces
that do not satisfy the property. It is possible to find such distributions by in-
dividually modifying all the transition probabilities in the system [20], however
this is often intractable. Plasma thus parametrises the distribution with a low
dimensional vector of parameters applied to the rates of its guarded commands
[16]. In the case of biological systems of the type considered here, this parametri-
sation corresponds to the rate constants of reactions.



To demonstrate the application of importance sampling to biological systems

we consider a simple chemical system comprising A + B
k1=1
−→ C, C

k2=1
−→ D,

D
k3=1
−→ E. With initial conditions A = 1000, B = 1000, C = D = E = 0, we then

consider the property Pr[♦D ≥ 470] that has a probability of approximately
2× 10−10. By multiplying the rate constants k1, k2, k3 by importance sampling
parameters λ1 = 1.16, λ2 = 1.15, λ3 = 0.69, respectively, Plasma is able to
estimate this probability using only 1000 simulation runs (of these approximately
600 satisfy the property). The parameters were generated using the cross-entropy
algorithm described in [16].

6 Experiments

Our first level of validation is to inspect the simulation traces to verify that
they are sensible. The result from Uppaal-smc is displayed in Figure 7 where
the ODE model yields the same (deterministic) trajectories of a pattern which
repeats every 26.2 hours. The stochastic model yields an apparently similar but
“noisy” pattern where the amplitude and periodicity are also varying. This in-
tuitive similarity is made more formal by the frequency analysis in Section 6.1.
Notice that the signal C starts at zero which allows A to reach higher amplitude
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(a) ODE model simulation plot.
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(b) Stochastic model simulation plot.

Fig. 7: Uppaal-smc simulations: simulate 1 [<=75] { A, C, R }.

than it normally would, thus we ignore the first period in our measurements.
The amplitude can be measured from the plot directly for the ODE model: A –
1375, C – 2183 and R – 1717.

The amplitude is not fixed for stochastic model, and thus the distribution of
probable amplitude values is estimated instead. The start of the monitoring is
constrained with a variable v gaining value 1 only after 15 time units, effectively
ignoring the first peaks. The results of 2000 simulations of 75 time units are
shown in Fig. 8. The average amplitudes are a bit larger than in ODE model.

We can also estimate periods of various signals by measuring the time dis-
tance between peaks. For this purpose we add signal peak monitor-process gener-
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Fig. 8: Estimated amplitude: E[<=75; 2000](max: A*v,C*v,R*v).

ated by a MITL formula: true U[<=1000] (A>1100 & true U[<=5] A<=1000),
which is false unless the signal A rises above 1100 and then falls below 1000
within 5 time units. By coordinating two instances of such monitors and letting
a stopwatch x run only between the two peaks we estimate the distribution of
x as a period estimate. For signal C (R) we register a peak when the signal
falls from 2000 to 1900 (1500 to 1400 resp.). The query then is a simple prob-
ability estimate whether the second peak is reached. Figure 9 shows estimated
period with corresponding values at probability peaks. The most instances are
situated around the peak value, but there are other tiny bumps on sides. The
bump near zero corresponds to false positive recognition of a peak when the sig-
nal includes a saw tooth (common in stochastic simulations). The bump around
48 hours corresponds to a missed peak at 24, due to the local amplitude being
too low. Interestingly there is another tiny bump at around 73 in Fig. 9b which
correspond to two missed peaks in a row.
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Fig. 9: Estimated periods: Pr[x<=100](<> secondPeak.ACCEPT).
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Fig. 10: Phase diff., peak at 6.21.

Similarly we can estimate the phase
difference between the signals as a dis-
tance between peaks of different signals.
Figure 10 shows a probability density dis-
tribution of a phase difference between A
and R signals, which implies that a peak
in A typically leads to a peak in R within
6.21, but there might be one missed peak.

6.1 Frequency domain analysis

Figures 11 and 12 compare the average frequency spectra of two variables from
our deterministic and stochastic simulations. We observe that the deterministic
spectra (black) tend to have sharp, well defined, peaks with discernible harmon-
ics at high frequencies. In contrast, the spectra of stochastic simulations (red)



tend to have softened peaks, few discernible high harmonics and contain an ap-
parent continuum of frequencies. This is reflected in the reduced amplitude of
these spectra relative to their deterministic counterparts: the amplitude of the
original trace is effectively divided amongst many more frequencies. We note that
the first three harmonics of the deterministic and stochastic spectra appear to
coincide, confirming our expectation and intuition that the the two behaviours
are ‘similar’.

The apparent thickness of the red lines reflects the fact that the lines describe
average spectra generated from stochastic data. Increasing N would make the
lines less thick but would not change their overall form, that is derived from the
frequency characteristics of the stochasticity.

Fig. 11: Average frequency spectra
of protein R. δt = 2h,K = 12500.
N = 100 (N = 1) for the stochastic
(deterministic) model.

Fig. 12: Average frequency spectra
of protein C. δt = 2h,K = 12500.
N = 100 (N = 1) for the stochastic
(deterministic) model.

7 Conclusion

We have introduced and applied various advanced statistical model checking
techniques to an osillatory biological system and have demonstrated their rele-
vance to runtime verification. We have used two state of the art tools: Uppaal-

smc and Plasma. Uppaal is a mature general-purpose platform based on timed
automata, while Plasma is a relatively new tool that allows domain-specific
languages to describe Markov chain models. Table 1 summarizes the aspects of
both tools and shows that Plasma is targeted for domain specific languages
and the final result analysis (such as frequency analysis) is done using external
tools, whereas Uppaal provides generic features with integrated visualization of
predetermined concepts. Although there are fundamental differences in the un-
derlying semantics of the two tools, we have shown that they are united by the
properties and problems of verification. In particular, frequency domain analysis
and rare events are subjects of ongoing joint research.



Table 1: Tool comparison summary.

Aspect Plasma Uppaal

Models Domain specific Stochastic hybrid automata
Semantics DTMC/CTMC Stochastic hybrid transition systems
Properties MITL, rare events (Weighted) MITL
Results Exported data Generic visualizations
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