
Schedulability of Herschel-Planck Revisited

Using Statistical Model Checking ⋆

Alexandre David1, Kim G. Larsen1, Axel Legay2, Marius Mikučionis1

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

Abstract. Schedulability analysis is a main concern for several embed-
ded applications due to their safety-critical nature. The classical method
of response time analysis provides an efficient technique used in indus-
trial practice. However, the method is based on conservative assump-
tions related to execution and blocking times of tasks. Consequently,
the method may falsely declare deadline violations that will never oc-
cur during execution. This paper is a continuation of previous work of
the authors in applying extended timed automata model checking (using
the tool UPPAAL) to obtain more exact schedulability analysis, here in
the presence of non-deterministic computation times of tasks given by
intervals [BCET,WCET]. Considering computation intervals makes the
schedulability of the resulting task model undecidable. Our contribution
is to propose a combination of model checking techniques to obtain some
guarantee on the (un)schedulability of the model even in the presence of
undecidability.
Two methods are considered: symbolic model checking and statistical
model checking. Symbolic model checking allows to conclude schedula-
bility – i.e. absence of deadline violations – for varying sizes of BCET.
However, the symbolic model checking technique is over-approximating
for the considered task model and can therefore not be used for disproving
schedulability. As a remedy, we show how statistical model checking
may be used to generate concrete counter examples witnessing non-
schedulability. In addition, we apply statistical model checking to obtain
more informative performance analysis – e.g. expected response times –
when the system is schedulable.
The methods are demonstrated on a complex satellite software system
yielding new insights useful for the company.

1 Introduction

Embedded systems involve the monitoring and control of complex physical pro-
cesses using applications running on dedicated execution platforms in a resource
constrained manner in terms of for example memory, processing power, band-
width, energy consumption, as well as timing behavior.

⋆ Work partially supported by VKR Centre of Excellence MT-LAB, the Sino-Danish
basic research center IDEA4CPS, the regional CREATIVE project ESTASE, and
the EU projects DANSE and DALI.

Viewing the application as a collection of (interdependent tasks) various
scheduling principles may be applied to coordinate the execution of tasks in
order to ensure orderly and efficient usage of resources. Based on the physical
process to be controlled, timing deadlines may be required for the individual
tasks as well as the overall system. The challenge of schedulability analysis is
now concerned with guaranteeing that the applied scheduling principle(s) ensure
that the timing deadlines are met.

The classical method of response time analysis [JP86,Bur94] provides an effi-
cient means for schedulability analysis used in industrial practice: by calculating
safe upper bounds on the worst case response times (WCRT) of tasks (as solu-
tions to simple recursive equations) schedulability may be concluded by a simple
comparison with the deadlines of tasks. However, classical response time analysis
is only applicable to restricted types of task-sets (e.g. periodic arrival patterns),
and only applicable to applications executing on single processors. Moreover, the
method is based on conservative assumptions related to execution and blocking
times of tasks [BHK99]. Consequently, the method may falsely declare deadline
violations that will never occur during execution.

Process algebraic approaches [BACC+98,SLC06] have resulted in many meth-
ods for specification and schedulability analysis of real-time systems. Timed au-
tomata frameworks are also combined with other tools [BHK+04,BHM09] for
schedulability and schedule assessment in realistic settings.

In this paper, we continue our effort in applying real-time model checking
using the tool Uppaal to obtain more exact schedulability analysis for a wider
class of systems, e.g. task-sets with complex and interdependent arrival patterns
of task, multiprocessor platforms, etc [DILS10]. In particular, we revisit the
industrial case study of the Herschel-Planck [MLR+10] satellite system. The
control software of this system – developed by the Danish company Terma A/S
– consists of 32 tasks executing on a single processor system with preemptive
scheduling, and with access to shared resources managed by a combination of
priority inheritance and priority ceiling protocols. Unfortunately, though falling
into the class of systems covered by the classical response time analysis, this
method fails to conclude schedulability for the Herschel-Planck application.

In our previous work [MLR+10], we “successfully” concluded schedulability
of the Herschel-Planck application using a more exact analysis based on the
timed automata modeling framework for schedulability problems of [DILS10]
and the tool Uppaal. However, the analysis in [MLR+10] is based on the strong
assumption, that each task has a given and specific execution time (ET). Clearly
this is an unrealistic assumption. In reality, it can only be guaranteed that the
execution time for (each execution of) task i is in some interval [BCETi,WCETi].
In particular, classical response time analysis aims at guaranteeing schedulability
for intervals [0,WCETi], though unfortunately inconclusive for the Herschel-
Planck control software. On the other hand the guarantee of schedulability in
[MLR+10] only applies to (unrealistic) singleton intervals [WCETi,WCETi].

Both works consider systems with preemptive scheduling and our timed au-
tomata models are using stop-watches. In addition this work deals with non-

2

f = BCET
WCET : 0-71% 72-86% 87-90% 90-100%

Symbolic MC: maybe maybe n/a Safe

Statistical MC: Unsafe maybe maybe maybe

Table 1: Summary of schedulability of Herschel-Planck concluded using symbolic
and statistical model checking.

deterministic computation times as well as dependencies between task due to re-
sources, thus schedulability of the resulting task model is undecidable [FKPY07].
Our solution will be to consider a combination of well-known model check-
ing techniques to obtain some guarantee on schedulability even in the pres-
ence of undecidability. Concretely, we revisit the schedulability problem for
the Herschel-Planck software, with execution time intervals of the general form
[BCETi,WCETi], with BCETi ≤ WCETi. Two model checking methods of Up-

paal are applied for the schedulability analysis: classical (zone-based) symbolic
model checking (MC) and statistical model checking (SMC). The core idea of
SMC [LDB10,YS06,SVA04,KZH+09] is to randomly generate simulations of the
system and verify whether they satisfy a given property. The results are then
used by statistical algorithms in order to compute among others an estimate of
the probability for the system to satisfy the property. Such estimate is correct
up to some confidence that can be parameterized by the user. Several SMC al-
gorithms that exploit a stochastic semantics for timed automata have recently
been implemented in Uppaal [DLL+11a,DLL+11b,BDL+12].

Symbolic MC allows to conclude schedulability – i.e. absence of deadline vio-
lations – for varying sizes of BCET, though with the size of the (symbolic) state-
space and the overall verification time increasing significantly with an increase in
the size of the intervals [BCETi,WCETi]. Moreover, the symbolic MC technique
is over-approximate due to the presence of stop-watches needed to encode pre-
emption. Thus, symbolic MC can not be used for disproving schedulability. As a
remedy, we show how statistical MC may be used to generate concrete counter
examples witnessing non-schedulability. The new results obtained for Herschel-
Planck are rather interesting as can be seen from the summary Table 1: when
BCET
WCET ≥ 90% symbolic MC confirms schedulability, whereas statistical MC dis-

proved schedulability for BCET
WCET ≤ 71%. For BCET

WCET ∈ (71%, 90%) both methods
are inconclusive either due to the over-approximation induced by the symbolic
approach or to a burden in computation time. In addition, we apply statistical
MC to obtain more informative performance analysis, e.g. expected response
times when the system is schedulable as well as estimation of the probability of
deadline violation when the system is not schedulable.

2 Modeling

This section introduces the modeling framework that will be used through the
rest of the paper. We start by presenting the generic features of the framework

3

through a running example. Then, we briefly indicate the key additions in mod-
eling the Herschel-Planck application, leaving details to be found in [MLR+10].

We consider a Running Example, that builds on instances from a library of
three types of processes represented with timed automata templates in Uppaal:
(1) preemptive CPU scheduler, (2) resource schedulers that can use either pri-
ority inheritance, or priority ceiling protocols, and (3) periodically schedulable
tasks. In what follows, we use broadcast channels in entire model which means
that the sender cannot be blocked and the receiver can will ignore it if it is not
ready to receive it. Derivative notation like x’==e specifies whether the stop-
watch x is running, where e is an expression evaluating to either 0 or 1. By
default all clocks are considered running, i.e. the derivative is 1.

For simplicity, we assume periodic tasks arriving with period Period[id],
with initial offset Offset[id], requesting a resource R[id], executing for at
least best case execution time BCET[id] and at most worst case execution time
WCET[id] and hopefully finishing before the deadline Deadline[id], where id

is a task identifier. The wall-clock time duration between task arrival and fin-
ishing is called response time, it includes the CPU execution time as well as any
preemption or blocking time.

Figure 1a shows the Uppaal declaration of the above mentioned param-
eters for three tasks (number of tasks is encoded with constant NRTASK) and
one resource (number of resources is encoded with constant NRRES). The task t

type declaration says that task identifiers are integers ranging from 1 to NRTASK.
Similarly the res t type declares resource identifier range from 1 to NRRES.
Parameters Period, Offset, WCET, BCET, Deadline and R are represented with
integer arrays, one element per each task. Figure 1b shows a simple periodic task
template which starts in Starting location, waits for the initial offset to elapse
and then moves to Idle location. The task arrival is marked by a transition
to a Ready location which signals the CPU scheduler that it is ready for execu-
tion. Then location Computing corresponds to busy computing while holding the
resource and Release is about releasing the resources and finishing. The period-
icity of a task is controlled by constraints on a local clock p: the task can move
from Idle to Ready only when p==Period[id] and then p is reset to zero to
mark the beginning of a new period. Upon arrival to Ready, other clocks are also
reset to zero: c starts counting the execution time, r measures response time and
ux is used to force the task progress. The invariant on location Ready says that
the task execution clock c does not progress (c’==0) and it cannot stay longer
than zero time units (ux<=0) unless it is not running (ux’==runs[id]). The
task also cannot progress to location Computing unless the CPU is assigned to it
(runs[id] becomes true). When the CPU is assigned, the task will be forced to
urgently request a resource and move on to Computing, where the computation
time (valuation of c) increases only when it is marked as running (runs[id] is
true). The task can stay in Computing for at most worst case execution time
(c<=WCET[id]), cannot leave before best case execution time (c>=BCET[id]),
but can be preempted by setting runs[id] to 0. If the resource is not granted
then the resource scheduler is responsible for blocking the task from using the

4

☎
const int NRTASK = 3; // # of tasks
const int NRRES = 1; // # of resources
typedef int [1, NRTASK] task t;
typedef int [1, NRRES] res t;
const int f=80; // fraction of WCET, in %
int Period[task t] = { 100, 100, 100 };
int Offset [task t] = { 20, 0, 10 };
int WCET[task t] = { 15, 25, 40 };
int BCET[task t] = { WCET[1]∗f/100,

WCET[1]∗f/100, WCET[1]∗f/100 };
int Deadline[task t] = { 20, 40, 70 };
res t R[task t] = { 1, 1, 1 };
int P[task t] = { 3, 2, 1 }; // priorities
bool runs[task t] = { 0, 0, 0 };
bool error = false ; // global variable
✝ ✆

(a) Task parameters.

error=1

p=Period[id]

ux=0, c=0

c=0, r=0
p=0, c=0, r=0, ux=0

runs[id] &&
p<=Deadline[id]

runs[id] &&
c>=BCET[id] &&
p<=Deadline[id]

error=1

p==Period[id]

error=1

p>Deadline[id]

Release

Starting

Computing

Error
c’==0 &&
ux’==runs[id]
&& ux<=0

ux’==runs[id]
&& ux<=0

p<=Offset[id] &&
c’==0 && r’==0

Ready

c’==runs[id] &&
c<=WCET[id]

p<=Period[id] &&
c’==0 &&
r’==0

Idlep==Offset[id]

request[CPU][id]!
release[CPU][id]!

release[R[id]][id]!

runs[id]

p>Deadline[id]

p>Deadline[id]

request[R[id]][id]!

(b) Task template.

Fig. 1: Task parameter declaration and its stop-watch automaton template.

CPU. If the deadline is not violated (p<=Deadline[id]) then the task can move
on to Release and similarly complete to Idle. Notice that task competes for
resources in locations Ready, Computing and Release and it will move to Error

location if the deadline is exceeded (p>Deadline[id]).

The CPU scheduler is equipped with a task queue q sorted by task priori-
ties P[t], where t is a task identifier and task variable holding the currently
running task identifier. Function front(q) always returns the highest priority
task identifier in the q queue. Figure 2a shows a CPU template which alternates
between Free and Occupied locations.

When a request[CPU][t] arrives, the requesting task t is put into the
queue and the CPU is being rescheduled. This is done either by immediate
grant[CPU][task] and marking that the task is running runs[task]=true, or
via preemption of the currently running task of lower priority, or simply return-
ing to Occupied if the highest priority task in the queue is not higher than
currently running. When a release[CPU][t] arrives, the requesting task t is
de-queued, marked as not running (runs[t]=false), and the CPU is granted
to the next highest priority task in the queue (if the queue is not empty). We
use Uppaal committed locations (encircled with C) for uninterrupted (atomic)
transitions, thus Free and Occupied are the only locations where the time can
pass. In addition, the scheduler is equipped with usage stop-watch: usage is
stopped by invariant usage’==0 at location Free and is running with default
rate of 1 in location Occupied, hence its valuation computes the CPU usage.

A resource scheduler shown in Fig. 2b is equipped with its own waiting queue
w. It operates in a similar way as CPU scheduler, that is by alternating between

5

runs[task]=true

runs[task]=false,
task=front(q)

enqueue(q, t)

task=0

runs[t]=false,
dequeue(q, t)

task=front(q)

request[CPU][t]?
enqueue(q,t),
task=front(q)

usage’==0

t:task_t

P[front(q)]>P[task]

t:task_t

t:task_t

release[CPU][t]?

Free

Occupied

P[front(q)]<=P[task]

empty(q)

!empty(q)

request[CPU][t]?

grant[CPU][task]!

preempt[task]!

(a) Preemptive CPU scheduler.

request[CPU][front(w)]!

release[id][t]?

request[id][t]?
tid=t,
enqueue(w, tid),
boostP(id, tid) release[CPU][tid]!

enqueue(w,t),
task=front(w),
lockInh(id, task)

unlockInh(id, t),
dequeue(w, t)

Unblock

Block

Occupied

request[id][t]?

runs[tid]

!empty(w)

empty(w)Free

t:task_t

t:task_t

task=front(w),
lockInh(id, task)

t:task_t

(b) Resource using priority inheritance.

Fig. 2: Schedulers for active and passive resources.

Free and Occupied. The main difference is that a resource cannot be preempted
once it is locked. The locking operations follow the priority inheritance protocol
implemented in functions lockInh(res,task), unlockInh(res,task). Opera-
tion boostP(res,task) raises the priority of the resource res owner to higher
level than the requesting task. Figure 3 shows the listing of Uppaal code im-
plementing the priority inheritance protocol.

☎
/∗∗ Boost the priority of resource owner based on priority inheritance protocol : ∗/
void boostP(res t res , task t task) {

if (P[owner[res]] <= defaultP(task)) {
P[owner[res]] = defaultP(task)+1;
sort(q); // sorts the queue by descending priorities

}
}
/∗∗ Lock the resource based on priority inheritance protocol : ∗/
void lockInh(res t res , task t task) {

owner[res] = task; // mark the resource as occupied by the task
}
/∗∗ Unlock the resource based on priority inheritance protocol : ∗/
void unlockInh(res t res , task t task) {

owner[res] = 0; // mark the resource as released
P[task] = defaultP(task); // return to default priority

}
✝ ✆

Fig. 3: Data and function declarations

Similarly to priority inheritance scheduler, we can also model priority ceiling
protocol by suitable modification of the locking functions.

Herschel. In this paper, we will also consider a large, industrial case study:
the schedulability analysis of the control software of the Herschel satellite. This
case study, which will seriously challenge the capabilities of Uppaal, uses the

6

Table 2: Summary of schedulability of the Running Example example concluded
using symbolic and statistical MC for varying sizes of computation time intervals.

f = BCET
WCET

0-79% 80-83% 84-100%

Symbolic MC: maybe maybe Safe

Statistical MC: Unsafe maybe maybe

same basic stop-watch modeling principles as in the Running Example described
above. The Herschel model consists of 32 tasks sharing 6 resources using two
protocols (priority inheritance and priority ceiling). Among these tasks, 24 are
periodic, while 8 are triggered in a sequence. Additionally, tasks use multiple re-
sources in a sequence, thus the sequence between Idle and Release of acquiring
and releasing resources is more refined. As an optimization, the resource sharing
and blocking is built into tasks to alleviate the need for task queues. We refer
the reader to [MLR+10] for more details.

3 Symbolic Safety Analysis

In this section we apply the classical zone-based symbolic reachability engine of
Uppaal to verify schedulability. As we are considering systems with preemptive
scheduling our models will be using stop-watches. With the addition of having
non-deterministic computation times – i.e. computation intervals – as well as
dependencies between task due to resources, schedulability of the resulting task
model is undecidable as a consequence of the results of [FKPY07]. In this case,
the analysis provided by Uppaal is over-approximate, guaranteeing that safety
properties established are valid properties of the system but leaving reachability
properties to be possibly spurious.

Running Example As detailed in Section 2, our running example consists of three
tasks with WCET times being 15, 25, 40, deadlines 20, 40, 70 and with one single
resource shared by the three tasks. In Table 2 the result of applying symbolic
MC with respect to the safety property

A[] !error

is given. Here error is a Boolean being set whenever a task misses its deadline
(see Figure 1b). Thus this property expresses absence of deadline violations
(i.e. schedulability), and is confirmed (within 0.06s) for computation intervals
[f ·WCET,WCET] with f ≥ 84%. For f < 84%, the over-approximate analysis
of Uppaal returns symbolic counter-example traces indicating possible deadline
violations for task T(1). However, these may be spurious.

In addition to schedulability, we may obtain upper bounds on the WCRTs
of the three tasks by posing the the query

sup: T(1).r, T(2).r, T(3).r

7

where T(i).r is a stopwatch running whenever the task T(i) is not idle. Again
the results fall in two classes: for computation intervals [f ·WCET,WCET] with
f ≥ 84% the WCRTs are 20, 40, 70 and for f < 84% the WCRTs are 55, 40, 70,
again indicating the possibility of deadline violation for task T(1).

Finally, using an additional stopwatch usage, which is only stopped when the
CPU is free (and reset for each 2000 time-units) the query sup: usage returns
the value 1600, providing 80% (= 1600/2000) as an upper bound of the CPU
utilization.

Herschel. Applying in a similar manner symbolic MC to the Herschel case se-
riously challenges the engine of Uppaal, due to the the explosion in the size
symbolic state-space with the increase of the size of the computation time in-
tervals. In fact, to avoid the analysis to run out of memory we have applied the
so-called sweep-line method.

Table 3 provides a summary of the effort spent in verifying the model. We
started verification with model-time limited instances to get an impression of
resources need to verify the model and once we gained enough confidence we
increased the limit, thus the results are sorted by the model-time limit. The
deterministic case of f = 100% is relatively cheap and even unlimited case is
verifiable within three hours. Important insight here is that the verification time
correlates linearly with the limit and the unlimited case seems to correlate with
156 cycles which is the least common multiple of all task periods. So given enough
time we managed to verify down to f = 90% where the resource consumption
is increased drastically to more than 6 days. Finally, the model-checker indicate
a (possibly spurious) deadline violation for the case f = 86% after a little bit
more than 4 days.

Table 3: Verification statistics for different task execution time windows and
exploration limits: the percentage denotes difference between WCET and BCET,
limit is in terms of 250ms cycles (∞ stands for no limit, i.e. full exploration),
memory in MB, time in hours:minutes:seconds.

limit f = 100% f = 95% f = 90% f = 86%
cycle states mem time states mem time states mem time states mem time

1 0.001 51.2 1.47 0.5 83.0 15:03 1.5 124.1 1:22:43 3.3 186.9 6:39:47
2 0.003 53.7 2.45 0.8 96.8 27:00 2.4 139.7 2:09:15 5.3 198.7 9:14:59
4 0.005 54.5 4.62 1.5 97.2 48:02 4.4 138.3 3:48:40 9.2 274.6 14:12:57
8 0.010 54.7 8.48 2.8 97.8 1:28:45 9.1 156.5 8:38:42 18.2 364.6 28:35:32

16 0.020 55.3 16.11 5.4 112.0 2:45:52 17.8 176.0 16:42:05 35.4 520.4 44:06:57
∞ 0.196 58.8 2:39.64 52.7 553.9 27:05:07 181.9 1682.2 147:23:25 pos.unsafe 99:07:56

Since symbolic MC proves that f = 90% case is safe, we also computed
WCRT upper bounds. Table 4 compares the Uppaal bounds on WCRTs with
the bounds from classical response time analysis performed by Terma A/S. In
particular Terma A/S found that PrimaryF task (#21) might violate its deadline
even though this violation has never been observed neither in simulations nor in
system deployment, whereas the bound provided by Uppaal is still within the
deadline, thus (re)confirming schedulability.

8

Table 4: Specification and worst-case response-times of individual tasks.

Specification WCRT
ID Task Period WCET Deadline Terma f = 100% f = 95% f = 90%

1 RTEMS RTC 10.000 0.013 1.000 0.050 0.013 0.013 0.013
2 AswSync SyncPulseIsr 250.000 0.070 1.000 0.120 0.083 0.083 0.083
3 Hk SamplerIsr 125.000 0.070 1.000 0.120 0.070 0.070 0.070
4 SwCyc CycStartIsr 250.000 0.200 1.000 0.320 0.103 0.103 0.103
5 SwCyc CycEndIsr 250.000 0.100 1.000 0.220 0.113 0.113 0.113
6 Rt1553 Isr 15.625 0.070 1.000 0.290 0.173 0.173 0.173
7 Bc1553 Isr 20.000 0.070 1.000 0.360 0.243 0.243 0.243
8 Spw Isr 39.000 0.070 2.000 0.430 0.313 0.313 0.313
9 Obdh Isr 250.000 0.070 2.000 0.500 0.383 0.383 0.383

10 RtSdb P 1 15.625 0.150 15.625 4.330 0.533 0.533 0.533
11 RtSdb P 2 125.000 0.400 15.625 4.870 0.933 0.933 0.933
12 RtSdb P 3 250.000 0.170 15.625 5.110 1.103 1.103 1.103
13 (no task, this ID is reserved for priority ceiling)
14 FdirEvents 250.000 5.000 230.220 7.180 5.553 5.553 5.553
15 NominalEvents 1 250.000 0.720 230.220 7.900 6.273 6.273 6.273
16 MainCycle 250.000 0.400 230.220 8.370 6.273 6.273 6.273
17 HkSampler P 2 125.000 0.500 62.500 11.960 5.380 7.350 8.153
18 HkSampler P 1 250.000 6.000 62.500 18.460 11.615 13.653 14.153
19 Acb P 250.000 6.000 50.000 24.680 6.473 6.473 6.473
20 IoCyc P 250.000 3.000 50.000 27.820 9.473 9.473 9.473
21 PrimaryF 250.000 34.050 59.600 65.47 54.115 56.382 58.586
22 RCSControlF 250.000 4.070 239.600 76.040 53.994 56.943 58.095
23 Obt P 1000.000 1.100 100.000 74.720 2.503 2.513 2.523
24 Hk P 250.000 2.750 250.000 6.800 4.953 4.963 4.973
25 StsMon P 250.000 3.300 125.000 85.050 17.863 27.935 28.086
26 TmGen P 250.000 4.860 250.000 77.650 9.813 9.823 9.833
27 Sgm P 250.000 4.020 250.000 18.680 14.796 14.880 14.973
28 TcRouter P 250.000 0.500 250.000 19.310 11.896 11.906 14.442
29 Cmd P 250.000 14.000 250.000 114.920 94.346 99.607 101.563
30 NominalEvents 2 250.000 1.780 230.220 102.760 65.177 69.612 72.235
31 SecondaryF 1 250.000 20.960 189.600 141.550 110.666 114.921 122.140
32 SecondaryF 2 250.000 39.690 230.220 204.050 154.556 162.177 165.103
33 Bkgnd P 250.000 0.200 250.000 154.090 15.046 139.712 147.160

4 Statistical Analysis

In the previous section, we observed that symbolic MC can be used to conclude
schedulability, but not to disprove it. This is reflected in the first line of Table 1
where there is a wide range of values of f for which symbolic MC cannot conclude
due to the potential presence of spurious counterexamples. In this section, we
introduce SMC, a technique that we consider here to be the dual of symbolic
MC. Namely, SMC can be used to disprove schedulability, but not to conclude
it.

Concretelly, SMC is a simulation-based approach whose core objective is to
estimate the probability for a system to satisfy a property by simulating and
observing some of its executions, and then apply statistical algorithms to obtain
the result. SMC is parameterized by two parameters: a confidence interval size

on the estimate of the probability and a confidence level on the probability that
the answer returns by methodology is correct. In terms of schedulability, SMC
will thus be useful to generate concrete counterexample but cannot be used to
conclude schedulability.

9

Several SMC algorithms have recently been implemented inUppaal [DLL+11b].
In this section, we will show how this implementation can be used not only to
prove schedulability, but also to observe and reason on the execution of tasks.
The latter will be done by exploiting the simulation engine and various informa-
tions displayed by the GUI of the tool.

SMC relies on the assumption that the dynamic of the system is entirely
stochastic. In [DLL+11a,DLL+11b], we have proposed a refined stochastic se-
mantic for timed automata that associates probability distributions to both the
time-delays spend in a given state as well as to the transition between states. In
this semantics timed automata components repeatedly race against each other,
i.e. they independently and stochastically decide on their own how much to de-
lay before outputting, with the “winner” being the component that chooses the
minimum delay. Our stochastic schedulability model exploits the semantic of
[DLL+11a,DLL+11b] as it assumes the execution time of the task 4 to be picked
uniformly in the interval [f ·WCETi,WCETi].

In the rest of this section, we shall see how the SMC approach can be used
to generate a witness traces when concluding that the system is not schedulable
with a probability greater than 0. We will also illustrate how the SMC engine
of Uppaal can evaluate the probability to reach a state violating a deadline.
Finally, and not to be underestimated, we will show how the GUI of the Uppaal

tool can be exploited to give quantitative feedback to the user on, e.g., blocking
time, CPU usage, distribution of response time.

Running Example. Table 5 shows the query used to evaluate the probability
of violating a deadline for runs bounded by 200 time units and the results for
different values of f . We check only for cases when the symbolic model-checker
reports that deadlines may be violated to generate a witness with SMC. The
SMC technique gives results with certain levels of confidence and precision, i.e.,
the actual result is an interval. However, if the lower bound is strictly positive, it
guarantees that the checker did find witnesses. The case f = 80% is interesting
because it seems to be a spurious result from the symbolic model-checker. In
fact we can do hypothesis testing to get a more precise result more cheaply. The
model-checker accepts the hypothesis Pr[<=200](<> error) <= 0.00001 with
1% significance level in 25s. As summarized in line 2 of Table 1 SMC allow to
conclude unschedulability for f ≤ 79%.

Table 5: Probability of error estimation with 1% level of significance.

f 50% 70% 79% 80%

Pr[<=200](<> error) [0.847,0.858] [0.604,0.615] [0.301,0.312] [0,0.005]

We can visualize traces (and inspect witnesses of deadline violation) by asking
the checker to generate random simulation runs and visualize the value of a
collection of expressions as a function time in a Gantt chart. In addition, we can
filter these runs and only retain some that reach some state, here the error state.
This is done with the following query producing the plot in Fig. 4b:

10

simulate 1000 [<=300] {

(T(1).Ready+T(1).Computing+T(1).Release+runs[1]-2*T(1).Error)+6,

(T(2).Ready+T(2).Computing+T(2).Release+runs[2]-2*T(1).Error)+3,

(T(3).Ready+T(3).Computing+T(3).Release+runs[3]-2*T(1).Error)+0

} :1: error

If the filtering (“:1:error”) is omitted, the plot contains all the runs, and for
clarity just a single of them is displayed in Fig. 4a. As a result the plot encodes the

T3
T2
T1

time

va
lu

e

0

2.0

4.0

6.0

8.0

0 34 68 102 136 170 204 238 272 306

(a) Normal run using f = 80.

T3
T2
T1

time

va
lu

e

0

2.0

4.0

6.0

8.0

0 26 52 78 104 130 156 182 208 234

(b) Failed run using f = 79.

Fig. 4: Visualization of runs as a Gantt chart. The chart shows an encoding of
the state with different weights corresponding to steps of different heights.

task states (idle, ready, running or error) in the level of the curve. For example,
Figure 4a shows that T2 becomes ready and running starting from 0 time. At 10
task T3 becomes ready, but is not running. Then at 20 task T1 becomes ready
and becomes running by preempting T2 but then it immediately gives up the
running status (due to resource blocking) and resumes by preemption when T2

releases the resource. At this point T2 is not finished yet and will be able to
finish only when T1 finishes and releases the CPU, hence there is a small spike
just before going to idle state. The lowest priority task T3 has a chance to run
and finish only when both T1 and T2 are done. Figure 4b is interpreted similarly,
where the task T1 violates its deadline because T3 managed to get the resource
before T1 and thus T1 was blocked from finishing.

More insight on the behavior of the tasks is gained by estimating expected
response times using the queries:

E[<=200; 50000] (max: T(1).r)

E[<=200; 50000] (max: T(2).r)

E[<=200; 50000] (max: T(3).r)

11

The result is the response time averages respectively: 16.96, 36.96 and 63.65 time
units. In addition tool provides the probability densities shown in Figures 5. The
plots show the effect of priority inversion on the higher priority tasks that may
be delayed by the lower priority task.

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.012

0.024

0.036

0 10 20 30 40 50

(a) Task T1.

max: Task[2].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.020

0.040

0.060

0 8 16 24 32 40

(b) Task T2.

max: Task[3].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.011

0.022

0.033

0 13 26 39 52 65

(c) Task T3.

Fig. 5: Response time distributions for the different tasks when f = 0.

The response of T1 goes beyond the deadline for f = 0%, thus we evaluate the
shapes of response time distributions for various f values in Fig. 6. Surprisingly
there is a sharp contrast between f = 79% (unsafe for sure) and f = 80% which
does not seem to exhibit the error and responds within 20 time units. This
worst response time is more optimistic than the case f = 83% from symbolic
analysis, which suggests that the symbolic analysis most probably is not exact
for f ∈ [80, 83]. Figure 6a is an intermediate result between f = 0% (Fig. 5a)
and f = 79% where the two seemingly normal “hills” are wide enough to meet
each other, thus Fig. 5a is the result of two “hills”: one from safe responses and
the other slipped beyond a safety threshold but they are overlapping so tightly
that this fact is hardly evident in Fig. 5a.

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.016

0.032

0.048

8 19 30 41 52

(a) f = 50% (not safe).

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.05

0.10

0.15

11 19 27 35 43 51

(b) f = 79% (not safe).

max: Task[1].r

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.09

0.18

0.27

12.3 16.1 19.9

(c) f = 80% (seem OK).

Fig. 6: Response time distributions for Task T1 using various f ratios.

Herschel. We generalize this methodology to our more complex Herschel case-
study to confirm deadline violations and to study performance.

Table 6 shows the results when we vary the execution time to be in the
interval [f · WCET,WCET]. The table shows the probabilities in function of
this factor f and statistical parameters α (1 − α is the confidence level) and
ε the size of the confidence interval of the probability. Asking for more precise
results yields more traces at the cost of time. At first we limited the search to
just one cycle of 250ms, but then at the point of f = 62% the errors are rarely

12

Table 6: Results of Herschel statistical model-checking.

Limit f SMC parameters Total Error traces Earliest Error Verification
cycles % α ε traces, # # Probability cycle offset time

1 0 0.0100 0.005 105967 1928 0.018194 0 79600.0 1:58:06
1 50 0.0100 0.005 105967 753 0.007106 0 79600.0 2:00:52
1 60 0.0100 0.005 105967 13 0.000123 0 79778.3 2:01:18
1 62 0.0005 0.002 1036757 34 0.000033 0 79616.4 19:52:22

160 63 0.0100 0.05 1060 177 0.166981 0 81531.6 2:47:03
160 64 0.0100 0.05 1060 118 0.111321 1 79803.0 2:55:13
160 65 0.0500 0.05 738 57 0.077236 3 79648.0 2:06:55
160 66 0.0100 0.05 1060 60 0.056604 2 82504.0 2:62:44
160 67 0.0100 0.05 1060 26 0.024528 1 79789.0 2:64:20
160 68 0.0100 0.05 1060 3 0.002830 67 81000.0 2:67:08
640 69 0.0100 0.05 1060 8 0.007547 114 80000.0 12:23:00
640 70 0.0100 0.05 1060 3 0.002830 6 88070.0 12:30:49

1280 71 0.0100 0.05 1060 2 0.001887 458 80000.0 25:19:35

found even with high confidence and many runs. Then we increased the limit
which increased our chances of finding the errors, we were lucky to find some
errors as early as in the first cycle. Most of the errors are found quite early (cases
where f < 68), but for smaller time-windows it is much harder to find and the
few found ones are quite far in the run. Eventually the search took more than a
day to find only a few error instances for f = 71%, hence we stopped here.

max: WCRT[21]

co
un

t

0

400

800

1200

1600

5.106E4 5.282E4

Fig. 7: Response times.

Similarly to Fig. 5, response times for the most
stressed task PrimaryF are estimated by generat-
ing 2000 probabilistic runs limited to 156 cycles
for the safe case of f = 90%. The vast majority
(1787) of instances responded before 51093.3 and
the rest is distributed about evenly (see Fig. 7).
The worst found response time was of 52851.2
which is significantly lower than bound of 58586.0
found by symbolic MC in Table 4. The computa-
tion for this model took 17.6 hours.

Fig. 8a shows an overview chart of all 32 tasks during the first 85ms. Each
task can be identified by its base level 3*ID, thus PrimaryF with ID=21 is at
63. PrimaryF starts with an offset of 20ms and it has to finish before a deadline
of 59.6ms. Under safe conditions of f = 90% PrimaryF finishes before 70500µs
(Fig. 8a) but with f = 50% it fails at 79828.3µs (Fig. 8b).

5 Conclusion

In this paper, we have applied both symbolic MC and statistical MC to schedu-
lability analysis. In particular, we have demonstrated that the complementary
qualities of the two methods allow to conclusively confirm as well as disprove
schedulability for a wide range of cases. This is an impressive result as the prob-
lem is known to be undecidable. In addition we have illustrated how the user
can benefit from the Uppaal features in plotting, observing and reasoning about
task executions, and hence improving the modeling process. We also believe that
the combination of symbolic MC and statistical MC will prove highly useful in

13

time

va
lu

e

0

10

20

30

40

50

60

70

80

90

100

0 1.2E4 2.4E4 3.6E4 4.8E4 6E4 7.2E4 8.4E4

(a) A successful run with f = 90 (PrimaryF at level 63).

T14
T15
T16
T21
T22
T30

time

va
lu

e

0

3

6

9

12

15

0 1.1E4 2.2E4 3.3E4 4.4E4 5.5E4 6.6E4 7.7E4

(b) Selected processes of a simulation run with f = 50%, where PrimaryF (task T21 at
level 9) violates a deadline.

Fig. 8: The first 85ms of Herschel model simulation runs.

analyzing systems with mixed critically, i.e. systems containing tasks with hard
timing constraints as well as soft, where the timing constraints are permitted to
be violated occasionally.

References

BACC+98. Hanene Ben-Abdallah, Jin-Young Choi, Duncan Clarke, Young Si Kim,
Insup Lee, and Hong-Liang Xie. A process algebraic approach to the
schedulability analysis of real-time systems. Real-Time Systems, 15:189–
219, 1998. 10.1023/A:1008047130023.

BDL+12. Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Marius Mikučionis, and Danny Bøgsted Poulsen. Checking and distribut-
ing statistical model checking. In NASA Formal Methods, volume 7226 of
Lecture Notes in Computer Science, pages 449–463. Springer, 2012.

BHK99. Steven Bradley, William Henderson, and David Kendall. Using timed au-
tomata for response time analysis of distributed real-time systems. In Sys-
tems ,” in 24th IFAC/IFIP Workshop on Real-Time Programming WRTP
99, pages 143–148, 1999.

BHK+04. H.C. Bohnenkamp, H. Hermanns, R. Klaren, A. Mader, and Y.S. Usenko.
Synthesis and stochastic assessment of schedules for lacquer production. In

14

Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First
International Conference on the, pages 28 – 37, sept. 2004.

BHM09. Aske Brekling, Michael R. Hansen, and Jan Madsen. Moves – a framework
for modelling and verifying embedded systems. In Microelectronics (ICM),
2009 International Conference on, pages 149–152, dec. 2009.

Bur94. Alan Burns. Principles of Real-Time Systems, chapter Preemptive prior-
ity based scheduling: An appropriate engineering approach, page 225–248.
Prentice Hall, 1994.

DILS10. Alexandre David, Jacob Illum, Kim G. Larsen, and Arne Skou. Model-
based design for embedded systems. In Gabriela Nicolescu and Pieter J.
Mosterman, editors, Model-Based Design for Embedded Systems, chapter
Model-Based Framework for Schedulability Analysis Using UPPAAL 4.1,
pages 93–119. CRC Press, 2010.

DLL+11a. Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis,
Danny Bøgsted Poulsen, Jonas Van Vliet, and Zheng Wang. Statistical
model checking for networks of priced timed automata. In FORMATS,
LNCS, pages 80–96. Springer, 2011.

DLL+11b. Alexandre David, Kim G. Larsen, Axel Legay, Zheng Wang, and Marius
Mikučionis. Time for real statistical model-checking: Statistical model-
checking for real-time systems. In CAV, LNCS. Springer, 2011.

FKPY07. Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task au-
tomata: Schedulability, decidability and undecidability. Information and
Computation, 205(8):1149 – 1172, 2007.

JP86. Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-
time system. Comput. J., 29(5):390–395, 1986.

KZH+09. J-Pieter Katoen, I. S. Zapreev, E. Moritz Hahn, H. Hermanns, and D. N.
Jansen. The ins and outs of the probabilistic model checker MRMC. In
Proc. of 6th Int. Conference on the Quantitative Evaluation of Systems
(QEST), pages 167–176. IEEE Computer Society, 2009.

LDB10. Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In RV, volume 6418 of Lecture Notes in Computer
Science, pages 122–135. Springer, 2010.

MLR+10. Marius Mikučionis, Kim Guldstrand Larsen, Jacob Illum Rasmussen, Brian
Nielsen, Arne Skou, Steen Ulrik Palm, Jan Storbank Pedersen, and Poul
Hougaard. Schedulability analysis using uppaal: Herschel-planck case
study. In Tiziana Margaria, editor, ISoLA 2010 – 4th International Sym-
posium On Leveraging Applications of Formal Methods, Verification and
Validation, volume Lecture Notes in Computer Science. Springer, October
2010.

SLC06. Oleg Sokolsky, Insup Lee, and Duncan Clarke. Schedulability analysis of
aadl models. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, page 8 pp., april 2006.

SVA04. Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model
checking of black-box probabilistic systems. In CAV, LNCS 3114, pages
202–215. Springer, 2004.

YS06. H̊akan L. S. Younes and Reid G. Simmons. Statistical probabilistic
model checking with a focus on time-bounded properties. Inf. Comput.,
204(9):1368–1409, 2006.

15

	Schedulability of Herschel-Planck Revisited Using Statistical Model Checking
	 Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis

