
Checking & Distributing Statistical Model

Checking ⋆

Peter Bulychev1, Alexandre David1, Kim G. Larsen1, Axel Legay2,
Marius Mikučionis1, Danny Bøgsted Poulsen1,

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

Abstract. In this paper we propose a general framework for distributed
statistical model checking of networks of priced timed automata. The
first contribution is a new algorithm to distribute sequential hypothesis
testing without introducing bias in the results. The second contribution is
an implementation of this algorithm in Uppaal. The major contribution
is an experimental and analytical evaluation of the approach through
case studies, including an analysis of the SMC algorithm itself.

1 Introduction

Statistical Model Checking techniques (SMC) [8,12,17], can be seen as a trade-
off between testing and formal verification. The core idea of the approach is to
conduct some simulations of the system and verify if they satisfy some given
property. The results are then used together with statistical algorithms in order
to decide whether the system satisfies the property with some probability. Statis-
tical model checking techniques can also be used to estimate the probability that
a system satisfies a given property [8,6]. Of course, in contrast to an exhaustive
approach, a simulation-based solution does not guarantee a correct result with
100% confidence. However, it is possible to bound the probability of making an
error. SMC gets widely accepted in various research areas and applied to prob-
lems that are beyond the scope of classical formal techniques [1,2,10,11,13,19,20].
Unfortunately, extremely huge sized problems and a demand of extremely

high confidence may require generation of a large number of simulation runs, each
of which may itself be extremely time consuming. To address this confidence-
explosion problem, we suggest in this paper to take advantage of PC-clusters
and GRID computers. In fact, it is well-known that statistical solutions methods
that use samples of independent observations are often trivially parallelizable.
As observed in [18], SMC algorithms can be distributed through the help of a
master/slave architecture where multiple computers are used to generate the
simulations. The idea is as follows: one or more slave processes register their
ability to generate simulation with a single master process that is used to collect
those simulations and perform the statistical test.

⋆ Work partially supported by VKR Centre of Excellence – MT-LAB, an “Action de
Recherche Collaborative” ARC (TP)I



However, this process may become complex when considering sequential hy-
pothesis testing (when the number of simulations is not known in advance). The
problem is that there might exist a correlation between a time needed to generate
a random simulation and the fact that a property is satisfied by this simulation.
Thus it is important to guarantee that the technique will not introduce a bias
towards the results that are generated by shorter simulations.
In a series of recent works [4], we have extended Uppaal with SMC algo-

rithms applied to Networks of Priced Timed Automata – hence leading to the
first implementation of SMC for real-timed stochastic systems. The objective
of this paper is to go one step further and propose the first complete study of
distributed SMC, in general, and in the framework of Uppaal in particular. Our
contributions are:
1. A distributed implementation of the estimation algorithm proposed in [8].
Building on classical Monte Carlo techniques [7], an estimation algorithm
precomputes the number of simulations needed to estimate the probability
to satisfy a property with a given confidence. Such an algorithm which is triv-
ially parallelizable amounts to equally distribute the number of simulations
to perform between the slave computers.

2. A new distributed algorithm for sequential hypothesis testing where simu-
lations are computed on the fly until a threshold is passed and a decision is
taken. Here, it is important to avoid introducing bias in the results, which
may be potentially complex and eventually decrease the benefit of using sev-
eral processors. To counter this, [18] proposed a round-Robin solution where
the runs are counted in rounds. We generalise the solution in [18] by intro-
ducing batches and buffers. The batch is used to reduce communication by
sending an aggregate result of predefined size (instead of individual results).
The buffer is used to improve concurrency since the nodes are more loosely
synchronized.

3. A thorough evaluation of our implementation through new applications of
SMC algorithms. In particular, we apply the distributed SMC engine to
an analysis of an instance of the LMAC protocol of unprecedented size.
Additionally, a thorough evaluation of the distributed SMC framework itself
is made aiming at identifying optimal settings of the parameters for the
framework. The evaluation is carried out both experimentally (using the
implementation) as well as analytically (using SMC) based on a model of the
distributed SMC algorithm itself, and with high consistency in identifications
made by the two approaches.

2 Statistical Model-Checking in Uppaal

This section introduces the formalisms used in Uppaal for modeling systems
and and specifying properties. Then, we briefly survey existing Statistical Model
Checking (SMC) algorithms. Finally, a novel application of SMC is presented.

2.1 Networks of Priced Timed Automata

The new SMC engine of Uppaal [3] supports the analysis of Priced Timed
Automata (PTAs) that are timed automata whose clocks can evolve with dif-

2



ferent rates, and with no restrictions in guards and invariants. Additionally, we
support other features of the Uppaal model checker’s input language such as
integer variables, data structures and user-defined functions. We also assume
PTAs are input-enabled, deterministic (with a probability measure defined on
the sets of successors), and non-zeno. PTAs communicate via broadcast channels
and shared variables to generate Networks of Price Timed Automata (NPTA).

A1

A0
x<=1

a!

B1

B0
y<=2

b!
T1

T3

T0

C’==2

C’==4
a?

b?

A B T

Fig. 1: An NPTA, (A|B|T ).

Fig. 1 provides an NPTA with three com-
ponents A, B, and T as specified using the
Uppaal GUI. One can easily see that the
composite system (A|B|T ) has the transition
sequence:
(

(A0, Bo, T0), [x = 0, y = 0, C = 0]
) 1
−→

a!
−→

(

(A1, B0, T1), [x = 1, y = 1, C = 4]
) 1
−→

b!
−→

(

(A1, B1, T2), [x = 2, y = 2, C = 6]
)

,

demonstrating that the final location T3 of T
is reachable. In fact, location T3 is reachable
within cost 0 to 6 and within total time 0 and 2 in (A|B|T ) depending on when
(and in which order) A and B choose to perform the output actions a! and b!.
Assuming that the choice of these time-delays is governed by probability dis-
tributions, a measure on sets of runs of NPTAs is induced, according to which
quantitative properties such as “the probability of T3 being reached within a total
cost-bound of 4.3” become well-defined.

Time
Cost

Time/Cost

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0 1.2 2.4 3.6 4.8 6.0

Fig. 2: Cumulative probabilities for time
and Cost-bounded reachability of T3.

In our early works [4], the stochas-
tic semantic of PTA components as-
sociates probability distributions on
both the delays one can spend in a
given state as well as on the transition
between states. In Uppaal uniform
distributions are applied for bounded
delays and exponential distributions
for the case where a component can
remain indefinitely in a state. In a net-
work of PTAs the components repeat-

edly race against each other, i.e. they independently and stochastically decide
on their own how much to delay before outputting, with the “winner” being
the component that chooses the minimum delay. For instance, in the NPTA of
Fig. 1, A wins the initial race over B with probability 0.75.

Properties For specifying properties of NPTAs, we use cost-constraint tempo-
ral properties over runs of the form ψ = 3C≤cϕ. Here C is an observer clock
(that is never reset and should grow to infinity on any infinite run), c ∈ IR≥0

and ϕ is a state-predicate. We say that a run π satisfies ψ = 3C≤cϕ if there
exists a state (ℓ, v) in π satisfying ϕ and with v(C) ≤ c. For an NPTA M we
define PM (ψ) to be the probability that a random run of M satisfies ψ.
Reconsider the example of Fig. 1, we can evaluate the the probabilities

Pr[time<=2](3 T.T3) and Pr[C<=6](3 T.T3) in Uppaal, obtaining as ex-

3



pected 0.75 for the composition (A|B|T ) for both of these probabilities. In fact
Fig. 2 gives the time- and cost-bounded reachability probabilities for (A|B|T )
for a range of bounds.

2.2 Statistical Model Checking Algorithms

We briefly recall statistical algorithms allowing to answer the following two types
of questions : (1) Qualitative : Is the probability that a random run of a given
NPTA A satisfies a property 3C≤cϕ greater than a certain threshold θ? and (2)
Quantitative :What is the probability that a random run of A satisfies 3C≤cϕ?
For both question a run of the system is encoded as a Bernoulli random variable
that is true if the run satisfies the property and false otherwise.

Qualitative Question This reduces to test the hypothesis H: p = PA(3C≤cϕ) ≥
θ against K : p < θ. To bound the probability of making errors, we use strength
parameters α and β and we test the hypothesis H0 : p ≥ p0 and H1 : p ≤ p1
with p0 = θ + δ0 and p1 = θ − δ1 (δ0 and δ1 are parameters of the algorithm).
The interval p0 − p1 defines an indifference region, and p0 and p1 are used as
thresholds in the algorithm. The parameter α is the probability of accepting H0

when H1 holds and the parameter β is the probability of accepting H1 when
H0 holds. The above test can be solved by using Wald’s sequential hypothesis
testing [16]. This test, which is presented in Algorithm 1, computes a proportion
r among those runs that satisfy the property. With probability 1, the value of
the proportion will eventually cross log(β/(1− α) or log((1− β)/α) and one of
the two hypothesis will be selected.

Algorithm 1: Hypothesis testing

function hypothesis(S:model , ψ: property)
r:=01

while true do2

Observe the random variable x corresponding to 3C≤cϕ for a run.3

r := r + x ∗ log(p1/p0) + (1− x) ∗ log((1− p1)/(1− p0))4

if r ≤ log(β/(1− α)) then accept H05

if r ≥ log((1− β)/α) then accept H16

end

Quantitative Question This reduces to a Monte Carlo approach that com-
putes the numberN of runs needed in order to produce an approximation interval
[p − ǫ, p + ǫ] for p = Pr(ψ) with a confidence 1 − α. The values of ǫ and α are
chosen by the user and N relies on the Chernoff-Hoeffding bound.

2.3 Analysing SMC in Uppaal

In this section we will use the SMC engine of Uppaal to our first non-trivial task,
namely to analyse itself! More precisely, by suitably modeling the sequentual

4



testing algorithm as well as a sample model M , we will be able to use the SMC
engine of Uppaal to analyse the performance of SMC on M . Later, in Section
4, this will allow us to evaluate various naive (and even faulty) proposals for
distributing SMC.
The sample model M given in Fig. 3a3 makes an initial probabilistic choice

between the two branches, each having a looping transition taken repeatedly
with a delay choosen uniformly from ]0, 2]. Performing sequential testing of the
hypothesis H0: Pr[<=100](3 OK)≥ 0.5 some 10 times with α = 0.05 as level
of significance and with an indifference region of ±0.01, we consistently (and
correctly) dismiss the hypothesis with an average of 408.6 runs and with standard
deviation 127.5.

58 x<=242x<=2
NOK

x=0

OK

x=0

x=0

x=0

(a) M .

r=r−17 r=r+17

add?sub?
r=r−17 r=r+17

r>−1262 r<1262

H0 r>=1262r<−1262
add?sub?

H1

(b) Master.

time>=100

time<100

x<=2

sub!

58x<=2 42

add!
runs=++truns=++t

x=0

OKNOK

time=0

x=0

x=0x=0

(c) Generator.

Fig. 3: Sample model M (a) satisfying Pr[<=100](3 OK)= 0.42 and modeling
SMC of M (b,c) with respect to H0: Pr[<=100](3 OK)≥ 0.5 with 0.05 as level
of significance and [0.49, 0.51] as indifference region.

Now, aiming at obtaining a better understanding of sequential testing4 we
may simply model the sequential testing algorithm of M directly and analyse
its (expected) performance using Uppaal SMC. The resulting model is given in
Fig. 3 and consists of an extension of the sample model M into the component
Generator that will repeatedly generate random runs of M (of time-duration
100) and report the outcome to a Master using the channels add (when 100
time-units has elepased without OK having been observed) and sub (used as
soon as it is observed that the OK branch has been taken, note the absence of
the time>=100 guard on the right side of the Generator model). The Master
has the obligation of adjusting appropriately the ratio-variable r according to
Alg. 1, and conclude on H0 or H1 as soon as the value of r exceeds the given
threshold. Given the indifference region [0.49, 0.51] and level of significance 0.05,
we find that the approximate values to be used 5 in Alg. 1 are: − log(p1/p0) =
log(1 − p0/1 − p1) = 0.01715 and log((1 − β)/α) = − log(β/(1 − α)) = 1.2787
(≈ 1.262+0.017). In the model of Fig. 3 we are using scaled integer constants for
these values. Now, looking at the estimation of Pr[#<=20000](3 Master.H1)
in Fig. 4, we find – as expected – that the probability of accepting H1 (H0) tends

3 M is a timed variant of the model proposed in [17] and used to demonstrate bias in
a naive distributed approach to SMC.

4 The performance of sequential testing has been subject to significant studies and is
well-understood [15]. The aim here is to demonstrate that our Uppaal SMC engine
is a useful tool for obtaining such an insight.

5 Those values are obtained by observing Wald’s ratio on several application of the
SMC algorithm to the same problem, and then take the average of the observations.

5



to 1 (0) as the number of steps increases. We also see that the average number
of runs is estimated to 481.4. The “mismatch” with the experimentally found
average 408.6 is due to early termination when the threshold for H0 is exceeded.

avg
H1

steps

pr
ob

ab
ili

ty

0

0.16

0.32

0.48

0.64

0.80

0.96

1.3E4 4.2E4 7.1E4

(a) Pr[# ≤ 80000](3 Master.H1)

avg
H1

runs

pr
ob

ab
ili

ty

0

0.16

0.32

0.48

0.64

0.80

0.96

100 400 700 1000

(b) Pr[runs ≤ 20000](3 Master.H1)

Fig. 4: Cumulative probability plots over number of steps and runs.

3 Distributed Statistical Model-Checking in Uppaal

SMC suffer from the fact that high confidence required by an answer may demand
a large number of simulation runs, each of which may itself be time consuming.
As an example, the first hypothesis test shown later in this section can generate
between 14,000 and 2,390,000 runs if the parameters α, β, δ range between 0.01
and 0.001. A possible way to leverage this problem is to use several computers
working in parallel using a master/slaves architecture: one or more slave pro-
cesses register their ability to generate simulation with a single master process
that is used to collect those simulations and perform the statistical test. When
working with an estimation algorithm, this collection is trivially performed as
the number of simulations to perform is known in advance and can be equally
distributed between the slaves.

20
10
5
1

runs

pr
ob

ab
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

10 90 170 250 330 410

Fig. 5: Probability distributions ob-
tained with 1 (top), 5, 10, and 20 (bot-
tom) generator nodes.

When working with sequential al-
gorithms, the situation gets more
complicated. Indeed, we need to avoid
introducing bias when collecting the
results produced by the slave comput-
ers. This means that results should
not be collected arbitrarily as illus-
trated by considering the model of
Section 2.3 with several instances
of the Generator template. Check-
ing the property Pr[runs<=20000](3
Master.H1) Fig. 5 shows that differ-
ent distributions can be obtained with
different numbers of generator nodes,
hence revealing a bias in the results. In fact the probability of accepting H1 tends
(incorrectly) to 0 when the number of Generator components increases.

6



A solution, which was proposed in [17], consists in observing that Wald’s
ratio r is updated as a function of the Bernouilli random variable x as r+ =
x∗racc+(1−x)∗rrej with racc and rrej being constants depending on the tested
hypothesis. To reduce blocking and still update r, the non-biased algorithm
updates two safe approximations for r (r1 and r2). If x is unknown then it
updates with r1+ = rrej and r2+ = racc, and then testing if r1 ≤ I to accept
H0 or if r2 ≥ S to accept H1

6. When all outcomes of a round are known then
we can reset r1 := r2 := r. This allows us to accept H0 even if some accepting
outcomes are missing or conversely to accept H1 if some rejecting outcomes are
missing.
We generalize [17] by aggregating the outcomes x by batches (of size B) and

also by implementing a buffer (of size K) of incoming results.

K
buffer
size

N number of nodes

Asynchronous incoming messages

Fig. 6: Buffer of results at the master
node.

The batch is used to reduce communi-
cation by sending B aggregate results.
The buffer is used to improve concur-
rency since the nodes are more loosely
synchronized and they can be K runs
ahead of the slowest node. Fig. 6 illus-
trates our algorithm at the master node
that receives asynchronous messages from
all other nodes in a buffer. A message is an
aggregate result containing the outcome
of B runs. The master may take a deci-
sion as soon as r1 ≤ I or r2 ≥ S. When all
outcomes at the bottom line of the buffer
are known we reset r1 := r2 := r with the
exact updated value of r with those outcomes, and free the bottom line of the
buffer. In practice, our algorithm is calibrated to count the runs up to a certain
depth in the buffer. Indeed, the outcomes are weighted by B so few missing
aggregated outcomes can prevent the algorithm from deciding. We have imple-
mented this algorithm with asynchronous communications (using OpenMPI).
There can be at most K pending messages due to the size of the buffer. If a
slave tries to send more messages, then the communication will block waiting
for a “slot” to be free. The experiment performed in the remainder of the paper
has been carried out on varying numbers of nodes on a cluster with dual Xeons
5650 (hexa-cores at 2.66GHz) interconnected with infiniband.
We first make two types of experiments to exhibit the performance charac-

teristics of our algorithm. The experiments are carried out using the train-gate
example available as a demo of Uppaal. This model comprises a number of
trains crossing a bridge with only one track. A gate controller stops and restart
the trains to ensure mutual exclusion on the bridge and absence of starvation
for the trains. Our first experiment concerns 6 trains and the property of being
in a state where train 5 is crossing while all the other trains are stopped.

Pr[<=100](<> Train(5).Cross and

6 I = log(β/(1− α)) and S = log((1− β)/α) as stated in Alg. 1.

7



(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The runs are relatively short with few components so they will be cheap to
compute and we expect the throughput of messages to be high. In addition, the
hypothesis we are testing is not deterministic, which means that the outcomes
and computation times of the runs will vary. The property is checked with high
confidence (99.999%) and small indifference regions (+/- 0.00001) to have a
precise and reliable result – and to stress our distributed algorithm.
Our second experiment considers a “large” instance with 20 trains, where

we check if the model satisfies mutual exclusion on the bridge, expressed by the
property

Pr[<=1000]([] forall (i : id_t) forall (j : id_t)

Train(i).Cross and Train(j).Cross imply i == j) >= 0.9999

Here, the runs are random but bounded by the same large bound and since
the inner property []forall(i : id_t)forall(j : id_t)... holds by model-
checking, all the runs will all reach their bounds. In addition, we have 20 trains
and the runs are long (1000 time units) so they are relatively expensive to gen-
erate. This means that all the runs are implicitely synchronized and small devi-
ations are amortized by the long runs. The throughput of messages will be low,
which means a low overhead compared to the actual useful work of generating
the runs.

 10
 20

 30
 40

 50
 60

 10  20  30  40  50  60

 90
 100
 110
 120
 130
 140
 150
 160
 170
 180

16 cores

’4x1x4.dat’

Batch

Buffer

 90
 100
 110
 120
 130
 140
 150
 160
 170
 180

 10
 20

 30
 40

 50
 60

 10  20  30  40  50  60

 50
 60
 70
 80
 90

 100
 110

32 cores

’8x1x4.dat’

Batch

Buffer

 50
 60
 70
 80
 90
 100
 110

 10
 20

 30
 40

 50
 60

 10  20  30  40  50  60

 10
 20
 30
 40
 50
 60
 70
 80

128 cores

’16x2x4.dat’

Batch

Buffer

 10
 20
 30
 40
 50
 60
 70
 80

 10
 20

 30
 40

 50
 60

 10
 20

 30
 40

 50
 60

 54
 54.5

 55
 55.5 56
 56.5

 57
 57.5

 58
 58.5

 59

16 cores

’topo-4x1x4.dat’

Batch
Buffer

 54
 54.5
 55
 55.5
 56
 56.5
 57
 57.5
 58
 58.5
 59

 10
 20

 30
 40

 50
 60

 10  20  30  40  50  60

 27.5 28 28.5 29 29.5 30 30.5 31 31.5 32

32 cores

’topo-8x1x4.dat’

Batch

Buffer

 27.5
 28
 28.5
 29
 29.5
 30
 30.5
 31
 31.5
 32

 10
 20

 30
 40

 50
 60

 10  20  30  40  50  60

 8.5 9
 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14

128 cores

’topo-16x2x4.dat’

Batch

Buffer

 8.5
 9
 9.5
 10
 10.5
 11
 11.5
 12
 12.5
 13
 13.5
 14

Fig. 7: Verification times on 16, 32, and 128 cores in function of B and K for the
“small” model (first row) and the “large” model (second row).

Figure 7 shows our results for different number of cores. The solution in [18]
corresponds to the particular case withK andB are equal to one, exhibiting in all
the experiments the worst verification time, and with performance deteriorating
with increasing number of cores (i.e. for 128 cores performance loss is a factor
of 4). Though the impact of the buffer size is less, the experiments indicate that
a buffer of size 2-4 will suffice. The results also demonstrate linear scalability of

8



Wait

i:node_t
Got

Done
time’==0

!H0 && !H1

H0 || H1

req!

saveWork(i,value),
value=0

deliver[i]?

(a) Master.

run length in steps

co
un

t

0

2.0E3

4.0E3

6.0E3

8.0E3

1.0E4

13 18 23 28 33 38 43 48

(b) Histogram of verification steps.

compute

iterate

start

i:bucket_t

req?

tmp

latency

deliver[id]!

x<=LatencyUp

x<=(j+1)*H_step

w[i]

runs<B
x>=j*H_step

level[id]<K

x>=LatencyLow

runs==B

runs=0,sat=0,
x=0

j=0,x=0

busy[id]=0,
value=sat

j=i, runs++,
busy[id]=1,
sat+=(i<H_last),
x=0

(c) Slave.

Fig. 8: Timed automata model of a statistical model checking process.

our distributed implementation: for B = 32 and K = 2 the verification times for
16, 32 and 128 cores are 108, 56 and 19 seconds (respectively).

4 Analyzing Distributed SMC in Uppaal

In this section we model the implemented distributed algorithm of sequential
hypothesis testing and we check it using the SMC engine of Uppaal. The goal
is to estimate the verification time and processor utilization, check for bias in
the distributed algorithm, and explore the parameters of our distributed SMC
algorithm in an analytical manner.

Modeling. We model the master and slave processes described in Section 3 as
shown in Figure 8. The master sends a broadcast request req! to verify batches
of runs (of size B). We use a standard modeling pattern to synchronize on the
corresponding req? as soon as possible. The master gathers the results with its
saveWork function and loops again if neither H0 nor H1 is accepted. Listing 1.1
shows this saveWork function that implements the distributed hypothesis testing
algorithm of Section 3.Uppaal uses floating point numbers that are not available
in the modeling language. Instead we encode fixed point arithmetics with integers
and we use precomputed tables for logarithm values (shown in Listing 1.3 in the
appendix). Once the master accepts H0 or H1, it moves to the location Done and
stops the clock time.
Slave processes proceed to compute their batches if their communication

buffers are not full (level[id] < K) or wait for the condition to hold. The

9



Listing 1.1: Master code.
�

1 // buffer portion for early termination :
2 const int P = (K<=4)?K : ((K<=8)?5 : ((K<=16)?8 : ((K<=32)?10 : 12)));
3 bool H0 = false, H1 = false; // for hypothesis H0 and H1
4 int batch[N][K]; // buffer of batches (K batches for N nodes)
5 long satisfied =0, unsatisfied =0; // information about filled lines
6 long sat=0, unsat=0, unknown=N∗P∗B; // early results in unfilled lines
7 long logRatio = 0, ratioLow = 0, ratioUp = 0; // scaled by p.scale
8 void saveWork(const node t node, const int value) {
9 if (level [ node]<=P) { // entered the early results portion
10 sat += value; unsat += B−value; unknown −= B;
11 }
12 batch[node][ level [ node]] = value; level [ node]++; // store
13 if (level [ node]==1) { // entered at the lowest level
14 bool filled = forall (i : node t) level [ i ]>0;
15 if (filled ) { // line at the lowest level has been filled
16 int L;
17 for (i : node t) { // shift all queues one by one
18 satisfied += batch[i][0]; // count as firm results
19 unsatisfied += B−batch[i][0];
20 sat −= batch[i][0]; // discount from early results
21 unsat −= B−batch[i][0]; unknown += B;
22 level [ i ]−−; // remove from buffer
23 for (L=0; L<level[i ]; ++L) {
24 batch[i ][ L] = batch[i ][ L+1]; // shift
25 if (L==P) { // entered the early results portion
26 sat += batch[i][L+1]; unsat += B−batch[i][L+1];
27 }
28 }
29 batch[i ][ level [ i ]]=0; // cleanup
30 }
31 logRatio = p.valAcc∗satisfied + unsatisfied ∗p.valRef ;
32 if (logRatio <= p.logInf) H0 = true;
33 if (logRatio >= p.logSup) H1 = true;
34 }
35 }
36 ratioLow = p.valAcc∗(satisfied +sat+unknown) +
37 p.valRef∗(unsatisfied +unsat);
38 ratioUp = p.valAcc∗(satisfied +sat) +
39 p.valRef∗(unsatisfied +unsat+unknown);
40 if (ratioUp <= p.logInf) H0 = true;
41 if (ratioLow >= p.logSup) H1 = true;
42 }
�

compute location models the computation time of a run, chosen according to the
distribution shown in Figure 8b. This is encoded using probabilistic edges with

10



weights matching the distribution. The distribution comes from a real verification
of the property in Section 3:
Pr[<=100](<> Train(5).Cross and

(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The last weighted edge (case i=H) is reserved for the runs that did not satisfy
the property.

Verification. In the hypothesis we test, the actual probability is very close to
0.46188. Since the real probability falls in the indifference region of our test, we
would expect that a non-biased implementation would accept H0 or H1 equally
often. Estimating the probability of confirming the hypothesis H0 with the query
Pr[<=10000000](<> master.H0) gives the probability 0.503±0.005 with 99.9%
confidence, confirming that our algorithm is not biased as well as the validity of
our model.
Similarly, we obtain the distribution of the verification time by the query

Pr[<=10000000](<> master.Done) for a model with number of nodes N = 128,
batch size B = 64, and buffer size K = 4. The result is 9557.6 time units in
average and the distribution histogram is depicted in Figure 9a. To estimate the
processor usage time, we add another process with a single location with the
invariant usage’==sum(i:node t)busy[i]. Here, usage is a clock that grows
with a rate equal to the number of busy nodes.

max: time

co
un

t

0

400

800

1200

1600

2000

2400

2E3 3E4 5E4 8E4

(a) Estimated time distribution.

max: Global.usage

co
un

t

0

300

600

900

1200

1500

1800

2.04770E6 2.04779E6 2.04788E6 2.04797E6

(b) Processor usage time distribution.

Fig. 9: Time estimation from 6000 runs of DSMC model.

The question is now to find a good settings for the parameters of our algo-
rithm (B and K). We perform parameter sweep to estimate the verification time
for values of B andK taking values in 1, 2, 4, 8, 16, 32, 64 for three topologies with
the number of processing nodes N = 16, 32, or 128. The results are depicted in
Fig. 10, where it is visible that extremely small batch size requires more time.
Large batch sizes can also be detrimental in a large cluster setting (Fig. 10c
where too many runs are requested in bulk than actually needed to establish
the result). Buffer size of one has a huge penalty of blocking with small blocks,
but it is barely noticeable otherwise. This confirms the experimental findings of
Section 3.

11



(a) 16 nodes. (b) 32 nodes. (c) 128 nodes.

Fig. 10: Estimated verification times in model time units.

5 Lightweight Media Access Control

LMAC is a Lightweight Media Access protocol (studied in [4,5]) used for schedul-
ing communication in wireless sensor networks where the topology is determined
by physical location and radio connectivity of the individual nodes. One of the
goals of the LMAC protocol is to minimize the number of collisions in the net-
work and to reconfigure the network to avoid further collisions.

Fig. 11: LMAC protocol phases.

The original model has been developed
in [5] where topologies of 4-5 nodes are stud-
ied exhaustively using classical Uppaal and
a number of topologies are identified as prob-
lematic, containing perpetual collisions. In
this paper we provide new insight as to the
likelihood of perpetual collisions in different
topologies. This insight could not be delivered
by the use of classical Uppaal and the exper-
iment conducted is of unprecedented size.

In LMAC communication media access
time is discretized into time frames and each
time frame is divided into time slots. The goal
of the protocol is to allocate the time slots
to each node efficiently. The challenge is that
there is no central node distributing and as-
signing slots and nodes cannot themselves listen while transmitting, hence neigh-
bours are responsible for detecting and informing each other about collisions.

After waiting phase, the node moves to a discovery phase and listens for
an entire time frame and notes which time slots are used by its neighbours.
The collision counting expression collisions=++cc; is added on the edge from
rec one0 to done0 in Fig. 12b. After one time frame of discovery phase, the
node chooses seemingly unused time slot and moves to an active phase. The
node falls back to waiting phase if there are no neighbours (no signal received)
or all slots are occupied. During active and discovery phases the node listens
and notes any collisions (several receptions during the same slot). During active
phase the node transmits information about collisions it has detected during its
time slot and listens for collisions and information about collisions during other
time slots. From the active phase the node may fall back to discovery phase if

12



it is notified about the collisions on its time slot and falls back to the waiting
phase if it detects that neighbours are gone.
Figure 11 shows the four phases of the protocol. Initially all nodes except

the gateway are listening and waiting for a radio signal from its neighbourhood
during the initialization phase. The communication is triggered by a dedicated
gateway node. Upon reception of signal, the node notes the relative time offset
of the signal and moves to waiting phase, during which it chooses to wait for a
random amount of time frames. The random delay is modeled using probabilistic
branching (see Fig. 12a) with geometrical weights (weight array).

waiting

t==2*counter

k:frame_t

t<=2*counter

t==1

counter=k*frame,
mode=1, t=0

curr=(curr+1)%frame,
power[id]=SLEEP,
t=0

counter=0,
power[id]=LISTEN,
mode=2, t=0

weight[k]

(a) Waiting.

rec_one0

listening0

t<=2

done0 t<=2

t<=2

d

e

!aux_vec[slot]&&

t==2

counter<frame−1

t==2

can_hear[id][aux_node]
t==2

t<=2

slot:int[0,frame−1]

can_hear[id][aux_node]==1

counter>=frame−1

aux_vec==max_vec || got_info==0

counter++,
power[id]=LISTEN

curr=(curr+1)%frame,
t=0

curr=(curr+1)%frame, acc(second[id],rec_vec),
rec_vec=zero_vec, got_info=1, t=0

detected=(detected<0)?curr:detected,
rec_vec=zero_vec, collisions=++cc

aux_vec=first[id],
acc(aux_vec,second[id]),
second[id]=zero_vec, 
mode=3

rec_vec=first[aux_node],
first[id][curr]=1,
power[id]=RECV

counter=−1, aux_vec=zero_vec,
first[id]=zero_vec, second[id]=zero_vec,
got_info=0, detected=−1

sendWM?

sendWM?

curr=(curr+1)%frame,
t=0

power[id]=LISTEN,
mode=2, t=0

(b) Discovery.

Fig. 12: LMAC phases in the model.

Starting from the model7 of [5], we removed the verification optimizations
constraining the parallelism, annotated it with power consumption and collision
counting (as cost variables). The model contains twice as many slots as nodes,
whereas one slot per node is enough to schedule flawless communication in any
topology if nodes were aware of each others choices.
First we examine the distribution of the first collisions over time. The first row

of Fig. 13 is a result of a query Pr[<=1000](3 collision>0) and it shows that
most collisions happen early in time and in a ring topology some collisions may be
discovered later (possibly when the first signal propagation meets at the opposite
of the ring). In the second row of Fig. 13 the distribution of possible number
of collisions is examined using a query Pr[collisions<=100](3 time>=1000):
in a chain and a ring topologies the collisions are unlikely to occur (> 90%
probability of 0 collisions), but in a star it is almost guaranteed to occur (only
8% probability of 0 collisions). The third row of Fig. 13 shows the probability
distribution of collision counts after twice as long period of time (using query
Pr[collisions<=100](3 time>=2000)). Notice that the shape of distributions
has not changed, but the small bumps have shifted to the right at exactly twice
the number of collisions and almost identical probability density, which implies
that those particular collisions are accumulating proportionally to the progress
of time, and in other words it means that collisions are reoccurring perpetually

7 Thanks to Ansgar Fehnker and Angelika Mader.

13



chain ring star

run duration in time

pr
ob

ab
ili

ty
 d

en
si

ty

0

7.0E−5

1.4E−4

2.1E−4

2.8E−4

3.5E−4

40 200 360 520 680
run duration in time

pr
ob

ab
ili

ty
 d

en
si

ty

0

7.0E−5

1.4E−4

2.1E−4

2.8E−4

3.5E−4

40 240 440 640 840
run duration in time

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.002

0.004

0.006

0.008

0.010

0.012

40 150 260 370 480

collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.19

0.38

0.57

0.76

0.95

0 4 8 12 16 20 24
collisions

pr
ob

ab
ili

ty
 d

en
si

ty
0

0.18

0.36

0.54

0.72

0.90

0 5 10 15 20 25 30 35
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.019

0.038

0.057

0.076

0.095

0 15 30 45 60 75 90

collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.19

0.38

0.57

0.76

0.95

0 8 16 24 32 40 48
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.18

0.36

0.54

0.72

0.90

0 12 24 36 48 60 72
collisions

pr
ob

ab
ili

ty
 d

en
si

ty

0

0.019

0.038

0.057

0.076

0.095

0 50 100 150 200

Fig. 13: Collision statistics in three different topologies, in rows: probability of a
collision over time, probabilities of a number of collisions up to 1000 and up to
2000 time units.

without recovery. We checked these three properties on a 128 cores cluster with
high precision (with α = β = 0.0001 and ε = 0.0005) in about 30 minutes, which
generated around 19 million runs.

We have demonstrated how Uppaal SMC can be used to identify prob-
lematic topologies and distributed implementation can provide a high degree of
accuracy in spotting the reoccurring collisions.

6 Conclusion and Future work

In this paper we have developed, implemented, applied and evaluated a general
and scalable framework for distributed statistical model checking. We have thor-
oughly investigated the distribution of sequential algorithms where bias can be
introduced when collecting the samples produced by slave computers. In particu-
lar, we have identified best choices of batch and buffer sizes both experimentally
and analytically, with agreement in the findings of the two approaches. In the
future, we plan to implement and distribute other SMC algorithms, principaly
the Bayesian algorithms introduced in [20,9].

Finally, it is worth mentioning that we have tried to use other distributed
SMC model checkers such as Ymer [18] or PVesta [14]. Aside from the fact that
the Gui of those two tools is quite restricted, we observed that Ymer does not
work anymore and that PVesta only distributes those algorithms where the num-
ber of simulations is precomputed in advance. A comparison between our toolset
and PVesta is given in the Appendix.

14



References

1. J. Bogdoll, L.-M. Fiorti, A. Hartmanns, and H. Hermanns. Partial order methods
for statistical model checking and simulation. In FORTE, LNCS. Springer, 2011.
to appear.

2. E. M. Clarke, J. R. Faeder, C. J. Langmead, L. A. Harris, S. K. Jha, and A. Legay.
Statistical model checking in biolab: Applications to the automated analysis of
t-cell receptor signaling pathway. In CMSB, LNCS, pages 231–250, 2008.

3. A. David, K. Larsen, A. Legay, Z.Wang, and M. Mikucionis. Time for real statistical
model-checking: Statistical model-checking for real-time systems. In CAV, LNCS.
Springer, 2011.

4. A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, J. V. Vliet, and
Z. Wang. Statistical model checking for networks of priced timed automata. In
FORMATS, LNCS, pages 80–96. Springer, 2011.

5. A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of the lmac
protocol for wireless sensor networks. In J. Davies and J. Gibbons, editors, Inte-
grated Formal Methods, volume 4591 of LNCS, pages 253–272. Springer Berlin /
Heidelberg, 2007.

6. R. Grosu and S. A. Smolka. Monte carlo model checking. In Proc. of 11th Int.
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 3440 of LNCS, pages 271–286. Springer, 2005.

7. J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen, 1975.
8. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate proba-
bilistic model checking. In VMCAI, LNCS, pages 73–84, 2004.

9. S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A
bayesian approach to model checking biological systems. In CMSB, volume 5688
of LNCS, pages 218–234. Springer, 2009.

10. A. Legay and B. Delahaye. Statistical model checking : An overview. CoRR,
abs/1005.1327, 2010.

11. D. E. Rabih and N. Pekergin. Statistical model checking using perfect simulation.
In ATVA, volume 5799 of LNCS, pages 120–134. Springer, 2009.

12. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box
probabilistic systems. In CAV, LNCS 3114, pages 202–215. Springer, 2004.

13. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In CAV, LNCS 3576, pages 266–280, 2005.

14. K. Sen, M. Viswanathan, and G. A. Agha. Vesta: A statistical model-checker
and analyzer for probabilistic systems. In QEST, pages 251–252. IEEE Computer
Society, 2005.

15. A. Wald. Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics, 16(2):117–186, 1945.

16. R. Wald. Sequential Analysis. Dove Publisher, 2004.
17. H. L. S. Younes. Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon, 2005.

18. H. L. S. Younes. Ymer: A statistical model checker. In CAV, volume 3576 of
LNCS, pages 429–433. Springer, 2005.

19. H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.
statistical probabilistic model checking. STTT, 8(3):216–228, 2006.

20. P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking with
application to simulink/stateflow verification. In HSCC, pages 243–252. ACM
ACM, 2010.

15



A LMAC Model

rec_one

waiting

rec_one0

listening0

listening

ready

a
t<=1 t<=1

t<=2

done0

donet<=2

t<=2

t<=2

b

sending

d

sent

e

initial

f

curr==slot_no[id] && 
( ( !alone && 
    (first[id]!=zero_vec || sent_info) && 
    (detected<0 || olddetected!=detected) ) 
   || id==0)

!aux_vec[slot]&&
got_info

t==1 t==2

t==2

counter<frame−1

t==2

can_hear[id][aux_node]
t==2

t==2

t==2 &&
(col==slot_no[id] || 
  (rec_vec[slot_no[id]] && 
    !sent_info))

can_hear[id][aux_node]==1

can_hear[id][aux_node]

t==2*counter

t==2 &&
col!=slot_no[id] && 
(!rec_vec[slot_no[id]] || sent_info)

t<=1

t<=2

t<=2

k:frame_t

slot:int[0,frame−1]

t<=2

t<=2*counter

t<=2

can_hear[id][aux_node]==1

t==1

can_hear[id][aux_node]

t==1

curr==slot_no[id] &&
(  alone ||
   (first[id]==zero_vec && !sent_info) ||
   (olddetected==detected && detected>=0) && 
   id!=0)

can_hear[id][aux_node]

curr!=slot_no[id]

counter>=frame−1

aux_vec==max_vec || got_info==0

t==2

counter++,
power[id]=LISTEN

slot_no[id]=slot,
aux_vec=zero_vec,
got_info=0

curr=(curr+1)%frame,
t=0

curr=(curr+1)%frame, acc(second[id],rec_vec),
rec_vec=zero_vec, got_info=1, t=0

detected=(detected<0)?curr:detected,
rec_vec=zero_vec, collisions=++cc

col=aux_slot, first[id][curr]=1,
rec_vec=(!sent_info)?first[aux_node]:zero_vec,
alone=0

readyUpdate()

curr=(curr+1)%frame,
t=0

aux_node=id,
aux_slot=detected

detected=(detected<0)?curr:detected,
rec_vec=zero_vec

curr=slot_no[aux_node],
power[id]=RECV, t=0

aux_vec=first[id],
acc(aux_vec,second[id]),
second[id]=zero_vec, 
mode=3

counter=−1, aux_vec=zero_vec,
detected=−1, slot_no[id]=−1,
first[id]=zero_vec, sent_info=0,
alone=0, olddetected=−1

counter=k*frame,
mode=1, t=0

rec_vec=first[aux_node],
first[id][curr]=1,
power[id]=RECV

curr=(curr+1)%frame,
power[id]=SLEEP,
t=0

counter=−1, aux_vec=zero_vec,
first[id]=zero_vec, second[id]=zero_vec,
got_info=0, detected=−1

t=0, power[id]=LISTEN

detected=−1,
sent_info=1

sendWM?

sendWM?

sendWM?

sendWM?

curr=(curr+1)%frame,
rec_vec=zero_vec,
detected=(detected==curr)?−1:detected,
t=0

curr=(curr+1)%frame,
t=0

counter=0,
curr=(curr+1)%frame,
col=−1,
detected=−1,
slot_no[id]=−1,
first[id]=zero_vec,
sent_info=0,
rec_vec=zero_vec,
mode=2,
olddetected=−1,
power[id]=LISTEN,
t=0

first[id][curr]=0,
curr=(curr+1)%frame,
detected=(detected==curr)?−1:detected,
t=0

counter=0,
power[id]=LISTEN,
mode=2, t=0

sendWM?

sendWM!

curr=(curr+1)%frame,
first[id]=zero_vec,
t=0

sendWM?

weight[k]

Fig. 14: LMAC node model.

16



B DSMC Model Listings

Listing 1.2: DSMC model global declarations.
�

1 typedef int [ -1024∗1024∗1024, 1024∗1024∗1024] long; // high precision
2 const int N = 128; // number of processors
3 const int B = 32; // number of runs in a batch
4 const int K = 4; // maximum difference of batches among processors
5 const int LatencyLower = 19; // latency lower bound
6 const int LatencyUpper = 20; // latency higher bound
7 typedef int [0, N-1] node t; // node id type
8 typedef struct { // SMC verification parameters:
9 long scale ; // denominator for fixed point operations
10 long alpha; // probability of false positive (multiplied by scale )
11 long beta; // probability of false negative (multiplied by scale )
12 long theta; // the probability for hypothesis testing
13 long deltaM;// lower probability deviation
14 long deltaP; // upper probability deviation
15 long p1; // lower probability bound [theta-deltaM]
16 long p0; // upper probability bound [theta+deltaP]
17 long valAcc;// value accumulation [ log(p1/p0)]
18 long valRef ; // value reference [ log((1-p1)/(1-p0))]
19 long logInf ; // log infimum (lower value bound) [log(beta/(1-alpha))]
20 long logSup;// log supremum (upper value bound) [log((1-beta)/alpha))]
21 } SMC params t; // the structure is passed to Master upon instantiation
22 const int H first = 13;// the start of the histogram
23 const int H last = 48; // the end of the histogram
24 const int H step = 1; // time step of one bucket
25 typedef int [ H first , H last ] bucket t ; // type of integer with specific range
26 const int w[bucket t] = { 6207,0,0,0,0,10463,0,0,0,5,10903,0,0,0,4,
27 9133,0,0,0,3,8569,0,0,0,2,8837,0,0,0,1,1233,0,0,0,1,64469 };
28 broadcast chan req; // master requests
29 broadcast chan deliver [ node t]; // slave delivers
30 int level [ node t]; // level of the batch queue for each node
31 bool busy[node t]; // encodes whether the node is computing
�

Listing 1.3: DSMC instantiation and system declaration.
�

1 int value ; // shared variable for transfering results
2 const SMC params t p[3] = {
3 //scale alpha beta theta +delta -delta p1 p0 valAcc valRef logInf logSup
4 {100000, 100, 100, 46188, 100, 100, 46088, 46288, -433, 372,-690675,690675},
5 {100000, 1000, 1000, 46188, 1000, 1000, 45188, 47188, -4331, 3717,-459512,459512},
6 {100000, 5000, 5000, 46188, 5000, 5000, 41188, 51188,-21736,18637,-294444,294444}
7 };
8 master = Master(p[1], value);
9 slave (const node t id ) = Slave(id, value);
10 system master, slave , Global;
�

17



(a) 16 nodes. (b) 32 nodes. (c) 128 nodes.

Fig. 15: Estimated processor usage times: E[≤16000; 150](max: usage)

B.1 Distributing Estimation

Distributing the estimation algorithm is much simpler than distributing sequen-
tial hypothesis testing. We need a fixed number of runs to compute an estimate
of the probability value with given confidence level. This is an embarrassingly
parallel problem since we can simply divide the work equally and gather the
result at the end. The speed of generating the runs has no influence here since
every computer node is allocated the same number of runs and if this number is
high enough (and the computers identical), the running time on every node will
be closely the same. This latter claim is indeed confirmed by our experiments
since we observe that the performance scales almost linearly with the number of
nodes. Interestingly, the loss in efficiency in the later cases exhibits the overhead
of starting up all the processors (around 3-4 seconds), which would be compen-
sated for much longer runs. The jobs here are too small and fast, which is an
extreme case. Figure 1 shows running time and relative efficiency for estimating
a few probabilities on the Firewire and LMAC protocol8 with confidence 99.9%
and uncertainty interval 0.005. Time is not very sensitive to the physical place-
ment of the cores here because there is essentially one communication round
when all the nodes have finished their jobs.

C Comparison with other toolsets

To the best of our knowledge, there are only two tools that implement distributed
statistical model checking algorithms, namely Ymer and PVesta. We could
not conduct a direct comparison with distributed Ymer has the implementation
is currently broken (Personnal communication with H. Youness). However, we
could compare the batch algorithm implemented in Ymer with ours in the setting
of Uppaal (see Section 3).
PVesta is a distributed statistical model checker based on vesta [14]. It per-

forms hypothesis testing but instead of using a sequential approach, it relies on
a single sampling where the number, N , of samples needed to solve the qualita-
tive question is pre-computed. As for the estimation algorithm, sampling plan is

8 The model and properties are available on http://people.cs.aau.dk/˜adavid/smc/.

18

http://people.cs.aau.dk/~adavid/smc/


Firewire LMAC
PxC/N 1 2 4 8 16 1 2 4 8 16

1x1 621.7s 316.7s 160.2s 81.1s 44.7s 279.3s 140.7s 73.0s 37.0s 19.5s
1.00 0.98 0.97 0.96 0.87 1.00 0.99 0.96 0.94 0.90

1x2 300.9s 162.2s 80.5s 47.6s 24.3s 144.3s 71.0 37.5s 19.2s 10.4s
1.03 0.96 0.97 0.82 0.80 0.97 0.98 0.93 0.91 0.84

1x4 161.2s 84.0s 44.8s 24.1s 16.0s 74.2s 36.1s 19.3s 9.6s 8.1s
0.96 0.93 0.87 0.81 0.61 0.94 0.97 0.90 0.91 0.54

2x4 85.1s 46.5s 23.1s 14.1s 8.5 35.5s 19.6s 10.1s 10.2s 6.4s
0.91 0.84 0.84 0.69 0.57 0.98 0.89 0.86 0.43 0.34

Table 1: Time in seconds and efficiency (italic) to estimate probabilities on the
Firewire and LMAC model in function of the number of nodes (N), processors
per node (P) and cores per processor (C).

thus trivially parallelizable. To compare PVesta with our implementation we
created a Uppaal model of the cyclic polling server example of the PVesta
distribtution.

Time (900 st.) Samples (900 st.) Time (9000 st.)

Nodes Uppaalh PVesta Uppaale Uppaalh PVesta Uppaale Uppaalh Uppaale
1 ≤ 4 46.0 12.15 115 16906 18448 ≤ 4 84.0

2 ≤ 4 23.7 7.5 190 16906 18448 ≤ 4 44.4

4 ≤ 4 12.7 3.91 557 16906 18448 ≤ 4 23.8

8 ≤ 4 7.2 5.5 2340 16906 18448 ≤ 4 12.5

Table 2: Verification time for Uppaal and PVesta. The nodes column refers
only to the nodes used for sample generation (PVesta actually used nodes+ 1
processing units for the verification). The Uppaalh column shows the verifica-
tion time in seconds for hypothesis testing and Uppaale for estimation using
Uppaal.

We carry our experiments on the polling example distributed with PVesta
that we translate into an equivalent Uppaal model. We test for the hypothesis
provided with the example, namely P >= 0.5 [<> < 20.0 @0] and its equiv-
alent in Uppaal and we estimate this probability in Uppaal. The results are
given in table 2. We compare the tools with a configuration of 900 stations in the
model. We note that for 900, the computation time of Uppaal is so short that
we can only measure the overhead of starting and distributing the computation
that takes less than 4 seconds, which is why we show ≤ 4 in the table. To see
the scalability of Uppaal, we experiment with 9000 stations in the model. We
can only show the results for Uppaal since PVesta reached its time limit of
one hour before it could give a result. The experiments show that Uppaal and

19



PVesta scale almost linearly and Uppaal is at least two orders of magnitude
faster than PVesta on for hypothesis testing.

20


	 Checking & Distributing Statistical Model Checking  

