mctau: Bridging the Gap
between Modest and UPPAAL~*

Jonathan Bogdoll?, Alexandre David®,
Arnd Hartmanns?, and Holger Hermanns?

! Aalborg University, Department of Computer Science, Aalborg, Denmark
2 Saarland University — Computer Science, Saarbriicken, Germany

Abstract. MODEST is a high-level compositional modelling language for
stochastic timed systems with a formal semantics in terms of stochastic
timed automata, an overarching formalism of which several well-studied
models are special cases. The emphasis of MODEST is to make use of
existing analysis techniques and tools in a single-formalism, multiple-
solution approach. In this paper, we focus on networks of timed automata
as supported by UppAAL. We report on extensions made to MODEST and
UpPAAL that allow the transformation of a rich subset of MODEST models
to UPPAAL timed automata and enable connections to further tools and
formalisms. We present our MODEST-to-UPPAAL tool chain mctau, which
allows both a fully automated analysis as well as model transformation,
and we compare its performance with the existing mcpta tool.

1 Introduction

MODEST, the “modelling and description language for stochastic timed sys-
tems” [6], is a compositional modelling language that combines expressive and
powerful syntax-level features—such as recursive process definitions, loops, ar-
rays, exception handling and user-defined data structures—with a formal seman-
tics in terms of stochastic timed automata (STA). STA span a very rich spectrum
of semantic models, supporting continuous and discrete probability distributions
as well as nondeterminism. Well-known and extensively studied submodels of
STA are probabilistic timed automata (PTA) [15], timed automata (TA) [1],
and generalised semi-Markov processes (GSMP) [11]. Most of the submodels are
easily identifiable on the syntactic level.

MODEST has been used in a wide variety of application studies, ranging from
wireless sensor networks [2, 18] and communication protocols [13] to architectural
dependability models [5], industrial production scheduling [16] and electric power
grid management [4]. The principle idea behind the formalism and its supporting
tools is to provide a single-formalism, multiple-solution approach to modelling
and analysis, using existing analysis engines and algorithms where available to
avoid unnecessary reimplementations.

* This work has been supported by the European Union FP7-ICT projects Quasimodo,
contract no. 214755, and MEALS, contract no. 295261, by the DFG as part of
SFB/TR 14 AVACS, and by the DFG/NWO Bilateral Research Program ROCKS.

MODEST STA Y— modes simulation

T — mcpta — PRISM model checking
ngpl}r;ceal — mctau — UPPAAL model checking, visualisation
interface

Fig. 1. How the new mctau tool fits in the MODEST TOOLSET

Started in 2008, the MODEST TOOLSET constitutes the second generation [7]
of tools with this philosophy, currently including (i) mcpta [12,13], which en-
ables model checking of networks of PTA using the PRISM [14] probabilistic
model checker in the background, (ii) modes [5,12], a discrete-event simulator
that primarily targets GSMP models but in fact is enhanced to handle certain
nondeterministic models in a sound way, and (iii) mime as a graphical user in-
terface that seamlessly integrates the analysis tools into a MODEST source code
editor with syntax and error highlighting. The tools are usable and robust.

In this paper, we present a new member of the MODEST TOOLSET family:
mctau, providing visualisation and analysis of networks of timed automata. It
does so by connecting to the real-time model checker UPPAAL [3]. Although
mcpta already includes support for TA as a special case of PTA, we will see that
mctau allows a more efficient analysis; in addition to this, the way we bridge
several semantic gaps between MODEST and UPPAAL will be of practical use
beyond just the mctau tool. Figure 1 provides a toolset overview.

2 Bridging the Gap

A connection between MODEST and UPPAAL had been planned for a long time [7],
but several fundamental differences between the two modelling languages have
prevented this up to now:

Time constraints. Constraints on the flow of time are specified as location
invariants in UPPAAL, while MODEST uses deadlines (or urgency constraints [8]).
As an example, if location [has invariant ¢ < 3 (where ¢ is a clock variable),
time can pass while in [as long as ¢ < 3 holds. Deadlines, on the other hand,
are associated to edges in an automaton, and specify that some edge must be
taken out of a location once the deadline of one outgoing edge becomes satisfied.
Invariant ¢ < 3 can thus be expressed as deadline ¢ > 3 on some edge leaving (.

Deadlines are more flexible in parallel composition and synchronisation, easily
allowing, for example, a synchronising edge to be taken as soon as possible in all
components. While there are deadlines that cannot be transformed into a single
invariant (mainly equality comparison deadlines like ¢ = 3 and equivalents) and
vice-versa, we have recently shown how to transform all practically relevant
deadlines into invariants [12], and this transformation is implemented in mctau.

Assignments. The assignments associated to an edge in UPPAAL are performed
sequentially: x := y,y := x will result in = and y both having the same value.

In MODEST, variables are assigned new values in function of their previous ones
atomically. = := y,y := x will thus result in swapping « and y. UPPAAL 4.1.5
now implements this semantics as an option (-M at the command line and the
Modest checkbox in the option menu of the graphical interface).

Synchronisation. Both UPPAAL and MODEST support the notion of parallel
composition, where a number of independent processes run in parallel. How-
ever, the synchronisation mechanisms differ fundamentally: MODEST supports
a CSP/LOTOS-style multi-way synchronisation where processes synchronise on
edges with the same action label that is part of the intersection of the action
alphabets « of the processes. For example, if a(P;) = {a,b} and o(P;) = {b, ¢}
then Py (P,) is free to take action a (¢), but P; and P, must synchronise to take
action b. UPPAAL, on the other hand, provides CCS-style binary synchronisa-
tion where exactly two processes synchronise on a matching pair of actions (e.g.
a! and a?) and I/O-automata inspired broadcast synchronisation where all pro-
cesses able to perform an a? action synchronise with one sender performing a!.
Although it is possible, with some effort, to encode binary using only multi-
way synchronisation [17], we are not aware of any way to do the opposite in a
semantically sound way and without introducing additional intermediate states
in ways that would make the state-space explosion problem significantly worse.
We thus resolved this discrepancy in a practical manner by adding multi-way
synchronisation to UPPAAL 4.1.5 and extending MODEST with broadcast and
binary synchronisation. These extensions also open UPPAAL and MODEST for a
large number of further tool connections that were previously infeasible such as
connecting UPPAAL with CSP-style tools, notably CADP [10] or PRISM.

3 The mctau Tool

mctau is our new addition to the MODEST TOOLSET that, at its core, performs
the translation of MODEST models to the XML-based input language of UPPAAL,
including advanced features of MODEST such as user-defined functions and data
types. It supports all types of properties that are already supported by UPPAAL.
mctau is available as a command-line executable and as a fully-integrated analysis
engine inside mime. It has two modes of operation:

Export mode: A .modest input file is transformed into a .xm1 file with the au-
tomata and a .q file with the properties to be analysed. These can be opened
in the UPPAAL graphical interface for analysis or further modification.

Analysis mode: UPPAAL is completely hidden from the user: The model trans-
formation as well as the analysis of the properties, using UPPAAL’s command-
line verifyta executable, is performed by mctau in a fully automated way.
This is also the way that mctau is used from within mime.

Since MODEST is a text-based formalism while UPPAAL is based on a graphical
automata notation, mctau incorporates a set of graph layout algorithms, based on

action put, get;
process Channel() {
clock c;
put {= c = 0 =};
invariant(c <= TD) alt {
1:oget
: tau
}; Channel() }

Fig.2. A MoDEST process and its UPPAAL automaton

the Graph# library® and adapted for timed automata with all their location and
edge labels, to generate easily useable UPPAAL models. Figure 2 shows a simple
communication channel in MODEST and the UPPAAL automaton generated by
mctau based on the LinLog layout algorithm.

Aside from TA, mctau can also cope with networks of PTA: When given a
model with probabilistic branching, mctau generates (and analyses) an overap-
proximation that is obtained by replacing all probabilistic with nondeterministic
branching (making sure to discard branches with probability zero). This neither
adds nor removes paths through the model, but all probabilities are lost. Still,
it is useful for a fast qualitative analysis. mctau then also replaces probabilistic
properties by a set of purely timed ones to determine whether the probability
is exactly zero or one. For example, property Ppnax(0e) to determine the max-
imum probability (over all schedulers) of eventually reaching a state satisfying
expression e is replaced by V[—e and V { e: If the first property is satisfied, the
original probability must be zero; if the second property is satisfied, it must be
one; otherwise, it may be any number in the closed interval [0, 1].

This handling of PTA models greatly improves the usability and applicability
of mctau since it allows the user to write a single model to subsequently use
three different tools—mctau, mcpta and modes—with vastly different background
technologies, all of that optionally within the graphical interface of mime.

Tool availability. The MODEST TOOLSET, which includes mctau, and UPPAAL
are both freely available for academic users at www.modestchecker.net and
www.uppaal.org, respectively.

4 Evaluation

mctau is able to analyse (the nondeterministic overapproximations of) the three
original mcpta PTA case studies [13], without requiring any changes to the mod-
els. In all cases where mctau reports probability 0 or 1, mcpta does so as well.
For the BRP model in particular, we see that whenever mctau reports [0, 1], the
actual probability as reported by mcpta is in |0, 1], as shown in Table 1 (model
parameters (N, MAX, TD) and property names are as in [13]). This shows how
mctau can be of great help in model debugging and for sanity checking of prob-
abilistic models.

3 http://graphsharp.codeplex.com/

Table 1. Results of mctau and mcpta for the probabilistic BRP model (16,2,1)

property ‘ Tar Taz Pa Pg Py Py Dmax
mctau | true true 0O 0 [0,1] [0,1] [0,1]
mcpta | true true 0 0 4.233-107% 2.645-107° 9.996-107!

Table 2. Performance of mctau and mcpta on the nonprobabilistic BRP model

standard properties time-bounded properties
tool model states time memory states time memory
mctau (16,2,1) 880 1s 27 MB 831 1s 19 MB
(using UppaaL) (64,5,4) | 8317 2s 30 MB 8091 1s 21 MB
mcpta (16,2,1) | 3972 2s 167MB | 170371 20s 253 MB
(using PRISM) (64,5,4) | 304785 13s 187 MB | 4914666 284s 686 MB

The BRP model has also been studied as a pure TA model before [9] with
some properties that had not been transferred to the PTA model. We were able
to reconstruct that TA model in MODEST and check all properties with mctau.
The corresponding model file is included in the MODEST TOOLSET download.
We also compared the performance of mctau and mcpta (using the digital clocks
engine?) on a nonprobabilistic version of the original MODEST BRP model. Table
2 summarises the results®; as expected (since mcpta/PRISM are not designed for
nonprobabilistic models), the more specialised tool shows significantly improved
performance.

5 Conclusion

We have presented mctau, a tool providing a link between the MODEST and Up-
PAAL modelling formalisms. The newly established connection opens the door
to a powerful tool chain that gives MODEST modellers access to the editor and
simulator of UPPAAL and reinforces the single-formalism, multiple-solution ap-
proach of MODEST. This approach might one day provide a possible solution to
one of the obstacles that, in our experience, new users seeking to apply model-
checking in their subject area face: the daunting number of different modelling
languages which makes for low flexibility and a steep learning curve.

mctau was only possible because of recent results and implementation ef-
forts that allowed the semantic gap between the two formalisms to be overcome.
The implemented bridge spans a practically disturbing gap between CCS and
I/O automata on the one side and CSP and LOTOS on the other. The inclu-
sion of multi-way synchronisation in UPPAAL 4.1.5 is a key enabler for further
connections with prominent verification tools such as PriSM or CADP.

4 Use of PRISM’s game-based engine was not possible due to its restrictions concerning
the use of global variables and the access to other modules’ local variables.

5 Linux VM on Intel Core i5, /usr/bin/time -v for time and memory measurement;
“states” is the number of zones explored by UpPPAAL for mctau and the number of
reachable discrete states (including discretised clock valuations) for mcpta.

UPPAAL nowadays also contains an efficient statistical model checking en-
gine, which we currently do not make use of since it relies on an entirely new
and different semantics for timed automata. An investigation of the relationship
between this “stochastic” semantics and MODEST is planned as future work.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183-235 (1994)

2. Baro Graf, H., Hermanns, H., Kulshrestha, J., Peter, J., Vahldiek, A., Vasudevan,
A.: A verified wireless safety critical hard real-time design. In: WoWMoM. IEEE

2011

3.](Behr131ann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: SFM-RT. LNCS,
vol. 3185, pp. 200-236. Springer (2004)

4. Berrang, P., Bogdoll, J., Hahn, E.M., Hartmanns, A., Hermanns, H.: Dependabil-
ity results for power grids with decentralized stabilization strategies. Reports of
SFB/TR 14 AVACS 83 (2012), iSSN: 1860-9821, www.avacs.org

5. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order meth-
ods for statistical model checking and simulation. In: FMOODS/FORTE. LNCS,
vol. 6722, pp. 59-74. Springer (2011)

6. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering 32(10), 812-830 (2006)

7. Bohnenkamp, H.C., Hermanns, H., Katoen, J.P.: MoTor: The Modest tool envi-
ronment. In: TACAS. LNCS, vol. 4424, pp. 500-504. Springer (2007)

8. Bornot, S., Sifakis, J.: An algebraic framework for urgency. Inf. Comput. 163(1),
172-202 (2000)

9. D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The bounded retransmis-
sion protocol must be on time! In: TACAS. LNCS, vol. 1217. Springer (1997)

10. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the
construction and analysis of distributed processes. In: TACAS. LNCS, vol. 6605,
pp. 372-387. Springer (2011)

11. Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Com-
munications in Statistics. Stochastic Models 3(3), 409-438 (1987)

12. Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In:
FMCO. LNCS, vol. 6957, pp. 372-391. Springer (2010)

13. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST. pp. 187-196. IEEE Computer Society (2009)

14. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585-591. Springer (2011)

15. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. TCS 282(1), 101-150
2002

16. 1(\/[adez"7 A., Bohnenkamp, H.C., Usenko, Y.S., Jansen, D.N., Hurink, J., Hermanns,
H.: Synthesis and stochastic assessment of cost-optimal schedules. STTT 12(5),
305-318 (2010)

17. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking the probabilistic
pi-calculus. In: QEST. pp. 169-178. IEEE Computer Society (2007)

18. Yue, H., Bohnenkamp, H.C., Kampschulte, M., Katoen, J.P.: Analysing and im-
proving energy efficiency of distributed slotted Aloha. In: NEW2AN. LNCS, vol.
6869, pp. 197-208. Springer (2011)

