TAPAAL 2.0: Integrated Development
Environment for Timed-Arc Petri Nets*

Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jgrgensen,
Mikael H. Mgller, and Jifi Srba

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, 9220 Aalborg @Dst, Denmark

Abstract. TAPAAL 2.0 is a platform-independent modelling, simula-
tion and verification tool for extended timed-arc Petri nets. The tool
supports component-based modelling and offers an automated verifica-
tion of the EF, AG, EG and AF fragments of TCTL via translations to
UPPAAL timed automata and via its own dedicated verification engine.
After more than three years of active development with a main focus on
usability aspects and on the efficiency of the verification algorithms, we
present the new version of TAPAAL 2.0 that has by now reached its ma-
turity and offers the first publicly available tool supporting the analysis
and verification of timed-arc Petri nets.

1 Introduction

Timed-arc Petri nets (TAPN) are a particular time extension of the classical
Petri net model where the time information is attached to the tokens in the net,
representing their ages, and arcs from places to transition contain time intervals
that restrict the ages of tokens which are moved along the arcs. The model of
TAPN was first studied by Bolognesi, Lucidi, Trigila and Hanisch [4, 9] and it has
proved particularly suitable for modelling of manufacturing systems, workflow
management systems and other applications [1, 2, 14-16].

We present TAPAAL 2.0, an open source and platform-independent tool
(available from www.tapaal.net) that allows users to edit, simulate and verify
extended TAPN models in a component-based fashion through shared interfaces.
There exist several other verification tools for timed models, like UPPAAL [19]
for networks of timed automata, and Romeo [8] and Tina [3] for time Petri
nets (where time intervals are associated with transitions, as opposed to tokens
like in the TAPN model). However, all these models are rather different (and
complementary) and even though translations among them are possible [18],
their suitability from the modeller’s point of view depends on the application
domain. For example, time Petri nets use an a priory fixed number of clocks
(one for each transition) while TAPN allow for dynamic creation of tokens that
carry their own local clocks. Some criticism on the classical TAPNs mentions the
lack of modelling features for ensuring urgent behaviour and lack of read-arcs.

* The paper was supported by VKR Center of Excellence MT-LAB.

In the extended TAPN model used in TAPAAL, the weak points are dealt with
by enforcing urgency via age invariants, modelling read-arcs in a more general
setting via transport arcs and introducing other features, like inhibitor arcs and
components, facilitating a more convenient modelling.

We are not aware of other tools for the analysis of TAPN, except for two
tool prototypes implementing a backward coverability algorithm based on the
better-quasi-ordering technique [2] and a forward reachability algorithm pre-
sented in [1]. Both implementations consider only the basic TAPN model. The
former tool allows to verify solely coverability queries (remarkably also for un-
bounded nets) while the latter one may not terminate as the reachability ques-
tions are in general undecidable. Neither of the tools supports a GUI interface
and they do not seem to be maintained.

TAPAAL 1.1 was presented in [6] as a tool providing a TAPN editor, sim-
ulator and translator to UPPAAL timed automata. The two translations imple-
mented in TAPAAL 1.1 preserve only safety properties but have showed the
potential of the translation approach. In the present version of TAPAAL 2.0,
the tool now has a completely new and dedicated verification engine (imple-
mented in C++) and two novel translations preserving liveness. In addition, the
GUI and the modelling features were significantly extended; notably we now sup-
port component-based model development, constants, inhibitor arcs, advanced
query creation dialog, batch processing engine and numerous other features. The
theory behind the tool has been published in [17,5, 11, 12].

2 Tool Description

The architecture of the tool is outlined in Figure 1. The GUI of the tool has
originally been developed as an open source project PIPE 2.5 [10] but since its
TAPAAL branch in 2008, it has been significantly extended with new features
like a component-based editor that allows to describe component interfaces via
shared places and transitions. The composed net can be simulated in a timed
simulator, displaying traces with concrete delays, or verified either via TAPAAL’s
own engine or via automatic translations to the UPPAAL engine. Verification can
be initiated from a user-friendly query dialog or as a batch job.

Verification Options. TAPAAL 2.0 adds two new translations from extended
TAPNSs to networks of timed automata that use the broadcast communication
feature of UPPAAL [11] and contrary to the previous two translations that rely
on handshake synchronization (already present in TAPAAL 1.1), they do not
produce additional deadlocks and hence allow us to verify also liveness prop-
erties. The two new translations can additionally handle all the new extended
features, including inhibitor arcs. The main extension of TAPAAL 2.0 is its own
dedicated engine implementing an efficient forward reachability algorithm on ab-
stract markings (ages of tokens represented via zones) while applying on-the-fly
active clock reduction (resizing of zones to contain only clocks of the active to-
kens) and other optimizations. The monotonicity property (more tokens added

Editor Composed TAPN Query Builder

Query: | EF p >0
@E»: : @E»: : native boundedness check, symmetry

—l— reduction with trace generation,

j50)
~

discrete inclusion, advanced GUI

{ | SE% \ Translator ‘L

{40}

£2 1: TAPAAL engine
2: TAPAAL engine with discrete incl.

: Standard reduction to UPPAAL

3
o~ ED 4: Optimized reduction to UPPAAL
\ /’ p 5: Broadcast reduction to UPPAAL
= 6: Broadcast reduction degr. 2 to UPPAAL
P (0,) Q -
(O’/—\I Batch Verifier
- Multiple models
Constants Spreadsheet export
L:=2 .
Stmulator
Main Features: Trace
components « d
elay: 1 = — S
transport arcs fire: t ° » 3
age invariants r— | delay: 2 v \8/ -
inhibitor arcs fire: s : :4> <2
constants vy

Fig. 1. Architecture of TAPAAL 2.0

to the net cause only more behaviour) that holds for the basic TAPNs, but breaks
for the extended TAPNs due to the features like age invariants and inhibitor arcs,
can be used to speed-up the verification. From the static analysis of the net, we
define a novel ordering on markings of the net so that monotonicity is preserved
even for the extended TAPN model and we exploit this in the reachability al-
gorithm, still providing exact verification answers but often with considerable
speed-up as demonstrated in Section 3. This technique, called discrete inclusion,
can be further optimized by a manual intervention of the modeller. The verifi-
cation engine also implements an automatic symmetry reduction technique and
returns executable traces even if symmetry is activated (unlike e.g. UPPAAL or
TAPAAL 1.1). Finally, the new engine implements a k-boundedness check of a
given net. Even if the net is unbounded, the verification up to k tokens in the
net is possible, providing a suitable under-approximation of the net behaviour.

Management of Tool Development. To facilitate easy collaboration between the
TAPAAL tool contributors, we utilize launchpad.net/tapaal, a free tool-chain
for collaboration in open source projects. Among others, all software bugs found
in TAPAAL are registered and tracked using launchpad’s bug management sys-
tem. To this day, more than 20 individuals have contributed to the development
of TAPAAL, working on more than 200 registered bugs and features, during over
ten official releases of TAPAAL.

UPPAAL engine TAPAAL translations TAPAAL engine

original | improved || original | improved || original | improved

no [yes | no [yes || no [yes | no [yes || no [yes | no [yes
3 0.1{ <0.1| <0.1| <0.1{| 0.4| 0.2|<0.1] <0.1}] 0.2{<0.1| <0.1| <0.1
4 0.4| <0.1| <0.1| <0.1{|16.8] 0.3| <0.1 0.1{| 2.8/<0.1] <0.1] <0.1
5 5.3 0.1} <0.1] <0.1]| —| 0.6/ <0.1 0.1{|89.1| 0.2] <0.1] <0.1
6 ||220.5| 0.2 <0.1| <0.1f —| 1.8/ <0.1 0.1|| —| 0.9] <0.1] <0.1
7 —| 1.1] 0.1} <0.1| —| 14.5] 0.1 0.1|| —| 6.3] <0.1] <0.1
8 —| 3.6| 0.5/ <0.1] —[104.8] 0.1 0.1|| —1 48.9] <0.1] <0.1
9 — 20.7 3.1|<0.1}] —| —| 0.1 0.1 —| —|<0.1]<0.1
10 —|143.6| 23.2| <0.1f —| —| 0.1 0.1 —| —|<0.1}<0.1
11 —| —[148.0| <0.1f —| —| 0.1 0.1|f —| —]<0.1}<0.1
40 — — —| 09| —| —| 0.6 0.7 —| —| 4.1| 0.6
80 — —| —] 228 —| —| 11.1| 12.7]] —| —|158.9| 11.0
120 —| —| —159.8|f —| —| 73.9] 84.8| —| —| —| 68.3
160 — — — —|| — —293.8 —| —| —262.3

Fig. 2. Scheduling Feasibility of MPEG-2 Encoder (time in seconds)

3 Experiments

We present two new case studies in order to argue for the efficiency and appli-
cability of the tool. More experimental results can be found e.g. in [5,12] and
several TAPN models are available within the tool (under File/Example nets).
All the models used in the following experiments can be obtained from the tool
homepage (section Download). The experiments were carried out on a MacBook
Pro equipped with a 2.7GHz Intel Core i7 and 8 GB of RAM with a 300 seconds
time limit. We used the 64-bit versions of TAPAAL 2.0.2 and UPPAAL 4.1.4.

MPEG-2 Case Study. We model the MPEG-2 algorithm that encodes a group
of frames on a multiprocessor architecture. The algorithm treats one initial I-
frame, a number of B-frames (we parameterize our model on this number), and
a final P-frame. The TAPN model was taken directly from [14]. We recreated the
UppPAAL model from the descriptions in [7] since their original UPPAAL model
was not available anymore. The results are in Figure 2. The columns called
original list the verification times for the model described in [14]; in the improved
variant we employed several additional modelling optimizations (both in the
timed automata and the TAPN model) via the use of invariants and symmetry
reduction (features not available to the authors of [14]). The query asks whether
the encoding can be performed within a given time bound (that we vary). In
positive cases (yes columns) we used DFS, otherwise (no columns) we used BFS.
This allows us to see how good the tools are to find a trace to a reachable state
or to explore the whole state-space. The discrete inclusion technique does not
improve the performance of the TAPAAL engine in this particular case.

Lynch-Shavit Protocol. The second case study is a timed-based mutual exclusion
algorithm by Lynch and Shavit [13]. Both the TAPN and timed automata models

UppaAL| TAPAAL | TAPAAL | TAPAAL || TAPAAL | TAPAAL
7# engine |translations| engine inclusion M-incl. | M*-incl.
15 0.2 0.4 0.9 0.2 0.2 0.2
25 24 3.0 8.5 1.1 0.9 0.9
35 14.6 15.8 42.7 4.6 4.00 3.9
45 62.6 57.1 153.3 14.3 11.3 10.5
55 190.8 164.7 — 38.8 27.2 25.0
65 — — — 106.5 57.7 52.7
75 — — — 262.4 113.2 100.5
85 — — — — 203.2 178.6
95 — — — — — 299.2

Fig. 3. Lynch-Shavit Protocol for Mutual Exclusion (time in seconds)

were taken from [1]. The column called inclusion refers to the generic application
of the discrete inclusion technique, M-incl. refers to a manual optimization of
the technique and M*-incl. shows a possible best performance of the technique
(optimized by a brute force search with an automatic script). The results are
presented in Figure 3 for a different number of processes participating in the
protocol. The discrete inclusion technique is not an over-approximation of the
behaviour and provides conclusive answers applied to any model, not only the
protocol in this case study.

TAPAAL’s performance is convincing in comparison with state-of-the-art
model checkers like UPPAAL and, in several cases, it provides a considerably
faster verification. Due to space limitation, we present only two case studies
but we also observed similar performance improvements for other models. In
particular, if the net structure allows for more tokens in the same place, the
generic discrete inclusion technique often gives a significant speed up and it can
be further manually tuned up. Moreover, if symmetry reduction is applicable,
it is often better exploited in the net models (where its detection is automatic
on contrary to the user defined one in UPPAAL models) and our translations
create networks of timed automata that are significantly faster to verify than
the native UPPAAL models. Last but not least, TAPAAL allows for simulation
of concrete error traces (even in case of symmetry reduction) while many other
timed automata and Petri net tools display only the abstract ones, which makes
them difficult to understand for the end-users.

4 Conclusion

TAPAAL 2.0 is an open source, platform-independent modelling and verification
tool for extended timed-arc Petri nets. The tool has reached its maturity both
in the GUI aspects as well as in the actual verification performance. The tool
is becoming increasingly popular as documented by the total number of 2089
downloads (calculated in October 2011), out of which more than 650 downloads
took part since April 2011.

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

P.A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Using forward reachability
analysis for verification of timed Petri nets. Nordic J. of Computing, 14:1-42, 2007.
P.A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. of ICATPN’01,
volume 2075 of LNCS, pages 53-70. Springer, 2001.

B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA — construction of
abstract state spaces for Petri nets and time Petri nets. International Journal of
Production Research, 42(14):2741-2756, 2004.

T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed LOTOS. In
Proc. of the IFIP WG 6.1 10th International Symposium on Protocol Specification,
Testing and Verification, pages 1-14. North-Holland, Amsterdam, 1990.

J. Byg, K.Y. Jgrgensen, and J. Srba. An efficient translation of timed-arc Petri
nets to networks of timed automata. In Proc. of ICFEM’09, volume 5885 of LNCS,
pages 698-716. Springer, 2009.

. J. Byg, K.Y. Jgrgensen, and J. Srba. TAPAAL: Editor, simulator and verifier of

timed-arc Petri nets. In Proc. of ATVA’09, volume 5799 of LNCS, pages 84-89.
Springer, 2009.

M.E. Cambronero, A.P. Ravn, and V. Valero. Using UPPAAL to analyze an mpeg-2
algorithm. In Proc. of VII Workshop Brasileiro de Tempo Real, pages 7382, 2005.
G. Gardey, D. Lime, M. Magnin, and O.H. Roux. Romeo: A tool for analyzing time
Petri nets. In Proc. of CAV’05, volume 3576 of LNCS, pages 418-423. Springer,
2005.

H.M. Hanisch. Analysis of place/transition nets with timed-arcs and its application
to batch process control. In Proc. of ICATPN’98, volume 691 of LNCS, pages 282—
299. Springer, 1993.

Platform Independent Petri net Editor 2.5. http://pipe2.sourceforge.net.

L. Jacobsen, M. Jacobsen, M.H. Mgller, and J. Srba. A framework for relat-
ing timed transition systems and preserving TCTL model checking. In Proc. of
EPEW’10, volume 6342 of LNCS, pages 83-98. Springer, 2010.

L. Jacobsen, M. Jacobsen, M.H. Mgller, and J. Srba. Verification of timed-arc
Petri nets. In Proc. of SOFSEM’11, volume 6543 of LNCS, pages 46-72. Springer,
2011.

N. Lynch and N. Shavit. Timing-based mutual exclusion. In Proceedings of the
13th IEEE Real-Time Systems Symposium, pages 2—11, 1992.

F.L. Pelayo, F. Cuartero, V. Valero, H. Macia, and M.L. Pelayo. Applying timed-
arc Petri nets to improve the performance of the MPEG-2 encoding algorithm. In
Proc. of MMM’04, pages 49-56. IEEE, 2004.

V.V. Ruiz, J.J. Pardo, and F. Cuartero. Translating TPAL specifications into
timed-arc Petri nets. In Proc. of ICATPN’02, volume 2360 of LNCS, pages 414—
433. Springer, 2002.

V.V. Ruiz, F.L. Pelayo, F. Cuartero, and D. Cazorla. Specification and analysis of
the MPEG-2 video encoder with timed-arc Petri nets. ENTCS, 66(2), 2002.

J. Srba. Timed-arc Petri nets vs. networks of timed automata. In Proc. of
ICATPN’05), volume 3536 of LNCS, pages 385-402. Springer, 2005.

J. Srba. Comparing the expressiveness of timed automata and timed extensions
of Petri nets. In Proc. of FORMATS’08, volume 5215 of LNCS, pages 15-32.
Springer, 2008.

UPPAAL. http://uppaal.org.

Appendix: TAPAAL 2.0 Mini Tutorial

The screenshot in Figure 4 shows TAPAAL 2.0 during the simulation of a sim-
ple model of a sender and receiver over a lossy medium. TAPAAL models are
extensions of the well-known Petri Net models, where tokens now carry a real
value (timestamp, or age) and input arcs are annotated with time intervals. In
our example, we have three tokens of ages 3.0, 3.0 and 5.0, respectively. In order
to fire a transition (drawn as a rectangle), we need at least one token in every
input place (drawn as a circle) connected by an arc to the transition, and the
age of the token must moreover belong to the interval on the arc.

TAPAAL 2.0.2: screenshot-model.xml
UsS&] (@) ¥ a[@] [Z]eox ~[Z|[EH o /¢ kx @ 01 = M A & % %
screenshot-model.xml %

Sender Receiver

StartSender StartReceiver

! Medium
Simulation Control

Token selection: | Random o

Components

TAPNL

Receive

€ |2 300000 [Timedelay

Simulation History-

Initial Marking
TimeDelay: 2.00000
TAPN1.Send
TimeDelay: 3.00000

Loose_Message

Received

WaitToResend
Inv. < 8

Animation Mode: Red transitions are enabled, click a transition to fire it

Fig. 4. A screenshot of TAPAAL 2.0.2 during simulation

This means, referring again to Figure 4, that the transitions Receive and
Loose_Message can fire in the current marking; the choice of which one will fire
is done in a nondeterministic manner. When a transition is fired, all input arcs
consume one token of a suitable age from each of the input places and the output
arcs produce new tokens to the output places. The net in our example contains
two types of arcs; arcs with arrow tips are called normal arcs and arcs with
diamond tips are transport arcs. Tokens produced by normal arcs into the output
places become new (fresh) tokens with initial ages 0, while tokens produced by
transport arcs preserve the age of the token that is “transported” along the
corresponding pair of transport arcs. Hence, for example, firing the transition
Receive will consume the tokens in places Medium and StartReceiver, and
create one token in the place Received of age 3. TAPAAL additionally supports

inhibitors arcs (not shown in the screenshot), which are special input arcs that
disable transitions from firing whenever there is at least one token in the input
place.

Another type of behaviour of the net is a time delay. Here all tokens grow
older with the same speed, provided that none of the tokens breaks any age
invariants associated to the places, like the one < 8 in the place WaitToResend.
This means that the net, in its current marking, cannot delay for 5 time units
or more (otherwise the token’s age 8 in the WaitToResend place breaks the
invariant) and the transition Resend becomes urgent. Hence invariants can be
used to enforce urgency in the net behaviour.

Finally, when we switch to the editor view (by pressing the small green
flag that switches between the editor and the simulator), we can create a new
query asking whether it is possible to place at least one token into the place
Received by writing the logical formula EF TAPN1.Received >= 1. The EF
temporal quantifier asks whether there is some reachable marking that satisfies
that the place Received in the component TAPN1 (we have only one component
in our model) contains at least one token.

The user is encouraged to consult our wikipage wiki.tapaal.net for a more
thorough introduction into the tool and when first running the tool, it is ad-
visable to open the intro-example from File/Example nets in order to learn the
basics about TAPAAL 2.0.

