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This paper studies the problem of computing Nash equilibrin wireless networks modeled by
Weighted Timed Automata. Such formalism comes togethdr avibgic that can be used to describe
complex features such as timed energy constraints. Ourilbotibn is a method for solving this
problem using Statistical Model Checking. The method hanbmplemented in BPAAL model
checker and has been applied to the analysis of Aloha CSMAGIDIEEE 802.15.4 CSMA/CA
protocols.

1 Introduction

One of the important aspects in designing wireless ad-hoc networks is tosueké¢hat a network is
robust to the selfish behavior of its participants. This problem can be fateduin terms of a game
considering that network nodes behave in a rational way and want to maxinair utility. A wireless
network is robust iff its configuration satisfies Nash equilibrium (NE), i.¢s itot profitable for a node
to alter its behavior to the detriment of other nodes.

In this paper we propose a new methodology to compute NE in wireless adeteorks. Our
approach is based on Statistical Model Checking (SMC)[[23, 18], proaph used in the formal verifi-
cation area. SMC has a wide range of applications in the areas suchi@msysology or automotive.
The core idea of SMC is to monitor a number of simulations of a system and teehausesults of statis-
tics (e.g. sequential analysis) to get an overall estimate of the probabilitththaystem will behave in
some manner. While the idea ressembles the one of classical Monte Carlo simutagidased on a
formal semantic of systems that allows us to reason on very complex bedlgwioperties of systems
(hence the terminology). This includes classical reachability propertyasitcan i reach such a state?”,
but also non trivial properties such as “can i reach this state x times in sy thnits of time?”.

Here we use a semantic for systems that is based on timed automata. We ass$@heeniats of a
network are modeled using Weighted Timed Automata (WTA), that is a model for sgetdm together
with a stochastic semantic. The model permits, for example, to describe dtoalyakow the behaviors
of a system involve with respect to time. As an example, probability can betosay that the system
is more likely to move to the next state in five units of time rather than in ten. Our agipggermits to
describe arbitrary distributions when combining individual componentadtition, WTA are equiped
with nice communication primitives between components, including e.g. messagiaga The fact
that we rely on WTA allows us to describe utility functions with cost constraimptaral logic called
PWCTL. PWCTL is a logic that allows to temporally quantify on behaviors of comepts as well as
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on their individual features (cost, energy consumption). By the exisdaglts, we know that one can
always define a probability measure on sets of run of a WTA that satisiyea groperty written in
cost constraint temporal logic. The latter clearly arises the importancdinfriga formal semantic for
system’s models.

Going back to modeling wireless ad-hoc network, we will assume that eaehaam work according
to one out of finitely many configurations that we call strategies (a strateigyg la choice of a config-
uraiton). We also assume that each network node has a goal and a noliy’ function is equal to
the probability that this goal will be reached on a random system run. Badé will be represented
with a WTA and a goal will be described with PWCTL. Our algorithm for compyiNE consists of
two phases. First, we apply simulation-based algorithm to compute a strateégyasicikely (heuristic)
satisfies NE. This is done by monitoring several runs of the systems witbatespa property and then
use classical Monte Carlo ratio to estimate the probability that this strategy iglittteegood one. In the
second phase we apply statistics to test the hypothesis that this stratedly aetiisfies NE. Indeed, it
is well-known that such a NE may not exists|[16], so our statistical algorithes §or the best estimate
out of it that corresponds to a relaxed NE for the system.

We implemented a distributed version of this algorithm that usesA4L statistical model checker
as a simulation enging[13]. ThePBAAL toolset offers a nice user interface that makes it a one of the
most widely used formal verification based tool in academia. Thanks to tepémdient simulations that
the algorithm generates, this problem can easily be parallelized and disiridnyte.g., PC clusters.

Finally, we apply our tool to the analysis of two probabilistic CSMA (CarriansgeMultiple Access)
protocols: p-persistent Aloha CSMA/CD protocol and IEEE 802.15.4 8&M protocol. The two
case studies we present in this paper serve mainly demonstration purptisgesver, we are the first
who study Nash Equilibrium imunslottedAloha (the slotted version of Aloha was previously studied
in [19] and [22]). Our result that there exists only “always transmit” INEguilibrium strategy in IEEE
802.15.4 CSMA/CA reproduces the analogous result for the IEEE 8@SMA/CA protocol [9].

The problem of computing Nash Equilibrium in wireless ad-hoc networks fwsis considered
in [19]. A survey on this topic can be found in_[22]. Most of the papexppse analytical solutions,
that do not scale well to complex models (for instance, [see [19, 15])réigropose simulation-based
approach without assigning statistical confidence to its results[(se&Jj®p our knowledge we are the
first who apply Statistical Model Checking for searching for Nash Equuiib in wireless ad-hoc net-
works. Our contribution is to propose an original attempt to apply formal ndstaod SMC to network
problems, here to compute Nash Equibrium.

2 Weighted Timed Automata

In this section, we briefly recap the concept of Weighted Timed Automata (\\WSeke [12] for more
details. We denoteg(X) to be a finite conjunction of bounds of the fosa- n wherex € X, n € N, and
~e{<, <, >, >}

Definition 1 A Weighted Timed Automat&h(WTA) is a tuplees = (L, 4o, X,E,R,I) where: (i) L is a
finite set of locations, (iifp € L is the initial location, (iii) X is a finite set of real-valued variables called
clocks, (iv) EC L x #(X) x 2% x L is a finite set of edgesy) R: L — Z-¢ assigns a rate vector to each
location, and (vi) I: L — %(X) assigns an invariant to each location.

1in the classical notion of priced timed automata[[6, 5] cost-variables @ogks where the rate may differ from 1) may
not be referenced in guards, invariants or in resets, thus makinggmtignal reachability decidable. This is in contrast to our
notion of WTA, which is as expressive as linear hybrid systems [10].
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A state of a WTA is a paifl,v) that consists of a locatidnand a valuation of clocks : X — R>g.
From a statél,v) € L x R, a WTA can either let time progress or do a discrete transition and reach
a new location. During time delay clocks are growing with the rates defind®(lpy and the resulting
clock valuation should satisfy invariahil ). A discrete transition fron(l,v) to (I’,V) is possible if there
is (1,9,Y,l") € E such thatv satisfiegg andV' is obtained fronv by resetting clocks from the s¥tto 0.

A run of WTA is a sequence of alternating time and discrete transitions. Sa¥&A My, My, ..., My,
can communicate via inputs and outputs to generate Networks of WTAs (NWWARV, || .. . || Mn.

In our early works[[1R], the stochastic semantic of WTA components adssgrobability distri-
butions on both the delays one can spend in a given state as well as om8igainebetween states. In
UpPAAL uniform distributions are applied for bounded delays and exponentiabditons for the case
where a component can remain indefinitely in a state. In a network of WTAsot@onents repeatedly
race against each other, i.e. they independently and stochastically dechdsr own how much to delay
before outputting, with the “winner” being the component that chooses thenonin delay. As observed
in [12], the stochastic semantic of each WTA is rather simple (but quite regliatigitrarily complex
stochastic behavior can be obtained by their composition when mixing indivdisigbutions through
message passing. The beauty of our model is that these distributionstara&inand automatically
defined by the network of WTAs.

Our implementation supports extension of WTA, coming from the language di#maAL model
checker[[17]. Such models can contain integer variables that can$enpie transition guards, and they
can be updated only when a discrete transition is taken. Additionally, weodupiber features of the
UpPPAAL model checker’s input language such as data structures and tiseddenctions.

A parametrized WTAM(p) is a WTA in which some integer constant (transition weight or constant
in variable assignment/clock invariant) is replaced by a paranpeter

For defining properties we use cost-constraint temporal logic PWCTIchadontains formulas of
the form{.<c®. Herecis an observer clock (that is never reset and grows to infinity on anytafumn
of a WTA), C € R>g is a constant ang is a location-predicate. We say that a misatisfiesOc<c @ if
there exists a stat¢, v) € rin this run such that locatidnsatisfiesp andv(c) < C. We definePr[M = y]
to be equal to the probability that a random rurivbkatisfiegp.

3 Modeling Formalism and problem statement

We consider that each node operates according to one out of finitelyaoafigurations. Thus a network
of N nodes can be modelled by:

S(p1, P2;- -+, Pn) = M(p1) [IM(p2)]| ... [[M(pn)[IC 1)

whereM is a parametrized model of a nodg,c P (i.e, the behavior of a node relies on some value -
strategy - assigned to the parametdps) a finite set of configurations ai@lis a model of a medium.

Consider parameterized NWTE p1, p2,. .., pn) that models a wireless network Bf nodes. Here
eachp; defines a configuration of a nodand ranges over a finite domd Since the players (nodes)
are symmetric , we can analyze it from the point of view of the first node. orthys we will consider
the goal of the first node only, and this is goal is defined by a PWCTL ftarniu

We can view a system as a gaf@e= (N,P,U), whereN is a number of players (node$)]s a set of
strategies (parameters) add PN — [0, 1] is an utility function of the first player defined as

U(p1,P2,---, Pn) = Pr{S(p1, P2, .-, Pn) = Y] 2)



4 Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Basegrdach

We consider that there is a master node that knows the network configufiagienthe number of
nodes) and broadcasts the strategy (parameter) that all the nodés sseu

If all the nodes are honest, they will play according to the strategy peapbg the master node.
Thus in this case the master node should use a symmetric optimal strategy, e¢egystsuch that for
all other strategieg’ we havel (p, p,...,p) >U(p,p,...,P).

However, if there are selfish nodes, they might deviate from the symmetiioaistrategy to in-
crease the value of their utility functions (and the rest of the nodes caibposuffer from that). Thus
we will consider a Nash Equilibrium strategy that is stable with respect to thavim of such selfish
nodes (but possibly this strategy is less efficient than the symmetric optimal one

A strategyp is said to be a Nash Equilibrium (NE), iff for aff € P we haveU (p,p,...,p) >

U(p/7p7"'7p)'
NE may not exist [1@, thus in this paper we will consideralaxeddefinition of Nash Equilibrium.

Definition 2 A strategy p satisfies symmetderelaxed NE iff for all p € P we have Up, p,...,p) >
6'U(pla pa)p)

The value ofd measures the quality of a strategy If & > 1, thend-relaxed NE satisfies the
traditional definition of the (non-relaxed) NE. Otherwise, i is small, then we can conclude that
a node’s gain of switching is negligible and it'll stick with tlderelaxed NE strategy. A-relaxed NE
strategy can be also used when a set of possible strategies is infinite.dadbig/e can discritize this set
(approximate it by dinite set of strategies) and search fab-@elaxed NE strategy in this set. If an utility
function is smooth, then this strategy can be a good approximation for a NEsforriginal (infinite) set
of strategies.

In this paper, we will solve the problem of searching for a strategy thisfiea d-relaxed NE for as
larged as it is possible.

For readability, in the rest of the paper we will writg p’, p) andS(p/, p) instead oU (p’, p, ..., p)
andS(p', p,...,p), respectively.

4  Algorithm for Computing Nash Equilibrium

One may suggest that in order to compute NE we can compute the valu¢g'op) for all pairs(p/, p)
and then use definitidn 2 to compute the maximal valué.oHowever, we can't do that because the
problem of evaluating PWCTL formula on a model (i.e. compuin{|= (]) is undecidable in general
for WTA [7].

Thus in this paper, we will use Statistical Model Checking (SMC) approacivercome this unde-
cidability problem. The main idea of this approach is to perform a large nunilsénalations and then
apply the results of statistics to estimate the probability that a system satisfienggdperty.

Our method of computing NE consists of two phases. During the first phasgply a simulation-
based algorithm to search for the best candigafer Nash Equilibrium. Then we apply statistics to
evaluatep, i.e. to find the maximun®d such that with a given significance level we can accept the
statistical hypothesis thatis a d-relaxed Nash Equilibrium.

We use straightforward simulation-based method for computing estimations of futilittion’s val-
ues. In this method we performrandom simulations o&(p’, p) for given(p, p’') and count the number
k of how many simulations satisfiatl. Then we use the following estimatioﬁ:( P, p) =k/n.

2Note, that we assume only non-mixed (pure) strategies.
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Algorithm 1 Computation Of The Best Candidate For Nash Equilibrium
Input: P = {p; } — finite set of parameters) (pi, px) — utility function, d € [0, 1] — threshold
Algorithm :
for every p; € P compute estimatiod (p;, p;)
waiting:= P
candidates= 0
while len(waiting) > 1:
pick some unexplored paip;, px) € P x waiting
computeestimationl (p;, px)
if U(pe, pe) < d-U(pi, pr):
remove py from waiting
else ifYp U (p/, py) is already computed
remove py from waiting
add pg to candidates

. return argma)f)ecandidategninp/eP('j(p7 p)/U(p/7 p))

© 00 N O O W NN -

e
N = O

4.1 Finding a Candidate for a Nash Equilibrium

In the first part of our method we compute estimatiﬁr(sp’, p) for p’ and p and search for a parameter
p that maximizes the value of nmp(lj(p, p)/U(p,p)).

Additionally, we speedup the search by introducing a heuristic threshildht is a parameter of our
algorithm) and pruning parametepssuch thatJ (p, p)/U(p/, p) < d.

Our algorithm (see Algorithril1) starts with the computation of estimatidfs, pi) at diagonal
points (i.e. when = k). After that we iteratively pick a random pair of strategigs px) and compute
U(pi, px)- If U(pw. p)/U(pi, pi) < d, then we remove strategy from the further consideration and
will never consider again pairs of the forf®, py).

We iterate the while-loop until we split all the parameters into tho&e which we already computed
the value of mincp(U(p, p)/U (P, p)), and those, for which we know thak(p, p)/U(p/,p) < d for
somep’. Then at line 12 we choose a stratggthat maximizes mipep(ﬂ(p, p)/U(p’, p))

It should be noted, that if a threshaottis large, then our algorithm can possibly return no result
(because all the candidates will be filtered out). In this case one camwidtrg smallerd and reuse the
already computed estimations.dfs equal to zero, then the algorithm is guaranteed to return a result.

4.2 Evaluation of a Relevance of the Candidate

Consider that after the first phase we selected a stratedyet H, 5 be a statistical hypothesis that
is a d-relaxed NE. Now we want to found the maximalsuch that we can accept, s with a given
significance levelr (that is a parameter of the algoritlﬁn)

To do that we firstly reestimaté (p/, p) for everyp’ € P (possibly using the number of simulations
that is different from the one that was used in the first phase).

Then we apply the following theorem (the proof can be found in the apypend

3The significance level is a statistical parameter that defines the probab#itgepting a hypothesis although it is actually
false
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Figure 1: The experimental evaluation of the application of thedrdem 1. lmpper plots thex axis
denotes the number of simulatiomsandy axis denotes an average estimated valu@ a@dmputed using
theoreni L for these numbers of simulations and the significance lemekdd.05. N is the total number
of strategies. The bottom plots demonstrate the frequency distribution foothputed values ad for
100000 simulations and 100 possible strategies. The left and right platspond to the cases when
the real value ob is equal to 10 and 11.

Theorem 1 Suppose that for all’p= S we estimateﬁ(p’, p) using n random simulations. Then we can
accept the hypothesisgg with significance level od, if f(d) < a, where

(9= 3 5(1-ert (vi(p.p)-3-0(p.p)) @)

and erf(x) = %fée*‘zdt is Gauss error function.

We first search for an integer-valubcuch thatf (b) < 0. Then we use bisection numerical method
to find a root of an equatiofi(d) = a on the interval0,b]. It can be easily seen that the function
decreases anf{0) > 0 and it implies that thi® satisfies the condition of the theorem.

Our method provides only a lower bound ®eand the theoreifd 1 doesn’t state how many simulations
are needed to compute a good estimatiod ofindeed, we can compute statistically vaddfor any
number of simulations. And if the estimated valuedoifs small, it can be a result of the fact that the
number of simulations is insufficient or the real valuedagé small (or both).

In order to provide an experimental evidence of the application of our rdettedeveloped a simple
model of it. In this model we assume that there Mrstrategies p1, p2,... pn}, and we want to check
that p; is a Nash Equilibrium. The value of the utility functidh(p1, p) is equal to G for p # p1, and
itis equal to 05- & whenp = p; (thusp; is ad-relaxed NE). The experimental data for the cases when
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INITIAL nt==0
nt:=nt+1,
x:=0

x<=18&&
time'==0 &&
energy’ == 0

x<=1 &&
energy'==1 &&
time’==1
TRANSMIT

x==1
ns:=ns + 1,
nt>0
busy!

TransmitProb

WAIT

100-TransmitProb :;:rlg;%ézo 88

x:=0 time' == 1

Figure 2: Model of Aloha in BPAAL

0 =10 andd = 1.1 is presented at Fig] 1. A reader can see that the results for these se® a®
similar, and our other experiments (widhranging from 05 to 20) also demonstrate this similarity.

4.3 Implementation Details

We developed a tool written in Python programming language that implementsojpespd algorithm.
This tool uses BrPAAL model checker as a simulation and monitoring engine for PWCTL properties.

Our algorithm is based on Monte Carlo simulations and thus it is embarrassiaglifigable. In
our implementation we exploit the parallelisability by computing the estimations foreliffeoairs of
strategies on different nodes. The tool can be run on a cluster. Qleeawts as a master and picks the
parameter;, p; that the slave nodes use to compute the estimaﬁcélps pj). The master node doesn't
use any external job scheduler and submits jobs on its own using SSHctionnte the computational
nodes. Currently we rely on the fact that nodes share the same distritbategstem, but in principle
the master node can deploy all executables and models by itself.

5 Results of Application

In this paper we report on results of application of our tool to two conteméealution protocols. The
first one is Aloha CSMA/CD protocol that we model on a very abstract lamd we’ll describe our
model in details. The second one is IEEE 802.15.4 CSMA/CA that we model witthgohecision and
we'll just briefly sketch its structure.

For both case studies we used the following parameters. The number oftsamsifar estimation of
utility function’s values is equal to 10000 for the first phase of our algoritimd 100000 for the second
phase. The value af parameter is equal ta®, and the value of significance lewelis equal to Q05.
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Number of nodes 2 3 4 5 6 7 8
O-relaxed NE strategpne 0.37 0.40 0.35 0.35 0.41 0.42 0.41
Value of & 0.992 0.980 0.992 0.990 0.993 0.992 0.987

U (PnE; PNE) 0.99 0.98 0.95 0.89 0.75 0.61 0.50
Symmetric optimal strateggopt ~ 0.30 0.30 0.26 0.22 0.19 0.15 0.14
U(popt, Popt) 0.99 0.98 0.96 0.90 0.87 0.98 0.76
Computation time 2mbs  3md4s 7m62s 15m45s  26mlls 37m55s  59ml15s

Table 1: Nash equilibrium (NE) and Symmetric optimal (Opt) strategies for Aloha

5.1 Application to Aloha CSMA/CD protocol

Aloha protocol [2] is a simple Carrier Sense Multiple Access with Collision Diete CSMA/CD)
protocol that was used in the first known wireless data network dewetlapde University of Hawaii in
1971.

In this protocol it is assumed that there are several nodes that shaantieevireless medium. Each
node is listening to its own signal during its transmission and checks that thed Eigrot corrupted by
another node’s transmission. In case of collision both nodes will stopmitimgy immediately and wait
for a random time before they'll try to transmit again.

In our paper we consider unslotted Aloha in which the nodes are nossegesynchronized. Ad-
ditionally, we study p-persistent variant of Aloha, i.e. a protocol implememtatiovhich a random
delay before retransmission is distributed according to a geometric distribuilie means that each
next time slot a node will transmit with probabilifyransmitProband will wait for one more slot (and
then decide again) with probability-1TransmitProb We assume that a node can change the value of
TransmitProbh thus a strategy of a node consists of choosing a valUearismitProb We also assume
that a node can use one out of the &&10.01,0.02,..., 1} of discretized values of ransmitProb

The UppAAL model of a single node is presented at [Flg. 2. Wireless media is modeled using a
broadcast channelisy (in which a signal is sent each time a new transmission starts) and integetevariab
nt (that stores the number of stations that are currently transmitting). Vagadileres the number of
successful transmissions. Time can pass only in locati®@$IAL, TRANSMIT andWAIT, two other
locations areirgent A node uses clocks, time(that stores time passed since the beginningyardgy
(that stores the amount of energy consumed, i.e. the amount of time speatdcationTRANSMIT).

We assume that there is a random uniformly distributed offset between the #titas of the
nodes (it is modeled by delay in locati@NITIAL). This may correspond to the situation, when there
is a wireless sensor network and all sensors are aimed towards the samhe &% soon as this event
happens, all the node will start transmission, but they will not be neglyssgnchronized.

In our experiments we assumed that the goal of a node is to transmit a sengle Wwithin 50 time
units and to limit energy consumption by 3. This goal can be expressed th&irfgllowing PWCTL
formula:

ONodg0) time<so(N0d€0).ns> 1A Nod€g0).energy< 3) 4)

It should be noted, that even our (unslotted) Aloha model looks simpleawepropose an analytical
way of computindJ (p, p’) for a given values op andp’. The problem is that our model works in real-
time and we can’t decompose its behavior into rounds and contpiep’) recursively based on the
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Figure 3:U(p’, p) (left) and its diagonal slice (right) for Aloha with 5 nodes

nodes’ actions in the current round and valuet ¢p, p') in the next possible rounds (like it was done
in [19] for slottedAloha).

Fig. 3 depicts the plot o) (p/, p) for the network of 5 nodes. It also shows NE and symmetric
optimal strategy. It should be noted, that due to the usagiepaframeter our algorithm didn’t compute
U(p’, p) for all possiblep andp’ (in fact, only 3742 out of 10000 values were computed).

Table[1 contains the results for ALOHA with different number of nodesalit be seen, that relaxed
NE and symmetric optimal strategies coincide for the case of two network niodefor the networks
with more nodes relaxed NE is less efficient than symmetrical optimal strategy.

5.2 Application to IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard [21] specifies the physical layer and mediasacostrol layer for low-cost and
low-rate wireless personal area networks. Upper layers are netexbby IEEE 802.15.4 and are left to
be extended in industry and individual applications. One of such exteh&igBee([3] that together
with IEEE 802.15.4 completes description of a network stack. Typical apiolicaof ZigBee include
smart home control and wireless sensor networks.

We applied our tool to the analysis of Multiple Access/Collision Avoidance (B8DA) network
contention protocol being a part of IEEE 802.15.4. This protocol isdasetruncated exponential
backoff mechanism. The standard defines both slotted (with beaconreypirztion) and unslotted
modes of CSMA/CA, in our paper we consider only unslotted one.

The model of a single node operating according to IEEE 802.15.4 CSMA/@Apkted at Fid.14.
The values oflinBE, MaxBE, MaxFrameRetries, TurnAround were taken from the IEEE 802.15.4 stan-
dard assuming that the network is operating on baud rate 20kbps an@ dhg@dand FrameLength is
considered to be 35 bytes (including 25 bytes for ZigBee header angtd$ fior the valuable informa-
tion). We assume that the frame size is 35 bytes (25 bytes for ZigBee raadiéd bytes for the actual
data). Energy consumption constraifts Power andRX_Power were taken from the specification of
U-Power 500 chip (54 mA and 26 mA operating on 3.0V respectively).

We assume that a node can change the valumbtBackoff parameter. This parameter linearly
scales the exponential backoff scheme. If its value is equal to 0, thedeawit try to transmit as soon
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busy?
cca_passed:=false

(x==backoff*UnitBackoff) L N
cca_passed:=(nt==0) ijU:’CCA) && (cca_passed)
WAIT_BACKOFF x:=0 CCA x-:hy VULNERABLE —_ energy’ == TX_Power

x<=TurnAround
x<=backoff*UnitBackoff O O
x==TurnAround

)
energy’ == RX_Power

x<=CCA
backoff := random(0..pow(2,be)) x == CCA_duration) && !cca_passed éb_ll(i)sion occured:=(nt>0)
X:=0 hb := nb+1 nt=nt+1_ V
nb < MaxNB
L be:= (be+1> MaxBE ? MaxBE: be+l) ¥ IﬁzAF,\r‘;Y’\:!IEEAI;A busy?
(UJ \U) 9 ( collision_occured:=true
x<=waking_delay be:=macMinBE, nb:=0 nb == MaxNB

x==FrameLength

O——0

nretries < (MaxFrameRetries—1)

x<=aTurnaroundTime

nretries = nretries + 1 Icollision_occured
J O —©
H nretries == (MaxFrameRetries—1) S
_ FAILURE L 3 3
X==MIinLIFS x==TurnAround collision_occured
collision_occured:=(nt>0)
SUCCESS nt:=nt+1
x:=0
busy!
Icollision_occured
X<=MinLIFS x:=0 x==ACK x<=ACK_time
(\ '7 %) nt:=nt-1
_/ &
collision_occured busy?
ollision_occured:=true
energy’ == RX_Power
Xx<=ACK_Time == =
x==ACK Time _ ><._ TurnAround x<=TurnAround
. - O x:=0
N\

Figure 4: Model of IEEE 802.15.4 CSMA/CA

as it wants to. The large values@fitBackoff corresponds to large delays before transmission. We
consider that the possible valuesiafi tBackoff are{0,1,2,...,50}.

Our tool detected a trivial NEnitBackoff=0, see the plot at Fid.]5 (left) for an illustration. It
means that a selfish node will always try to transmit as soon as possibl@bgitgUnitBackoff=0.
This coincides with the results of|[9] obtained for IEEE 802.11 CSMA/CAquol.

In order to illustrate our algorithm we also considered the situation when retmares (game
players) form coalitions. It can correspond to the situation when davetaork devices belong to the
same user and it will not be profitable for the user if these devices comftateach other. The intuition
is that players of the same coalition will not choose “always transmit” strdieggiuse in this case they
will disturb each other. This is confirmed by plot at Hi@y. 5 (right) and tRble&@dssumed that there are

Number of nodes in one coalition 1 2 3 4 5
o-relaxed NE strategpne 11 8 15 25 28
Value ofd 0.900 0.985 0.986 0.990 0.990
U(pNE, PNE) 0.86 0.76 0.81 0.85 0.83
Symmetric optimal strateggopt 13 23 31 34 48

U (Popt; Popt) 0.87 0.85 0.87 0.87 0.86
Time 1m08s 5m45s 7m62s 32m49s 57mb59s

Table 2: Nash equilibrium (NE) and Symmetric optimal (Opt) strategies for C&MAwith coalitions
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Figure 5:U(p’, p) for CSMA/CA for 5 nodes without(left) and with(right) coalitions

two coalitions of the same size).

6 Related Work

The paper[[19] is the first one that applies the concept of Nash Equititiouthe analysis of Medium
Access and power control gamessiotted Aloha protocol. Later this approach has been applied to
the most of the layers of a network stack: to the Phys|cal [4| 19, 20],jedccess([1| B, 11, 15],
Network [14,24] and Applicatiori [8] layers.

Although our approach can be in principle applied to any network layerpdtiscularly well suited
for the random access Medium Access layer protocols, since sudtpl®possess probabilistic behav-
ior (here we can use our Weighted Timed Automata semantics) and work itimealin this settings,
our SMC-based approach extends the manual analytical approacbathlae complicated, error-prone
and typically applied to slotted (discrete time) protocols only [11, 19]. On therdthnd, our approach
extends the simulation-based approach (for instance, [9]), since wrlfy describe a modeling for-
malism for which we can provide a confidence on the results.

From the point of view of the case studies performed in the current pageextend the analysis
of [19] from theslottedAloha to the unslotted one. Up to our knowledge, we are also the first whes,
study coalitions between nodes in the IEEE 802.15.4 CSMA/CA protocol.

7 Conclusions

In this paper we have presented a methodology to apply statistical modé&irgpén search for a Nash
equilibrium on different types of networks. Experiments demonstrate therityatfiour technique and
shows that it can be applied in principle to more complex problems. The te@haigids analytical
analysis of the model and contrary to pure simulation-based techniqussyrawvides statistical confi-
dence on its results. As future work we will extend the language of outddm# able to apply it to other
domains such as biological systems.
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Proof of theorem[1

Theorem 1 Suppose that for all’ps S we estimateﬁ(p’, p) using n random simulations. Then we can
accept the hypothesisgg with significance level of, if f(d) < a, where

(6= 5 H(1-erf (viO(p.p) - 5-U(p.p)) ©

and erf(x) = %ng‘e“zdt is Gauss error function.

Proof: Letqg =U(pi, px) andqg = U(pi, pk). Thenpy satisfiesd-relaxed Nash Equilibrium iff/i - gx >
0q; Consider that we have Bernoulli random variableg;, {>,...,{, wherePr[{; = 1] = g;. Consider
that random variablé; is a mean oh independent observations gf i.e. & = Y ;-1 ,{i/n Then each
g is an independent observation &fand for largen we haveé; ~ .47(q;,qi(1— qi)/n). Probability of
making type Il error éccept H, 5 when itis false) is less or equal to

Pri¢y=01,&=02....&=0nl| \V/ < d-q (6)

i=1..N

, thatin turn is less or equal to
Z Pr(éy =01, &2 ="02,...,n = Onllok < 3- i (7)

i=TN

, that in turn is less or equal to
Z Pr& = Gi, & = Pxllak < 0- g (8)

i=TN

, thatin turn is less or equal to
Z Pri(ék—9-&)=(k—90-G)llak—9-q <0 9)

i=TN

For each we have:
(ék—0-&) ~ A (qk— 0, (qk(1—ak) +qi(1—q))/n) (10)

Now, the truth of theorem proposition is a consequence of the faatfiat- gx) + i (1—q) < 0.5.
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