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Abstract. We address the problem of finding an infinite run with the
optimal cost-time ratio in a one-clock priced timed automaton and pro-
vide an algorithmic solution. Through refinements of the quotient graph
obtained by strong time-abstracting bisimulation partitioning, we con-
struct a graph with time and costs as weights and prove that the min-
imum ratio properties remain unaltered, allowing algorithms for finite
weighted graphs to be applied. The resulting algorithm has an overall
time complexity of O((|Q| · (|T | + |Q|))6), |Q| being the number of lo-
cations and |T | the number of transitions of the one-clock priced timed
automaton.

1 Introduction

Timed automata, introduced in 1990 by Alur and Dill [1, 2], and its extension,
priced timed automata (PTA) [3, 4], are well established modeling formalisms
for real time systems.

Fig. 1. PTA modeling the vacuum cleaner
robot. Resets are denoted by “x:=0”,
costs, prefixed with “c+=”, tell us the
cost of taking a transition and “c’=” is
the rate of growth for waiting in a loca-
tion. The initial location of the model is
Rest.

Consider as an example a PTA
modeling a robotic vacuum cleaner
(Fig.1). An interesting question for
this model could be “Which is -
energy-wise in the long run - the
best cleaning strategy in a given
situation for the robotic vacuum
cleaner?”. The cost-time ratios of di-
verse infinite runs of the same au-
tomaton can be widely different and
it is important to be able to distin-
guish between these when measur-
ing the efficiency of the robot. We
can solve this problem by finding an
optimal infinite run of the PTA to
reduce energy consumption.

In this paper we will be con-
cerned with finding such an optimal run for one-clock priced timed automata
(1PTA).



The problem of optimal infinite scheduling can be defined differently depend-
ing on what is most relevant for the given situation. We define an optimal infinite
run to be a run where the average cost per time unit of the entire run is as low as
possible. When dealing with both costs and rewards an optimal strategy could
imply the cost per reward to be minimized [5]. Instead for models where the
present costs are more relevant than future costs, or where there is a growing
probability that the object modeled will stop running (e.g. component failure),
optimal infinite runs can be calculated using discount factors [6]. Both papers
prove the respective problems to be PSPACE-complete, but lack a practically
efficient implementation strategy (i.e. based on zones).

In this paper we provide an algorithmic implementation to solve this prob-
lem with polynomial complexity when restricting to the setting of priced timed
automata with one clock.

2 Preliminaries

We will be concerned with priced timed automata with only one clock, x. The
clock can be used to enforce time constraints on transitions and locations. The set
of all clock constraints β(x) is defined by the grammar “g ::= x ∼ k | g∧g”, where
k ∈ N≥0 and ∼∈ {≤, <,=, >,≥}. Also we have the opportunity of resetting the
clock during a transition. This will be expressed by a boolean value.

Definition 1. A one-clock priced timed automaton (1PTA) is a tuple A =
(Q, q0, x, T, I, cost) where

– Q is a finite set of locations,

– q0 ∈ Q is the initial location,

– x is the model clock with valuations in the domain R≥0,

– T ⊆ Q× β(x)×Bool ×Q is the set of transitions,

– I : Q→ β(x) is an invariant function,

– cost: Q ∪ T → N≥0 is a price function.

Like timed automata, the semantics of a 1PTA are given by a labelled transition
system (S, s0,→), where S = {(q, x, c) | x, c ∈ R≥0, q ∈ Q, x |= I(q)} is the
set of states with accumulated cost c, s0 = (q0, 0, 0) is the initial state, and the
transition relation, →⊆ S × (T ∪ R≥0) × S, is composed of delay moves and

discrete moves. A delay move of δ time units, (q, x, c)
δ→ (q, x+ δ, c+ δ · cost(q)),

is legal if for all 0 ≤ δ′ ≤ δ, x + δ′ |= I(q). In a discrete move of the form

(q, x, c)
e→ (q′, x′, c + cost(e)), the location is changed according to a transition

e = (q, g, r, q′) ∈ T of the 1PTA. Also it must hold that x |= g, x′ |= I(q′), and,
if r = True, x′ = 0, else x′ = x.

A finite run γ of a 1PTA is a finite sequence of moves in the defined transition
system, starting from the initial state: γ = s0 →1 s1 →2 s2 →3 . . . →n sn. We



can define the cost and duration of a run by:

cost(γ) =
∑

1≤i≤n

{
δ · cost(q) if →i is of the type

δ→, δ ∈ R≥0, si−1 = (q, x, c)

cost(e) if →i is of the type
e→, e ∈ T

dur(γ) =
∑

1≤i≤n

{
δ if →i is of the type

δ→, δ ∈ R≥0
0 if →i is of the type

e→, e ∈ T

The ratio of a run expresses what the cost per time unit is in the run:

ratio(γ) = cost(γ)
dur(γ) . Note that the ratio only exists if there is at least one delay

transition,
δ→, where δ 6= 0 in γ.

In this paper we will be concerned with infinite runs, viz. infinite sequences
of moves: Γ = s0 →1 s1 →2 s2 →3 . . .→n sn →n+1 . . .. Let Γn denote the prefix
of length n of Γ . Now we can define the ratio of an infinite run as:

ratio(Γ ) = lim inf
n→+∞

ratio(Γn)

We will define as optimal a run where the ratio is minimal.

Definition 2. Given a 1PTA A, we define µ∗A to be the optimal ratio of A.

µ∗A = inf{ratio(Γ ) | Γ is an infinite run of A}

A run Γopt of A is an optimal infinite run if ratio (Γopt) equals µ∗A. Note that a
ratio-optimal run may not exist. In this case, we will say that a family of runs
is a ratio-optimal family if for any ε > 0 there is a run of the family with ratio
being ε-close to µ∗A.

In this paper we will not consider models with zeno-behaviour, meaning that
the 1PTAs we consider cannot model an infinite amount of discrete moves in a
finite amount of time. Zeno-behaviours are not a realistic depiction of an actual
system and can easily be detected through the use of existing automated tools.

3 Strong Time-Abstracting Bisimulation

For any 1PTA A = (Q, q0, x, T, I, cost) we can define equivalence classes be-
tween its states based on strong time-abstracting bisimulations (STAB)[7]. These
classes permit us to abstract from the specific amount of time that passes and
focus on the discrete actions that can be performed during specific intervals of
time in each location.

Definition 3. Let A be a timed automaton with transitions T and states S. A
binary relation, <, on the states of A is a strong time-abstracting bisimulation
(STAB) if for all tuples (s1, s2) ∈ <, where s1, s2 ∈ S the following holds:

– if s1
e→ s′1 for some e ∈ T then there is a transition s2

e→ s′2 such that
(s′1, s

′
2) ∈ <



– if s1
δ1→ s′1 for some delay δ1 ∈ R≥0, then there is a transition s2

δ2→ s′2, δ2 ∈
R≥0, such that (s′1, s

′
2) ∈ <

– the same holds if the roles of s1 and s2 are reversed

Known algorithms exist for computing the reachable classes produced by the
greatest STAB [8]. The quotient graph of A, called AQ, is a graph with the
classes induced by the greatest STAB on A as nodes and two types of edges:

– C1
e→ C2, for some e ∈ T , T being the set of transitions of A, if ∃s ∈ C1, s

′ ∈
C2 such that s

e→ s′

– C1
ε→ C2, where ε denotes some delay, if ∃(q, x) ∈ C1, δ ∈ R≥0, such that

(q, x+ δ) ∈ C2 and for all 0 ≤ δ′ < δ, (q, x+ δ′) ∈ C1 ∪ C2.

This quotient graph is finite since it is proven that the region equivalence
is a strong time-abstracting bisimulation [8]. Moreover AQ is a forwards stable
graph in which the classes obtained from the greatest STAB can be represented
in terms of symbolic states.

A symbolic state is a tuple S = (q, 〈x1, x2〉), where q ∈ Q and x1, x2 ∈
R≥0 ∪ {∞} such that for all x′ ∈ 〈x1, x2〉, x′ |= I(q), 〈∈ { ( , [ } and 〉 ∈ { ) , ] }.

A graph is forward stable if for any two symbolic states in the graph, S1, S2

s.t. S1 → S2 it holds that for any state s1 ∈ S1 there exist a state s2 ∈ S2 s.t.
s1 → s2.

On the other hand backwards stability would require that for any two sym-
bolic states, S1, S2, s.t. S1

e→ S2, e = (q, g, False, q′), it must hold that for any
state s2 ∈ S2 there exists a state s1 ∈ S1 s.t. s1 → s2.

The quotient graph is not necessarily backwards stable. The quotient graph
for the robotic vacuum cleaner is shown in Fig. 2(a). Note that the symbolic
state S = (Dirty, [4, 10]) is not backwards stable, since the interval is not equal
to the node before and the incoming transition does not require a reset.

For our purpose we need the graph to be both forwards and backwards sta-
ble. This will allow us to introduce precise weights on the edges of the graph
representing cost and time, and hence calculate the best ratio and find the corre-
sponding infinite run. We can split the classes obtained from the STAB to make
them backwards stable and construct a refined quotient graph AR. This can be
viewed as a coarse region abstraction. The refined quotient graph for the robotic
vacuum cleaner is shown in Fig. 2(b).

4 Minimizing the Ratio in Infinite Runs

We can now construct a graph that also considers the cost information of the
1PTA by making from each state in AR two single nodes representing the states
with the upper and lower extreme clock valuations of the interval.

Definition 4. Let A be a 1PTA with cost function cost and AR = (N,E) be
the refined quotient graph of A. The weighted graph of A, AW = (N ′, E′), is a
doubly weighted graph defined as follows:



(a) (b)

Fig. 2. Quotient graph (a) and refined quotient graph (b) for the robotic vacuum
cleaner. The locations for the states are written on the left and the clock intervals for
each location represent a node in the graph.

– For all n = (q, 〈x1, x2〉) ∈ N , there is a node n1 = (q, 〈x1) ∈ N ′ and if
x1 6= x2 also a node n2 = (q, x2〉) ∈ N ′ and an edge from n1 to n2 with
cost = cost(q) · (x2 − x1) and time = x2 − x1.

– For all n = (q, 〈x1, x2〉) ∈ N if there exists an edge
e→∈ E and some node n′

such that n
e→ n′, then there is an edge e′1 ∈ E′ from n1 to n′1 and an edge

e′2 ∈ E′ from n2 to n′2 (or n′1 if
e→ has a reset) , both with cost = cost(e)

and time = 0, where n1 and n2 have been made from splitting n and equally
n′1 and n′2 have been made from splitting n′. If x1 = x2, then there will only
be one edge from n1 to n′1.

– For all n = (q, 〈x1, x2〉) ∈ N if there is a delay transition
ε→∈ E and some

node n′ such that n
ε→ n′, n′ = (q, 〈x′1, x′2〉), then there is an edge e′ ∈ E′

from n2 to n′1 with cost = 0 and time = 0, where n1 and n2 have been made
from splitting n. Similarly n′1 and n′2 have been made from splitting n′.

AW corresponds to a coarse corner point abstraction when dealing with one-
clock timed automata [5]. The weighted graph for the robotic vacuum cleaner is
shown in Fig. 3. An infinite path in AW with the smallest ratio, µ∗AW

, has the
same ratio as the optimal ratio of A. This leads to the following theorem:

Theorem 1. Let A be a 1PTA. Then µ∗A = µ∗AW

Proof sketch: The full proof has been left out due to lack of space. However, we
prove that:

1. For any infinite run Γ in A there exists an infinite path Γe in AW s.t.
µ(Γe) ≤ µ(Γ ), and

2. For any infinite path Γe in AW and any ε ≥ 0 there exists an infinite run Γ
in A s.t. µ(Γ ) ≤ µ(Γe) + ε

3. Q.E.D.



Fig. 3. The doubly weighted graph for the robotic vacuum cleaner. The time value of
each edge is prefixed with “t=”, while the cost value is prefixed with “c=”.

Fig. 4 shows the comparison between a run in the original 1PTA and a run
in AW . As can be seen in AW it is only possible to take discrete transitions at
the endpoints of a time interval.

The proof will compare a run in the automaton A and an equivalent path in
AW and show that delaying only in the locations with the lowest possible cost
within each time interval can make the path in AW at least as good as the run
in A. In case of transition resets we can determine if delaying before taking the
transition affects our ratio or not. In both cases, we would get the optimal ratio
from taking the transition at an interval endpoint.

The only runs that are represented in AW which do not have a corresponding
run in A are the ones that involve a transition constrained by strict guards or
invariants. However such constraints do allow the run to take the transition at
a time-point being arbitrarily close, thus leading to an optimal family of runs.

(a) (b)

Fig. 4. An infinite run in original A (a) and the optimal infinite run found in the
correspondent doubly weighted graph AW (b).

The amount of nodes in AW compared to AR will increase, while the state
space represented will dramatically decrease. Before all reachable states were
represented, while now only the finite amount of states whose clock valuations
correspond to the extremes of the time intervals of the previous states are left.



There is only a finite amount of nodes in AW , which means that it is only
possible to produce an infinite path in AW by repeating some of these. This
means that the infinite path will be composed of cycles and represent an infinite
run in the original automaton. However, if we have a node representing infinite
time in the graph, resulting from the split of an interval that has infinity as
upper bound, we can have an infinite run by simply delaying infinitely in the
respective location. We can remove these nodes and their adjacent edges from
AW and separately check for reachable locations where it is possible to wait an
infinite amount of time when searching for the optimal infinite run. The problem
of finding that run then reduces to finding the cycle with the lowest cost-time
ratio in AW and comparing it with the cost of the locations allowing infinite
delay.

We can define a simple cycle in AW as a cycle which does not visit any node
twice, except the first one. In a similar way, a complex cycle shall be defined as
a cycle that contains at least two nodes that are visited more than once or one
node visited at least three times. Knowing these definitions, we can now state
an important property for the cycle with the best ratio in AW .

Theorem 2. A complex cycle in a doubly weighted graph cannot have a better
ratio than one of the simple cycles it is composed of.

As with Theorem 1, the proof has been left out due to lack of space.

5 Minimal Cost-Time Ratio Cycle

Having a doubly weighted graph AW with cost and time values on the edges and
an initial node I, the cycle with the lowest cost per time unit, which is equal to
the optimal ratio of the originating automaton, can be found using an algorithm
presented by Lawler [9].

We can find an optimal infinite behaviour for the robotic vacuum cleaner
by running this algorithm on its weighted graph, since no location allows for
infinite delays. An optimal infinite run would hence wait 9 time units in Rest,
go to Dirty and wait further 1 time unit. Afterwards it would start cleaning in
advanced mode for 8 time units and go to Rest again, finishing the cycle. The
ratio of this cycle is µ = µ∗ = 3.1 (periodic).

The total complexity of the bisimulation is bounded by O(|Q|2 · (|Q|+ |T |)2)
where |Q| is the amount of locations and |T | is the amount of transitions of the
original 1PTA. The graph produced, AW , has at most 2 · |partitions| vertices,
with |partitions| = |Q| · (|Q|+ |T |) · 2 being the maximum number of symbolic
states produced by the refined bisimulation. Lawler’s algorithm makes use of the
Moore-Bellman-Ford algorithm which has a complexity of O(|V |3). This makes
the algorithm for finding the optimal ratio O(|V |6). With respect to the input
1PTA we then have an overall complexity of:

O((|partitions|)6) = O((|Q| · (|Q|+ |T |))6)



6 Experimental Evaluation

In this paper we have presented a simple example of a robotic vacuum cleaner
cleaning a single room. In a more complex setting the robot could be faced
with the job of cleaning a whole apartment. Let us consider the case where this
apartment has more than one room and each room has one of four different sizes.
The size of the rooms influences how much time the vacuum cleaner needs to
clean in each mode. By using the algorithms presented, we can find an optimal
infinite run for the vacuum cleaner in this larger model.

To test our solution, we have implemented it using the Python programming
language and a series of rooms, designed on the same principle as the model in
Fig. 1, extrapolated to different sizes to model the apartment. We can compare
the running time of our solution to a more simple solution where splittings are
made based on all constraints on all locations and edges in the model. All tests
have been run on a 2.93 GHz Intel Core i7 using a single core and an insignificant
amount of memory. A selection of results is shown in Table 1 together with the
size of AW in both cases.

Table 1. Performance of our solution compared to a complete splitting for the apart-
ment cleaning problem.

Rooms
Our solution Complete splitting

Time Nodes Edges Time Nodes Edges

1 0.18 sec 22 38 0.43 sec 42 66

4 5.48 sec 64 111 3 min 3.91 sec 269 398

8 17.89 sec 120 185 38 min 34.04 sec 519 759

12 1 min 17.62 sec 176 269 1 h 36 min 52.05 sec 769 1120

We see here the strength of reducing the amount of symbolic states to the
largest STAB that makes the equivalence classes forward and backward stable.
In a model that makes use of resets in some transitions, our approach ensures
a smaller size of the weighted graph and thus a lower running time. From the
results we see that for the 12 room example, the running time of the complete
splitting is more than 60 times higher than our approach. However, in the worst
case, where no resets are used, our approach will also be forced to make a com-
plete splitting of each interval and have a slightly higher running time than doing
the complete splitting immediately.

7 Conclusion

In this paper we have shown a polynomial time algorithm for finding infinite
runs with the optimal cost-time ratio in a one-clock priced timed automaton A.
We show how the quotient graph AQ obtained through strong time-abstracting
bisimulation can be converted into a forwards and backwards stable quotient



graph, AR. We construct a doubly weighted graph AW and prove that an optimal
infinite run, Γ , in A has the same ratio as that of another optimal infinite run
of A, Γe, represented in AW . Γe either exhibits an infinite cyclic behaviour or is
delaying infinitely in one location. Using Lawler’s minimum ratio cycle algorithm
on AW we can then find an optimal infinite cyclic behaviour of A, if it exists.
Finally, the ratio of the cycle can be compared to the cost of all locations allowing
infinite delay to find the optimal infinite run of A.

A possible extension to the problem would be to consider more cost variables
in the same one-clock priced timed automaton. In this situation the problem
would not be reduced to finding an optimal infinite run for one cost variable,
but instead the Pareto frontier for the cost variables of the automaton, since
a run that is optimal with respect to one variable may not be optimal for the
others.
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