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Statistical Model Checking (SMC) is a trade-off betweernitgsand formal verification. The core
idea of the approach is to conduct some simulations of thiesyand verify if they satisfy some
given property. In this paper we show that SMC is easily palizhble on a master/slaves architecture
by introducing a series of algorithms that scale almostlityewith respect to the number of slave
computers. Our approach has been implemented in the UPPAAL ®olset and applied on non-
trivial case studies.

1 Introduction

Computers play a central role in modern societies and their errors candreawvetic consequences.
For example, such errors could jeopardize a banking system, possililygstiae economy of a whole
country or, more dramatically, endanger human life through the failureroéssafety critical systems
(railway signaling, integrated avionics, air-traffic, medical life supmoaichines, automotive electron-
ics). It is therefore not surprising that proving the correctness wifpetder systems is a highly relevant
problem. Unfortunately, the growing complexity in system design makes it aimpsissible to ensure
correctness simply by looking at the (possibly distributed) code. Automatioigees are thus needed.

The most common method to ensure the correctness of a systesting(see[3] for a survey). After
the computer system is constructed, it is tested using a numhbestofasesvith predicted outcomes.
Testing techniques have shown effectiveness in bug hunting in manytiiiadlpsoblems. Unfortunately,
testing is not always the perfect solution. Indeed, since there is, ir@ene way for a finite set of
test cases to cover all possible scenarios, errors may remain undeféoteel are also methods that can
ensure the full correctness of a system. Those methods, also fraitedl methodsuse mathematical
techniques to check whether the system will behave correctly for alilgesscenarios. Over the past,
formal methods such aymbolic model checkif@4] have been used to verify systems with more than
10%° reachable states|[4].

In an ideal world, it would thus be “better” to use formal methods rather tstimg ones. Unfortu-
nately, improvements in development of formal methods do not seem to follandteasing complexity
in system design. Nowadays, most of formal methods suffer from tlwaled state-space explosion
problem which makes them unenforceable to large industrial case studies. Agtdegs not suffer
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from the same problem, it remains the only scalable technique and it is thuse¢h@amnoted by the
industrials.

As we already said, the major drawback with testing is that, in general, it @bgs/e any confidence
on the correctness of the entire system. This lack of accuracy has motihatelevelopment of new
algorithms that combine testing techniques with statistical algorithms. These teebnmso called
Statistical Model Checking techniquésMC) [11,[15/20], can be seen as a trade-off between testing
and formal verification. The core idea of the approach is to conduct siimndations of the system
and verify if they satisfy some given property. The results are then taggdher with algorithms from
the statistical area in order to decide whether the system satisfies thetpnefiarsome probability.
Statistical model checking techniques can also be used to estimate the prolladilaysystem satisfies
a given property [11, 10]. Of course, in contrast to an exhausppecach, a simulation-based solution
does not guarantee a correct result with 100% confidence. Hoyitdggrossible to bound the probability
of making an error. Simulation-based methods are known to be far less manwtyne intensive than
exhaustive ones, and are sometimes the only option[22, 12]. Among ex&itidg) algorithms, one
find those that use a fixed number of samplings (those to estimate the probaliditihose that support
sequential sampling (those that test an estimate of the probability provided bgeh where the number
of simulation is not known in advance [17].

Statistical model checking gets widely accepted in various research suehsas software engi-
neering, in particular for industrial applications, or even for solvingopgms originating from systems
biology [6,[13]. There are several reasons for this success. BM&E is very simple to understand,
implement, and use. Second, it does not require extra modeling or spimifieffort, but simply a
stochastic operational sematics of the model that can be used as the basisulation and checked
against state-based properties. Third, it allows to verify propeltiég][fat cannot be expressed in
classical temporal logics.

However, SMC is not a panacea and many huge size problems are stiidoggscope. Indeed,
sometimes the algorithm needs a lot of simulation to compute, and the computatiahci@alation
may be time consuming. There are two solutions to this problem. The first solutionpipose
new algorithms and heuristics to reduce the number of simulations needee f@gtrithm to reach a
decision. The second approach consists in taking new and emergingrmkaifdo account. This paper
goes for the second solution. A trend to speed up computation time and hengedee the efficiency
of SMC is certainly to take advantage of the new technologies among whicfinoheur ability to use
several computers working in parallel. In fact, it is well-known that statissiclutions methods that use
samples of independent observations are often trivially parallelizaldetiigework on Metropolis and
Ulam). As observed by Youness, SMC algorithms can be distributed thithegdtelp of a master/slave
architecture where multiple computers are used to generate the simulationide@lie as follows: one
or more slave processes register their ability to generate simulation with a singfier pieocess that is
used to collect those simulations and peform the statistical test. As pointey Watbess[211], in order
to ensure that simulations are independent, some care needs to be takegewbrating pseudorandom
number on each machines, which can easily be solved by incorporatingitiigen of each processor
in the generation of theses numbérs [21]. When using sequential testngitiation becomes more
complex as it is important to guarantee that the technique will not introducesab&nst simulations
that take a longer time to generate. The latter can be done by computing arriagtie order in
which simulations are taken into account. Defining this order so that the algosithles up linearly
with the number of slave processors may be complex and remains a major ghdlesugh distributing
sequential algorithms.

In this paper, we report on the implementation of a new methodology we usedtepae the
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statistical model checking algorithms we developed for model checkingagtichimed automatal[i7] 8]
against weighted temporal logic properties. Those SMC algorithms, whiah lfeen implemented in
UPPAAL-SMC— a SMC extension of the RPAAL toolset[16] — rely on Wald’s sequential hypothesis
testing (used to test a probability) and Monte Carlo simulation (used to estimatbabgity). Our
approach, also implemented irPBAAL-SMC, scales better than the one of Youness. Moreover, we show
how to perform parameter estimation with SMC. The latter approach can deausptimize a given
algorithm (what is the best network topology, the best transmission rate, an)efficient manner. Our
approach is applied to non-trivial case studies.

2 Statistical Model Checking
2.1 Themode

In this section, we briefly recap the concept of Priced Timed Automata (BBE®)[7] for more details.
We denote#(X) to be a finite conjunction of bounds of the forxn~ n wherex € X, n € N, and
~e {<,<,>,>}. A Priced Timed Automato(PTA) is a tuplees = (L, 4o, X,E,R ) where: (i)L is a
finite set of locations, (iifp € L is the initial location, (iii)X is a finite set of real-valued variables called
clocks, (iV)E C L x #(X) x 2X x L is a finite set of edges$y) R: L — Z¢ assigns a rate vector to each
location, and (vi) : L — £(X) assigns an invariant to each location. A state of a PTA is a(paiy that
consists of a locatiohand a valuation of clocks : X — Rxo. From a statél,v) € L x R¥, a PTA can
either let time progress or do a discrete transition and reach a new locaticngime delay clocks are
growing with the rates defined (1), and the resulting clock valuation should satisfy invaright. A
discrete transition fronil,v) to (I’,V') is possible if there i$l, g, Y,l’) € E such thaw satisfiegg andV' is
obtained fromv by resetting clocks from the s¥tto 0. A run of PTA is a sequence of alternating time
and discrete transitions.

Several PTAM1,Ma, ..., My, can be put in parallel via message passing in order to form a network
M1|IM2]| ... |IM, of PTAs. By message passing, we mean that the automata can synchnorsiame
transitions and exchange messages through input and output actions.

In order to perform SMC on PTAs, we have to equip them with a stochastiarstc. The lat-
ter being needed to define a probability space over the sets of their execu@iving details on the
stochastic semantic of PTAs is beyond the scope of this paper but detadigagleble in[[7]. Roughly
speaking, the stochastic semantic associates probability distributions on batblélys one can spend
in a given state as well as on a transition between states. In generalmsiders uniform distribution
for bounded delays and exponential for the case where a comparent¢main indefinitely in a state.
As observed in[[7], though the stochastic semantic of each individuali®Tather simple (but quite
realistic), arbitrarily complex stochastic behavior can be obtained by th@ipasition when mixing in-
dividual distributions through message passing. The beauty of our risotielt these distributions are
naturally and automatically defined by the network of PTAs.

Our implementation supports extensions of PTA, coming from the language affhaAL model
checker[[16]. Such models can contain integer variables that can$enpie transition guards, and they
can be updated only when a discrete transition is taken. Additionally, weosupiber features of the
UPPAAL model checker’s input language such as data structures and tiseddenctions.

A parametrized PTAM(p) is a PTA in which some integer constant (transition weight or constant in
variable assignment/clock invariant) is replaced by a paranpeter

For defining properties we use weighted temporal logic PWCTL, which oenfarmulas of the
form Cc<c¢. Herecis an observer clock (that is never reset and should grow to infinity piindinite
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run of PTA),C € R>o and¢ is a state-predicate. We say that a rusatisfies) = Cc<c ¢ if there exists
(1,v) € msuch that satisfiegp andv(c) < C. We denote byr,[(] the probability that a random run of
the modele’ satisfiesy.

2.2 Statistical Model Checking for NPTAs

The problem of checkingr, [Cc<c¢] > p (« being a PTA ang € [0, 1]) is unfortunately undecidable
in generaﬂ. Our solution is to approximate the answer using simulation-based algorithme kmaler
the name of statistical model checking algorithms. We briefly recap statisticaltalgs permitting to
answer the following two types of questions :

1. Testing:ls the probabilityPr ., [Cc<c@] for a given NPTA</ greater or equal to a certain threshold
67?

2. Estimation:What is the probabilityr, [Cc<c @] for a given NPTA/?

From a conceptual point of view both solving the two above questions via Sidimple. First, each
run of the system is encoded as a Bernoulli random variable that is true ifithsatisfies the property
and false otherwise. Then a statistical algorithm groups the observatianswer the two questions. For
the qualitative question, we shall use sequential hypothesis testing, whitefquantitative question we
will use an estimation algorithm that ressemble the classical Monte Carlo simul@kieriwo solutions
are detailed hereafter.

Sequential Sampling/Testing This approach reduces the qualitative question to the test the hypothesis
H:p=Py,(Cc<cd) > 6 againsK : p < 6. To bound the probability of making errors, we use strength
parametersr and 3 and we test the hypothesidy : p > pp andH; : p < p1 with pp = 6 + & and

p1 = 6 — 4. The intervalpg — p; defines an indifference region, apg and p; are used as thresholds

in the algorithm. The parameteris the probability of acceptinblo whenH; holds (false positives) and

the parameteB is the probability of acceptingly; whenHg holds (false negatives). The above test can
be solved by using Wald’'sequential hypothesis testifig/]. This test computes a proportioramong
those runs that satisfy the property. With probability 1, the value of thegptiop will eventually cross
log(B/(1—a) orlog((1— B)/a) and one of the two hypothesis will be selected.

Estimation This algorithm [11] computes the nhumber of runs needed in order to pecglu@pproxi-
mation intervallp— &, p+ €] for p= Pr(g) with a confidence + a. The values ot anda are chosen
by the user and the number of runs relies on the Chernoff-Hoeffdingdo

3 Distributed Statistical M odel-Checking

We report on preliminary results on using distributed computing to speedAdbabgorithms. We start
by discussing the solution for hypothesis testing where the number of simglagéeded by the testis not
known in advance. A naive solution in distributing the generation of themaysgive rise to diasin the
result, as pointed by Younes |20]. In short, some computers may gelferatgample) positive answers
more quickly than some other computers, which may bias the decision towardditiegoanswer. This
would not happen when computing runs sequentially. In general, the timgeddo generate runs may
not be uniform and can cause this type of bias. To counter this, Yo@pfoposed a round-Robin

1Exceptions being PTA with 0 or 1 clocks.
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solution where the runs are counted in rounds. To improve perform¥ouaages defined safe lower and
upper bounds on the Binomial random variable that represents the salinttod positive realisations,
i.e., all the simulation that do satisfy the property. Instead of waiting for thédtsesf all the nodes, if a
result is missing the lower and upper bounds are used to take a safe wWediis has the potential to
reduce the execution time since decisions may be taken earlier.

We generalize Younes’ algorithm by sending the result of simulations byhéstand also by im-
plementing a buffer of incoming result. The batch is used to reduce communidatisending an
aggregate result of predefined size (instead of individual resultsg. buffer is used to improve con-
currency since the nodes are more loosely synchronized. We expeoméinese two dimensions for
different topologies, while Younes’ algorithm is the particular case whetk are equal to one, which
is not very scalable since this generates a lot of traffic and the nodesaseesynchronized. Figufé 1
shows the time it took to verify that the mutual exclusion property oftthi@-gateexample distributed
with UPPAAL holds with probability 98% configured with 20 trains and 99.999% confideveshow
the results for different topologies of our cluster, NxPxC where N is thmlyer of nodes, P the number
of processors per node, and C the number of cores per processor.

'topo-2x2x2.datr —— 'topo-4x2x2.dat’ —— 'topo-16x1x4.dat’ ——

P

]
SRR OOEONS
FRESNEY Sma]

R

Figure 1: Time to check for mutual exclusion for 20 trains qualitatively.

We see, modulo experimental variatiBnthat the algorithm improves when the batches or buffer are
increased but then it becomes quickly insensitive to these parameters.

Distributing the estimation algorithm is much simpler. We nedicked number of runs determined
by the Chernoff's bound_[11] to conclude on a probability value with gigenfidence level. This is
an embarrassingly parallel problem since we can simply divide the workllgcqand gather the result
at the end. To compensate for fluctuations in the cluster, we could implemekistaaling but as our
experiments show, this does not seem to be necessary since the digzereegmance scales almost
linearly. The loss in efficiency in the later cases exhibits the overheadrtihgtap all the processors
(around 3-4 seconds), which would be compensated for much longer Figuré L shows running time
and relative efficiency for checking a few quantitative properties orfritesvire and LMAC protoc%.

4 Distributed Parametric Model-Checking: The Principle

In many practical cases system behaviors depend on the values of adinifeconstant parameters. For
instance, these parameters can define network topology, or transmatsiaf a node.

An interesting question might be to study how a system behavior dependg ealtles of these
parameters. This may include visualisation of this dependency (drawing, ptanization/worst case

2Clusters are shared resources with varying load so results are ekpevty.
3The model and properties are availablé on http://people.cs.aau.dkdisdac].


http://people.cs.aau.dk/~adavid/smc/

6 Distributed Parametric and Statistical Model Checking

Firewire LMAC
PxC/N 1 2 4 8 16 1 2 4 8 16
1x1 | 621.7s 316.7s 160.2s 81l.1s 44/7879.3s 140.7s 73.0s 37.0s 19.5s
1.00 0.98 0.97 096 0.87 1.00 099 096 094 0.90
1x2 | 300.9s 162.2s 80.5s 47.6s 24.3444.3s 71.0 37.5s 19.2s 10.4s
1.03 0.96 0.97 082 0.80 0.97 098 093 091 0.84
1x4 | 161.2s 84.0s 44.8s 24.1s 16.0s74.2s 36.1s 19.3s 9.6s 8.1s
0.96 0.93 0.87 081 0.61 0.94 097 090 091 054
2x4 | 85.1s 46.5s 23.1s 14.1s 8/5355s 19.6s 10.1s 10.2s 6.4s
0.91 0.84 0.84 0.69 057 0.98 0.89 086 043 0.34

Table 1: Time in seconds and efficiency (italic) to checking quantitativegsti@s on the Firewire and
LMAC model in function of the number of nodes (N), processors peen®) and cores per processor

(©).

analysis and determining the correlation between different parametethekrexample that we will
study below is computing Nash Equilibrium in wireless ad-hoc networks, e@psing a network con-
figuration that is stable with respect to the behavior of selfish nodes.

Let us assume that there is a finite set of parameters, each defined i@ ddimain. We will model
parameterized systems usingPRAAL models in which some integer constants (transition weights or
constants in variable assignment/clock invariants) are parameterized, eygaréhreplaced by special
syntactic constructs that define the sets of possible values. Currengyppert two constructs:

* #range(a, b) defines the set of all integers betweeandb,

* #booleanmatrix (N) defines the set of all boolean matrices of Siz¢his construct can be used
to represent the set of all possible topologies of a network Mvithdes.

We developed a framework for solving the “parametric” problems listed elpggualisation, opti-
mization/worst case analysis, Nash Equilibrium computation). In order te sdlthese problems our
implementation performs a series of invocations a¢fPdAL-sMmc for different values of parameters.
These invocations are independent of each other, thus they canilyedesisbuted on highly hetero-
geneous clusters. Our implementation uses the SLURM batch syistem [19¢aarsubmit jobs to the
computational nodes using SSH connection by its own.

5 Distributed Parametric Model Checking: Case-Studies

5.1 Traingate example

We consider a model of a railway bridde [18] where several trainsmassing a bridge with one track.
Our UpPAAL model is depicted on Fifl 2. Trains start in t&fe initial location where they are not
approaching. They will leave that location and be approaching (andlgodtonAppr) with an arrival
rate given by the expressidn #range (1,20) on the figure. This is a parameter declaration that will
be used to generate models with valued, 1:2, ...1:20. This expression (of the form: j) is

an extension of BPAAL and defines an exponential distribution with the r]%ute pick the delay from.
When a train is approaching, it entaspr and synchronizes withppr [1d] !. The gate controller will
know that trainid is approaching. After 10 time units the train will be crossing (enter locatiarzs,
unless it is stopped before by the gate controller. This is done with the mymztionstop[id]? and
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the train goes to the locatid®top. From there, it is restarted with the synchronizati{id]? by
the gate controller and after 7 time units it will be crossing. After crossinmsiaave the bridge with
leave[id] ! and are safe again and can decide to approach again.

The gate controller keeps track of stopped trains with a FIFO queue épattdd here) that we will
not detail. Trains are queued and dequeued with this queue with the halpaifoihs as seen on the
figure. The gate has two main stase and0cc (i.e. occupied) that keeps track of the state of the
bridge. If trains are approaching then it either stops them if the bridgecispied or let them pass
otherwise. When the bridge becomes free (one train leaves), the cardiextides to restart a train at the
front of the queue witlgo [front ()]!.

=3 Free
Safe O leavelid]! Cross p @ .
1:#range(1, 20) x<=5 S
appr[id]!
x=0 e
X>=7 len >0 C) e == front()
x=0 go[front()]! |dGave[e}’_>
apprle]? equeue()
enqueue(e)
Appr Start
x<=20 w<= 15 L A )
\o{ Occ
apprle]? stopltail()]!
enqueue(e)
c Stopping

Stop

Figure 2: LPPAAL models of a train (left) and a gate controller (right).

Here a (qualitative) safety means to ensure that at most one train can lgecirosising at the same
time, and such property can be checked using classiealhlklL model checker. On top of that, now
UPPAAL-SMC can also evaluate probabilistic (quantitative) properties. For instancegnvestimate the
probability that the first train will cross the bridge within 50 time units by checlif®yVCTL property
Otime<so(Train(0).Cross.

Consider two parameters in our model: the number of trains, and the rate with thiese trains are
coming. The rate parameter is on locati@ate shown in Fig[2, and the number of trains is declared
similarly in theSystem declarations.

Fig.[3 depicts the results of a parameter sweep of this model. The plot shatweitan the number
of trains increases, the probability that the first train will cross the bridg@mb0 time units decreases.
Indeed, it is more likely that it will be stopped by other trains (there are namd)spend time in the
Stop location. When the arrival rate is decreased, the probability also dessea

5.2 Nash equilibrium Aloha CSMA/CD protocol

Aloha protocol [1] is a simple Carrier Sense Multiple Access with Collision Deted CSMA/CD)
protocol that was used in the first known wireless data network dewelapthe University of Hawaii
in 1971. The protocol assumes that there are several nodes thatlshaame wireless medium. Each
node is listening to its own signal during its transmission and checks that tred Egmt corrupted by a
simultaneous transmission by another node. In case of collision both nogdsamsmitting immediately
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Figure 3: Parametric sweep for the traingate model.

and wait for a random time before they try to transmit again.

The UppAAL model of a single node is given in F[g. 4. We consider unslotted Aloha whematties
are not necessary synchronized. Additionally, we study the p-parsigigant of Aloha, i.e. a protocol
implementation in which a random delay before retransmission is distributeddaugdo a geometric
distribution. This means that in each time slot a node transmits with probabiiiysmitProb and
waits for one more slot (and then decide again) with probabilitfdansmitProb.

INITIAL L
nt==0
x<=1&& @ nt:=nt+1,
time'==0 && x:=0
energy’ ==0 busy!

x<=1 &&
energy'==1 &&
time’ == 1
TRANSMIT

nt>0
busy!
busy?
x:=0,
nt:=nt-1

TransmitProb

WAIT

l.O_O—TransnitE’rob é;:rlgf}ézo 88
x:=0 time'==1

Figure 4: Model of Aloha in BPAAL

In our experiments we assumed that the goal of a node is to transmit a sengle Within 50 time
units and to limit energy consumption by 3. This goal for a niocien be expressed using the following
PWCTL formula:

Wi = ONodei) time<so(NOd€i).ns> 1 ANod€i).energy< 3) 1)

Then the utility functionJ; of a nodei is equal to the probability that the gog is satisfied by a
random run of a system, i.e:

Ui(p1, P2, - -, Pn) = Pr{S(pa, Pz, -, Pn) = Y] 2)
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, Wherep; is equal to the value dfransmitProb chosen by nodg¢.

We consider the case where there is a master node that knows the netmbiguation (here the
number of nodes) and broadcasts the valuerahsmitProb parameter to all the nodes. Now, if there are
selfish nodes, they can change their valueSrafnsmitProb to achieve better performance (and other
nodes will suffer from that). Thus, the interesting question is to find theevefTransmitProb that
satisfies Nash Equilibrium (NE). For such a value, it is not profitable figrreode to alter its behaviour
to the detriment of other nodes. For our case the network is symmetric, thesnagzarch foNE from
the point of view of the first node only. In other words, parameteatisfies NE, iffUo(p, p,...,p) is
larger tharlJo(p', p, ..., p) forany p'.

Table 2: Nash equilibrium (NE) and Symmetric optimal (Opt) strategies for Aloha

Number of nodes 2 3 4 5 6 7

NE strategypne 0.37 0.40 0.35 0.35 0.41 0.42

U (PnE; PNE) 0.99 0.98 0.95 0.89 0.75 0.61
Symmetric optimal strateggope  0.30 0.30 0.26 0.22 0.19 0.15
U(popt, Popt) 0.99 0.98 0.96 0.90 0.87 0.98
Computation time 2mbs 3m44s 7m62s 15m45s 26mlls 37mb5s

©O0000000
OFRNWA U~
cooo000000R
FRNWAUIO~N0©

p

Figure 5: Utility function (left) and its diagonal slice (right) for Aloha with 5 resd

Fig.[d depicts the plot of the utility functiody(p/, p,. .., p) for the network of 5 nodes for different
values ofp’ andp. Herep' is a value offransmitProb of a potentially selfish node, ammlis a value for
other nodes. You can also see the computed values of Nash Equlibriunpéineter and symmetric
optimal (Opt) parameter.

Table[2 contains the found values of Nash Equilibrium for Aloha with dififermimber of nodes.
The experiments were done on a 8-node cluster, where each nodatas@d) Core(TM)2 Quad CPU
2.66GHz processor.

5.3 Parameterized Topology for Network Models

There are situations The performance of some network protocols candiept only on retransmission
parameters as seen previously but also on the actual topology of therketwahis section we study
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the impact of different topologies on the LMAC protocol.

LMAC is a Lightweight Media Access protocol (studied in [7, 9]) used $oheduling communi-
cation in wireless sensor networks where the topology is determined bycahiecation and radio
connectivity of the individual nodes. One of the goals of the LMAC protigto minimize the number
of collisions in the network and to reconfigure the network to avoid furtiediisions. The difficulty
of studying such protocols stems from the fact that the topology is not ikmowdvance and there are
exponentially many topologies (at least2"~* for n nodes with one of them being a gateway), which
makes systematic analysis of large networks impractical. In order to studghibistness of the LMAC
protocol against collisions, we propose to examine hundreds of ramgjeniogies and then pick and
focus on the most problematic ones. Listing 1 shows how a topology is dedfetlee UPPAAL model:

a two-dimensional array of boolean constants gives the adjacency mathie aetwork graph. The
receivers then use the guatdn_hear [receiver] [sender] when listening for the broadcast channel
synchronizations.

1| const int NODES = 10; // number of nodes
2| typedef int [0, NODES—1] nodeid_t; // used to identify node
3| typedef bool topology_t[nodeid_t ][ nodeid_t ]; // type for topology

4| const topology_t can_hear = #binarymatrix(NODES, NODES); // adjacency matrix

Listing 1: Network topology declaration inRPAAL model of LMAC.

In this case we try networks of up to ten nodes and twice as many slots,aghmre slot per node is
enough to schedule flawless communication if only nodes were perfecthg afvaach others choices.
We used a propertr[< rime<2000(C0l_count > 42)] estimating the probability of having more than 42
collisions after 2000 time units, which hints that there are perpetually redogwollisions.

The prepared model is then processed by our parametric model-chieakimistantiates the keyword
#binarymatrix with a concrete random matrix and distributes the verification on a clustengiuiers,
one instance of the matrix per core. Each verification usesAdL-smc. Using the naive randomization,
a cluster of 32 cores (the same as in Sedtioh 5.2) can verify 10000 topgliagigh 50min. Figuréle
shows the five topologies that yield the highest probabilities. We used lofideane (95%) statistical
parameters to gain performance, thus the estimated probabilities haveHafife statistical error, but
the found topologies can be studied further iRRAAL-SMC.

p2 = 0.629 ps =0.617 ps = 0.607 ps = 0.599

Figure 6: Highest probabilities found by model checking random topadagfie0 nodes.

Alternatively we tried generating all graphs up to 10 nodes which are iyli&de isomorphic. The
procedure is not guaranteed to cover all non-isomorphic classes (inisaysome), but it is very simple
and can be recursively described as follows:

4We detected 707 duplicates by a post-analysis of the generated instance.
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1. Start with a topology consisting of just one node.

2. Add a new node and consider two new topologies:

(a) Connectthe new node to all the old nodes, go to step 2 until enougis aoel added.
(b) Leave the new node unconnected at all, go to step 2 until enoughk aoeladded.

3. For every node in a topology, make a new topology by marking the ncalgateway.
4. Get rid of the topologies where the gateway is not connected.

Up to the step 2 the procedure generates 2opologies which are non-isomorphic for sure, then steps
4 and 5 contain basic heuristics how to pick a gateway, which may yield somerigoinigraphs due to
symmetric gateways, but the overhead is small.

Figure[T shows the 5 cases that achieve the highest probability founehieyaging 5120 topologies
of up to 10 nodes using our heuristics. The verification took about 3h 30ffia heuristic procedure
has clear advantages over the randomized one but it is not exhaBxiviee other hand, the randomized
method has the potential to find any topology but without any guarantee.

po = 0.905 ps = 0.898 ps = 0.894

Figure 7: Highest probabilities found by model checking generated tgigso@f 10 nodes.

6 Conclusion

This paper proposes new algorithms to distribute statistical model checkiogtlafgs through a mas-
ter/slaves architecture. Our results have been implemented in the UPPAALt&NK¥et. A series of
experiments show that our approach scales better than existing solufipns [2

As a future work, we will extend our distributed algorithms to the setting of exents and un-
bounded temporal properties. We shall also implement and distribute Bayedensions of the ap-
proach we proposed in [13].
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