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Abstract This paper offers a natural stochastic semantics of Networks
of Priced Timed Automata (NPTA) based on races between compon-
ents. The semantics provides the basis for satisfaction of Probabilistic
Weighted CTL properties (PWCTL), conservatively extending the clas-
sical satisfaction of timed automata with respect to TCTL. In particular
the extension allows for hard real-time properties of timed automata
expressible in TCTL to be refined by performance properties, e.g. in
terms of probabilistic guarantees of time- and cost-bounded properties.
A second contribution of the paper is the application of Statistical Model
Checking (SMC) to efficiently estimate the correctness of non-nested
PWCTL model checking problems with a desired level of confidence,
based on a number of independent runs of the NPTA. In addition to ap-
plying classical SMC algorithms, we also offer an extension that allows
to efficiently compare performance properties of NPTAs in a parametric
setting. The third contribution is an efficient tool implementation of our
result and applications to several case studies.

1 Introduction

Model Checking (MC) [11] is a widely recognised approach to guarantee the
correctness of a system by checking that any of its behaviors is a model for
a given property. There are several variants and extensions of MC aiming at
handling real-time and hybrid systems with quantitative constraints on time,
energy or more general continuous aspects [1–3,6]. Within the field of embedded
systems these formalisms and their supporting tools [16, 29, 30, 32] are now suc-
cessfully applied to time- and energy-optimal scheduling, WCET analysis and
schedulability analysis.

Compared with traditional approaches, a strong point of real-time model
checking is that it (in principle) only requires a model to be applicable, thus
extensions to multi-processor setting is easy. A weak point of model checking
is the state-space explosion, i.e. the exponential growth in the analysis effort
measured in the number of model-components. Another limitation of real-time
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model checking is that it merely provides – admittedly most important – hard
quantitative guarantees, e.g. the worst case response time of a recurrent task
under a certain scheduling principle, the worst case execution time of a piece of
code running on a particular execution platform, or the worst case time before
consensus is reached by a real-time network protocol. In addition to these hard
guarantees, it would be desirable in several situations to obtain refined perform-
ance information concerning likely or expected behaviors in terms of timing and
resource consumption. In particular, this would allow to distinguish and select
between systems that perform identically from a worst-case perspective.

As a first contribution we propose a stochastic semantics for Priced Timed
Automata (PTA), whose clocks can evolve with different rates, while4 being used
with no restrictions in guards and invariants. Networks of PTAs (NPTA) are cre-
ated by composing PTAs via input and output actions. More precisely, we define
a natural stochastic semantics for networks of NPTAs based on races between
components being composed. We shall observe that such race can generate ar-
bitrarily complex stochastic behaviors from simple assumptions on individual
components. We shall see that our semantics cannot be emulated by applying
the existing stochastic semantic of [4, 8] to the product of components. Other
related work includes the very rich framework of stochastic timed systems of
MoDeST [10]. Here, however, general hybrid variables are not considered and
parallel composition does not yield fully stochastic models. For the notion of
probabilistic hybrid systems considered in [31] the choice of time is resolved non-
deterministically rather than stochastically as in our case. Moreover, based on
the stochastic semantics, we are able to express refined performance properties,
e.g. in terms of probabilistic guarantees of time- and cost-bounded properties5.

To allow for the efficient analysis of probabilistic performance properties we
propose to work with Statistical Model Checking (SMC) [28, 35], an approach
that has been proposed as an alternative to avoid an exhaustive exploration of the
state-space of the model. The core idea of SMC is to monitor some simulations
of the system, and then use results from the statistic area (including sequential
hypothesis testing or Monte Carlo simulation) in order to decide whether the
system satisfies the property with some degree of confidence.

Thus, as a second contribution, we provide an efficient implementation of
several existing SMC algorithms that we use for checking the correctness of
NPTAs with respect to a stochastic extension of cost-constrained temporal logic
– this extension being conservative with respect to the classical (non-stochastic)
interpretation of the logic. We shall observe that two timed bisimilar NPTAs may
be distinguisable by PWCTL. The series of algorithms we implemented includes
the sequential hypothesis test by Wald [34] as well as a quantitative approach
[18]. Our implementation relies on a new efficient algorithm for generating runs
of NPTAs in a random manner. In addition, we also propose another SMC
algorithm to compare the probabilities of two properties without computing
them individually – which is useful to compare the performances of a program

4 in contrast to the usual restriction of priced timed automata [3, 6]
5 Clocks with different rates can be used to model costs.
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with one of its evolutions at cheap cost. This probability comparison problem,
which is far beyond the scope of existing time model checking approaches, can
be approximated with an extension of the sequential hypothesis testing and has
the advantage of unifying the confidence in the comparison. In addition to be the
first to apply such extension in the context of formal verification, we also propose
a new variant that allows to reuse existing results in parallel when comparing
the properties on different timed bounds.

Finally, one of the most interesting contribution of our work takes the form
of a series of new case studies that are analyzed with a new stochastic extension
of Uppaal [13]. Particularly, we show how our approach can be used to resolve
scheduling problems. Such problems are defined using Duration Probabilistic
Automata (DPA) [24], a new and natural model for specifying list of tasks and
shared resources. We observe that our approach is not only more general, but
also an order of magnitude faster than the hypothesis testing engine recently
implemented in the Prism toolset. Our work thus presents significant advances
in both the modeling and the efficient verification of network of complex systems.

Related work. Some works on probabilistic semantics of timed automata
have already been discussed above. Simulation-based approaches such as Monte
Carlo have been in use since decades, however the use of simulation and hypo-
thesis testing to reason on formal models is a more recent advance. First attempts
to apply hypothesis testing on stochastic extension of Hennessy-Milner logic can
be found in [23]. In [35, 37], Younes was the first to apply hypothesis testing to
stochastic systems whose properties are specified with (bounded) temporal logic.
His approach is implemented in the Ymer toolset [36] and can be applied on time-
homogeneous generalized semi-Markov processes, while our semantics addresses
the composition of stochastic systems allowing to compose a global system from
components and reason about communication between independent processes.
In addition to Younes work we explore continuous-time features, formalize and
implement Wald’s ideas where the probability comparison can be evaluated on
NPTA processes. In a recent work [38], Zuliani et al. extended the SMC approach
to hybrid systems. Their work is a combination of [20] and [12] based on Simulink
models (non-linear hybrid systems), whereas our method is specialised to net-
works of priced timed automata where model-checking techniques can be directly
applicable using the same tool suite. In addition we provide means of comparing
performances without considering individual probabilities. Finally, a very recent
work [9] proposes partial order reduction techniques to resolve non-determinism
between components rather than defining a unique stochastic distribution on
their product behaviors. While this work is of clear interest, we point out that
the application of partial order may considerably increase the computation time
and for some models partial orders cannot resolve non-determinism, especially
when considering continuous time [25]. Finally, we mention [22] that proposes
a stochastic semantics to Uppaal’s models through simulation. This work does
not consider race between components and offers no tool implementation.
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2 Network of Priced Timed Automata

We consider the notion of Networks of Priced Timed Automata (NPTA), gener-
alizing that of regular timed automata (TA) in that clocks may have different
rates in different locations. In fact, the expressive power (up to timed bisimilar-
ity) of NPTA equals that of general linear hybrid automata (LHA) [1], rendering
most problems – including that of reachability – undecidable.

Let X be a finite set of variables, called clocks6. A clock valuation over X is
a mapping ν : X → IR≥0, where IR≥0 is the set of nonnegative reals. We write
IRX

≥0 for the set of clock valuations over X. Let r : X → IN be a rate vector,

assigning to each clock of X a rate. Then, for ν ∈ IRX
≥0 and d ∈ IR≥0 a delay, we

write ν + r · d for the clock valuation defined by (ν + r · d)(x) = ν(x) + r(x) · d
for any clock x ∈ X. We denote by INX the set of all rate vectors. If Y ⊆ X, the
valuation ν[Y ] is the valuation assigning 0 when x ∈ Y and ν(x) when x 6∈ Y . An
upper bounded (lower bound) guard over X is a finite conjunction of simple clock
bounds of the form x ∼ n where x ∈ X, n ∈ IN, and ∼∈ {<,≤} (∼∈ {>,≥}) We
denote by U(X) (L(X) the set of upper (lower) bound guards over X, and write
ν |= g whenever ν is a clock valuation satisfying the guard g. Let Σ = Σi ⊎Σo

be a disjoint sets of input and output actions.

Definition 1. A Priced Timed Automaton (PTA) is a tuple A = (L, ℓ0, X,Σ,
E,R, I) where: (i) L is a finite set of locations, (ii) ℓ0 ∈ L is the initial location,
(iii) X is a finite set of clocks, (iv) Σ = Σi ⊎ Σo is a finite set of actions
partitioned into inputs (Σi) and outputs (Σo), (v) E ⊆ L×L(X)×Σ × 2X ×L
is a finite set of edges, (vi) R : L → INX assigns a rate vector to each location,
and (viii) I : L→ U(X) assigns an invariant to each location.

The semantics of NPTAs is a timed labelled transition system whose states are
pairs (ℓ, ν) ∈ L × IRX

≥0 with ν |= I(ℓ), and whose transitions are either delay

(ℓ, ν)
d

−→ (ℓ, ν′) with d ∈ IR≥0 and ν′ = ν+R(ℓ) ·d, or discrete (ℓ, ν)
a

−→ (ℓ′, ν′)
if there is an edge (ℓ, g, a, Y, ℓ′) such that ν |= g and ν′ = ν[Y ]. We write
(ℓ, ν) ; (ℓ′, ν′) if there is a finite sequence of delay and discrete transitions from
(ℓ, ν) to (ℓ′, ν′).

Networks of Priced Timed Automata Following the compositional spe-
cification theory for timed systems in [14], we shall assume that NPTAs are:
(1)[Input-enabled:] for all states (ℓ, ν) and input actions ι ∈ Σi, for all TAs j,

there is an edge (ℓj , g, ι, Y, ℓj
′
) such that ν |= g, (2) [Deterministic:] for all states

(ℓ, ν) and actions a ∈ Σ, whenever (ℓ, ν)
a

−→ (ℓ′, ν′) and (ℓ, ν)
a

−→ (ℓ′′, ν′′)
then ℓ′ = ℓ′′ and ν′ = ν′′, and (3) [Non-zenos:] time always diverge. Moreover,
different automata synchronize on matching inputs and outputs as a standard
broadcast synchronization [17].

Whenever Aj = (Lj , Xj , Σj , Ej , Rj , Ij) (j = 1 . . . n) are NPTA, they are
composable into a closed network iff their clock sets are disjoint (Xj ∩Xk = ∅

6 We will (mis)use the term “clock” from timed automata, though in the setting of
NPTAs the variables in X are really general real-valued variables.
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when j 6= k), they have the same action set (Σ = Σj = Σk for all j, k), and
their output action-sets provide a partition of Σ (Σj

o ∩ Σk
o = ∅ for j 6= k, and

Σ = ∪jΣ
j
o). For a ∈ Σ we denote by c(a) the unique j with a ∈ Σj .

Definition 2. Let Aj = (Lj , Xj , Σ,Ej , Rj , Ij) (with j = 1 . . . n) be composable
NPTAs. Their composition (A1 | . . . | An) is the NPTA A = (L,X,Σ,E,R,L)
where (i) L = ×jL

j, (ii) X = ∪jX
j, (iii) R(ℓ)(x) = Rj(ℓj)(x) when x ∈ Xj, (iv)

I(ℓ) = ∩jI(ℓ
j), and (v) (ℓ,∩jgj , a,∪jrj , ℓ

′) ∈ E whenever (ℓj , gj , a, rj , ℓ
′
j) ∈ Ej

for j = 1 . . . n.
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Figure 1: Three composable
NPTAs: A,B and T ; A,Br and
T ; and AB and T .

Example 1. Let A, B, T and AB be the
priced timed automata depicted in Fig. 1 7

Then A,B and T are composable as well
as AB and T . In fact the composite sys-
tems (A|B|T ) and (AB|T ) are timed (and
priced) bisimilar, both having the transition
sequence:
(

(A0, Bo, T0), [x = 0, y = 0, C = 0]
) 1
−→

a!
−→

(

(A1, B0, T1), [x = 1, y = 1, C = 4]
) 1
−→

b!
−→

(

(A1, B1, T2), [x = 2, y = 2, C = 6]
)

,

demonstrating that the final location T3 of T is reachable with cost 6.

3 Probabilistic Semantics of NPTA

Continuing Example 1 we may realise that location T3 of the component T is
reachable within cost 0 to 6 and within total time 0 and 2 in both (A|B|T )
and (AB|T ) depending on when (and in which order) A and B (AB) chooses to
perform the output actions a! and b!. Assuming that the choice of these time-
delays is governed by probability distributions, we will in this section define a
probability measure over sets of infinite runs of networks of NPTAs.

In contrast to the probabilistic semantics of timed automata in [4, 8] our
semantics deals with networks and thus with races between components. Let
Aj = (Lj , Xj , Σ,Ej , Rj , Ij) (j = 1 . . . n) be a collection of composable NPTAs.
Under the assumption of input-enabledness, disjointness of clock sets and output
actions, states of the the composite NPTA A = (A1 | . . . | An) may be seen as
tuples s = (s1, . . . , sn) where sj is a state of Aj , i.e. of the form (ℓ, ν) where

ℓ ∈ Lj and ν ∈ IRXj

≥0 . Our probabilistic semantics is based on the principle of
independency between components. Repeatedly each component decides on its
own – based on a given delay density function and output probability function
– how much to delay before outputting and what output to broadcast at that
moment. Obviously, in such a race between components the outcome will be de-
termined by the component that has chosen to output after the minimum delay:
the output is broadcast and all other components may consequently change state.

7 The broadcast synchronization we use allows us to ignore missing input transitions
that may otherwise be added as looping transitions.
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Probabilistic Semantics of NPTA Components Let us first consider a
component Aj and let Stj denote the corresponding set of states. For each state
s = (ℓ, ν) of Aj we shall provide probability distributions for both delays and
outputs. In this presentation, we restrict to uniform and universal distributions,
but arbitrary distributions can be considered.

The delay density function µs over delays in IR≥0 will be either a uniform
or an exponential distribution depending on the invariant of ℓ. Denote by Eℓ

the disjunction of guards g such that (ℓ, g, o,−,−) ∈ Ej for some output o.
Denote by d(ℓ, ν) the infimum delay before enabling an output, i.e. d(ℓ, ν) =
inf{d ∈ IR≥0 : ν + Rj · d |= Eℓ}, and denote by D(ℓ, ν) the supremum delay,
i.e. D(ℓ, ν) = sup{d ∈ IR≥0 : ν +Rj · d |= Ij(ℓ)}. If D(ℓ, ν) <∞ then the delay
density function µs is a uniform distribution on [d(ℓ, ν), D(ℓ, ν)]. Otherwise –
that is Ij(ℓ) does not put an upper bound on the possible delays out of s – the
delay density function µs is an exponential distribution with a rate P (ℓ), where
P : Lj → IR≥0 is an additional distribution rate component added to the NPTA
Aj . For every state s = (ℓ, ν), the output probability function γs over Σj

o is the
uniform distribution over the set {o : (ℓ, g, o,−,−) ∈ Ej ∧ν |= g} whenever this
set is non-empty 8. We denote by so the state after the output of o. Similarly,
for every state s and any input action ι, we denote by sι the state after having
received the input ι.

Probabilistic Semantics of Networks of NPTA We shall now see that
while the stochastic semantics of each PTA is rather simple (but quite realistic),
arbitrarily complex stochastic behavior can be obtained by their composition.

Reconsider the closed network A = (A1 | . . . | An) with a state space St =
St1 × · · · × Stn. For s = (s1, . . . , sn) ∈ St and a1a2 . . . ak ∈ Σ∗ we denote by
π(s, a1a2 . . . ak) the set of all maximal runs from s with a prefix t1a1t2a2 . . . tkak
for some t1, . . . , tn ∈ IR≥0, that is runs where the i’th action ai has been output-
ted by the component Ac(ai). We now inductively define the following measure
for such sets of runs:

PA

(

π(s, a1 . . . an)
)

=

∫

t≥0

µsc(t)·
(

∏

j 6=c

∫

τ>t

µsj (τ)dτ
)

·γsct(a1)·PA

(

π(st)a1 , a2 . . . an)
)

dt

where c = c(a1), and as base case we take PA(π(s), ε) = 1.
This definition requires a few words of explanation: at the outermost level

we integrate over all possible initial delays t. For a given delay t, the outputting
component c = c(a1) will choose to make the broadcast at time t with the stated
density. Independently, the other components will choose to a delay amount,
which – in order for c to be the winner – must be larger than t; hence the
product of the probabilities that they each make such a choice. Having decided
for making the broadcast at time t, the probability of actually outputting a1
is included. Finally, in the global state resulting from all components having
delayed t time-units and changed state according to the broadcasted action a1
the probability of runs according to the remaining actions a2 . . . an is taken into
account.
8 otherwise a specific weight distribution can be specified and used instead.
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Figure 2: Cumulative probabilities for time and cost-bounded reachability of T3.

Logical Properties Following [26], the measure PA may be extended in a
standard and unique way to the σ-algebra generated by the sets of runs (so-
called cylinders) π(s, a1a2 . . . an). As we shall see this will allow us to give proper
semantics to a range of probabilistic time- and cost-constrained temporal prop-
erties. Let A be a NPTA. Then we consider the following non-nested PWCTL
properties:

ψ ::= P
(

3C≤cϕ
)

∼ p | P
(

2C≤cϕ
)

∼ p

where C is an observer clock (of A), ϕ a state-property (wrt. A) , ∼∈ {<,≤,=
,≥, >}, and p ∈ [0, 1]. This logic is a stochastic extension of the classical WCTL
logic for non-stochastic systems, where the existential quantifier is replaced by a
probability operator. For the semantics let A∗ be the modification of A, where
the guard C ≤ c has been conjoined to the invariant of all locations and an edge
(ℓ, ϕ, oϕ, ∅, ℓ) has been added to all locations ℓ, where oϕ is a new output action.
Then:

A |= P
(

3C≤cϕ
)

∼ p iff PA∗

(

⋃

σ∈Σ∗

π(s0, σoϕ)
)

∼ p

which is well-defined since the σ-algebra on which PA∗ is defined is closed under
countable unions and finite intersections. To complete the semantics, we note
that P(2C≤cϕ) ∼ p is equivalent to (1− p) ∼ P(3C≤c¬ϕ).

9

Compared with previous stochastic semantics of timed automata (see e.g.,
[4, 8]), we emphasize the novelty of the semantics of NPTA in terms of RACES
between components, truthfully reflecting their independencies. In particular our
stochastic semantics of a network (A1|..|An) is significantly different from that
obtained by applying the stochastic semantics of [4,8] to a product construction
A1A2 . . . An, as information about independencies are lost. So though (A1|..|An)
and A1A2 . . . An are timed bisimilar they are in general not probabistic timed
bisimilar, and hence distinguishable by PWCTL. The situation is illustrated with
the following example.

Example 2. Reconsider the Example of Fig. 1. Then it can be shown that
(A|B|T ) |= P

(

3t≤2T3
)

= 0.75 and (A|B|T ) |= P
(

3C≤6T3
)

= 0.75, whereas

9 We also note that the above (stochastic) interpretation of PWCTL is a conservative
extension of the classical (non-stochastic) interpretation of WCTL, in the sense that
A |= P

(

3C≤cϕ
)

> 0 implies An |= E3C≤cϕ, where An refers to the standard non-
stochastic semantics of A.
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(AB|T ) |= P
(

3t≤2T3
)

= 0.50 and (AB|T ) |= P
(

3C≤6T3
)

= 0.50. Fig. 2 gives a
time- and cost-bounded reachability probabilities for (A|B|T ) and (AB|T ) for a
range of bounds. Thus, though the two NPTAs satisfy the same WCTL proper-
ties, they are obviously quite different with respect to PWCTL. The NPTA Br

of Fig. 1 is a variant of B, with the uniform delay distribution enforced by the
invariant y ≤ 2 being replaced by an exponential distribution with rate 1

2 . Here
(A|Br|T ) satisfies P

(

3t≤2T3
)

≈ 0.41 and P
(

3C≤6T3
)

≈ 0.49.

4 Statistical Model Checking for NPTA

As we pointed out, most of model checking problems for NPTAs and PWCTL
(including reachability) are undecidable. Our solution is to use a technique that
approximates the answer. We rely on Statistical Model Checking (SMC) [28,35],
that is a series of simulation-based techniques that generate runs of the systems,
monitor them, and then use algorithms from statistics to get an estimate of the
entire system. At the heart of any SMC approach, there is an algorithm used to
generate runs of the system following a stochastic semantics. We propose such
an algorithm for NPTAs corresponding to the stochastic semantics proposed in
Section 3. Then, we recap existing statistic algorithms, providing the basis for a
first SMC algorithm for NPTAs.

Generating Runs of NPTA SMC is used for properties that can be monitored
on finite runs. Here, we propose an algorithm that given an NPTA generates a
random run up to a cost bound c (with time bounds being a simple case) of
an observer clock C. A run of a NPTA is a sequence of alternations of states

s0
d0−→ s

′
0

o0−→ s1
d1−→ . . . sn obtained by performing delays di and emitting

outputs oi. Here we consider a network of NPTAs with states being of the form
(ℓ, ν). We construct random runs according to Algorithm 1. We start from an
initial state (ℓ0, ν0) and repeatedly concatenate random successor states until we
reach the bound c for the given observer clock C. Recall that ν(C) is the value of
C in state (ℓ, ν), and the rate of C in location ℓ is R(C)(ℓ). We use the notation ⊕
to concatenate runs and tail(run) to access the last state of a run and delay(µs)
returns a random delay according to the delay density function µs as described
in Section 3. The statement “pick” means choose uniformly among the possible
choices. Lines 5-6 stop the delay when the runs reach their time bounds with the
values of the clocks depending on their rates. The Algorithm 1 may be seen to be
correct with respect to the stochastic semantics of NPTAs given in Section 3 in
the sense that the probability of the (random) run RRA

(

(ℓ0, ν0), C, c
)

satisfying

3C≤cϕ is PA

(

3C≤c ϕ
)

.

Statistical Model Checking Algorithms We briefly recap statistical al-
gorithms permitting to answer the following two types of questions : (1) Qual-

itative : Is the probability for a given NPTA A to satisfy a property 3C≤cϕ
greater or equal to a certain threshold θ ? and (2) Quantitative : What is the
probability for A to satisfy 3C≤cϕ. Each run of the system is encoded as a

8



Algorithm 1: Random run for a NPTA-network A

function RRA((ℓ0, ν0), C, c)
run := (ℓ, ν) := tail(run) := (ℓ0, ν0)1

while ν(C) < c do2

for i = 1 to |ℓ| do di := delay(µ(ℓi,νi))3

d := min1≤i≤|ℓ|(di)4

if d = +∞∨ ν(C) + d ∗R(ℓ)(C) ≥ c then5

d := (ν(C)− c)/R(ℓ)(C)6

return run⊕
d
−→ (ℓ, ν + d ∗R(ℓ))7

end

else8

pick k such that dk = d; νd := ν + d ∗R(ℓ)9

pick ℓk
g,o,r
−−−→ ℓ′k with g(νd)10

run := run⊕
d
−→ (ℓ, νd)

g,o,r
−−−→ (ℓ[l′k/lk], [r 7→ 0](νd))11

end

(ℓ, ν) := tail(run)12

end

return run

Bernoulli random variable that is true if the run satisfies the property and false
otherwise.

Qualitative Question This problem reduces to test the hypothesis H : p =
PA(3C≤cϕ) ≥ θ against K : p < θ. To bound the probability of making errors,
we use strength parameters α and β and we test the hypothesis H0 : p ≥ p0 and
H1 : p ≤ p1 with p0 = θ + δ0 and p1 = θ − δ1. The interval p0 − p1 defines an
indifference region, and p0 and p1 are used as thresholds in the algorithm. The
parameter α is the probability of accepting H0 when H1 holds (false positives)
and the parameter β is the probability of accepting H1 when H0 holds (false
negatives). The above test can be solved by using Wald’s sequential hypothesis
testing [34]. This testcomputes a proportion r among those runs that satisfy the
property. With probability 1, the value of the proportion will eventually cross
log(β/(1− α) or log((1− β)/α) and one of the two hypothesis will be selected.

Quantitative Question This algorithm [19] computes the number N of runs
needed in order to produce an approximation interval [p− ǫ, p+ ǫ] for p = Pr(ψ)
with a confidence 1 − α. The values of ǫ and α are chosen by the user and N
relies on the Chernoff-Hoeffding bound.

5 Beyond “Classical” Statistical Model-Checking

Here, we want to compare p1 = PA(3C1≤c1ϕ1) and p2 = PA(3C2≤c2ϕ2) without
computing them. This comparison has clear practical applications e.g. it can be
used to compare the performances of an original program with one of its newly

9



designed extensions. This comparison cannot be performed with the algorithm
presented in the previous section. Moreover, using Monte Carlo to estimate the
probabilities (which is costly) would not help as both such probabilities would
be estimated with different confidences that could hardly be related10. In [34],
Wald has shown that this problem can be reduced to a sequential hypothesis
testing one. Our contributions here are (1) to apply this algorithm in the formal
verification area, (2) to extend the original algorithm of [34] to handle cases
where we observe the same outcomes for both experiments, and (3) to implement
a parametric extension of the algorithm that allows to reuse results on several
timed bounds. More precisely, instead of comparing two probabilities with one
common cost bound C ≤ c, the new extension does it for all the N bounds
i ∗ c/N with i = 1 . . . N by reusing existing runs.

Comparison Algorithm. Let the efficiency of satisfying 3C1≤c1ϕ1 over runs
be given by k1 = p1/(1− p1) and similarly for 3C2≤c2ϕ2. The relative superior-

ity of “ϕ2 over ϕ1” is measured by the ratio u = k2

k1
= p2(1−p1)

p1(1−p2)
. If u = 1 both

properties are equally good, if u > 1, ϕ2 is better, otherwise ϕ1 is better. Due to
indifference region, we have two parameters u0 and u1 such that u0 < u1 to make
the decision. If u ≤ u0 we favor ϕ1 and if u ≥ u1 we favor ϕ2. The parameter α
is the probability of rejecting ϕ1 when u ≤ u0 and the parameter β is the prob-
ability of rejecting ϕ2 when u ≥ u1. An outcome for the comparison algorithm is
a pair (x1, x2) = (r1 |= 3C1≤c1ϕ1, r2 |= 3C2≤c2ϕ2) for two independent runs r1
and r2. In Wald’s version (lines 10–14 of Algorithm 2), the outcomes (0, 0) and
(1, 1) are ignored. The algorithm works if it is guaranteed to eventually generate
different outcomes. We extend the algorithm with a qualitative test (lines 5–9
of Algorithm 2) to handle the case when the outcomes are always the same.
The hypothesis we test is PA((r1 |= 3C1≤c1ϕ1) = (r2 |= 3C2≤c2ϕ2)) ≥ θ for
two independent runs r1 and r2. We note that this does not affect the correct-
ness of the original algorithm for accepting or rejecting process 2. The modified
algorithm now returns indifferent in addition, which corresponds to our added
hypothesis to cut down the number of necessary runs11. Typically we want the
parameters p′0 = θ + δ0 (for the corresponding hypothesis H0) and p

′
1 = θ − δ1

(for H1) to be close to 1. Our version of the comparison algorithm is shown in
algorithm 2 with the following initializations:

a =
log( β

1−α
)

log(u1)−log(u0)
, r =

log( 1−β
α

)

log(u1)−log(uo)
, c =

log(
1+u1
1+u0

)

log(u1)−log(uo)

Parametrised Comparisons We now generalise the comparison algorithm to
give answers not only for one cost bound c but N cost bounds i ∗ c/N (with
i = 1 . . . N). This algorithm is of particular interest to generate distribution
over timed bounds value of the property. The idea is to reuse the runs of smaller
bounds. When 3C≤cϕ1 or 3C≤cϕ2 holds on some run we keep track of the
corresponding point in cost (otherwise the cost value is irrelevant). Every pair or

10 Interleaving intervals for the estimate (even with same confidence) may give non-
deterministic results, not to mention that computing estimates is more expensive
than hypothesis testing in terms of runs.

11 This also frees us from the assumption that the processes have some different outputs.
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Algorithm 2: Comparison of probabilities

function comprise(S:model , ψ1, ψ2: properties)
check := 1, q := 0, t := 01

while true do2

Observe the random variable x1 corresponding to ψ1 for a run.3

Observe the random variable x2 corresponding to ψ2 for a run.4

if check = 1 then5

x := (x1 == x2)6

q := q + x ∗ log(p′1/p
′
0) + (1− x) ∗ log((1− p′1)/(1− p′0))7

if q ≤ log(β/(1− α)) then return indifferent8

if r ≥ log((1− β)/α) then check := 09

end

if x1 6= x2 then10

a := a+ c, r := r + c11

if x1 = 0 and x2 = 1 then t := t+ 112

if t ≤ a then accept process 2.13

if t ≥ r then reject process 2.14

end

end

runs gives a pair of outcomes (x1, x2) at cost points (c1, c2). For every i = 1 . . . N
we define the new pair of outcomes (yi1 , yi2) =

(

x1 ∧ (i · c/N ≥ t1 · rateC), x2 ∧

(i · c/N ≥ t2 · rateC)
)

for which we use our comparison algorithm. We terminate
the algorithm when a result for every ith bound is known.

6 Case Studies

We have extended Uppaal with the algorithms described in this paper. The
implementation provides access to all the powerful features of the tool, including
user defined functions and types, and use of expressions in guards, invariants,
clock-rates as well as delay-rates. Also the implementation supports branching
edges with discrete probabilities (using weights), thus supporting probabilistic
timed automata (a feature for which our stochastic semantics of NPTA may
be easily extended). Besides these additional features, the case-studies reported
below (as well as the plots in the previous part of the paper) illustrate the nice
features of the new plot composing GUI of the tool12. Our objective here is not
to study the evolutions of performances with the increase of condidence level,
but rather to give a sample of case studies on which our approach can be applied.

Train-Gate Example We consider the train-gate example [5], where N trains
want to cross a one-track bridge. We extend the original model by specifying an
arrival rate for Train i ((i+1)/N). Trains are then approaching, but they can be
stopped before some time threshold. When a train is stopped, it can start again.

12 http://www.cs.aau.dk/˜adavid/smc/ for details.

11



Eventually trains cross the bridge and go back to their safe state. The template
of these trains is given in Fig. 3(a). Our model captures the natural behavior
of arrivals with some exponential rate and random delays chosen with uniform
distributions in states labelled with invariants. The tool is used to estimate
the probability that Train 0 and Train 5 will cross the bridge in less than 100
units of time. Given a confidence level of 0.05 the confidence intervals returned
are [0.541, 0.641] and [0.944, 1]. The tool computes for each time bound T the
frequency count of runs of length T for which the property holds. Figure 3(b)
shows a superposition of both distributions obtained directly with our tool that
provides a plot composer for this purpose.

a)
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Cross

Appr Start

x>=10

x<=10

x>=3

x>=7

stop[id]?

leave[id]!

appr[id]!

go[id]?

(1+id):N*N

x=0x=0 x=0

x=0

x<=5

x<=20 x<=15 b)

Train(0)
Train(5)

Time
pr
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ili
ty

0

0,005

0,010

0,015

0,020

0,025

10 80 150 220 290

Figure 3: Template of a train (a) and probability density distributions for
3T≤tTrain(0).Cross and 3T≤tTrain(5).Cross.

The distribution for Train 5 is the one with higher probability at the begin-
ning, which confirms that this train is indeed the faster one. An interesting point
is to note the valleys in the probability densities that correspond to other trains
conflicting for crossing the bridge. They are particularly visible for Train 0. The
number of valleys corresponds to the number of trains. This is clearly not a
trivial distribution (not even uni-modal) that we could not have guessed manu-
ally even from such a simple model. In addition, we use the qualitative check to
cheaply refine the bounds to [0.541, 0.59] and [0.97, 1].

We then compare the probability for Train 0 to cross when all other trains
are stopped with the same probability for Train 5. In the first plot (Fig. 4 top),
we check the same property with 100 different time bounds from 10 to 1000 in
steps of 10 and we plot the number of runs for each check. These experiments
only check for the specified bound, they are not parametrised. In the second
plot, we use the parametric extension presented in Section 5 with a granularity
of 10 time units. We configured the thresholds u0 and u1 to differentiate the
comparisons at u0 = 1 − ǫ and u1 = 1 + ǫ with ǫ = 0.1, 0.05, 0.01 as shown on
the figure. In addition, we use a larger time bound to visualise the behaviors
after time 600 that are interesting for our checker. In the first plot of Fig. 4,
we show for each time bound the average of runs needed by the comparison
algorithm repeated 30 times for different values of ǫ. In the bottom plot, we
first superpose the cumulative probability for both trains (curves Train 0 and
Train 5) that we obtain by applying the quantitative algorithm of Section 4
for each time bound in the sampling. Interestingly, before that point, train 5 is
better and later train 0 is better. Second, we compare these probabilities by using
the comparison algorithm (curves 0.1 0.05 0.01). This algorithm can retrieve 3
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Figure 4: Comparing trains 0 and 5.

values: 0 if Train 0 wins, 1 if Train 5 wins and 0.5 otherwise. We report for each
time bound and each value of ǫ the average of these values for 30 executions of
the algorithm.

In addition, to evaluate the efficiency of computing all results at once to
obtain these curves, we measure the accumulated time to check all the 100
properties for the first plot (sequential check), which takes 92s, 182s, 924s for
ǫ = 0.1, 0.05, 0.01, and the time to obtain all the results at once (parallel check),
which takes 5s, 12s, 92s. The experiments are done on a Pentium D at 2.4GHz
and consume very little memory. The parallel check is about 10 times faster13. In
fact it is limited by the highest number of runs required as shown by the second
peak in Fig. 4. The expensive part is to generate the runs so reusing them is
important. Note that at the beginning and at the end, our algorithm aborts the
comparison of the curves, which is visible as the number of runs is sharply cut.

Lightweight Media Access Control Protocol (LMAC). This protocol is
used in sensor networks to schedule communication between nodes. It is tar-
geted for distributed self-configuration, collision avoidance and energy efficiency.
In this study we reproduce the improved Uppaal model from [15] without veri-
fication optimisations, parametrise with network topology (ring and chain), add
probabilistic weights (exponential and uniform) over discrete delay decisions and
examine statistical properties which were not possible to check before. Based
on [33], our node model consumes 21, 22, 2 and 1 power units when a node is
sending, receiving, listening for messages or being idle respectively.

Fig. 5a shows that collisions may happen in all cases and the probability
of collision is higher with exponential decision weights than uniform decision

13 The implementation checks simulations sequentially using a single thread.
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Figure 5: Collision probabilities when using exponential and uniform weights in
chain and ring topologies, a) cumulative probability of collision over time and
b) probability of having various numbers of collisions.

weights, but seems independent of topology (ring or chain). The probability of
collision stays stable after 50 time units, despite longer simulations, meaning
that the network may stay collision free if the first collisions are avoided. We
also applied the method for parametrised probability comparison for the collision
probability. The results show that up to 14 time units the probabilities are
the same and later exponential weights have higher collision probability than
uniform, but the results were inconclusive when comparing different topologies.

The probable collision counts in the chain topology are shown in Fig. 5b,
where the case with 0 collisions has a probability of 87.06% and 89.21% when
using exponential and uniform weights respectively. The maximum number of
probable collisions is 7 for both weight distributions despite very long runs,
meaning that the network eventually recovers from collisions.
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Figure 6: Total energy consumption.

Fig. 6 shows energy consumption
probability density: using uniform and ex-
ponential weights in a chain and a ring to-
pologies. The probability Pr[energy <=

50000](<> time>=1000) as estimated.
Ring topology uses more power (possibly
due to collisions), and uniform weights use
slightly less energy than exponential weights in these particular topologies.

Duration Probabilistic Automata (DPA) [21]. Those automata are used
for modelling job-shop problems. A DPA consists of several Simple DPAs (SDPA).
An SDPA is a processing unit, a clock and a list of tasks to process sequentially.
Each task has an associated duration interval, from which its duration is chosen
(uniformly). Resources are used to model task races – we allow different resource
types and different quantities of each type. A fixed priority scheduler is used to
resolve conflicts. An example is shown in Fig. 7. DPA can be encoded in our tool

start [2,5] [1,2] End

wt
2

1start [1,6] [2,3] End

[r1 = 4] [r2 = 2]

[r1 = 1, r2 = 2] [r1 = 2, r2 = 1]

Figure 7: Rectangles are busy states and circles are for waiting when resources
are not available. There are r1 = 5 and r2 = 3 resources available.
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(continuous or discrete time semantics) or in Prism (discrete semantics), see the
technical report [27]. In Prism, integer and boolean variables are used to encode
the current tasks and resources. Prism only supports the discrete time model.
In Uppaal, a chain of waiting and task locations is created for each SDPA.
Guards and invariants encode the duration of the task, and an array of integers
contain the available resources. The scheduler is encoded as a separate template.

Table 1: Performance of SMC (sec)

Param. Estim. Hyp. Testing

n k m PrismUpp Upd Upc Prism Upp Upd Upc
4 4 3 2.7 0.3 0.2 0.2 2.0 0.1 0.1 0.1
6 6 3 7.7 0.6 0.5 0.4 3.9 0.2 0.2 0.3
8 8 3 26.5 1.2 0.9 0.7 16.4 0.5 0.4 0.3

20 40 20 >300 >300 35.5 26.2 20.7
30 40 20 >300 >300 61.2 41.8 33.2
40 40 20 >300 >300 92.2 56.9 59.5
40 20 20 >300 >300 41.1 31.2 26.5
40 30 20 >300 >300 68.8 46.7 46.1

40 55 40 >300 >300 219.5

For Uppaal, we have mod-
elled a discrete version as
close as possible to the Prism

model (Upp), an improved dis-
crete version that “jumps”
to interesting points in time
(Upd), and a continuous time
version that making full use of
our formalism (Upc).

The performance of the
translations is shown in Tab. 1,
based on DPAs with n SDPAs,
k tasks per SDPA and m re-
source types. The resource usage and duration interval are randomised. In the
hypothesis testing column, Uppaal uses the sequential hypothesis testing in-
troduced in Section 4, whereas Prism uses its own new implementation of the
hypothesis testing algorithm. In the estimation column, bothUppaal and Prism

use the quantitative check of Section 4, but Uppaal is faster thanks to its more
suitable formalism. For both tools, the error bounds used are α = β = 0.05. In
the hypothesis test, the indifference region size is 0.01, while we have ǫ = 0.05
for the quantitative approach. The query for the approximation test is: “What
is the probability of all SDPAs ending within t time units?”, and for hypothesis
testing it is: “Do all SDPAs end within t time units with probability greater
than 40%?”. The value of t varies for each model as it was computed by simu-
lating the system 369 times and represent the value for which at least 60% of
the runs reached the final state. Each number in the table is the average of 10
SMC analyses on the given model. The results show that Uppaal is an order
of magnitude faster than Prism even with the discrete encoding, which puts
Uppaal at a disadvantage given that it is designed for continuous time14.
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12. E. M. Clarke, A. Donzé, and A. Legay. Statistical model checking of mixed-analog

circuits with an application to a third order delta-sigma modulator. In HVC,
volume 5394 of LNCS, pages 149–163. Springer, 2008.

13. A. David, K.G. Larsen, A. Legay, Z.Wang, and M. Mikucionis. Time for real
statistical model-checking: Statistical model-checking for real-time systems. In
CAV, LNCS. Springer, 2011.

14. Alexandre David, Kim.G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej
Wasowski. Timed I/O automata: a complete specification theory for real-time
systems. In HSCC. ACM, 2010.

15. Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader. Modelling and veri-
fication of the lmac protocol for wireless sensor networks. In Jim Davies and
Jeremy Gibbons, editors, Integrated Formal Methods, volume 4591 of LNCS, pages
253–272. Springer Berlin / Heidelberg, 2007.

16. Goran Frehse. Phaver: algorithmic verification of hybrid systems past hytech.
STTT, 10(3):263–279, 2008.
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