
Application of Model-Checking Technology to

Controller Synthesis⋆

Alexandre David1, Jacob Deleuran Grunnet2, Jan Jakob Jessen1,
Kim Guldstrand Larsen1, Jacob Illum Rasmussen3

1 Department of Computer Science, Aalborg University, Denmark (email:
{adavid,kgl,jjjessen}@cs.aau.dk)

2 LAC engineering, Hinnerup, Denmark (email: jag@lacengineering.com)
3 Sanddru R&D, Nørresundby, Denmark (email: illum@sanddru.com)

Abstract. In this paper we present two frameworks that have been
implemented to link traditional model-checking techniques to the domain
of control. The techniques are based on solving a timed game and using
the resulting solution (a strategy) as a controller. The obtained discrete
controller must fit within its continuous environment, which is modelled
and taken care of in our frameworks. Our first technique does it by using
Matlab to discretise the problem and then Uppaal-tiga to solve the
obtained timed game. This is implemented as a toolbox. The second
technique relies on the user defining a timed game model in Uppaal-

tiga. Then the strategy is automatically imported in Simulink as an
S-function for simulation and validation purposes. We demonstrate the
effectiveness of these frameworks in different case-studies.

1 Introduction

The traditional control design cycle includes modelling, simulation, equation
solving, and implementation. Modelling the environment and physical systems
often means having to deal with non-linear or even hybrid models (mixing both
discrete and continuous aspects) for which many of the standard control design
methods are not easily applicable.

A major task for any control system designer is abstracting such models in
to a form which is suitable for controller design e.g. by linearisation and when
the controller design has been performed to simulations to validate the approx-
imation and implementation of the control strategy. This is non-trivial and in
this article we report on two prototypes for model-based design for optimal con-
trol using the controller synthesis tool Uppaal-tiga, Matlab, and its powerful
toolbox Simulink [13].

The ultimate goal is to automate and unify the entire procedure such that the
control system designer can perform modelling, synthesis and verification in a
single tool, while providing only the system specification and requirements. The
first prototype is the toolbox called PAHSCTRL [6] that enables computation of

⋆ Work supported by the MULTIFORM project FP7-ICT-2007-2.

piecewise-affine control laws for hybrid systems with non-deterministic discrete
transitions. In particular, this can be used for fault-tolerant control [8]. The
second prototype is a generalisation of the climate controller case-study [11]
implemented in the form of Ruby scripts that are called from within Matlab to
integrate seamlessly with Simulink .

In this paper we gather previous results obtained for both PAHSCTRL and
Uppaal-tiga. In addition, we define a more general framework for linking
Uppaal-tiga to Simulink and detail its implementation. We first give the back-
ground of timed games, then we present PAHSCTRL, and finally the framework
for linking Uppaal-tiga to Simulink .

2 Controller Synthesis with Timed Game Automata

In our setting we use the model of timed game automata, an extension of timed
automata, to define a game between two players: a controller and an environ-
ment. The goal is find a strategy for the controller player to meet a control
objective for any move of the environment player. We refer to [2, 5] for more
details on the formalism, here we only summarise the important notions.

Let X be a finite set of real-valued variables called clocks. We note C(X) the
set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | x− y ∼ k | ϕ ∧ ϕ

where k ∈ Z, x, y ∈ X and ∼ ∈ {<,≤,=, >,≥}. B(X) is the subset of C(X) that
uses only rectangular constraints of the form x ∼ k.

Definition 1. A Timed Automaton (TA) [1] is a tuple A = (L, l0, Σ,X,E, Inv)
where L is a finite set of locations, l0 ∈ L is the initial location, Σ is the set
of actions, X is a finite set of real-valued clocks, Inv : L → B(X) associates
to each location its invariant and E ⊆ L×B(X)×Σ × 2X × L is a finite set of
transitions, where t = (l, g, a,R, l′) ∈ E represents a transition from the location
l to l′, labelled by a, with the guard g, that resets the clocks in R. One special
label τ is used to code the fact that a transition is not observable.

Definition 2. A Timed Game Automaton (TGA) [12] is a timed automaton G

with its set of transitions E partitioned into controllable (Ec) and uncontrollable
(Eu) actions. In addition, invariants are restricted to Inv : L → B′(X) where
B′ is the subset of B using constraints of the form x ≤ k.

Given a TGA G and a control property φ ≡ A φ1 U φ2 (resp. A φ1 W φ2)
of ATCTL, the reachability (resp. safety) control problem consists in finding a
strategy f for the controller such that all the runs of G supervised by f satisfy
the formula4. A strategy is a mapping from states to action to perform, an action
being just to delay or to delay some time and to take a transition. The controller
synthesis problem is formulated in our setting as a timed game to solve and the
resulting controller is the strategy obtained. We refer to strategies being winning
when there is a strategy for the controller player to meet its control objective.

4 Here U stands for the until operator andW for the weak until operator. In the context
of Uppaal-tiga, they have slightly different semantics than the usual operator in
the sense that φ1 should still be satisfied when reaching φ2.

Fig. 1: The PAHSCTRL controller structure. Grey boxes are synthesised, the
white box represents the part of the control system not handled and hatched
boxes represent the physical plant and sensor systems.

3 PAHSCTRL

3.1 Introduction

The focus of this toolbox and framework is to automatically generate controllers
for piecewise-affine hybrid systems (PAHS). Using the proposed method, fault
tolerant controllers are designed by modelling faults as uncontrollable events
causing switches between discrete modes. The design method involves abstract-
ing PAHS to discrete games and deriving controllers based on winning strategies
for the game.

The idea of solving control problems by abstracting to discrete or timed
games is not in itself new. The inspiration to use control to ensure that the
system behaviour conforms to the discrete abstraction comes from [14], which
demonstrates how controllers for discrete linear systems can be designed to con-
form to Linear Temporal Logics (LTL)-specifications.

Our method builds on advances in controller synthesis for affine systems on
polytopes [10, 9], where it is also suggested to design controllers for PAHS by
abstraction. The toolbox presented here and detailed in [8] expands on these
ideas, principally by adding (uncontrollable) external events, which can trigger
transitions between modes.

The result is a Matlab toolbox capable of computing discrete game abstrac-
tions of PAHS and deriving control laws based on solutions to the discrete game.
This enables computation of a type of gain scheduling controller where the con-
trol gains are adjusted based on the position in the state-space and the current
fault condition. The resulting controller structure is shown in figure 1.

The toolbox implements and optimises the algorithms shown in [7] that de-
tails how a discrete game abstraction can be obtained for non-deterministic
piecewise-affine hybrid system (PAHS). The game may be solved automatically
with respect to reachability properties using Uppaal-tiga. Assuming that a
winning strategy exists for this game, it can be interpreted as a rule base that
determines which control law to use in a given condition, and m-functions refine
the result to affine control laws, thus synthesising the complete control system.

Our goal is to automate the procedure of finding control laws for hybrid
systems with non-deterministic discrete state transitions. This is achieved by
calculating a catalogue of affine control laws each acting on a subset of the
state-space. Together they should guarantee a set of control requirements in the
form of reach/avoid specifications.

In this framework, the user formalises the hybrid system and enters it inside
Matlab. Then the PAHSCTRL tool generates the discrete game, whereas in the
second framework the user has to make this model.

The toolbox is implemented inMatlab and consists of a number of m-functions
designed to be easy to use but still exposing enough functionality that the tool-
box can be used for different purposes. Compared to the algorithms presented
in [7], a number of optimisations have been implemented along with new func-
tionalities, in particular regarding refinement of control laws. The toolbox is
detailed in [6] and can be found at http://pahsctrl.polytekniker.dk.

We demonstrate which kind of problems can be solved and we outline the
solution strategy employed.

3.2 Problem Definition

Informally a PAHS as defined in PAHSCTRL is a discrete automaton where
each location is associated with a continuous system. The locations are referred
to as modes and the state space of each mode is partitioned into polytopes each
associated with an affine system of the form

ẋ = Ax+Bu+ C (1)

where x is the state variable, u is the input andA,B,C are matrices of appropriate
size.

The transitions between the modes in the discrete automata can be both
controllable and uncontrollable meaning that they are taken by, respectively,
the controller or the environment. Such transitions can be used to model faults
or other externally triggered events that change the system dynamics.

The goal of the controller synthesis is therefore to compute a control strategy
that ensures that a subset of the state space of one or more modes is reached
while avoiding other subsets.

This is best illustrated with the example shown in figure 2. Not shown is the
uncontrollable transition from mode 1 to 2 with an identity reset map. Mode
1 can be thought of as the nominal mode while mode 2 corresponds to a fault
mode.

The “hole” in the partition is a subset of state space where no dynamics
have been defined. This can be used as an alternative method for describing
avoid sets, with the important difference that no dynamics are specified for the
“hole” and no computational effort is spent on this region of state space.

The objective of the example is to reach the goal set while staying in the
partitioned set and avoiding the avoid set.

The main algorithm consists of:

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Mode 1 with Requirements

Init
Goal
Hole

(a) Partitioning of the state space in mode
1

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Mode 2 with Requirements

Init
Goal
Hole
Avoid

A

B

(b) Partitioning of the state space in mode
2

Fig. 2: Partitioning of the two modes including requirements specification given
as polytope sets. There is an uncontrolled transition from mode 1 to mode 2,
which can occur at any point in time.

1. computing a discrete game abstraction of the hybrid system,

2. finding a solution to the game ensuring the control requirements, and

3. refining the solution to control laws of the form u = Kx+ g.

This toolbox aims at solving 1) and 3) using Matlab, while leaving step 2) to
established tools such as Uppaal-tiga.

3.3 Abstraction

During the abstraction, discrete equivalents of each polytope are computed. That
is for each polytope defined on each mode one or more abstractions are computed
to encode the possible actions of an affine controller as a discrete game.

The actions are encoded according to the ability of the controller to prevent
the system from leaving the polytope through a given facet. The actions are
labelled as follows.

Blockable A control law exists that prevents exit through this facet

Uncontrollable The facet is not blockable.

Controllable The facet is blockable and a control law exists that can unblock
the facet while ensuring that the polytope is left in finite time.

An example is presented in figure 3, showing a polytope with the controllable
system directions indicated at the vertices. Dashed transitions are uncontrollable.

The discrete equivalents of a polytope are computed by solving for feasibility
of linear matrix inequalities (LMI) based on the controllability to facet results
presented in [9]. Each possible combination of facet labels corresponds to one
LMI.

(a) A polytope where facet
3 is unblockable and either

facet 1 or 2 can be blocked
leaving the other unblock-
able

(b) The resulting discrete
equivalent has actually 3
locations. The committed
location (indicated by ’C’)
means that the controller
must choose and the two
normal locations represent
the two choices.

Fig. 3: A 2-dimensional polytope being converted to a discrete equivalent in a
discrete game. In this case there are two possibilities which are merged via a
committed location.

3.4 Strategy

By computing discrete equivalents for all the polytopes of the PAHS and com-
bining them, a discrete game abstraction can be obtained. In figure 4 the discrete
abstraction for mode 1 of the example is shown.

With this simple example it is easy to find a winning strategy manually. The
goal is to find a path from the start location to the goal location that avoids
locations from where there exists a sequence of uncontrollable transitions to the
hole location.

The toolbox uses Uppaal-tiga to find a winning strategy to the discrete
abstraction, enabling a fully automated control synthesis.

3.5 Refinement

The affine control laws on the original PAHS are found by refining the winning
strategy computed by Uppaal-tiga. The strategy determines which discrete
equivalent is to be used and thus determines which LMI is used to limit the
control law.

From the abstraction step it is known that the LMI chosen for each polytope
is feasible and the refinement step is thus restricted to finding an optimal solution
to each LMI. Combining these LMI solutions yields a controller catalogue, one
controller for each polytope, which ensures that the state will reach the goal

Hole

start
Goal

Fig. 4: A discrete game abstraction of mode 1. Each committed location is at
the approximate spot of its corresponding polytope. The hole location denotes
unpartitioned space.

set in finite time. A simulation of the example using a controller generated by
PAHSCTRL is shown in figure 5. The path goes around the hole on the border
(left and then above).

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Simulation (Mode 1)

Init
Goal
Hole
Start
Path
Event

(a) Simulation of the controlled system
starting in mode 1

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Simulation (Mode 2)

Init
Goal
Hole
Avoid
Start
Path
End

(b) After the event the system continues
evolution in mode 2

Fig. 5: Simulation of the example with the synthesised controller. The state ends
at a fixed point just inside the goal set.

4 Linking Uppaal-tiga to Simulink

4.1 Introduction

Our second framework provides an integrated and complete tool chain for mod-
elling, synthesis, simulation, and automatic generation of executable code. The

framework requires that two models of the control problem are provided: an ab-
stract model in terms of a timed game and a complete, dynamic model in terms
of a (non-linear) hybrid system.

Given the abstract (timed game) model together with logically formulated
control and guiding objectives, Uppaal-tiga automatically synthesises a strat-
egy which is directly compiled into an S-function5.

Figure 6 shows an overview of the framework. It is based on our previous case-
study of a climate controller for poultry and pig farms [11]. In this previous work,
the humidity and heat transfer were described by their differential equations
between zones in the farm. Then we simplified and discretised the model as a
timed game automaton that was used to generate a controller automatically.
That controller was then plugged into Simulink to validate through simulation
using the non-linear model that the controller was able to control the climate
as expected. It was possible to study its performance and, by choosing different
control objectives, we could easily change the controller and simulate the new
versions. The code generation was made possible through the Simulink real-time
workbench. From the point where we have an S-function, we can simulate and
generate real code. We have successfully redone this case-study [11] using our

TIGA

Abstract model

Control objective

Strategy S-function

compilation

Simulink

Hybrid model

Simulink simulation
and analysis

Simulink
RTW Executable

Interface code

Fig. 6: Overview of the framework.

general framework instead of the custom translations. We recall that a controller
was manually made taking into account only the temperature (not the humidity)
and was found to be the same as the one generated by Uppaal-tiga. Then
humidity was added to the model but this was too complex for the manual step.
In addition, the objective function is given with weights on the temperature and
humidity to optimise the criteria we want. This allows the generation of a series
of controllers to simulate and validate their behaviours in Simulink . The goals

5 S-function is a term used in Simulink for executable content that can be embedded
into its block components. S-functions support multiple languages such as C and
Matlab representation of the controller.

of our extensions her are to i) integrate Uppaal-tiga and Simulink , and ii) to
generalise the framework.

4.2 Work-flow

In this framework the user formalises the environment and the physics of the
system using classical differential equations. This is then abstracted in terms of
timed game automata. As in [4] the continuous domain is discretised into inter-
vals that correspond to clock constraints to model the dynamics. The abstract
(discretised) model is entered in Uppaal-tiga. The model gives the possible
moves for the environment and the controller players. The tool solves the game
and generates a strategy (if possible) to meet a given control objective.

In parallel, the continuous model is entered in Simulink with a place-holder
S-function that will act as the controller. Inputs and outputs for this block cor-
respond to the Uppaal-tiga model. Using our translator we plug the generated
discrete controller into Simulink to simulate it in its continuous environment. We
note that it is now easy to change parameters in the model, generate new con-
trollers and study their performances. In addition, using the Simulink real-time
workbench allows us to generate real code for a given target platform.

4.3 Tool Integration

Figure 7 shows a more detailed view of the tool integration that we have im-
plemented. The implementation is separated into one (internal) Matlab function
that acts as the coordinator component and a Ruby script that makes the trans-
lation from a strategy to an S-function. The user defines a timed game automaton
model in Uppaal-tiga together with a Simulink model that contains a block in
which the user wishes to insert the generated controller from Uppaal-tiga. It
is up to the user to define the input and the output variables. These inputs and
outputs are defined in Simulink and their names must match the corresponding
variables in the Uppaal-tiga model. The user should make sure that the de-
sired property is satisfied to obtain a strategy. Then the user calls the Matlab
function that

1. calls Uppaal-tiga to generate the strategy,

2. extracts the inputs and outputs from the Simulink model and generates
input and output files,

3. calls the Ruby script that translates the strategy together with the declara-
tion files of inputs and outputs into an S-function,

4. and calls the Matlab C-compiler to compile the generated S-function and
imports the binary into Simulink .

The Simulink model can now be simulated with the generated controller or it
can be used with the real-time workbench to generate code from the S-function.

Inputs Outputs

S-functionStrategy

Tiga model

Tiga tool

Simulink

Block (part of
a model)

Inputs Outputs

Matlab

Matlab functionRuby script
Internal
calls

Fig. 7: Integration of Uppaal-tiga and Simulink .

4.4 Mapping to Simulink

To have the generated strategy (from Uppaal-tiga) work in Simulink , the mo-
dels need to obey a few constraints. First Simulink will play the uncontrollable
transitions but they should not change location in our model, only integer vari-
ables. This models the input from the environment. In our example we define
that the temperature variables (in fact the indices) are the inputs. They are
allowed to change according to our model in Uppaal-tiga and the model in
Simulink should match this behaviour.

Second, we need to define outputs from our controller to Simulink . The con-
troller can change its own locations, variables, and clock. We define that some
of these variables are used as output to Simulink .

Finally, time is discretised by Simulink with some resolution. Our strategy is
ultimately transformed to an S-function that is in fact a decision function with
some added code to make the interface between Simulink variables and state
variables of the controller. Clocks are incremented at every call of the function
and the strategy decides what to do at every tick (possibly just wait).

The transformation from our strategy (mapping from states to action) is
done as if-statements that transform the updates in the timed game automata
into statements. Furthermore, if we had used functions in the model, they are
evaluated and transformed into simple assignment statements, which results in
a strategy devoid of functions in Uppaal-tiga syntax. This is possible because
such functions have their output solely determined by the discrete state they
are evaluated on and states are known in the strategies. The generated code

starts by accessing the input and output ports of Simulink . Incrementing the
clocks is then done after taking the actions to prepare for the next call of the
function. The trade-off in this solution is that we let the user test clock values
for zero upon the first call but afterwards we will never get zeros again since the
discretisation forces a minimal time between the action and the next time we
can read inputs and take a decision again. The user will be able to simulate the
generated strategy and see if the system is stable with the chosen parameters in
spite of the discretisation.

4.5 Methodology and Example

The first task is to abstract the physical model to a timed game automaton.
In our extension, timed controllers are supported6 and they are integrated in
Simulink by discretising time. The abstraction here consists in mapping the
continuous behaviour of a system to the time dimension and to make control
decision based on chosen intervals. The goal is to keep the abstraction as coarse
as possible to simplify the controller but in principle we could discretise with a
fine granularity and model the behaviour as precisely as we want.

Heater

Temperature Temperature

Turning on/off

and moving

takes time.

High threshold

Low threshold

(a)

On

Off

turn

off

turn

on

T’=-K
1
T+C

T’=-K
2
T

(b)

Tank Tank

Critically high

Critically low

Fig. 8: The 2-tank example. One heater can heat one tank at a time and moving
the heater between the tanks takes time (a). The temperature of the tanks should
stay within an acceptable range. The temperature is modelled by the simple
hybrid system in (b) with two states associated with differential equations.

To illustrate the modelling step, we consider a 2-tank example as shown in
figure 8.(a). The idea is to maintain the temperature of two tanks containing

6 This is in contrast to our previous work where only untimed strategies were sup-
ported by our framework.

some liquid within some specified bounds. We have one heater that can be used to
heat either one of the two tanks, but changing tank takes time. The temperature
of the tanks should be kept between a safe middle range and in our abstraction
we consider critical low or high temperatures that we do not want to reach and
two ranges of temperatures that are observable by our controller. These serve as
low and high thresholds as shown in the figure. The hybrid model of the dynamics
is simple here as shown in figure 8.(b). We have a state machine (for each tank)
with two states to denote when the heater is on or off with associated differential
equations to describe how the temperature changes. T is the temperature, K1,
K2, and C are constants.

x=0, heat=true

x=0, heat=false
temp−−,x=0off?

on?

On
x<=TEMP_DEC[temp]
Off

temp++,x=0

x>=GUARD_DEC[temp]
&& temp > 0

x<=TEMP_INC[temp]

x>=GUARD_INC[temp]
&& temp < MAX

off!

y=0
on!

Offc Onc

y=0

y >= 1

y >= 1

(a) (b)

Fig. 9: The model of the 2-tank example in Uppaal-tiga.

We model this system in Uppaal-tiga with one process per tank and one
for the controller. Figure 9 shows the templates for the tank and the controller.
The tank automaton (Fig. 9.(a)) reflects the two states of the heater being on
and off and a clock x is used to measure time.

��������������
��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

Time

Temperature

Time

Temperature

(a) (b)

Fig. 10: Principle for mapping temperature changes to time when the tempera-
ture is decreasing (a) or increasing (b). We obtain a lower and an upper bound
on time for changing temperature range.

Temperature changes are then mapped to time intervals and the model is
designed to take uncertainties into account. Figure 10 shows the principle. In

Fig. 10.(a) the temperature decreases from somewhere from the high observ-
able range to the lower one. We derive a lower and upper bound on time for
detecting the state change. Similarly we derive time bounds when the temper-
ature increases in Fig. 10.(b). The lower bounds are modelled by the guards
(x>=GUARD DEC[temp] and x>=GUARD INC[temp] when the temperature is de-
creasing or increasing) and the upper bounds are the invariants (x<=TEMP DEC[temp]

and x<=TEMP INC[temp] depending on heating). The model is designed to dis-
cretise an arbitrary number of such observable ranges and we make experiments
with two and three such ranges. The controller (Fig. 9.(b)) models that it can
turn a heater on or off with a constraint on time.

Given some dynamic model in Simulink , we extract the time ranges that
we insert in Uppaal-tiga. We first make the experiments with the following
ranges:

– Above 100, temperature is critical high (temp=3).
– Between 70 and 90, temperature is high (temp=HIGH=2).
– Between 40 and 60, temperature is low (temp=LOW=1).
– Below 30, temperature is critical low (temp=0).

The corresponding time intervals in the models are declared as follows7:

const int TEMP_INC[temperature_t] = { 0, 6, 7, 0 };

const int TEMP_DEC[temperature_t] = { 0, 18, 10, 0 };

const int GUARD_INC[temperature_t] = { 0, 2, 2, 0 };

const int GUARD_DEC[temperature_t] = { 0, 7, 3, 0 };

The system is initialised with tank 1 at 55 degrees and tank 2 at 75 degrees, which
corresponds to temp being 1 and 2. We note that the model detects changes of
temperature so the actual range of temperature depends on the state (heating
or not). We ask for the following control objectives:

control: A[] temp1>=LOW && temp1<=HIGH && temp2>=LOW && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=LOW && temp2>=LOW && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=HIGH && temp2>=HIGH && temp2<=HIGH

The two first objectives are met and Uppaal-tiga generates strategies that
we insert in Simulink . The third one is not due to the constraints of the model
(there is no winning strategy for this game). We plot in figure 11 the result of the
simulations for the first (a) and second (b) properties. We note that first, having
temp1 staying at LOW depends much on the timing parameters because there is
no other observable range that the controller can use. Stability of the simulated
system depends on the uncertainties used in the model. Second, Uppaal-tiga

generates one arbitrary strategy that is only guaranteed to meet a control ob-
jective in the model. The simulation allows the user to evaluate its performance.
With the loose specification of the first property, the controller chooses to keep
one tank at a high temperature and the second one at a low temperature. The

7 The 0 entries do not matter since we want to avoid these states. The parameters in
Simulink are arbitrary, the important point is to derive our constants from them.

choice is natural w.r.t. their initial conditions. For the second property the con-
troller chooses to keep both tanks in the same range even though the previous
strategy could have been enough. This is not a bug in the controller since the
temperatures both follow their specifications.

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]
T

em
pe

ra
tu

re
 [C

]

Tank2

Tank1

(a) (b)

Fig. 11: Simulation results with two observable ranges, one simulation for each
control objective.

We repeat the experiments by defining the following ranges instead:

– Above 100, temperature is critical high (temp=4).
– Between 80 and 90, temperature is high (temp=HIGH=3).
– Between 60 and 70, temperature is good (temp=GOOD=2).
– Between 40 and 50, temperature is low (temp=LOW=1).
– Below 30, temperature is critical low (temp=0).

The corresponding declaration of parameters is:

const int TEMP_INC[temperature_t] = { 0, 4, 5, 5, 0 };

const int TEMP_DEC[temperature_t] = { 0, 13, 9, 7, 0 };

const int GUARD_INC[temperature_t] = { 0, 2, 2, 2, 0 };

const int GUARD_DEC[temperature_t] = { 0, 7, 4, 3, 0 };

We update the initial temperatures to be 65 and 85 for the two tanks with the
corresponding temp being 2 and 3. We check for the following control objectives:

control: A[] temp1>=LOW && temp1<=HIGH && temp2>=LOW && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=GOOD && temp2>=GOOD && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=GOOD && temp2>=HIGH && temp2<=HIGH

Similarly the two first properties are satisfied but not the third one. We show the
result of the simulation in figure 12. For the first property the controller chooses
to keep both tanks within the same (large) range of temperatures. The second
property results in separating the temperatures, as was the intention. We also

experienced strategies in our experiments that would be similar to Fig. 11.(b)
and still meet their control objectives.

The attentive reader would notice that for Fig. 11.(a) and Fig. 12.(b) the
actual simulated temperature gets below 40 degrees though still above 30 degrees.
The difference in the interpretation of the control objective comes from the fact
that there is no temperature in the game model and the resulting controller uses
the threshold “bands” as observations in a manner similar to [3] by detecting
entering and leaving observations. The discretized controller takes decisions when
crossing 40 degrees and never observes the temperature falling below 30 degrees.
The parameters of these models would need to be refined to take decisions when
crossing 50 degrees instead, which can be achieved by asking a different control
objective.

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

(a) (b)

Fig. 12: Simulation results with three observable ranges, one simulation for each
control objective.

We showed a methodology in this case-study to go from a hybrid model
to a time model to generate a discrete controller. The approach matches the
reality of having sensors that will detect changes (here of temperature) with
some precision. The approach shows promising results.

5 Conclusion and Future Works

We have presented two frameworks that can be used to generate hybrid con-
trollers and bridge the gap between control theory and its implementation on
real hardware. Our case-studies show the viability of these approaches. Com-
mon for both methods is the use of (timed) game abstractions in order to get
the problems on a computational tractable form. The PAHSCTRL toolbox en-
ables automatic abstraction and refinement to and from discrete game form while
the Uppaal-tiga-Simulink framework can simulate, solve and generate code for
timed games.

Future works include how to merge the first approach with the second one
to get the complete work-flow within Simulink for simulation and code genera-
tion purposes. The first framework generates models and is using only Matlab
while the second framework takes advantage of Simulink but requires a manually
constructed model. These approaches are complementary. In addition, Uppaal-

tiga can represent strategies as multi-terminal decision diagrams and output
them as pseudo-code in a different format. This could be used to generate more
compact and efficient code.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR’05, volume 3653 of LNCS,
pages 66–80. Springer–Verlag, August 2005.

3. F. Cassez, A. David, K. G. Larsen, D. Lime, and J.-F. Raskin. Timed control with
observation based and stuttering invariant strategies. In Proceedings of the 5th

International Symposium on Automated Technology for Verification and Analysis,
volume 4762 of LNCS, pages 192–206. Springer, 2007.

4. F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier. Automatic
synthesis of robust and optimal controllers - an industrial case study. In HSCC,
pages 90–104, 2009.

5. T. Chatain, A. David, and K. G. Larsen. Playing games with timed games. In
A. Giua, C. Mahulea, M. Silva, and J. Zaytoon, editors, Preprints of the 3rd IFAC

Conference on Analysis and Design of Hybrid Systems, pages 238–243, 2009.
6. J. D. Grunnet, T. Bak, J. D. Bendtsen, and F. Ankersen. PAHSCTRL - a control

synthesis toolbox for piecewise-affine hybrid systems. In Proceedings of the 2009

European Control conference. IEEE, 2009.
7. J. D. Grunnet, T. Bak, J. D. Bendtsen, and J. A. Larsen. Discrete game abstraction

for fault tolerant control synthesis. In Proceedings of IEEE CACSD’08, 2008.
8. J. D. Grunnet, J. D. Bendtsen, and T. Bak. Automated fault tolerant control

synthesis based on discrete games. In Proceedings of the 48th IEEE Conference on

Decision and Control. IEEE, 2009.
9. L. Habets and J. H. van Schuppen. Control to facet problems for affine systems on

simplices and polytopes - with applications to control of hybrid systems. In Proc.

44th IEEE CDC, 2005.
10. L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen. Reachability and con-

trol synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions

on Automatic Control, 51:938–948, 2006.
11. J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David. Guided controller

synthesis for climate controller using uppaal-tiga. In Proceedings of the 19th

International Conference on Formal Modeling and Analysis of Timed Systems,
number 4763 in LNCS, pages 227–240. Springer, 2007.

12. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS, volume 900 of LNCS. Springer, 1995.

13. Mathworks. Simulink, 2010.
14. P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time linear

systems. IEEE Transactions on Automatic Control, 51:1862–1877, 2006.

