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Abstract. Recently, we have proposed a new design theory for timee@ st
This theory, building on Timed I/O Automata with game ser@includes clas-
sical operators like satisfaction, consistency, logicahposition and structural
composition. This paper presents a new efficient algoritbrchecking Buchi
objectives of timed games. This new algorithm can be usedfiree liveness
in an interface, or to guarantee that the interface can thdeemplemented. We
illustrate the framework with an infrared sensor case study

1 Introduction and State of The Art

Several authors have proposed frameworks for reasoningt &terfaces of indepen-
dently developed components (e.g. [20, 13,9, 12]). Moste$¢ works have, however,
devoted little attention to real-time aspects. Recenttyproposed a new specification
theory for Timed Systems (TS) [11]. Syntactically, our sfieations are represented as
Timed I/O Automata (TIOAS) [19], i.e., timed automata whakgcrete transitions are
labeled bylnputandOutputmodalities. In contrast to most existing frameworks based
on this model, we view TIOAs as games between two playersitlapd Output, which
allows for an optimistic treatment of operations on speaffans [13].

Our theory is equipped with features typical of a composaialesign framework:
asatisfaction relatior(to decide whether a TS is an implementation of a specifiagtio
a consistency checfwvhether the specification admits an implementation), ame-a
finement (to compare specifications in terms of inclusionet$ ®f implementations).
Moreover, the model is also equipped witlyical compositior(to compute the inter-
section of sets of implementationsjructural compositiorfto combine specifications)
and its dual operatajuotient Our framework also supports incremental design [14].

Refinement, Satisfaction, and Consistency problems cagcheed to solving timed-
games. For example, if inconsistent states are statesghabtbe implemented, since
they violate assumptions of the abstraction, then decidimgther an interface is con-
sistent is equivalent to checking if a strategy that avaidsmnsistent states exists.

Our theory is implemented in ECDAR [17], a tool that leversjee game engine
UPPAAL-TIGA [4], as well as the model editor and the simulator of tirePIAL model
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Fig. 1: Structure of our specification theory for real-tingstems.

checker [5]. The purpose of this paper is to describe enrggtiato our theory, and to
report on the evaluation of the tool on a concrete case s@utycontributions are:

1. An on-the-fly algorithm for checking Blichi objectives of-ylayer timed games.
The algorithm builds on an existing, efficient method fovsad reachability objec-
tives [8, 4], but it uses zones as a symbolic representatiershow how the method
can be combined with a safety objective. This allows, fonegke, to guarantee that
a player has a strategy to stay within a set of states withlogklng the progress
of time. Similar results were proposed by de Alfaro et al] [t for a restricted
class of timed interfaces and without an implementationttiercontinuous case.

2. Arealistic case studyMost existing interface theories have not been implemented
and evaluated on concrete applications. We use ECDAR to #taivour interface
theory is indeed a feasible solution for the design of paéinicomplex timed sys-
tems. More precisely, we specify an infrared sensor for &g short distances
and for detecting obstructions. This extensive case stadyals both the advan-
tages and disadvantages of our theory, which are summanizeid paper.

2 Background: Real Time Specifications as Games

Following [11], we now introduce the basic objects of thipga Our specifications and
models (implementations) are taken from the same classdtgames. They both exist
in two flavors: infinite and finite. Fig. 1 summarizes this stwre. The top—bottom divi-
sion goes across the notion of satisfaction (models andfgadions) and the left-right
one across syntax-semantics (Timed I/O Transition Systgemddimed 1/0 Automata).
This orthogonality is exploited to treat the intricaciecohtinuous time behaviour sep-
arately from those of algorithms. Roughly, the infinite misdeve been used to develop
the theory, while the finite symbolic representations aesglus the implementation.

Definition 1. A Timed I/O Transition System (TIOTS) is a tufle- (St°, s¢, 2%, =°),
where St is an infinite set of states, € Stis the initial statey’® = $5@ 55 is a finite
set of actions partitioned into inputs and outputs, antl : St° x (X5 URso) ¥ st’



is a transition relation. We write 2% s’ instead of(s, a, s') € —° and use?, o! andd
to range over inputs, outputs aril( respectively. Also for any TIOTS we require:

[time determinism] whenever®°s’ ands-2+%" thens’ =s",
[time reflexivity] s -2s°s for all s € St°, and,

[time additivity] for all s,s” € St and all d;,d; € R>o we haves-4tdz 5 jff
s-41,5¢" ands’ 4245 s for somes’ € St°.

We writes-23° meaning that there exists a statesuch thats-2+°s’.

TIOTSs are abstract representations of real time behawWdéiuseTimed 1/0 Automata
(TIOAS) to represent them symbolically using finite syntax.

Let Clk be a finite set otlocks [Clk— R >¢] denotes the set of mappings fradtk
to R>,. A valuationoverClkis an element of [Clki— R >¢]. Givend € R>q, we write
u+d to denote a valuation such that for any clock Clk we have(u+d)(r) = x+d
iff u(r) = z. We writeu[r — 0], for a valuation which agrees with on all values
for clocks not inc, and gives 0 for all clocks in C Clk. Let op be the set of relational
operatorsop = {<, <,>, >}. A guardoverClk is a finite conjunction of expressions
of the forma < n, where< € op andn € N. We write B(CIKk) for the set of guards
overClk using operators in the sep, and &2 (X) for the powerset of a se¥ .

Definition 2. A Timed I/O Automaton(TIOA) is a tuple A = (Loc, qo,CIk E,
Act Inv) where Loc is a finite set of locationg; € Loc is the initial location, Clk

is a finite set of clocksy C Loc x Actx B(CIk) x Z(CIk) x Loc is a set of edges, Act
is the action set Act Act @ Act,, partitioned into inputs and outputs respectively, and
Inv: Loc— B(CIK) is a set of location invariants.

If (q,a,p,¢,q¢') € E is an edge, then is a source locationy is an actiony is a const-
raint over clocks that must be satisfied when the edge is ¢a@geus a set of clocks to
be reset, anq’ is the target location. We will give examples of TIOAs in Seft

The expansion of the behaviour of a TIOA = (Loc, ¢y, CIk, E, Act, Inv) is the
following TIOTS[A]sem= (Locx [CIk — R>¢], (g0, 0), Act —), whereQis a constant
function mapping all clocks to zero, and is generated by the two rules:

— Each(q,a,p,c,q') € E gives rise to(q, u)-%(¢’,u’) for each clock valuation
u € [CIK — R>¢] such that: = ¢ andu’ = u[r — 0],c. andu’ |= Inv(q’).

— Each locatiory € Loc with a valuationu € [CIk — R>¢] gives rise to a transition
(q,u)-L5(q,u + d) for each delayl € R~q such that: + d = Inv(q).

We refer to states and transitions of a TIOA, meaning thestand transitions of the
underlying TIOTS. As stated above, these states are loeatiock valuation pairs.

The TIOTSs induced by TIOAs conform to Def. 1. In additiongimarantee deter-
minism, for each action—location pair only one transitian be enabled at a time. This
is a standard check. We assume that all TIOAs below are detistin.

Implementationgmodels) are a subclass of specifications that are amertaiofe t
plementation. They have fixed timing behaviour (outputsuo@t predictable times)
and can always advance either by producing an output or idelay

Definition 3. A TIOA A is aspecificatiorif each states € St is input-enabled:
linput enabledness} i? € K1Akem g i?  [ALsen,



Definition 4. AnimplementationA is a specification (so a suitable TIOA), where, in
addition, for each statp € StI=n the following two conditions hold:

[output urgency] for each! € IAenif ;0! [Alsen gndp-dy [Alsen thend = 0 and,
[independent progresglyd > 0. p-4IAlem) or
(FdeR>o. Jol € SLAem  d JALemy andp’ oL JATzem)

Specifications are a subclass of TIOAs (the upper-left caratdn Fig. 1) which induce
TIOTSs that are input-enabled (the upper-right quadrémi)lementations are TIOAs
(the lower-left quadrant) that induce both input-enabled @utput-urgent TIOTSs able
to progress independently (the lower-right quadrant)h@éligh specifications and im-
plementations are defined above by restricting their sempraperties, it is possible,
although more clumsy, to rephrase these conditions syc#dgtand implement them
in a tool. These are again standard checks.

Arun p of a TIOTSS from its states; is a sequence; 2 s, 22 ... 224 g
such thatfor alf € [1..n], s; — 5,41 is a transition of5. We writeRuns(s;, S) for the
set of runs ofS starting ins;, andRuns(S) for the set of runs starting from the initial
state ofS. We write States(p) for the set of states of present inp and, if p is finite,
last(p) for the last state occurring in

TIOAs are interepreted as two-player real-time games batvwieeoutput player
(the component) and thaput player(the environment). Thaput plays with actions
in X and theoutputplays with actions in:

Definition 5. A strategyf for the input (resp. output) playet, € {i, o}, on the TIOAA
is a partial function fromRuns([A]sem) to Act U {delay} (resp. Act U {delay}) such

that for every finite rurp, if f(p) € Act, thenlast(p) I, ¢ for some state’ and if

f(p) = delay, thendd > 0.3s” such thatast(p) -2+ s”.

For a given strategy, we consider behaviors resulting frioenapplication of the
strategy to the TIOA, with respect to all possible strategitthe opponent:

Definition 6 (Outcome [15]). Let A be a TIOA, f a strategy overA for the input
player, ands a state off A]sem TheoutcomeOutcome;(s, f) of f from s is the sub-
set ofRuns(s, [A]sem) defined inductively by:

— s € Outcome; (s, f),
— if p € Outcome;(s, f) thenp’ = p -+ s’ € Outcome;(s, f) if
p’ € Runs(s, [A]sem) @and one of the following three conditions hold:
1. eeAct,
2. ecAct ande = f(p), , )
3. e€R>pandv0<e’ <e. 35" last(p) > s and f(p — ") = delay.

— p€Outcome; (s, f) if pinfinite and all its finite prefixes are i@utcome; (s, f)

Let MaxOutcome; (s, /) denote the maximal runs @utcome;(s, f), thatisp €
MaxOutcome; (s, f) iff p € Outcome;(s, f) andp has an infinite number of discrete
actions, orp has a finite number of discrete actions, but there exist ad\ctU R

and no state’ with p < s’ € Outcome; (s, f), or the sum of the delays jnis infinite.



For a given TIOA A, a winning condition W for input is a subset of
Runs([A]sem). We say thatV does not depend on the progress of the opponent (here
output) iff whenevep € W andp = p' < p”, with e € Ack, then either there exists
e’ € Act, d € R>o, a states and a rurp’”’ such thaty’ LINPEC p"" € W or there ex-
istsd € R>( and some statesuch thap’ 4, s € W. This restriction means that input
should always be able to ensure progress by itself and thatdtions of the opponent
should not be abused to advance the game, since we cannoteadsat the opponent
will ever make use of them. For a winning condititn, we write Strip(17) to denote
the subset oft in which the runs not satisfying this condition are removed.

A pair (A, W) is aninput timed gameGiven a winning conditiod? for input,

a strategyf of input iswinning from states if MaxOutcome(s, f) C W. A states is
winningfor input, if there exists a winning strategy for input fremThe gamed A, W)

is winningfor input if the initial state ofA is winning for it. For an input timed game
(A, W), we writeW; (A, W) for the set of winning states for input atfd( A, W, s) for
all winning strategies for input from. The winning conditions considered here are:

— Reachability objective: the input player must enforce a&etl of “good” states.
The corresponding winning condition is defined as

WR (Goal) = Strip{p € Runs([A]sem) | States(p) N Goal # 0} (1)

— Safety objective: the player must avoid aBad of “bad” states. The corresponding
winning condition is defined as:

WS(Bad) = {p € Runs([A]sem) | States(p) N Bad = 0} (2)

— Buchi objective: the player must enforce visiticdgal, a set of “good” states, in-
finitely often. Let| A| denote the cardinality of set. The winning condition is:

WB;(Goal) = Strip{p € Runs([A]sem) | |States(p) N Goal| = oo} 3

We define the outcome3utcome, (s, f) andMaxOutcome, (s, f) of a strategy of
the output player, as well as output timed games and all thteenotions, by swapping
‘i’ and ‘o’ (for instanceAct andAct,) in the above definitions.

We now present discuss thefinement relationwhich relates TIOTSs of two real
time specifications, by determining which one allows moresvéour:

Definition 7. A TIOTSsS = (St%, s, &, —°) refines a TIOTSE = (St} ¢y, &, =7),
written S < T, iff there exists a binary relatiok C St¥ x st containing(so, tp) such
that for each pair of stateés, t) € R we have:

1. if 25Tt for somet’ € St thens-255s' and (s, ') € R for somes’ € St
2. ifs21,5 for somes’ € St° thent 25T+ and(s',t') € R for somet’ e St
3. if 54555 for d € R>o thent-457t and(s',t') € R for somet’ € St'

A specificatior4; refines a specificatiod,, written A; < A, iff [A1]sem< [A2]sem
If A; is animplementation then we also say that it satisfigswritten A; = As.



Refinement between two automata may be checked by playirfgty game on the
product of their two state spaces, avoiding the error s{@tbsre error states are pairs
of states ofS andT" for which one of the above rules is violated). See detailslih |
13]. Since the product can be expressed as a TIOA itselfefireement can be checked
using the safety game as defined above.

Consider two TIOTSS = (Stis5, X5 %) andT = (St s7, X7 T). We say
that they arecomposabléff their output alphabets are disjoidty N X7 = (. The
productof S andT is the TIOTSS @ T = (St ® St, (s5, s1), 25®T 58T where
the alphabet*®T = % U X7 is partitioned into inputs and outputs in the following
way: D907 = (25\ 2T U (2T \ 2%), 258T= »5 U T, The transition relation is
generated by the following rules:

5258 ae XS\ X7 tay  ae XT\ XS
indep-I] [indep-r]
(s,1)-2s5€T (s 1) (s,1)-2558T (s, 1)
5985t g e RsoUETETU(XFNET)U (D5 NP lsync]
= sync

(s,1)-2559T (s )

Letundesirable be a set of error states that violate a safety property (fampte, an
elevator engine running while its door is open). Two speaifins areusefulwith re-
spect to one another if there is an environment that can avaiésirable states in their
product. The existence of such an environment s estallisir&nding a winning strat-
egy in the game formed by the product automaton and the olBa&tS(undesirable).

The parallel composition of and7 is defined asS | T = prung S ® T'), where
the prune operation removes frashe 7' all states which are not winning for the in-
put player in the gaméS ® T', WS(undesirable)). Parallel composition is defined for
TIOTSs induced by both specifications and implementatidnsimilar construction
can be given directly for specifications and implementatiomthe syntactic level [11].

In[11] we give constructions for two other operators coneglas winning strategies
in timed games. For TIOAs (TIOTS4} andC we define conjunctio® A C, which
computes an automaton representing shared implemergaifoB and C, and also
quotientB \ C, which computes a specification describing implementattbat when
composed withC' give a specification refining. Rather than define these operations
explicitly we characterize their essential properties] agfer the reader to [11] for
precise details of the constructions. L&be an implementation. Then:

AEBAC iff AEBandAEC (4)
AEB\C ff C|A<B (5)

3 Buchi Objectives

Symbolic On-The-Fly Timed Reachabil§OFTR)[8] is an efficient algorithm for
solving two-players reachability timed games used PPRAL-TIGA [4]. It operates
on the simulation graph induced by a TIOA representing thaedt follows an es-
tablished principle: begin with all reachable states ar@ppgate the winning states
backwards. Its major contribution is the use of zones ratier regions. Zones, which



are unions of regions of Alur and Dill [3], are the most effitieepresentation of clock
valuations known to date. In the following we recall SOTFERtend it to solve Biichi
objectives, and provide a new algorithm to verify Blichi aafitty objectives combined.

3.1 Solving Biichi Games with SOTFTR

For a TIOTSS and a set of stateX, write Pred,(X) = {s € St| 3s' € X. s %35’}

for the set of alla-predecessors of states ¥. We writeiPred(X) for the set of all
input predecessors, anéred(X ) for all the output predecessors &f, soiPred(X) =
UaEEiS Pred, (X) andoPred(X) = J,c s Preda(X). Also posty, 4,1(s) is the set of

all time successors of a statghat can be reached by delays less than or equéj:to
postyy 4, (s) = {s' € St | Id € [0, dy]. s-4+%'}. The safe timed predecessors of a set
X relative to an unsafe séf are the states from which a statehis reached after a
delay while avoiding any of the states ¥ (the subscript in the definition ofcPred;
below indicates that these are timed predecessors only):

cPred(X,Y) = {s € st’ | Jdop € R>0.38 € X.5-%0 5 andpostf%ydo] (s)C Y}

Let A be a TIOA and7 a set of “good” states ifid]semthat have to be reached, that
is the objective i®WR (G). Consider the following computation [21, 8]:

HQ L @
repeat Hy1 « Hy Um(H)UGfor k=0,1,...
until Hk-i—l = H;

whereri(H) = cPred(iPred(H ), oPred(States(Runs([A]sem)) \ H)). Ther; operator
computes the predecessors of Hethat can enforcé/ in one step, regardless of what
the output player does. This is done by taking timed predere®f input-predecessors
of H, as long as we can avoid output predecessors of stateseitsithe fixpoint of
m; is the set of states in which the input player can enforcetiegds eventually [21,
8]. SOTFTR is a symbolic zone-based implementation of tlwalfixpoint.

The winning states of the output player can be computed blacemw = with
7o(H) = cPred;(oPred(H ), iPred(States(Runs([A]sem))\ H)). Thus, in the remainder,
we focus on solving the game for the input player only.

The following algorithm for solving Bichi timed games is adaatation of the
above procedure given in [21], adjusted for a TI@%nd a Blchi objective. The set of
“good” statesGoal, is to be enforced infinitely often:

Wp < States(Runs([A]sem))
for j =0,1,...repeat
HQ — (Z)
repeat Hy1 < Hy Umi(Hy) U (Goal Nmij(W;)) for k=0,1,...
until Hk-i—l = Hy
W1 < Hy
until Wj+1 = Wj

Observe that a Buchi objective is essentially a closure @dfaghability objective: it
corresponds to finding a subset of “godddal states, from which reachability to the



good subset again is guaranteed for the player, and theimgdbr reachability of that
good subset. In the above computation, the inner loop firatesthat can enforce a
Goal state in at least one discrete step, and uses this informettidetermine which
Goal states are actually “good” (the intersection wibal). The outer loop removes the
Goal states that are not “good” from the target set of the innep .t the fixpoint, we
find both the subset of goddoal states and the states from which this subset can be
reached regardless of what the opponent does.

SOTFTR itself computes the inner loop of this algorithm wiiga: GoalNm; (W),
this observation leads to ttf&ymbolic Timed Biichjames (STB) algorithm:

Wp < States(Runs([A]sem))
repeatW; 1 < SOTFTRGoal N m;(W;)) for j =0,1,...
until Wj+1 = Wj

Observe that STB uses exactly the same operations on zoBE€¥T&STR, which means
that it can also be implemented in an efficient manner.

Theorem 1 ([8, 21]).For any input Buichi timed gamel, WB (Goal)), STB terminates
and upon terminatiofiV; = W; (A, WBi(Goal)).

The algorithm of [21] computes over infinite sets of statesr @gorithm is nothing
more than a symbolic implementation of the original one. Bgstruction and because
of [8], the above correspondence is obtained directly. Treaition is shown in [21].

3.2 Combining Safety and Biichi objectives

We now strengthen the Bichi objective so that not onlyGloel states are visited in-
finitely often, but also the set of unsafe staBes is avoided Bad N Goal = ()):

WBSGoal, Bad) = Strip{p € Runs([A]sem) | States(p) N Bad = () and
|States(p) N Goal| = o}  (6)

One application of such games is ensuring that the inpueplags a strategy to avoid
Bad while ensuring that time is elapsing [16], eliminating toecalled Zeno-behaviours.
If Bad can be expressed as a finite union of pairs of locations arté fimions of
zones, then this objective can be reduced to the usual Bbghttive by transforming
the game in the following way: (i) add a locatidh ¢ Goal; (ii) add anoutputaction
err ¢ Act; (iii) for each pair(q,|J,_, ,, Zi) € Bad such thay is a location ofA and
U;—1 . Z: is afinite union of zones, addedgesF; (i = 0..n) labelled byerr from ¢
to B such that for alt, the guard ofF; is Z;. Since locationB has no outgoing edges
and does not belong tBoal, enteringB means losing the Biichi game. Suppose we
want a winning strategy for the input player. Observe thattided edges belong to the
opponent. By definition of outcomes, going through any staBad means that one of
these edges can now be taken by the output player a8l ZgaSoal, the game is lost for
the input player. The following theorem expresses the ctmass of our transformation.

Theorem 2. Let (A, WBS(Goal,Bad)) be a TIOA, andd’ be its modification obtained
by the above construction. Théf(A4, WBS(Goal, Bad)) = F;(A’, WB (Goal))



Proof. Show thatF; (A4, WBS(Goal, Bad)) C F;(A’, WB(Goal)). Let f be a strategy in
Fi(A,WBS(Goal, Bad)) andsy be the initial state ofd ands;, of A’. As f is winning,
no run inMaxOutcome;(sg, f) goes through a state Bad. By construction ofd” we
have that no run iMaxOutcome; (s, f) goes througiBad and therefore the guards of
the extra edges id are never satisfied. Since, apart from these edfeis,identical to
A, and sincef ensures infinite repetition @oal in A, then it does also il’.

Now, showF; (A, WBS(Goal,Bad)) 2 F;(A’, WB(Goal)). Let f be a strategy in
Fi(A,WBS(Goal, Bad)) ands, be the initial state of4, ands{, of A’. The runs ofA4’
that go to locatiorB are maximal and cannot belongWéB (Goal) for B has no outgo-
ing edge. Lep be a run irMaxOutcome; (s, f) andp = p’ — s — p’’, and the guard of
one of theerr edges is satisfied in Theny’ =% (B, v) for some valuation is a max-
imal run and thus belongs tdaxOutcome;(sg, f) and thenMaxOutcome; (s(, f) <
WB (Goal) which contradicts thaf is winning. So the runs imaxOutcome; (s, f)
never go through states Bad. Furthermore, sincd and A’ are identical except foB
and itsincoming edges, it must then be takOutcome; (so, f) = MaxOutcome;(sg, f)
and so the runs iMaxOutcome; (s, f) also repeaGoal infinitely often. O

An Application: eliminating Zeno Strategie€onsider a
TIOA A and a seBad of bad states. Our objective is to it
find the set of states from which the input player (symmet@_
rically the output player) has a strategy to avBidi while
letting time elapse — as opposed to, for example, taking y=0
infinitely many discrete transitions without any delays. Fig.2: Monitor for non-
In order to generate non-zeno strategies consider #@mo strategies
productA x Z of A and the TIOAZ of Fig. 2. Then solve
the timed gaméA x Z, WBS(Goal, Bad)), whereGoal is the set of states o x Z
in which Z is in locationNonZeno. To fulfill this objective, the input player needs to
avoidBad and ensure thaNonZeno is visited infinitely often: once ilNonZeno, the
only way to revisit it is to pass throudhit. This loop requires that time unit elapses,
S0 repeated visits tdonZeno ensure that time progresses.
Note that this does not prevent the opposing player fromguaispoiling strategy
producing zeno runs to prevent fulfillment of the objective.

==1

NonZeno

Remark 1.0ne problem with the above setup is the effect of addingleelfs. Our
interface theory requires TIOA to be input-enabled. Thisangethat, in any state of
the game, the input player should always be able to react pfatihe input actions.
This typically means that states have implicit loops on trgmtions when the designer
does not specify any other transition for an input. Now, assthat the output player
wants to win the game and guarantee that time elapses. Thegtgyer could always
play such an input-loop and hence block time. This meansttigapotential addition
of arbitrary inputs may corrupt the game. A solution to thewabproblem is to blame
the input player each time it plays[16]. Then, the input plapses the game if there
is a point of time after which it is blamed forever. De Alfaroad were the first to use
blames[16]. We can also add a monitor for the blame situaiorother solution, in
order to avoid adding an extra automaton, is to use a coumte€DAR to bound the
number of Inputs (Outputs) that can be played successively.
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(a) Logical interface (b) Timing diagram; modified slightly from [22]

Fig. 3: The driver/sensor system

4 Case Study

The ideas just presented have been implemented in the tddARE10], which sup-
ports graphical modeling of TIOAs, computing compositigrerators (including quo-
tienting), and reachability analysis. For this paper, weetextended ECDAR with sup-
port for Buichi and Buichi with safety objectives. We applyoithe analysis of a simple
but realistic example: a sensor component and the softvweapgred to interface with
it.> The case study serves both to elucidate some of the tectdfiaitions and to
demonstrate their practicability.

4.1 Timing diagram model

The Sharp GP2D02 infrared sensor is a small component fosumieg short distances
and for detecting obstructions. Such sensors are incagabirato larger embedded sys-
tems through two communication wires which carry a protawfolising and falling
voltage levels. The four main components of a sensor sudrsyate shown in Fig. 3a:
an instance of theensor adriver component of a larger systemyim wire controlled
by the driver and read by the sensor, angatwire controlled by the sensor and read
by the driver. The communication protocol between drived aensor is described by
the timing diagram of Fig. 3b.

The timing diagram describes the permissible interactimeteseen a driver and a
sensor. It represents a (partial) ordering of events andirtiiag constraints between
them. With careful interpretation, against a backgrouneémgineering practice, the
timing diagram can be modeled as the TIOA shown in Fig. 4 amdéferth called .
Note that constants are multiplesiof ms, so the constaft2 ms in the timing diagram
is represented by an integer constant 2 in the model. Thishi®the result of several
choices and its fidelity can only be justified by informal argant [6, Chapter 4].

We now step through the timing diagram and the TIOA model ialbel describing
the meaning of the former and justifying the latter. Therattion of driver and sensor
is essentially quite simple: the driver requests a rangdimgathen after a brief delay
the sensor signals that a reading has been made, the diggmrs the sensor to transmit

5 Seenttp://www.tbrk.org/papersiwadt10.tar.gz for the implementation in ECDAR
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the reading bit by bit, and, finally, the process is repeatdai®@sensor is powered off.
The interaction takes place solely over the two commurocatiires.

The signal controlled by the driver is shown in the top halfred timing diagram.
Its most obvious features are the falling and rising tréors#, these have been mod-
eled in the TIOA as outputs called, respectivelylL! andvinH!. The driver may also
perform two other actions which are not entirely evidentrirthe timing diagram. It
may sample thegoutsignal to read a bit transmitted by the sensor, which we sgmite
by an output calledample!, and it may stop using the sensor, which we represent by
an output calleghowerOff!. The signal controlled by the sensor is shown in the bottom
half of the timing diagram. The rising and falling transit®on this signal are mod-
eled as outputs called, respectivelyutL! andvoutH!. In fact, all of the actions in the
model are outputs because the timing diagram describesadkystem. The model
is thus trivially input-enabled and there is no need for-&mdping input transitions on
each state. Furthermore, the model can be simulated irtimolsince all channels in
ECDAR must be broadcast channels (i.e. outputs are norkibkpc

The driver requests a range reading withL!, i.e. by lowering the voltage level
of vin. The sensor responds withutL!, it then performs the necessary measurements
before signaling completion wittoutH!. The timing diagram guarantees that the sensor
will complete a reading and respond after at I&&shs or morédnave passed, after which
the driver may performainH!. This sequence can be seenin the model in the transitions
linking statesTy—T,. We model the timing constraint by resetting a claclvhen the
initial vinL! occurs, and adding the location invarianK 700 to states/; and7s. By
rights this invariant should be strict, i.e.< 700, but this is not currently permitted in
ECDAR:.For strict compliance with the timing diagram we shioalso add the guard
x > 700 to thevinH! transition betweers and T}, in practice, however, there are
implementations that do not wait the fld0 ms but rather respond teutH!. Both
possible behaviors will be examined more closely in the saksection.

After a reading has been made, the driver transfers the bightf the result from
the sensor, from the most (MSB) to the least (LSB) signifitatntor each bit, the sen-
sor sets the level ofoutaccording to the value being transmitted, hence the ‘ctbsse



blocks’ in Fig. 4. The timing diagram could be more precisewtthe details, but in
our interpretation the driver triggers the next bit valughwévinL!, the sensor responds
within a bounded time, and then the sensor msayiple! the value and resefin with
avinH!, in any order, before the next bit is requested. The trigggrinL! appears in
the model fromT, for the first bit and fromiy for subsequent bits. The first action
must occur ir0.2ms or lesshence the invariant ofi,. The associated transition resets
two clocks:z, for enforcing thelms or moreconstraint across cycles, apdfor con-
ditions on response times within each cycle. It also setsthariablesb, for counting
the number of bits transmitted;, for monitoring the level ofout andchanged, for
limiting oscillations onvout We use thew variable to ensure the strict alternation of
voutL! andvoutH!, an alternative approach is shown later. Two other corstgppear
around the loofd5—T5: maxtrans is a limit on the time it takes foroutto change after
a triggeringvinL!, andminspace is the minimum width of pulses ovin. We set both
constants to zero for this case study.

Finally, after transmitting eight bits, the driver and semeeturn their respective
wires to a high level, and, aftdr.5ms or morgeither another reading is requested, or
the sensor is powered off. The timing constraint is expiasean invariant off'9, i.e.

a guarantee on the behavior of the sensor, and guards omiisiiwns fromi'10, i.e. a
constraint on the behavior of the driver. The invariantghticlosed and the guards are
left-open for the same reasons given above for7thiems constraint. Importantly, they
do not overlap, so that time alone can be used to enforce thexing between sensor
and driver actions.

ECDAR is used to verify that the model is a valid (determin)stpecification, and
also that it is consistent, i.e. that it has at least one valjglementation. We can also
show two basic properties of the timing diagram model. Tt fihatvinL! andvinH!
alternate strictly, is expressed using the automatéh shown in Fig. 5b, and verified
by the refinemenf” < V. The second, thatoutL! andvoutH! alternate strictly,
is shown similarly using/°%“, shown in Fig.5c, and the refinemeht < V°4t. In
fact, both properties can also be shown, using compositigrihe single refinement
T S (V’Ln | Vout).

4.2 Separate driver and sensor models

While the single automaton model of the previous sectionssitable formalization
of the timing diagram, there are at least two motivationsfeating separate but inter-
acting models for the roles of driver and sensor. First, $kisaration emphasizes the
distinct behaviors of each and clarifies their points of $yonization; each of the two
wires is, in effect, modeled separately. Second, each ohtitels may be used in isola-
tion. This possibility is exploited in an appendix of thelfugrsion of this paper where
a separate driver model serves as the specification for almabde implementation in
assembly language.

The components of the models are shown in Fig. 5. We discesdrier models
first, then the sensor, before relating them all to the tindiagjram model.

The driver model. As previously mentioned, there are two ways for a driver todve
after it has requested a range reading: it can wait for agigamsition on theoutwire,
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Fig. 5: Sensor and driver models

or it can just waitz00 ms regardless. We model each possibility separately, botters
shown in Fig. 5a. The model that responds to the sensor eveaitédD<?, it comprises
all locations except the one labeléd1, which should be ignored together with all of its
incoming and outgoing transitions. The model that alwayaydsis calledD?°, it com-
prises all locations except those labetigll andde2whose connected transitions are
also excluded. The models cannot be combined without intriod) non-determinism

Aside from these initial differences the two models behalentically and their
structures resemble that of the timing diagram model exitegitevents owoutfrom
the sensor are now modeled as the input acti@sL? andvoutH?, and a counter-
part for the statdy is not required. We explicitly model input-enabledness tgliag
self-loops, which, although not mandatory, since acticcioon broadcast channels



are necessary in ECDAR for verifying refinement. Note thahhdriver variants re-
quire little interaction with the sensor, relying insteadtoming assumptions to ensure
synchronization. In fact only)¢¥ reacts to sensor events directly, through\betH?
transition betwee{¥ andDs”, though both models do sample the leveVotit

Refinement can be used to show a basic property of both drigdefs, thatinL!
andvinH! alternate. This property is expressed as the automiatbyshown in Fig. 5b,
and we use ECDAR to show®’ < V" andD% < V™,

We would also like to claim thabde refinesD®?, i.e. thatD < D¢, sinceD®"
can always wait after receivingutH?, but ECDAR rejects this claim sind@?¢ does
not guarantee thabutH? will precede its initialvinH!. In fact, this type of refinement
can only be shown in a conditional form where assumptionsherenivironment are
made explicit. We revisit this idea after presenting a mdaiethe sensor that embodies
sufficient assumptions.

The sensor modelThe sensor mode$ is shown in Fig.5d. Events on then wire
are now modeled as the inputislL? andvinH?, with additional self-loops on certain
states, and the outpuismple! andpowerOff! are not needed. The initial segmesig;--
S3, mimics the corresponding part of the timing diagram molblet,the clocking loop
is reduced to a single locatia$y, with five self-looping transitions and one outgoing
transition.

In location Sy, the effect of the inputsyinL? andvoutL?, depends on the time
elapsed since the last request for a bit, as measured byatieagland the number of
bits remaining to transmit, as tracked by the coubtdihe inputvinL?, which requests
the next bit, is ignored if it occurs (again) within the pefigiven to the sensor to set the
level of vout, and also when all bits have been transmitted, i.e. when0. The input
vinH! is ignored until all bits have been transmitted at which tipr@videdmaxtrans
units have elapsed since the lastL?, it triggers an exit fromS,. The outputsoutL!
andvoutH! may only occur withirmaxtrans units of the lastinL?, and, furthermore,
only at most one output may occur within any cycle, that isveet any two successive
and ‘legal'vinL?s. The former constraint is expressed in the clausemaxtrans, and
the latter using the variabtshanged.

Instead of a&hanged variable, an earlier model [6, Figure 4.16] has two stateis wi
three transitions from the firstifanged = tt) to the secondghanged = ff): one
labeled withvoutL!, another withvoutH!, and the last unlabeled. This lastransition
marks the possibility that the sensor decides not to chamgesadltage level, which
occurs when two consecutive bits of a range reading arei@dnBesides being more
explicit, the two-state version is also more liberal sirtds ready to acceptinH? and
vinL? as soon as the value gbuthas been set. Even withaxtrans = 0 there is a
difference since in the current model there is always a revn-delay after a triggering
vinL! before subsequenrinL! or vinH! actions can influence the sensor. In any case,
steps are not permitted in TIOA and replacing them with ardiexputput only makes
modeling awkward, and, moreover, it is unnecessary sinealtiver models always
wait and never respond immediatelyviaL! or vinH! whose occurrence is a sufficient
but not necessary indication of a stable valuesont

The sensor model as it stands allows arbitrary interleagingutl! andvoutH!.
This is in contrast to the timing diagram model of Fig. 3b, veha variablew, tracks



D yinL! Attacker plays outputs on left f

De .vinL! Defender’s response on right gf
D4 waits 701 ms Attacker may delay on left of
De” waits701 ms Defender’s response on rightof
D9 vinH! Attacker plays outputs on left f
no response Defender loses!

Table 1: Counterexample fdp?¢ < DV

the level ofvout, or effectively which ofvoutL! or voutH! occurred most recently, and
is used to constrain output events. The required altergpatmavior is recovered using
the conjunction operator and the TIGA°*, depicted in Fig. 5¢, giving the complete
sensor specification:S A V°ut). Here, the conjunction operator obviates the need
to update and query a state variable on multiple transiti@nspecific constraint is
expressed in a localized and obvious form and the rest of tidehtan be constructed
under the assumption that it will hold. In ECDAR, the two autda,S and V °“,
execute in parallel and must synchronizevantL! andvoutH!, neither of which may
occur otherwise. Unlike for the timing diagram and the driveddels, there is no need
to separately verify the alternation of outputs—it is gudead by construction.

Relations between the modeNow that we have a few different models, we turn our
attention to their interrelationships. It turns out thataf the driver models is more
general than the other under certain assumptions. Aftefyireg that fact, we turn
our attention to validating the composition of the drivedaensor models against the
timing diagram model. We also consider how the quotientaemight be applied.
The two driver models differ only in their initial interaoti with the sensor, after
requesting a range reading?c always wait00 ms wherea®“’ may respond as soon
as the sensor raisesut One could thus suppose that” is more general tham?°,
since it can also refuse to act befai® ms has passed even after receivingatH!.
But, as described earlier, a first, naive attempt to showafieamentD ¢ < D¢ fails!
The counter-example strategy can be simulated in ECDAR)@ihe results shown in
Table 1. There is no guarantee that the inputs needdabwill be provided. We must
make these assumptions on the environment explicit byadsttating the relation as

(Dde | (S A Vout)) < (Dev | (S A Vout))'

which is readily validated by ECDAR.The verification fails if D% and D¢’ are
swappedD*’ can perform ainH? whenz < 700 while D% cannot.

The compositions of the driver and sensor models have bemoged as alterna-
tives to the timing diagram model. We state this, for the mgeaeral driver model,
as two properties{D’ | (S A Vo)) < T, andT < (D® | (S A V°ut)). Both of
which are verified almost instantaneously by ECDAR. For ihelar properties with
D4 instead ofD°?, only the version witdl” on the right of the refinement holds; as
would be expected.

8 In the current version of ECDARS andV °** must be explicitly duplicated.



Even ignoring the conjunction operator, the possibilityvefifying a refinement
with a composition on the right-hand side is interesting;duse it is not possible in
any other existing tools for checking timed automata refiamor instance, current
implementations [7] of the usual construction for checkinged trace inclusion [18,
23] require that the refined specification is an explicit endton. The capability to
address compositions is one advantage of incorporatingflreement verification into
the model-checker itself.

There are limited opportunities to apply the quotient ofmeran this case study,
perhaps because there are only a small number of models ammp#rators are not
nested in especially complicated ways. There are, thoughtytpes of properties that
may be attempted.

The first type of property uses the quotient on the right-hsidé of a refine-
ment instead of composition on the left-hand side. For ms#tawe can verifyD’ <
(T\ (S A Veut))in ECDAR. The right hand side expresses the idea of the tirding
agram modulo certain assumptions on the environment. Glyrine tool requires the
explicit definition of universal and inconsistent stateswlusing the quotient operator,
and simulations are not possible. These issues will be adeldan future versions.

Second, we could try the quotient on the left-hand side ofingment. For instance,
to propose the propertyi’ \ D) < (S A V%) as a means of finding out whether
the sensor model is maximal with respect to the timing diagaad driver model. This
cannotwork in general, however, since as soob &scannot do an output from a state,
like vinH! from the initial state for example, the quotient will haverartsition to the
universal state from which any output or delay can be chaaeamy time, to challenge
the other side of the refinement.

Biichi objectives.Some aspects of specifying liveness are addressed by thetlaigs
presented earlier, and supported in ECDAR. It is possiloleekample, to determine
whether a given combination of a TIOA and a liveness constrakpressed as a Biichi
objective, are consistent; i.e. whether refinement is ptesdBut other important aspects
are not yet addressed satisfactorily. Most notably, therattion of Blichi constraints
and refinement is limited.

Buchi objectives offer a way to further constrain specifaas. For example, con-
sider adding an additional requirement to the timing diegraodelT": if an initial
range reading is requested, the system must eventuallyveered off. We will inter-
pret this to mean that two behaviors are allowed: 1. restmgvier inTy, or, 2. termi-
nating inT7y;. Our first attempt is to simply try to solve a Blichi objectiee fhe current
model: (T, WB({Ty, T11})). But this is not correct, and ECDAR reports that the model
is inconsistent. While the model startsfi, and77; is always reachable, the Biichi ob-
jective is only satisfied if either dfy or T1; is reentered infinitely often. Self-looping
output transitions must be addedp andT7; to allow ‘resting’ in these states. If we
do this—choosing an arbitrary output that will not occur ny @ther models—and call
the modified versiofi”, ECDAR confirms thatT’, WB({1y, 7, })) is consistent.

The modified model is easily adapted to allow a system thatmstaps taking range
readings(T”, WB({T}, T}y, T{1})). This model is obviously consistent since increas-
ing the set of states in the Buichi objective cannot reducséhef possible implementa-
tions. More information can be gained by verifying the cstesicy of 77, WB({ 77, })).



which confirms that the model allows unbounded repetitiohthe protocol. Com-
pliance with the Blchi objective is achieved by pruning awlag transition labelled
powerOff!, so this verification does not show that the unadorned mddeloes not
allow termination, only that the model can choose to cyclgtionmously. Verifying the
consistency of a model with a Biichi objective can be usefal sanity check.

While Bichi objectives in ECDAR are quite useful for checkonsistency prop-
erties, they work less well in combination with refinememtr FRstance, in ECDAR we
can show(T", WB({Z}})) < (T", WB({T},})).

This is indeed correct, since any implementation of theHeftd side is also an
implementation of the right-hand side, but it could be cdaséd misleading, since
the left-hand side specifies a system that never starts @ raagling, while the right-
hand side could be interpreted as specifying a system that stops performing range
readings whereas, in fact, it is a system where it is posdilifenot strictly necessary,
to keep performing range readings. The source of this midmist that the current
refinement is based on partial observations rather thanledegnes, which is adequate
for safety but not for liveness.

The pruning of output transitions that can result from thembmation of a TIOA
and a Buchi objective gives models where a constraint thatigosedly on infinite
behaviors also constrains finite behaviors, which, whitenazessarily bad, is perhaps
not completely reasonable [1]. The methodological impices for our theory are not
yet clear, but we note here that this situation can be deterdimg refinement verifica-
tion in ECDAR. Themachine closur¢?] of a TIOA A and a Buchi objectivé3 can be
checked by the refinement < (A, B), which will fail if a reachable output transition
in A is not presentinfA, B).

5 Summary and Future Work

We have shown that ECDAR and the underlying theory, are gonemough to handle a
small—in terms of the scale of systems developed by industmyt realistic case study.
The input/output semantics of TIOA works well for open sys$e and the game-based
refinement semantics, i.e. the idea of challenging with iefrom the right-hand side
and outputs or delays from the left-hand side, quickly cotnegem natural. Including
refinement testing in the model checker itself is much morevenient than having to
pass models through an external tool, and the concomitaturieof allowing composed
models on either side of the relation is a powerful one. ljntde conjunction operator
is a very convenient modeling feature.

Still, several elements could be improved. While Biichi obyes are currently not
without use, a different notion and implementation of refieat is needed to support
more sophisticated applications. The quotient operatsupgported by ECDAR, but its
effectis not easily visualized or simulated. More work isded to determine how it can
be usefully applied to system development and verificattomsensor case study is too
limited in this regard. ECDAR takes advantage of the matup@AAL user interface,
but strategies, goals, and the effect of pruning are inhisremore complicated and
harder to understand than are simple traces, more work tede® understand how
best to compute and communicate this information. Furtibeenthe new operators and



analyses available in ECDAR make it natural to work with riplét pairings of system
declarations and properties, but this is not yet well sutgabloy the user interface.
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