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Abstract This article proposes two approaches to tool-supported automatic verifica-
tion of dense real-time systems against scenario-based requirements, where a system
is modeled as a network of timed automata (TAs) or as a set of driving live sequence
charts (LSCs), and a requirement is specified as a separate monitored LSC chart.

We make timed extensions to a kernel subset of the LSC language and define a
trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent
observer TA and then non-intrusively composing this observer with the original TA-
modeled real-time system, the problems of scenario-based verification reduce to com-
putation tree logic (CTL) real-time model checking problems. When the real-time
system is modeled as a set of driving LSC charts, we translate these driving charts
and the monitored chart into a behavior-equivalent network of TAs by using a “one-
TA-per-instance line” approach, and then reduce the problems of scenario-based ver-
ification also to CTL real-time model checking problems. We show how we exploit
the expressivity of the TA formalism and the CTL query language of the real-time
model checker UPPAAL to accomplish these tasks. The proposed two approaches are
implemented in the UPPAAL tool and built as a tool chain, respectively. We carry out
a number of experiments with both verification approaches, and the results indicate
that these methods are viable, computationally feasible, and the tools are effective.
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1 Introduction

A model checker typically needs two inputs: a model that characterizes the state/
transition behaviors of a finite state concurrent system, and a temporal logic formula
that specifies the property of interest. For real-time systems, a widely used modeling
formalism is timed automata (TA) [2], and the temporal logics could be CTL, LTL,
TCTL, etc. Various methods, techniques and tools for model checking real-time sys-
tems have been developed over the years, and numerous successful stories of applying
them to industrial projects have been reported [6].

Temporal logics such as CTL, LTL, TCTL in themselves are rich enough to for-
malize a wide range of user requirements such as reachability, safety, liveness and
responsiveness. However, these logics are difficult to grasp by non-mathematician/
logician users, and in most existing real-time model checkers such as KRONOS [41]
and UPPAAL [6], they have only incomplete implementations — on one hand, their
atomic propositions are interpreted over the semantic states of timed automata and
cannot be event occurrences [41,6]; and on the other hand, there are only limited or
even no means for straightforward characterization of quantitative timing constraints
[41,6].

The first incompleteness as mentioned above implies that these temporal logics
describe only intra-process (or “state/transition-based”) properties, i.e., whether all
states (�) or at least one state (♦) along all paths (A) or at least one path (E) of the
individual processes or the product process (i.e., the parallel composed system model)
satisfy some particular properties. The second incompleteness implies that general
form timing requirements such as E♦1≤x≤3 cannot be easily captured. Altogether,
we cannot hope to use these temporal logics to characterize event synchronizations,
causal relations, or timed scenarios such as “if process B sends message m1 to process
A, and C sends m2 to D (in any order), then B must send m3 to C within 1 to 3 time
units” intuitively and conveniently.

Live Sequence Chart (LSC) [18] is a visual formalism for scenario-based require-
ment specification (in this case, an LSC chart is called a monitored chart). Similar to
the classical Message Sequence Chart (MSC) [20], LSC also describes inter-process
properties, i.e., how the system processes interact, collaborate and cooperate via mes-
sage or rendezvous synchronizations. But beyond that, LSC makes essential exten-
sions to MSC by adding modalities. The existential and cold (resp. universal and
hot) modalities represent the provisional (resp. mandatory) requirements at global
(i.e., whole chart) and local (i.e., message, condition, location and cut) levels, respec-
tively. At the global level, an existential (resp. universal) chart specifies restrictions
over at least one satisfying (resp. all possible) system runs. At the local level, for
example, a cold condition may be violated and thus lead to a “graceful” chart exit,
whereas a hot one must be satisfied and otherwise will indicate an error. The power of
LSC lies in that a universal LSC chart can optionally contain a prechart, which spec-
ifies the scenario which, if successfully executed (or matched), forces the system to
satisfy the scenario given in the actual chart body (i.e., the main chart). Furthermore,
the LSC language is unambiguous because it has strictly defined semantics, e.g., the
executable (operational) semantics [18] and the trace-based semantics [11,26].
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We envisage LSC as a nice complement to the intra-process property specification
languages of existing (real-time) model checkers:

– Intuitiveness. As a visual formalism, LSC is more intuitive in capturing complex
user requirements than the text-form temporal logics;

– Scenario characterization. Compared with many temporal logics whose atomic
propositions are restricted to be state formulas, LSC has the necessary language
constructs (e.g., message and conditional synchronization) to describe process
interactions and thus enable the characterization of a variety of causality and non-
trivial scenarios. In particular, LSC can be extended to describe timed scenarios;

– Counterexample display. In conventional temporal logic model checking, even if
a counterexample is due to an inappropriately specified requirement on a correct
system model, one has to debug the model to find out the specification error. LSC
improves on this by providing the possibility of tracing the counterexamples also
back to the visual, scenario-based requirement specifications, and thus facilitates
the debugging of both the system models and the user requirements.

In addition to being used as a requirement specification language, LSC can also
serve as a scenario-based behavioral modeling language (in this case, each LSC chart
is called a driving chart). A communicating system can be modeled as a set of driving
LSC charts, which we call an LSC system (LS). Scenario-based modeling using LSCs
enjoys the advantage of piecewise incremental construction of system models, i.e.,
new pieces of scenarios can be added into the models during the development pro-
cess. However, to check whether an LSC-modeled system satisfies a scenario-based
requirement is difficult due to the need to consider both the explicitly specified and
implicitly allowed behaviors in each scenario, and the interplays among the different
scenarios. The problem becomes even more complicated for real-time systems, as
time-enriched LSCs may contain subtle timing errors that are difficult to diagnose.
Clearly, this verification problem needs powerful analysis methods, techniques and
automated tool support.

In an LSC system, the instance lines in the charts can be viewed as parallel com-
posed processes that interact with one another via message or rendezvous synchro-
nizations. This in spirit resembles some formalisms and tools for concurrent system
modeling and analysis. Specifically, the real-time model checker UPPAAL [6] oper-
ates on a network of interacting timed automata that communicate via handshake and
broadcast synchronizations and shared-variable communications. With its features of
committed locations, broadcast channels, and boolean and integer variables, UPPAAL
is capable of properly mimicking the behaviors of a time-enriched LSC system using
timed automata. This opens up the possibility of exploiting the power of UPPAAL for
simulating and analyzing scenario-based real-time system models.

A monitored LSC chart captures the user requirement that once the prechart (if
any) is successfully matched, then the main chart must be matched afterwards. This
is a kind of liveness or responsiveness requirement. Coincidentally, the UPPAAL CTL

query language has the “leads-to” property pattern φ ϕ which is a shorthand for
A�(φ ⇒ A♦ϕ), stating that whenever φ is satisfied, then eventually ϕ will be sat-
isfied. By automatically transforming a monitored chart into a behavior-equivalent
observer timed automaton, we can specify a corresponding φ ϕ property in UP-
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PAAL to capture the LSC requirement. By non-intrusively composing the observer
timed automaton with a TA-modeled real-time system, we can achieve the effect of
using a monitored chart to “spy on” the system behaviors. All these pave way to
verifying real-time systems against scenario-based LSC requirements.

In this article we model a real-time system as a state/transition-based system,
more precisely a network of timed automata, or as an object interaction-based system,
more precisely a set of driving LSC charts. We capture a scenario-based requirement
that is to be verified using a separate monitored LSC chart. We aim at tool-supported
automatic verification of the system against the requirement (Fig. 1). As mentioned in
the previous paragraphs, we notice that the problems of verifying a state/transition-
based real-time system (Fig. 1, left part) and an object interaction-based real-time
system (Fig. 1, right part) against a scenario-based user requirement can both be
reduced to CTL real-time model checking problems. Since UPPAAL has sophisticated
data structures and efficient verification algorithms for handling timing constraints,
in this article we will employ UPPAAL as our underlying verification engine.

LSC-to-TA 
translation

monitored
LSC chart

driving
LSC charts

(one-TA-per-
chart)

(scenario-based
requirement
specification)

(scenario-
based
system 
model)
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translated
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network of
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based system 
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CTL
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Fig. 1 The overall framework of scenario-based verification of real-time systems

This article is an extended version of previous work at FM’09 (Fig. 1, left part) [28].
In this article, we extend our previous work by complementing (i.e., “horizontally
scaling up”) the verification framework with systems being modeled as a set of driv-
ing time-enriched LSC charts (Fig. 1, right part, partly taken from [29]). We provide
lemmas and proofs for the theorems in this article. We add new translation and ver-
ification methods for LSC charts under the iterative activation mode. We provide
explanations on the prototype tool implementations, and report in more detail some
experimental verification results.



5

1.1 Contributions

The main contributions of this article include:

– We define a kernel subset of the LSC language, make timed extensions to this
subset such that it is suitable both for scenario-based behavioral modeling and
for scenario-based requirement specification of real-time systems, and we define
a trace-based semantics;

– We propose a behavior-equivalent translation of a monitored LSC chart to an ob-
server timed automaton, and propose a method of non-intrusively “observing” an
existing TA-modeled real-time system using this observer automaton, thus en-
coding the problem of verifying state/transition-based real-time systems against
scenario-based requirements as a CTL real-time model checking problem. We
show how these are integrated into the UPPAAL model checker;

– We propose a behavior-equivalent translation of a driving or monitored LSC
chart to a network of timed automata, one for each instance line, and reduce the
problem of verifying object interaction-based real-time systems against scenario-
based requirements to CTL real-time model checking problems. We implement
the LSC-to-TA translator which, together with our LSC editor and the UPPAAL
model checker, constitutes a tool chain for scenario-based automatic verification;
and

– We conduct experimental evaluations of the proposed approaches, and report the
results.

1.2 Organization

Section 2 shows how to model and specify real-time systems using timed automata
and temporal logics, respectively, and why scenario-based approaches may come
in handy. In Section 3 we define the notations, syntax and semantics of our time-
enriched LSC chart. Sections 4 and 5 show how to verify a state/transition-based real-
time system and an object interaction-based real-time system against a scenario-based
requirement, respectively. Section 6 reports the tool implementations and experimen-
tal evaluations of the proposed approaches. Section 7 shows how to horizontally scale
up the LSC-to-TA translation methods from invariant mode charts to iterative mode
charts. Section 8 discusses some related work on scenario-based verification of real-
time systems. Finally, Section 9 concludes this article.

2 Modeling and specification of real-time systems

2.1 Timed automata and computation tree logic

Timed automata (TA) is a popular visual formalism for modeling the state/transition-
based behaviors of dense real-time systems. According to Alur and Henzinger [3], the
underlying philosophy of TA is that a real-time system can be viewed as a discrete
system with clock variables:



6

– The discrete system is represented as a finite directed graph, where each vertex
represents a (control) location, and each edge represents an instantaneous switch
(or discrete jump); and

– The system has a finite set of clocks which increase at the same speed and can
be reset. Each clock variable keeps track of the elapsed time since last time this
clock was reset. Clock variables can be used in boolean expressions to guard the
instantaneous switches. Each location may be associated with a clock constraint
called invariant, specifying the condition under which time can still elapse in this
location. 1

To describe a system which consists of a number of concurrently running pro-
cesses, a network of timed automata can be constructed, one for each process. These
automata are composed in parallel using the operator || . Different automata in the
system can synchronize on their common actions [2], and the product automaton has
an interleaved execution semantics.

Timed automata in its original form [2] are a simple, concise and yet expressive
language. To better support the modeling and automatic verification of real-time sys-
tems, various syntactic sugar and extensions are added to the TA formalism. Specif-
ically, UPPAAL [6] strengthens TA with a number of features such as boolean and
bounded integer variables, variable constraints and updates, urgent and committed
locations, handshake and broadcast channel synchronizations, shared variable com-
munications, etc. Here an urgent location is a location where time is frozen (i.e., once
an urgent location is entered, it should be exited with zero time delay); and a commit-
ted location is a special urgent location where the outgoing transitions have higher
priority to be taken than those from non-committed ones (Fig. 2(c), the “C”-marked
location).

Fig. 2(a)-2(d) give an example of a network of TAs in UPPAAL.

m4?

m2?

(a) TA
A

x <= 5

x <= 5

m2!
x >= 3
m1!

(b) TA B

m4!

m3!

m1?

(c) TA C

m3?

m4?

(d) TA D

Fig. 2 A real-time system model (network of TAs)

Requirements on TA-modeled real-time systems can be specified using temporal
logics such as CTL, LTL or timed variants thereof. For example, UPPAAL uses a
fragment of the CTL logic as its property specification language. Atomic propositions

1 Pragmatically, location invariants are used to allow the system to stay in a location for a limited period
of time, and then force it to leave that location.
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take the form:

ap ::= automaton.location | guard_on_clocks | guard_on_variables,

and properties can be specified using a number of patterns:

– reachability (E♦φ );
– safety (A�φ , E�φ ); and
– liveness properties (A♦φ , φ ϕ).

In particular the leads-to (responsiveness) property φ ϕ is a shorthand for A�(φ⇒
A♦ϕ), stating that whenever φ is satisfied, then eventually ϕ will be satisfied.

2.2 Scenario-based approaches

Although a lot of properties can be specified by using the above-mentioned property
patterns, many others still cannot. Consider a user requirement on the TAs in Fig. 2:

If we observe that process B sends message m1 to process C when clock x is no
less than 3, then afterwards (and before m1 can be observed again) we must observe
that B sends m2 to A when x is no less than 2, and C sends m3 to D (in any order).

This requirement cannot be specified as a UPPAAL CTL formula or a KRONOS
TCTL formula. The reason is that the atomic propositions, which are restricted to be
state propositions, do not characterize message passing directly. In other words, they
lack the necessary mechanisms for specifying the process interactions and scenarios.

Live Sequence Chart (LSC) is a scenario-based requirement specification lan-
guage. After extending the LSC language with TA-like clock variables and clock
constraints, we notice that the above requirement can be easily captured using LSC
(Fig. 3). For instance, the first block of diagrammatic elements {m1, x ≥ 3} means
that: when message m1 in the real-time system model is observed, the value of clock
x should be no less than 3 at this moment; and if this is the case, then the moni-
tored execution continues, otherwise the prechart (Fig. 3, the outer dashed hexagon)
is cold-violated and exited, indicating that this “premise” is not satisfied.

A DB C

x>=2

x>=3

m3

m1

m2

Fig. 3 An LSC chart that expresses a requirement on the real-time system in Fig. 2

Thanks to its liveness feature and executable semantics, LSC can also be used
to model the scenario-based interaction behaviors of communicating systems. In this
case, each LSC chart describes a piece of the “if (something happens) then (some
other thing must happen)” style behaviors. A number of driving charts collectively
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constitute the system model. They characterize how the system processes should in-
teract and collaborate. By allowing LSC to be used both for requirement specification
and for system modeling, we may carry out scenario-based validation activities in a
much earlier stage of the software development cycle, thus making it possible for
developers to focus more efforts on programming/validation-in-the-large rather than
programming/validation-in-the-small.

3 Live Sequence Chart: timed extensions and semantics

3.1 Notations and syntax

In this article, LSC in its simplest form is a message-only untimed chart, i.e., there
are only language elements of instance lines, locations, messages and precharts/ main
charts (Fig. 4).

We make the synchrony hypothesis, i.e., system events consume no real time and
time may elapse only between events. In this way message synchronizations will be
instantaneous, i.e., the sending and receiving of a message are assumed to happen at
the same moment in time. Therefore the terms of message and (message sending or
receiving) event will be used interchangeably.

An LSC chart has a role, a type and an activation mode. In this article we consider
the roles of:

– property specification, i.e., a monitored chart will just “listen to” the messages and
read the clock variables in the original system models, but never emit messages
to or reset the clocks in those models; and

– system modeling, i.e., a driving chart can emit messages and/or reset the clocks
when it needs to do so.

A monitored LSC chart could be of the universal or existential type, whereas a
driving chart can only be of the universal type. Since an existential chart is in nature
similar to a Message Sequence Chart, in this article we will mainly be interested in
universal charts. A driving or monitored universal chart consists of:

– a main chart (Mch), which specifies what should happen in order for this universal
chart to be satisfied (Fig. 4, lower part of the chart 2); and optionally

– a prechart (Pch), which specifies the “premise” whose satisfaction triggers the
main chart and forces it to be satisfied (Fig. 4, upper part of the chart, i.e., the
dashed hexagon area).

If a universal chart has no prechart, then it can be simply treated as having a satisfying
prechart. In this article we assume that a universal chart has a prechart. Furthermore,
an existential chart consists of only a main chart.

A universal chart has an activation mode which determines how often a chart
should be activated. In this article we consider:

2 In the original definition of LSC [18], the main chart of a universal chart should be enclosed within
a solid rectangle borderline, whereas that of an existential chart should be within a dashed borderline. For
brevity, in this article we omit the borderlines of universal charts. Since no existential chart examples are
given in this article, no confusion arises between existential charts and non-prechart universal charts.
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– the invariant mode, i.e., the prechart is being constantly matched for in the mes-
sage stream (i.e., for any arriving message, in addition to being monitored by
existing prechart copies, it will initiate a new prechart copy), and the main chart
will be activated (i.e., a live chart copy will be incarnated and then enforced)
whenever the prechart is successfully completed; and

– the iterative mode, i.e., as long as the main chart is currently active, the prechart
will not be monitored for further satisfaction (until the current “iteration” of the
main chart is over).

In the rest of this section and Sections 4 - 6, we consider only the invariant mode
LSC charts and their translations. The case of the iterative activation mode will be
addressed in Section 7.

3.1.1 Message-only untimed chart

We start with message-only untimed charts. See Fig. 4 for an example.
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Fig. 4 Anatomy of an example untimed LSC chart L

Each LSC chart describes a particular interaction scenario among a set of pro-
cesses (or instances, or agents). Given a universal chart L, let I = inst(L) be the set of
instance lines in L (Fig. 4, instance lines {A, B}). Along each instance line Ii ∈ I there
is a finite set of “positions” pos(L, Ii) = {0,1,2, . . . , p_maxL,Ii} ⊂N≥0, which denote
the points of communication, computation and synchronization (Fig. 4, black filled
circles along A and B). Specifically, along each instance line Ii there are four “stan-
dard” positions StdPos(L, Ii)= {Pch_topL,Ii , Pch_botL,Ii , Mch_topL,Ii , Mch_botL,Ii}⊆
pos(L, Ii), denoting the entry/exit points of the prechart/main chart, respectively (Fig. 4,
downward ascending positions 0, 3, 4, 6 on instance line A), such that:

– 0 = Pch_topL,Ii < Pch_botL,Ii < Mch_topL,Ii < Mch_botL,Ii = p_maxL,Ii ; and
– Pch_botL,Ii +1 = Mch_topL,Ii . ut

The positions of an existential chart L can be defined similarly. Since an existen-
tial chart has no prechart, an instance line Ii of it has only two “standard” positions
Mch_topL,Ii and Mch_botL,Ii .

A chart location is a position on a certain instance line of the chart. The set of all
locations of chart L is denoted as:

Loc = loc(L) = {〈Ii, p〉 | Ii ∈ inst(L), p ∈ pos(L, Ii)}.
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Since a “standard” position cannot be the end point of a message, the set of all
message-anchoring locations of L is denoted as:

locM(L) = {〈Ii, p〉 | Ii ∈ inst(L), p∈ pos(L, Ii)\StdPos(L, Ii)}.

Furthermore, we define a function psn : loc(L)→
⋃

Ii∈inst(L) pos(L, Ii) to project a
location to its position on its instance line.

Let L be an LSC chart, and ML(L) be the set of message labels (or “signals”,
or “channels” in UPPAAL) of L (Fig. 4, {m1, m2, m4}). A message occurrence mo =
(〈Ii, p〉, m, 〈Ii′ , p′〉) ∈ locM(L)×ML(L)× locM(L) corresponds to instance Ii, while
in its position (p−1), sending signal m∈ML(L) to instance Ii′ at its position (p′−1),
and then arriving at positions p and p′, respectively (Fig. 4, ellipse-circled portion).
We call lab(mo) = m the message label, head(mo) = 〈Ii′ , p′〉 and tail(mo) = 〈Ii, p〉
the message head and tail locations, and src(mo) = Ii and dest(mo) = Ii′ the source
and destination instances, respectively. We use loc(mo) = {head(mo), tail(mo)} to
denote the message anchoring locations. The set of all message occurrences in chart
L is denoted as:

MO(L)⊆ {(〈Ii, p〉,m,〈Ii′ , p′〉) ∈ locM(L)×ML(L)× locM(L) |
p≤ Pch_botL,Ii ⇔ p′ ≤ Pch_botL,Ii′}.

We omit the parameter L in MO(L) (and thus abbreviating it as MO) when it is
clear from the context. Furthermore, the projection of MO(L) onto inst(L)×ML(L)×
inst(L) is denoted as Σ = MA(L) (“message alphabet”), where each letter is a mes-
sage which denotes that a particular signal is sent from one object (instance line) to
another. For a given message occurrence, we may overload its “message label” to
also denote the corresponding letter in Σ .

This article does not consider concurrent messages (i.e., we assume that any in-
stance line does not send and/or receive two or more messages simultaneously), thus
each location can be the end point of at most one message occurrence in the chart.

3.1.2 Time-enriched chart

Now we continue to define our timed extensions to the above kernel subset of the
LSC language. In our time-enriched LSC charts, there are further elements of (clock)
variables, conditions (clock constraints), updates (clock resets) and simregions (i.e.,
“simultaneous regions”). Fig. 5 gives two example time-enriched LSC charts (for
clarity the normal positions on the instance lines are omitted).

Assume that in chart L there is a finite set X of real-valued clock variables that
range over R≥0. A clock valuation is a function v : X → R≥0 that maps each clock
variable to a non-negative real number, also denoted v ∈R≥0

X .
Let d ∈ R≥0. Notation (v+ d) : X → R≥0 means that the clock valuation v is

shifted by d such that ∀x ∈ X .(v(x+d) = v(x)+d).
A clock constraint is of the form x ./ n or x− y ./ n where x,y ∈ X , n ∈ Z, and

./ ∈{<,≤,=,≥,>}. Let B(X) be the set of finite conjunctions over these constraints.
A condition (or guard) is an element from B(X) that spans across (and thus “anchors”
on or intersects with) one or more instance lines, denoted g ∈ Loc+×B(X). Here



11

� ��

����

���	

���	


�


�





���������

������

���������

��
������

�����

(a) Timed chart L1

A B C

x<=2

x>=3 && y<=10

y:=0

m3

m2

m1

(b) Timed chart L2

Fig. 5 Example time-enriched LSC charts

Loc+ =
⋃card(I)

i=1 Loci represents the union of Cartesian products where the number of
Loc’s ranges from 1 to card(I) (i.e., the cardinality of I). The set of guards in a chart is
denoted G ⊂ Loc+×B(X). The set of anchoring locations of condition g is denoted
loc(g). We may omit the location information of a guard when it is not explicitly
needed in the context (Fig. 5(b), {x≥ 3∧ y≤ 10, x≤ 2}).

The LSC language constructs such as location, message and condition each have
a cold/hot modality (or “temperature”). For example, the temperature of a condition
g ∈ G is denoted g.temp. When temp is cold, the condition is enclosed in a dashed
hexagon (Fig. 3, x≥ 3); when temp is hot, it is enclosed in a solid hexagon (Fig. 5(a),
x ≤ 5). Temperature defines the criticality of a condition, and it also determines the
consequence when this condition evaluates to false. While a hot condition must be
satisfied, a cold condition may or may not be satisfied. When a hot condition evaluates
to false, it indicates a violation of the system requirement. In contrast, a cold condition
evaluating to false merely induces a “graceful” exit from the chart. The temperature
of a condition may be either hot or cold in a main chart. However, it can only be cold
in a prechart. The reason is that a prechart itself does not enforce anything.

In the original definition of LSC [18], many language constructs have their hot/cold
modalities. For simplicity, in this article we distinguish between the cold and hot
temperatures only for conditions, and assume hot as the default temperature for other
constructs.

A clock reset is of the form x := 0 where x ∈ X . An assignment (or update) is
the union of a finite set of clock resets (also written as the set of clocks to be reset)
that spans across one or more instance lines, denoted a ∈ Loc+× 2X . The set of all
assignments in the chart is denoted A⊂ Loc+×2X . The set of anchoring locations of
assignment a is denoted loc(a). The location information of an assignment may also
be omitted if it is not explicitly needed in the context (Fig. 5(b), y := 0). Furthermore,
we can also view a ∈ A as a transformer on the functions of clock valuations, and as
such the new valuation of v after assignment a is denoted by v′ = a(v).

Unlike in untimed charts where a message occurs all by itself, in time-enriched
LSCs, each message occurrence mo can be optionally associated with a condition
g and/or an assignment a. Notationally the condition and/or assignment is anchored
to an end point of the message (Fig. 5(a), the two anchoring points on m1 and m3).
A message occurrence and the condition and/or assignment attached thereto (if any)
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constitute an atomic step of LSC execution (Fig. 5(a), the ellipse area), i.e., they
take place at the same moment in time. As inspired by [25], we call such a structure
of message occurrence/condition/assignment a simultaneous region (simregion). The
intuitive meaning of message synchronization [g]mo/a from location 〈Ii, p〉 to 〈Ii′ , p′〉
is that, if when mo occurs, the clock valuation v satisfies g, then this synchronization
can fire; and immediately after the firing, v will be updated according to a.

When a simregion s contains a message, then s is called a message simregion
(Fig. 5(a), the ellipse area). If s has no message occurrence, then s consists of a
condition test, or an assignment, or both of them combined and anchored together. In
this case, s is called a non-message simregion (Fig. 8(c)). For such a simregion, we
adopt the As-Soon-As-Possible (ASAP) semantics for its firing, i.e., the condition test
(if any) will be evaluated immediately after the execution of the previous simregion,
and the update (if any) follows immediately.

When the condition, message occurrence or assignment part is missing in a sim-
region, we denote that part as ε . Since such an “absence” does not correspond to any
location, we let loc(ε) = /0.

Definition 1 (simregion) A simregion s is a tuple of LSC condition, message occur-
rence, and assignment, s = (g,mo,a) ∈ (G ∪{ε})× (MO ∪{ε})× (A ∪{ε}), which
is subject to the following constraints:

– common anchoring point. If mo 6= ε , then (g 6= ε⇒ loc(g)∩ loc(mo) 6= /0)∧(a 6= ε

⇒ loc(a)∩ loc(mo) 6= /0); if mo = ε , then (g 6= ε ∧a 6= ε⇒ loc(g)∩ loc(a) 6= /0);
– non-emptiness. (g 6= ε)∨ (mo 6= ε)∨ (a 6= ε); and
– no overlapping with other simregions. ∀s′ = (g′,mo′,a′) .((loc(g)∪ loc(mo)∪

loc(a))∧(loc(g′)∪ loc(mo′)∪ loc(a′)) 6= /0 ⇒ (g = g′)∧(mo = mo′)∧(a = a′)).
ut

The set of all simregions in a chart is denoted SR ∈ 2(G∪{ε})×(MO∪{ε})×(A∪{ε}).
For example, in Fig. 3 there are three simregions s1 = (x≥ 3,m1,ε), s2 = (x≥ 2,

m2,ε), and s3 = (ε,m3,ε). Note that for brevity here we use the message labels to
represent the corresponding message occurrences.

For a simregion s = (g,mo,a) ∈ SR, we use loc(s) = loc(g) ∪ loc(mo) ∪ loc(a)
to denote the set of anchoring locations of simregion s. For example, in Fig. 5(a)
the circled simregion s = (x ≤ 5, m3, x := 0) has two anchoring locations loc(s) =
{〈B,5〉, 〈C,3〉}.

Now that we have presented the necessary basic and composite LSC constructs,
we are in place to give the following generic definition of LSC.

Definition 2 (live sequence chart, LSC) A live sequence chart is a tuple L= 〈I,Loc,
ML,X ,MO,G,A,PchBot〉, where

– I = inst(L) is the set of instance lines in L;
– Loc = loc(L) is the set of locations in L;
– ML is the set of message labels in L;
– X is the set of clocks in L;
– SR ∈ 2(G∪{ε})×(MO∪{ε})×(A∪{ε}) is the set of simregions in L, where:
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– G⊂ Loc+×B(X) is the set of guards;
– MO⊂ Loc×ML×Loc is the set of message occurrences;
– A⊂ Loc+×2X is the set of updates; and

– PchBot ∈ {nil}∪Loc+ is the bottom location vector of the prechart. In particular
when L has no prechart PchBot is nil. ut

The BNF grammar for our time-enriched LSC language is given in Appendix A.
The Class Diagram of our time-enriched LSC language is presented in Fig. 6, where
the solid diamond lines and normal lines represent the “composition” and “associa-
tion” relationships among the LSC constructs, respectively. Note that in Fig. 6 the
Cut class and its relationships to other classes will be explained in Section 3.2.1.

LSC chart

Instance line        Cut      

Simregion
   Message  

  Condition 

Assignment

1

0..*

1..*

2..*  carrier

(all)

 progress

1..*

 src./dest.

 trigger

1 0..1

1

0..1

1

0..1

Fig. 6 Class Diagram for time-enriched LSC language

3.2 Trace-based semantics

3.2.1 Semantics for a single universal chart

In an LSC chart L, every location is either associated with a simregion, or it is an
entry/exit point of the prechart/main chart. We define a labeling function λ : loc(L)→
SR ∪{nil} to map a location of the former type to its corresponding simregion, and a
location of the latter type to nil.

Locations in a chart L are preordered (≤) as follows:

– Along each instance line Ii, locations are downward increasing: location l is above
l′ ⇒ (l ≤ l′)∧¬(l′ ≤ l); and

– All locations in the same simregion have the same order: ∀s ∈ SR,∀l, l′ ∈ loc(L) .
(λ (l) = s)∧ (λ (l′) = s)⇒ (l ≤ l′)∧ (l′ ≤ l). ut

The preorder relation 4⊆ loc(L)× loc(L) is defined as a transitive closure of
≤. For example in Fig. 5(b), 〈A,0〉 4 〈B,1〉 4 〈B,5〉 4 〈C,4〉 is a preorder of the
locations.
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A cut represents all the locations along all instance lines that have been progressed
so far. It is formally defined as follows.

Definition 3 (cut of an LSC chart) A cut of a chart L is a set c⊆ loc(L) of locations
that span across all the instance lines in L and satisfy the properties of:

– downward-closure. If a location l is included in cut c, so are all of its predecessor
locations: ∀l, l′ ∈ loc(L) .((l ∈ c ∧ l′4 l)⇒ l′ ∈ c); and

– intra-chart coordination integrity. If a Mch_top position of a certain instance
line is included in the cut, then the Mch_top positions of all other instance lines
are also included in the cut: ∃l ∈ loc(L), Ii ∈ inst(L) .((Mch_topL,Ii ≤ psn(l))∧
(psn(l)≤Mch_topL,Ii)∧(l ∈ c)⇒∀l′∈loc(L), Ii′ ∈ inst(L) .((Mch_topL,Ii′

≤psn(l′))
∧(psn(l′)≤Mch_topL,Ii′

)⇒ l′∈c)). ut

For a cut c, we use loc(c) to denote its frontier, i.e., the set of locations that
constitute the downward borderline progressed so far. The location where c “cuts”
instance line Ik ∈ I is denoted loc(c)〈Ik〉. For example in Fig. 5(a), if c is the cut when
the main chart is just entered, then loc(c) = {〈A,4〉, 〈B,4〉, 〈C,2〉}, and loc(c)〈A〉 =
〈A,4〉. The set of all cuts is denoted as Cuts.

Given a cut c ∈ Cuts and a simregion s ∈ SR, we say s is enabled at cut c (with
respect to the location preorder relation), denoted c s−→, if each anchoring location of
s immediately follows a certain location in c. Formally, ∀ l ∈ loc(s) .∃l′∈ c .((l′4 l)
∧¬(l4 l′))∧ (@ l′′∈ loc(L)\(c∪ loc(s)) .(l′4 l′′ ∧ l′′4 l)). For example, in Fig. 5(a)
the circled simregion is enabled at the cut when the main chart is just entered. The
enabledness of message occurrences can be defined similarly.

A cut c′ is an s-successor of cut c, denoted c s−→ c′, if s is enabled at c (w.r.t. the
location preorder), and c′ is achieved by adding the set of locations that s anchors at
into c. Formally, c s−→ c′ ⇔ (c s−→)∧ (c′ = c∪ loc(s)).

Since a simregion triggers a new cut, this new cut and the original cut can be
viewed as the destination and source cuts of the LSC advancement step, respectively.
This relationship between the Cut and Simregion classes is depicted in Fig. 6. We
also stress that in Fig. 6 the Cut class is singled out in shaded rectangle, because it is
a semantic rather than a syntactical concept.

A cut c is minimal, denoted >, if it “cuts” each instance line at its top location;
and c is maximal, denoted ⊥, if it “cuts” each instance line at its bottom location.
The minimal and maximal cuts of the prechart and main chart are denoted Pch.>,
Pch.⊥, Mch.> and Mch.⊥, respectively. The frontiers of minimal and maximal cuts
do not contain simregion anchoring points. Rather the cuts Pch.⊥ and Mch.⊥ each
represent a requirement for compulsory synchronization of all the instance lines in
the chart. Thus the preorder relation 4 on loc(L) is extended as follows (and finally
also extended to its transitive closure):

– All locations in the frontier of the same minimal or maximal cut have the same
order: ∀c∈ {Pch.>, Pch.⊥,Mch.>,Mch.⊥} , ∀l, l′∈ loc(c) .(l 4 l′)∧(l′4l). ut

For example, in Fig. 3 the possible cuts are: {}, {s1}, {s1,s2}, {s1,s3}, {s1,s2,s3},
where e.g. {s1} is a shorthand for the cut where simregion s1 has just been stepped
over. Clearly, cut {s1,s2,s3} is the s3-successor of cut {s1,s2}.
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Based on the preorder relation 4 on loc(L), we can induce an event (message)
partial order relation of the chart.

In order to define a trace-based semantics for LSC, we need to determine what is a
“semantic state” of a time-enriched LSC chart. In this article we call such a semantic
state an LSC configuration.

Definition 4 (configuration) A configuration of an LSC chart is a tuple (c,v), where
c is a cut and v is a clock valuation. ut

A configuration at the minimal cut > with all clocks assigned their initial values
(e.g., 0’s) is called the initial configuration.

In each configuration, we can check whether a next coming message violates the
event partial order of the chart, and whether a next condition evaluates to true. If
in the main chart the event partial order is violated or a hot condition evaluates to
false, then it is a hot violation. In comparison, if the event partial order is violated
in the prechart or a cold condition evaluates to false, then it is a cold violation. A
hot violation means that some mandatory requirements are not satisfied and therefore
there is an error in the system (e.g., an exception rather than expected message occurs
in the main chart), whereas a cold violation means that some provisional requirements
are not satisfied and therefore the chart can be gracefully exited (e.g., a condition in
the prechart evaluates to false).

A universal chart starts from the initial configuration, advances from one configu-
ration to a next one, until a hot violation occurs, or until the chart arrives at a maximal
cut configuration and then starts all over again (i.e., to begin a next round execution).

There could be three kinds of advancement steps between two configurations
(c,v) and (c′,v′) of a time-enriched LSC chart:

– Message synchronization step. Given a simregion s which consists of an m-labeled
message occurrence mo (m ∈ Σ ), and optionally a condition g and/or assignment
a, there is a message synchronization step (c,v) m−→ (c′,v′) if:
– (normal advancement). c s−→ c′, v |=g, and v′ = a(v); or
– (cold violation). c′ = Pch.>, v′ = v, and either

- mo is not enabled at cut c in the prechart (w.r.t. the preorder relation); or
- v 2 g ∧ g.temp = cold;

– Silent step. Given a simregion s which consists of a condition g and/or assignment
a, there is a silent step (c,v) τ−→ (c′,v′) if either

– (silent advancement). projMO∪{ε}(s) = ε , c s−→ c′, v |= g, and v′ = a(v); or
– (prechart-main chart transition). (c = Pch.⊥, c′ = Mch.>, v′ = v); or
– (main chart-prechart transition). (c = Mch.⊥, c′ = Pch.>, v′ = v); or
– c′ is reached because an instance line moves to its bottom location in Pch

or Mch autonomously (this happens when the instance line will not interact
with other instance lines before it reaches its bottom location in Mch or Pch).
Formally, there exists an instance Ik such that v′ = v and either

- loc(c′)〈Ik〉 = (loc(Pch.⊥))〈Ik〉, psn(loc(c′)〈Ik〉) = psn(loc(c)〈Ik〉)+1, and
loc(c′)〈Ii〉 = loc(c)〈Ii〉 for all Ii 6= Ik; or
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- loc(c′)〈Ik〉=(loc(Mch.⊥))〈Ik〉, psn(loc(c′)〈Ik〉)= psn(loc(c)〈Ik〉)+1, and
loc(c′)〈Ii〉 = loc(c)〈Ii〉 for all Ii 6= Ik;

– Time delay step. There is a time delay step (c,v) d−→ (c′,v′) where d ∈ R≥0 if:
c′ = c, v′ = v+ d, and whenever there are message occurrences that are enabled
at cut c (w.r.t. both the preorder relation and the guard), then after delay d there
exists at least one of them that is still enabled at the same cut, i.e., ∃s ∈ SR .
(projMO∪{ε}(s) 6= ε)∧ (projG∪{ε}(s) = g)∧ (∀d′∈ [0,d] .(c s−→) ∧ (v+d′) |=g).

ut

Similar to the above-mentioned cold violation case, if in the main chart, an m-
labeled message violates 4, or (v 2 g ∧ g.temp = hot), then the configuration (c,v)
is said to be hot-violated, denoted (c,v) ��

m−→.

Definition 5 (run of an LSC chart) A run of a time-enriched universal LSC chart is
a sequence of configurations (c0,v0) · (c1,v1) · . . . that are connected by the advance-
ment steps (ci,vi)

ui−→ (ci+1,vi+1), where ui∈(Σ ∪{τ}∪R≥0), i≥0. ut

A transition in Def. 5 carries only a single letter u ∈ (Σ ∪{τ}∪R≥0). We extend
→ to →∗ such that a transition carries a (finite or infinite) word w ∈ (Σ ∪ {τ} ∪
R≥0)

∗∪ (Σ ∪{τ}∪R≥0)
ω .

Let Π correspond to the set of all possible messages that occur in a state/transition-
based system model (i.e., a network of timed automata), or be the set of all mes-
sages in an object interaction-based system model (i.e., a set of driving universal
LSC charts). In the latter case, the message alphabet for the LSC system model
LS = {Li | 1≤ i≤ n} is Π =

⋃n
i=1 Σi =

⋃n
i=1 MA(Li).

Definition 6 (satisfaction of a prechart/main chart) A timed trace γ ∈ (Π ∪{τ}∪
R≥0)

∗ ∪(Π ∪{τ}∪R≥0)
ω satisfies an LSC prechart or main chart C, denoted γ |=C,

if its restriction γ|(Σ∪{τ}∪R≥0) has a prefix µ which is the accepted word of a run that
starts from the initial configuration and arrives at a maximal cut configuration of C,
and no prefix of it ever leads to a hot violation. Formally, γ |=C ⇔ (∃µ ∈ (Σ ∪{τ}∪
R≥0)

∗,ξ ∈ (Σ ∪{τ}∪R≥0)
∗∪(Σ ∪{τ}∪R≥0)

ω ,v′∈R≥0
X .(γ|(Σ∪{τ}∪R≥0) = µ ·ξ )∧

(>,v0)
µ

→∗ (⊥,v′)) ∧ (@µ ′ ∈ (Σ ∪{τ}∪R≥0)
∗,ξ ∈ (Σ ∪{τ}∪R≥0)

∗∪(Σ ∪{τ}∪

R≥0)
ω , m∈Σ , •∈Cuts×R≥0

X .((γ|(Σ∪{τ}∪R≥0) = µ ′ ·m ·ξ ) ∧ (>,v0)
µ ′

→∗ •��m−→)). ut

Definition 6a A finite trace γ ∈ (Π ∪{τ}∪R≥0)
∗ satisfies chart C exactly, denoted

γ 
C, iff γ satisfies C, and its restriction on (Σ ∪{τ}∪R≥0) is the accepted word of
a run that contains and ends with exactly one maximal cut configuration of C. For-
mally, γ 
C ⇔ (γ |=C)∧∃µ∈(Σ ∪{τ}∪R≥0)

∗, v′∈R≥0
X .(γ|(Σ∪{τ}∪R≥0) = µ)∧

((>,v0)
µ

→∗ (⊥,v′)) ∧ @ε 6=µ ′∈ (Π ∪{τ}∪R≥0)
∗,ε 6=ξ ∈ (Π ∪{τ}∪R≥0)

∗, v′′∈

R≥0
X .(γ|(Σ∪{τ}∪R≥0) = µ ′ ·ξ )∧ ((>,v0)

µ ′

→∗ (⊥,v′′)). ut

Now we define the satisfaction relation for a full universal chart (under the invari-
ant activation mode):
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Definition 7 (satisfaction of a universal LSC chart) A timed trace γ ∈ (Π ∪{τ}∪
R≥0)

ω satisfies (passes) a universal chart L, denoted γ |= L, iff whenever a finite sub-
trace matches the prechart, then the main chart is matched immediately afterwards.
Formally, γ |= L ⇔ ∀α,µ ∈ (Π ∪{τ}∪R≥0)

∗,β ∈ (Π ∪{τ}∪R≥0)
ω .(α ·µ ·β = γ)

∧(µ 
 Pch)⇒ (β |= Mch). ut

Definition 7a A timed language Lang⊆ (Π ∪{τ}∪R≥0)
ω satisfies chart L, denoted

Lang |= L, iff every word of Lang satisfies the chart. Formally, Lang |= L ⇔ ∀γ ∈
Lang .γ |= L. ut

As seen above, Lang characterizes the system behaviors that respect L.
When L is used as a monitored chart, then for a network S of timed automata, we

use S |= L to denote that the timed traces (language) of S satisfy LSC L.

3.2.2 Semantics for a set of driving universal charts

For an LSC system LS which consists of a set of driving universal charts L1,L2, . . . ,Ln,
we denote a cut vector of LS by c̄ = (c1,c2, . . . ,cn), and a valuation of all of the clock
variables in LS by v. Each member cut of c̄ is denoted by ci = (c̄)i, 1≤ i≤ n. We call
(c̄,v) a global configuration of LS.

Let (c̄,v) be a global configuration of an LSC system LS. Assume that there are
message occurrences mo1, . . . ,mok (1≤ k≤ n, each in a different chart) that are simul-
taneously enabled at ((c̄)1,v), . . . ,((c̄)k,v), and that these message occurrences are
the same message (they have exactly the same message label and the same source and
destination instances), i.e., ∃m∈Π , L j ∈LS, Ia, Ib ∈ inst(L j) .∀1≤ i≤ k .(lab(moi)=
m)∧(src(moi)= Ia)∧(dest(moi)= Ib). In this case, these identically labeled message
occurrences are said to be enabled at global configuration (c̄,v) w.r.t. their respective
preorder relations.

Given a global configuration (c̄,v) of LS and a message m∈Π , there is a message
synchronization step (c̄,v) m−→ (c̄′,v′) in LS if:

– A maximal set of m-labeled message occurrences are enabled at (c̄,v), and there
is no chart Li whose local configuration ((c̄)i,v) will be hot-violated by an m-
labeled message. In this case, for all charts L j that have an m-labeled message
occurrence enabled at (c̄,v), the m−→ message synchronization steps will occur
simultaneously; and

there is a silent step (c̄,v) τ−→ (c̄′,v) in LS if:

– There is a chart Li such that ((c̄)i,v)
τ−→ ((c̄′)i,v). In this case, for all j 6= i, we

have c̄′j = c̄ j; and

there is a time delay step (c̄,v) d−→ (c̄,v+d) in LS if:

– For all 1≤ i≤ n, we have ((c̄)i,v)
d−→ ((c̄)i,v+d). ut

In the first case above, the global condition for all m-labeled message occurrences
is the conjunction of all individual conditions, and the global assignment is the union
of all individual assignments.

Similarly, we can define runs and→∗ for a set of time-enriched LSC charts.
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Definition 8 (satisfaction of an LSC system) A timed trace γ ∈ (Π ∪{τ}∪R≥0)
ω

satisfies (passes) an LSC system LS, denoted γ |= LS, iff γ corresponds to an infinite
run of LS, and it satisfies each chart Li in LS separately. ut

3.2.3 Semantics for existential charts

As mentioned in Section 1, unlike a universal chart which needs to be matched by
each possible run of the system, an existential chart requires only one satisfying run
of the system. Similar to Section 3.2.1, we can define the semantics for a single
existential chart.

4 Verifying state/transition-based models against LSC requirements

A monitored LSC chart L can be used to specify a scenario-based user requirement on
a state/transition-based real-time system model S (i.e., a network of timed automata).
We may wish to model check S against L. However, there is no direct solution to
this problem, because model checking by definition works only on state transition
systems and temporal logic formulas.

To model check real-time systems against complex user requirements, a num-
ber of techniques which use (manually crafted) observer timed automata have been
developed [1,19]. We notice that a monitored LSC chart in principle functions like
an observer timed automaton — the chart keeps track of the progress of the system,
and reports error once there is an unexpected event or timing error in the system.
In order to make use of existing observer automata-based techniques and tools for
scenario-based automatic verification, we need to automatically construct a behavior-
equivalent observer timed automaton OL for chart L, let OL observe S in a non-
intrusive way, and automatically extract a temporal logic formula which together with
OL characterizes the LSC requirement.

4.1 LSC-to-TA translation: one automaton per chart

4.1.1 Basic ideas of translation

By comparing the semantic states of a timed automaton and an LSC chart, we notice
that they agree on the clock valuation part, but differ on the discrete part. In a timed
automaton the control switches from one location to another, whereas in an LSC chart
the control progresses from one cut to a next cut. Indeed an LSC cut is comparable to
a TA location — if we view all the instances of an LSC chart collectively as a whole
system (i.e., an automaton), then a cut can be viewed as a control “location” of this
system. Based on the above consideration, it makes sense to translate an LSC cut to
a TA location.

As mentioned in Sections 3.1.2 and 3.2.1, a simregion triggers the advancement
from one LSC cut to a next cut. If we ignore the trivial cut advancement steps (i.e.,
the three latter cases of a “silent step”), then simregion is the only primitive semantic
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unit that can be stepped over to make a discrete (i.e., cut-changing) advancement step.
This is very similar to a labeled edge in a timed automaton, which connects two TA
locations. Therefore, it makes sense to translate an LSC simregion to a TA edge.

The basic rules for mapping live sequence charts to timed automata are given in
Table 1, which will be explained in more detail later.

Table 1 Mapping live sequence charts to timed automata (“one-TA-per-chart”)

LSC TA
LSC cut ⇔ TA location

Mch.> ⇔ lmin
explicitly Mch.⊥ ⇔ lmax
specified
behaviors LSC simregion ⇔ TA edge

message simregion ⇔ synchronization transition edge
non-message simregion ⇔ silent transition edge

implicitly unconstrained event ⇔ self-loop edge
allowed cold violation ⇔ negated-guard transition edge +

behaviors out-of-order sync. transition edge

For the example in Section 2, the original real-time system S consists of timed
automata A, B, C and D, having channels m1, m2, m3 and m4, and clock variable x
(Fig. 2); and the scenario-based LSC requirement L is given in Fig. 3. The translated
observer timed automaton for chart L is presented in Fig. 7.

Err

L1 L2

lpmax (lmin)

lpmin (lmax)

x >= 3 && (src == B && dest == C)
m1?

x < 2 && 
src == B &&
dest == A
m2?

x < 2 && src == B 
&& dest == A
m2?

x < 3 && (src == B && dest == C)
m1?

!(src == B && 
dest == A)
m2?

!(src == C && 
dest == D)
m3?

!(src == C && 
dest == D)
m3?

!(src == B && 
dest == C)
m1?

!(src == B && 
dest == A)
m2?

!(src == B && 
dest == C)
m1?

!(src == B && 
dest == C)
m1?

!(src == C && 
dest == D)
m3?

!(src == B && 
dest == A)
m2?

!(src == B && dest == C)
m1?

m3?

m2?

src == B && 
dest == A
m2?

src == B && 
dest == C
m1?

src == B && 
dest == C
m1?

src == C && dest == D
m3?

src == B && dest == C
m1?

m4?m4?

m4?

m4?

src == C &&
dest == D
m3?

x >= 2 && src == B 
&& dest == A
m2?

src == C && 
dest == D
m3?

x >= 2 && src == B 
&& dest == A
m2?

x >= 3 && src == B 
&& dest == C
m1?

Fig. 7 The translated observer timed automaton OL for chart L in Fig. 3 (“one-TA-per-chart” translation)
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4.1.2 Translating an LSC cut to a TA location

The initial cut of an LSC chart is the minimal cut of the prechart Pch.>. Starting
from Pch.>, the cut advances towards Mch.⊥ by stepping over a simregion, or by an
intra-chart coordination, or by the autonomous advancement of an instance line.

For the minimal cut Pch.> and maximal cut Pch.⊥ of the prechart (resp. Mch.>
and Mch.⊥ of main chart), we assign the TA locations lpmin and lpmax (resp. lmin and
lmax, see Table 1), respectively. The lpmin, lpmax, lmin and lmax locations correspond to
the four mandatory synchronization points for all instance lines in the chart.

Each time a simregion is stepped over, we create a new cut. In comparison, the cut
advancement that is caused by intra-chart coordination or the autonomous advance-
ment of an instance line has only a “gluing” or “managerial” semantics. In order not
to clutter up the translated timed automaton, in the following cases we assign two
adjacent cuts the same TA location in OL:

– Pch.⊥ and Mch.>; (i.e., lpmax and lmin are the same location in OL, meaning that
the successful completion of prechart will immediately activate the main chart.
See Fig. 7)

– Mch.⊥ and Pch.>; (i.e., lmax and lpmin are the same location in OL, meaning that a
next round of monitoring will begin immediately after the successful completion
of the main chart. See Fig. 7)

– If in chart L, instance Ii has no more interactions with the other instance lines
(i.e., I1, . . . , Ii−1, Ii+1, . . . , In) in the prechart, then the two cuts with frontiers
(psn(loc(c)〈I1〉), . . . ,psn(loc(c)〈Ii−1〉), (Pch_botL,Ii −1), psn(loc(c)〈Ii+1〉), . . . ,
psn(loc(c)〈In〉)) and (psn(loc(c)〈I1〉), . . . ,psn(loc(c)〈Ii−1〉),Pch_botL,Ii ,
psn(loc(c)〈Ii+1〉), . . . ,psn(loc(c)〈In〉)) will be assigned the same TA location. Sim-
ilarly for the case in the main chart.

Since there are only finitely many instance lines and simregions in an LSC chart
and there are no looping structures, the number of cuts will also be finitely many.

4.1.3 Translating an LSC simregion to a TA edge

If s ∈ SR is a message simregion (Fig. 8(a), (x ≥ 3, m1, y := 0)), then we map the
message, condition (if any) and assignment (if any) of s into one edge of the TA OL
(Fig. 8(b)).

In an LSC chart, a message in Σ is sent from one particular instance to another
one (e.g., from instance A to B). To preserve this sender/receiver information in the
translated timed automaton, the TA edge will be further guarded by the predicate
“A→ B” (Fig. 8(b)), which is a shorthand for “(src = A)∧ (dest = B)”.

If s ∈ SR is a non-message simregion (Fig. 8(c), (x ≥ 1, ε, y := 0)), then accord-
ing to the ASAP semantics, this simregion should be stepped over immediately. Since
in UPPAAL timed automata, a committed location requires that it be exited immedi-
ately, we mark the source location of the translated TA edge as a committed location
(Fig. 8(d), “C”-marked location).
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A B

x>=3
y:=0

m1

(a) A message simre-
gion

x >= 3 &&
(A -> B)
m1?
y := 0

(b) The TA
edge

BA

x>=1
y:=0

(c) A non-message sim-
region

x >= 1
y := 0

(d) The
TA edge

Fig. 8 Translating LSC simregion to TA edge (here “A→B” denotes that instances A and B are the message
sender and receiver, respectively)

4.1.4 Incremental construction of the TA

In Sections 4.1.2 and 4.1.3 we showed how to translate a single cut and simregion to
a TA location and edge, respectively. When translating an entire chart into a timed au-
tomaton, we need to exploit the structural information of LSC to conduct incremental
translation.

As mentioned in Section 3.1.2, simregion is the primitive semantic unit for trig-
gering cut advancements. At a given cut there might be more than one next simregion
that can be stepped over. Each simregion should correspond to an outgoing edge from
the TA location that corresponds to the given cut. All of these simregions should be
translated to TA edges that share the same common “source cut.” But before we can
do this, we should determine how all the simregions are partially ordered in a chart,
and how these simregions and the cuts are partially ordered.

In Section 3.2 we showed how to determine the preorder relation 4 on the set
loc(L) of locations of chart L. Now the relation 4 on loc(L) can be lifted up to a
partial order 4′ on (SR ∪Cuts) as follows:

∀s1, s2 ∈ (SR ∪Cuts) .(s1 4
′ s2⇔∃l1 ∈ loc(s1), l2 ∈ loc(s2) . l1 4 l2).

For instance in Fig. 3, the partial order4′ among the three simregions s1 (middle),
s2 (left) and s3 (right) is: s1 4′ s2, and s1 4′ s3.

Assume that a TA location l has already been created for the current LSC cut
(Fig. 9(a), cut {s1 = (x ≥ 3,m1,ε)}, and Fig. 9(b), TA location l). Without loss of
generality, we assume that there are two immediately following simregions s2 and s3.

If s2 and s3 are both message simregions (Fig. 9(a)), then the two new TA edges
will be appended to location l. The LSC and TA semantics coincide that there are two
possible orderings of the execution of the two transitions. Let the two new edges be
(l1, l2) and (l3, l4), respectively. Then l1 and l3 will be superposed on l (Fig. 9(b)).
The cut will be advanced accordingly.

If s2 is a non-message simregion that spans across instance lines A and B, e.g.,
(u ≥ 1,ε,ε) (Fig. 10(a)), then according to the ASAP semantics, s2 will be stepped
over immediately, and s3 will follow, but cannot be the other way around. When
appending the corresponding two edges (l1, l2) and (l3, l4) to the TA, we mark the
source location l1 as a committed location, and superpose it on l (Fig. 10(b), edge
(l1, l2)). Note that in this case l2 may not be superposed on l. Therefore, there is only
one possible ordering of edges (l1, l2) and (l3, l4) (Fig. 10(b)).
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(a) LSC cut with subsequent simregions s2 =
(x≥ 2,m2,ε) and s3 = (ε,m3,ε)

l4l2

l (l1, l3)

C -> D
m3?

x >= 2 &&
(B -> A)
m2?

x >= 3 &&
(B -> C)
m1?

(b) Translated TA
fragment

Fig. 9 TA edge construction for two subsequent message simregions
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(a) LSC cut with subsequent simregions s2 =
(u≥ 1,ε,ε) and s3 = (ε,m3,ε)

l4

l2 (l3)

l (l1)

C -> D
m3?

u >= 1

x >= 3 &&
(B -> C)
m1?

(b) Translated TA fragment

Fig. 10 TA edge construction for a subsequent message and non-message simregions

If s2 and s3 are both non-message simregions, e.g., (u≥ 1,ε,ε) and (u 6= 0,ε,ε)
(Fig. 11(a)), then according to the ASAP semantics, both (l1, l2) and (l3, l4) will be
executed immediately, therefore there are again two possible orderings of the execu-
tion of the two transitions (Fig. 11(b)).
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(a) LSC cut with subsequent simregions s2 =
(u≥ 1,ε,ε) and s3 = (u 6= 0,ε,ε)

l4l2

l (l1, l3)

u != 0u >= 1

x >= 3 &&
(B -> C)
m1?

(b) Translated TA
fragment

Fig. 11 TA edge construction for two subsequent non-message simregions

4.1.5 Implicitly allowed behavior

In addition to the explicitly specified behaviors, an LSC chart also has behaviors that
are implicitly allowed, e.g., those due to unconstrained events and cold violations
(Table 1).
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Let Π correspond to the set of possible messages in the system model S (i.e., a
network of timed automata), and Σ ⊆ Π be the set of messages in chart L. Clearly,
messages in (Π\Σ) are not constrained by chart L. For each message in (Π\Σ), we
add a corresponding self-loop edge to each non-committed location l of the translated
TA OL. For example in Fig. 7, at location lpmin the unconstrained events correspond to
the edges labeled with m4, [!(src==B && dest ==C)]m1, [!(src==B && dest ==
A)]m2 and [!(src == C && dest == D)]m3. Note that the latter two edges will be
merged with some cold violation edges that will be explained shortly, thus giving rise
to the m2- and m3-labeled edges, respectively.

According to the LSC semantics, cold violations in the prechart or main chart
are not failures. Rather they just bring the chart back to the prechart minimal cut.
To model this, for a cut c and each following simregion s that has a cold condition
g, we add edges from the corresponding TA location l to lpmin to correspond to the
¬g conditions (of DNF form) (Fig. 7, the edge labeled with [(x < 3) && (src == B
&& dest == C)]m1 from lpmin to lpmin). Similarly, given a cut c in the prechart, for
each m-labeled message that occurs in L but does not follow c immediately (i.e., it vi-
olates the event partial order), we also add a corresponding TA edge (l, lpmin) (Fig. 7,
the edges labeled with [(src == B && dest == A)]m2 and [(src ==C && dest ==
D)]m3 from lpmin to lpmin).

4.1.6 Undesired behavior

The construction of the observer TA so far considers only the legal (or admissible)
behaviors. When the current configuration (c,v) is in the main chart, if an observed
message is not enabled at cut c (i.e., it is an out-of-order message), or the hot condi-
tion of the simregion that immediately follows c evaluates to false under v, then there
will be a hot violation. In this case, we add a dead-end (sink) location Err in the TA,
and for each such hot violation we add an edge to Err (Fig. 7).

4.1.7 Invariant activation mode

According to the LSC semantics, under the invariant mode the prechart is being
continuously monitored. Normally we need to maintain multiple incarnations of the
chart. In this way, a given message sequence will not be incorrectly rejected by the
chart (i.e., there is no false negative). For instance, given the chart in Fig. 3, and given
a message sequence m1 ·m1 ·m2 ·m3 (assuming that the message guards in Fig. 3 are
all satisfied), although the first incarnation of the chart hot-violates this sequence
(i.e., the second m1 violates the message partial order in the main chart), the second
incarnation works well with it (i.e., the latter three messages m1 ·m2 ·m3 match the
chart).

To enforce the LSC semantics under the invariant activation mode, for each mes-
sage occurrence that appears in Pch as a minimal event (i.e., an event that is minimal
in the event partial order induced by the chart), we add a corresponding self-loop
to location lpmin (Fig. 7, the [(x >= 3) && (src == B && dest == C)]m1-labeled
self-loop edge at lpmin). We call this kind of handling prechart pre-matching.
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4.2 Complexity

Let the number of simregions that appears in L be n. In the worst case, the number
of locations in the translated observer TA OL is 2n + 1. We have this exponential
complexity when L consists of only the prechart or the main chart, and the messages
in L are totally unordered.

The number of outgoing edges from a location l of OL depends on: (1) the num-
ber of unconstrained events, ue; (2) the number of the following simregions in the
corresponding cut c of L, f s; (3) the length of the condition (in case the condition
evaluates to false), lc; and (4) the number of messages that cause violations of the
chart, cv. Therefore, the number of outgoing edges from a TA location has complex-
ity O(ue+ f s+ lc+ cv).

Since the LSC simregions are directly copied as TA edges, OL has the same num-
bers of synchronization channels (message labels) and clock variables as L.

4.3 Equivalence of LSC and TA

If in the translated timed automaton OL of chart L we ignore the undesired and im-
plicitly allowed behaviors, i.e., we ignore the edges that correspond to hot violations,
unconstrained events, cold violations, and prechart pre-matching, then we have:

Theorem 1 If a configuration (c,v) of L corresponds to a semantic state (l,v) of
OL, then: (1) each simregion s that follows (c,v) in L uniquely corresponds to an
outgoing edge (l, l′) in OL; and (2) the target configuration (c′,v′) of s in L uniquely
corresponds to the target semantic state (l′,v′) in OL. ut

Theorem 1 says that each LSC configuration is uniquely mapped to a semantic
state of the observer timed automaton, and each LSC simregion is uniquely mapped
to an edge of that automaton.

If in the LSC semantics (Section 3.2.1) we ignore the silent steps that are caused
by intra-chart coordinations and autonomous advancements of instance lines, then
based on Theorem 1, we have the following theorem:

Theorem 2 For any trace tr in OL: tr |= L⇔ (OL, tr) |= (lmin lmax). ut

Theorem 2 says that a trace in the observer timed automaton of an LSC chart
satisfies that chart if and only if the trace satisfies the “leads-to” property (lmin lmax)
in that automaton. Alternatively, it indicates that OL has exactly the same set of legal
traces as L.

As we can anticipate, the prechart pre-matching mechanism in Section 4.1.7 does
introduce undesired behaviors and non-determinacy. For instance in Fig. 7, the mes-
sage sequence tr = m1 ·m1 ·m2 ·m3 could be an accepted trace in OL (assuming
that all message guards are satisfied). But since its sub-sequence tr′ = m1 ·m1 can
be rejected (i.e., leading to a hot violation), so tr does not really satisfy L. However,
it coincides that this particular trace tr in the model OL does not satisfy the CTL

property (lmin lmax) as well.
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The syntax and semantics of timed automata are given in Appendix B. The proofs
of theorems in Section 4 and the lemma for them can be found in Appendix C.

4.4 Composing the observer automaton with the original system

With the development so far in this section (Section 4), the set X of clocks can be
viewed as “private” clocks of the LSC chart L, i.e., L can both read and reset these
clocks. When we use the observer timed automaton OL to observe the original system
S, then the set CS of clocks in S will also be visible to (but cannot be reset by) OL.
To this end, the definition of the clock valuation part of a configuration of L will be
extended accordingly.

When composing OL with S, we wish that OL would “observe” S in a timely and
non-intrusive manner. A natural idea is to let the synchronization channels in OL
(and accordingly the relevant channels in S) be broadcast channels to achieve this
goal. However, this is not possible because UPPAAL has a restriction that broadcast
channels cannot be guarded by timing constraints. To solve this problem, we propose
to use spying techniques such that the translated observer TA will be notified of each
message synchronization in the original system immediately after it occurs there.
Specifically, for each channel ch ∈Π , we make the following modifications:

(1) In S (e.g., Fig. 12(a)-12(b)), for each edge (l1, l2) that is labeled with ch!, we add
an intermediate committed location l′1 and a cho!-labeled edge in between edge
(l1, l2) and location l2. Here cho is a dedicated fresh channel which aims to no-
tify OL of the occurrence of the ch-synchronization in S. The location invariant (if
any) of l2 will be copied on to l′1. Furthermore, we use a global boolean flag vari-
able (i.e., a binary semaphore) mayFire to further guard the ch-synchronization.
This semaphore is initialized to true at system start. It is cleared immediately af-
ter the ch-synchronization in S is taken, and it is set again immediately after the
cho-synchronization is taken (Fig. 13(a)).

(2) In OL (e.g., Fig. 12(c)), each synchronization label ch? is renamed to cho? (Fig. 13(b)).

l2 Inv1

l1

g1
ch!
a1

l4 Inv2

l3

g2
ch?
a2

(a) Emitting edge (b) Receiving edge

g3
ch?
a3

(c) Observing edge

Fig. 12 Coupling emitting/receiving edges in original system model S and the observing edge in observer
timed automaton OL

If L has non-message simregions, then OL contains corresponding committed lo-
cations. If in a certain state both OL and some timed automata in S are in committed
locations (e.g., lm+1 in Fig. 14(b), and l2 in Fig. 14(a)), there will be a race condition.
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l2 Inv1

l1’ Inv1

l1

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

(a) Modified emitting edge

g3
cho?
a3

(b) Modified observing edge

Fig. 13 Edge modifications for Fig. 12

But according to the ASAP semantics of L, the (internal action) edge in OL has higher
priority. To this end, for each edge (li, li+1) in OL, if li+1 is a committed location, then
we add “NxtCmt := true” to the assignment of the edge, otherwise we add “NxtCmt
:= false”. Here the global boolean flag variable (i.e., a binary semaphore) NxtCmt
denotes whether the observer TA will be in a committed location (Fig. 15(b)). This
semaphore is initialized to false at system start. Accordingly, for each ch-labeled edge
(li, li+1) in S where ch ∈Π and li is a committed location, we use “NxtCmt == false”
to strengthen the condition of the edge (Fig. 15(a)).

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

(a) Emitting edge

lm+2

lm+1

lm

g4
a4

g3
cho?
a3

(b) In observer TA

Fig. 14 Race condition for Fig. 13 due to a non-message simregion in LSC chart (and thus a committed
location lm+1 in observer timed automaton)

Our method of composing the observer timed automaton OL with the original sys-
tem model S is similar to that of [14]. While their method works only when the target
state of a communication action is not a committed location in the original model,
in our method, due to the first locking mechanism (using mayFire), we have no re-
strictions on whether a location in S is a normal, urgent or committed one. Broad-
cast channels can be handled the same way as binary synchronization channels in
our method. Furthermore, due to the second locking mechanism (using NxtCmt), we
guarantee the enforcement of the ASAP semantics in OL.
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l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true) 
&& (NxtCmt == false)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

(a) Modified emitting edge

lm+2

lm+1

lm

g4
a4, NxtCmt := false

g3
cho?
a3, NxtCmt := true

(b) In modified observer TA

Fig. 15 Further modifications for Fig. 14

Our method involves only syntactic scanning and manipulations. For each ch∈ Π ,
we need to introduce a dedicated fresh channel cho. For each occurrence of the emit-
ting edge ch!, we need to introduce a fresh committed location in S. Moreover, we
need two global boolean flag variables (mayFire, NxtCmt) as the binary semaphores.

Example of Section 2 Continued

After modifying S and the automatically generated observer TA OL, we get the com-
posed network of instrumented TAs (S′ ||O′L) (Fig. 16 and 17). Note that in Fig. 17
each channel name has been suffixed with an “o”, e.g., m1 becomes m1o.

m4?

m2?
dest := A

(a) TA A′
x <= 5

x <= 5 m2o!
mayFire := true

m1o!
mayFire := true

mayFire == true
m2!
mayFire := false,
src := B

x >= 3 && 
(mayFire == true)
m1!
mayFire := false,
src := B

(b) TA B′

m4o!
mayFire := true

m3o!
mayFire := true

mayFire == true
m4!
mayFire := false

mayFire == true
m3!
mayFire := false,
src := C

m1?
dest := C

(c) TA C′

m3?
dest := D

m4?

(d) TA D′

Fig. 16 The modified model S′ of the original real-time system in Fig. 2(a)-2(d)
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Err

L1 L2

lpmax (lmin)

lpmin (lmax)

x >= 3 && (src == B && dest == C)
m1o?

x < 2 && 
src == B &&
dest == A
m2o?

x < 2 && src == B 
&& dest == A
m2o?

x < 3 && (src == B && dest == C)
m1o?

!(src == B && 
dest == A)
m2o?

!(src == C && 
dest == D)
m3o?

!(src == C && 
dest == D)
m3o?

!(src == B && 
dest == C)
m1o?

!(src == B && 
dest == A)
m2o?

!(src == B && 
dest == C)
m1o?

!(src == B && 
dest == C)
m1o?

!(src == C && 
dest == D)
m3o?

!(src == B && 
dest == A)
m2o?

!(src == B && dest == C)
m1o?

m3o?

m2o?

src == B && 
dest == A
m2o?

src == B && 
dest == C
m1o?

src == B && 
dest == C
m1o?

src == C && dest == D
m3o?

src == B && dest == C
m1o?

m4o?m4o?

m4o?

m4o?

src == C &&
dest == D
m3o?

x >= 2 && src == B 
&& dest == A
m2o?

src == C && 
dest == D
m3o?

x >= 2 && src == B 
&& dest == A
m2o?

x >= 3 && src == B 
&& dest == C
m1o?

Fig. 17 The modified version of the translated observer timed automaton O′L (Fig. 7) of the chart in Fig. 3

4.5 Verification problems

After the modifications, the original system model S becomes S′, and the observer
timed automaton OL for chart L becomes O′L. Let the minimal and maximal cuts of
the main chart of L correspond to locations lmin and lmax of O′L, respectively. Recall
that the UPPAAL “leads-to” property (φ  ϕ) stands for A�(φ ⇒ A♦ϕ), where φ

and ϕ are state formulas.
When L is a universal chart, we have the following main theorem:

Theorem 3 S |= L⇔ (S′ ||O′L) |= (lmin lmax). ut

Theorem 3 says that a TA-modeled real-time system S satisfies a universal LSC
chart requirement L if and only if the parallel composition of the (instrumented) sys-
tem and the observer timed automaton satisfies the “leads-to” property (lmin lmax).
This indicates that the problem of model checking real-time systems against universal
LSC chart requirements can be equivalently transformed into a CTL real-time model
checking problem in UPPAAL.

When L is an existential chart, we have another main theorem:

Theorem 4 S |= L⇔ (S′ ||O′L) |= E♦ lmax. ut

Theorem 4 says that a TA-modeled real-time system S satisfies an existential
LSC chart requirement L if and only if the parallel composition of the (instrumented)
system and the observer timed automaton satisfies the reachability property E♦ lmax.

Furthermore, it is possible to check whether a system S satisfies multiple existen-
tial charts L1, L2, . . . , Lm simultaneously by checking the formula E♦ (l1,max∧ l2,max∧
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. . .∧ lm,max), where li,max denotes the location in observer TA O′Li
that corresponds to

the maximal cut of the main chart of existential chart Li, 1≤ i≤ m.

Example of Section 2 Continued

For the composed network of instrumented timed automata in Fig. 16 and 17, we
check in UPPAAL the property (lmin  lmax), and it turns out to be satisfied. This
indicates that S does satisfy the requirements that are specified in L.

If in L the condition of m2 is changed from x≥ 2 to e.g. x≥ 4, then the property
is found not satisfied. There will be a counterexample, e.g., when O′L gets to location
L2 (Fig. 17), but the value of clock x falls in [3,4), then it will get stuck in location
Err and will never be able to arrive at location lmax thereafter.

5 Verifying object interaction-based models against LSC requirements

In addition to being used as a property specification language, LSC can also be used
as a scenario-based behavioral modeling language (i.e., as a high-level “program-
ming” language [18]). When some LSC charts are used for behavioral modeling and
some others are used for property specification, it will be possible to verify scenario-
based LSC models against scenario-based LSC requirements. Clearly, this contributes
to earlier validation of the prototyped systems.

5.1 LSC-to-TA translation: one automaton per instance line

5.1.1 Motivation

Similar to Section 4, in this section our method of verifying object interaction-based
system models against LSC requirements relies on a translation of the LSC charts
to timed automata, and the reduction of the verification problems to CTL real-time
model checking problems.

However, unlike monitored charts which each specify a piece of user require-
ments individually, a set of driving charts are supposed to characterize the inter-object
behaviors of the system collectively. When the system consists of a large number of
driving charts, then the cut-based LSC-to-TA translation will encounter the state ex-
plosion problem: the number of possible global cuts (i.e., the number of possible
system states) will increase rapidly, and explicit encoding and storing these informa-
tion requires a lot of memory. Furthermore, the outcome of the translation as a single
huge timed automaton will be difficult to visualize, to debug and to diagnose.

To overcome the above problems, in this section we propose a different method
for translating LSC charts into timed automata. For each driving LSC chart L in the
system model, we view the instance lines in L as a set of parallel composed processes
that communicate with one another and collaborate to achieve a common goal as
specified by chart L. Since UPPAAL also operates on a network of parallelly com-
posed processes (TAs) that communicate with each other, this motivates us to trans-
late each instance line of L to a timed automaton. In this way we avoid the explicit



30

construction of a global automaton. This idea in spirit resembles the approaches of
[17,37], which aim at smart play-out and satisfiability checking, respectively; and
it is also similar to the approaches of mapping message-based concurrent objects to
TAs [22,21], by means of which modular schedulability analysis of distributed real-
time systems can be achieved. Thanks to the UPPAAL features of broadcast channels,
boolean and integer variables and committed locations in timed automata, we are able
to appropriately translate the LSC features such as intra/inter-chart coordinations and
cold/hot violations to timed automata. Compared with the “one-TA-per-chart” ap-
proach that can be viewed as a kind of centralized translation (Section 4.1), the “one-
TA-per-instance line” approach of this section can be viewed as a kind of distributed
translation.

Table 2 gives an overview of the most important LSC-to-TA mapping rules. These
rules will be explained in more detail later.

Table 2 Mapping live sequence charts to timed automata (“one-TA-per-instance line”)

LSC TA
chart Lu ⇐⇒ TAs Au,1||Au,2|| . . . ||Au, inst(Lu)||Coordu

basic instance line Ii, 1≤ i≤ inst(Lu) ⇐⇒ TA Au, i

mapping position k, 0≤ k ≤ p_maxLu ,Ii
R1⇐⇒ location lk

rules message Ii (at position k) m−→ I j
R2⇐⇒ edge lk−1

m!−→ lk
message Ii (at position k) m←− I j

R2⇐⇒ edge lk−1
m?−→ lk

chart Lu =⇒ coordinator automaton Coordu
instance line Ii progressing to its

intra-chart Pch_botLu ,Ii position R3⇐⇒ pch_overu, i-sync. from Au, i to Coordu

coordination Mch_botLu ,Ii position R3⇐⇒ mch_overu, i-sync. from Au, i to Coordu

Pch_botLu ,Ii →Mch_topLu ,Ii
R4⇐⇒ activateu-broadcast sync. from Coordu

(chart activation)

Mch_botLu ,Ii → Pch_topLu ,Ii
R4⇐⇒ overu-broadcast sync. from Coordu

(“all over again”)

inter-chart chart Lu, Ii (at position k) m−→ I j; and R5⇐⇒ accompany (lk−1
m!−→ lk) with (lk−1

m?−→ lk);

coordination chart Lv (v 6= u), Ii (at position k′) m−→ I j accompany (lk′−1
m!−→ lk′ ) with (lk′−1

m?−→ lk′ )
chart Lu

prechart violation due to out-of-order R6⇐⇒ pch_viou-sync. from Au, i to Coordu, followed
cold/hot message on instance line Ii by resetu-broadcast sync. from Coordu

violation main chart violation due to out-of- R7⇐⇒ Au, i arriving at a deadend location
order message on instance line Ii

chart Lu

clock Ii
[g]m−−→ I j , where g is a guard R9⇐⇒ message-emitting edge m!−→ in Au, i with

constraint immediately prefixed/suffixed transitions
that test the upper/lower bounds of g

chart Lu

clock Ii
m/a−−→ I j , here a is a set of clock resets R10⇐⇒ Au, i sends an individual m_Rpt request for

reset and optionally chart Lv clock resets to dedicated timed automaton

Ii
m/a′−−−→ I j , here a′ is another set of Am, and Am initiates system-wide m_Rst

clock resets broadcast synchronization for clock resets
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In order to keep the driving LSC charts and their complexity within human read-
able and manageable levels, a single LSC chart must not be very large and complex.
Rather the complexity of scenario-based models mainly lies in the interplays of a
large number of simple charts. Our LSC-to-TA translation is in accordance with this
philosophy. Instead of constructing a complex global state machine that handles all
possible activities explicitly, we leave the intricate semantics of LSC chart progress
and intra/inter-chart coordinations mostly up to UPPAAL.

5.1.2 Translating message-only charts

As mentioned in Section 3.1, along each instance line Ii in chart L, there is a set
pos(L, Ii) of positions, among which there is a set StdPos(L, Ii) ⊂ pos(L, Ii) of four
“standard” positions. For example in instance line A of Fig. 4, there are 7 positions
(black filled circles), where the four standard ones are Pch_topL,A (0),Pch_botL,A (3),
Mch_topL,A (4) and Mch_botL,A (6).

Fig. 18 shows the translated network of timed automata for the chart L1 in Fig. 4.

(1) Basic mapping rules

Let LS be an LSC system, Lu be a chart in LS, and Ii be an instance line in Lu. We
map each such Ii to a timed automaton Au, i using the following rules (Table 2, row 1
“basic mapping rules”):

R1 Each position k on Ii of Lu corresponds to a TA location lk in Au, i, 0≤ k≤
p_maxLu, Ii . See Fig. 18(a), locations l0 - l6.

R2 If at position k on Ii of Lu there is a sending of an m-labeled message to instance I j,
then an m!-labeled TA edge from location lk−1 to lk will be assigned in Au, i. See
Fig. 18(a), straight line edges (l0, l1),(l1, l2),(l4, l5). Similarly, if it is a message
receiving, then an m?-labeled TA edge will be assigned. See Fig. 18(b), straight
line edges (l0, l1),(l1, l2),(l4, l5).

We use the notations Pch_top,Pch_bot,Mch_top and Mch_bot to also denote the
TA locations that correspond to their respective LSC positions on the instance line.
For any position k other than the aforementioned four, it corresponds to a TA location
lk, meaning that upon sending/receiving the message that anchors at position k, we
now arrive at lk. Specifically, position 0 (i.e., Pch_top) corresponds to the initial TA
location l0 (i.e., the “abused” Pch_top).

When the message sending case of rule R2 is applied, the message-emitting TA
edge can be associated with an assignment “m_src := Ii, m_dest := I j”, where m_src
and m_dest are fresh auxiliary (bounded integer) variables, meaning that an m-labeled
message is sent from instance Ii to I j in chart Lu. In R2, the destination location lk will
have invariant “(m_src == Ii)∧(m_dest == I j)” and “(m_src == I j)∧(m_dest ==
Ii)” for message sending and receiving, respectively (Fig. 18(a), locations l1, l2, l5,
and Fig. 18(b), l1, l2, l5).

(2) Handling intra-chart coordinations

In an LSC chart, if an instance line (process) in its prechart portion has no more
interactions with the other instance lines (e.g., it has successfully sent/received the
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l5 m2src == A && 
m2dest == B

l2 m4src == A && 
m4dest == B

l1
m1src == A && 
m1dest == B &&
prematch_1 == false

l3 (pch_bot)

l6 (mch_bot)

l4 (mch_top)

l0 (pch_top)

m1!
m1src := A, m1dest := B, 
prematch_1 := true

reset_1?

m2? m2!
m2src := A, m2dest := B

m4? m4!
m4src := A, m4dest := B

reset_1?

pch_over_1A!

mch_over_1A!

m1?

activate_1?

over_1?

m1!
m1src := A, m1dest := B

(a) TA for instance A

m1src == A && m1dest == B
 && prematch_1 == true

Err2
m4src == A && 
m4dest == B

Err1
m1src == A && 
m1dest == B

Rst2

m2src == A && 
m2dest == B

Rst1

m1src == A && 
m1dest == B

l2 m4src == A && 
m4dest == B

l6 (mch_bot)

l3 (pch_bot)

l1
m1src == A && 
m1dest == B &&
prematch_1 == false

l5 m2src == A && 
m2dest == B

l4 (mch_top)

l0 (pch_top)

prematch_1 := falsem1?

reset_1?

reset_1?

m4?
deadlocked := true

m1?
deadlocked := true

pch_vio_1!pch_vio_1!

m2?

m1?

m4?

pch_over_1B!

mch_over_1B!

m2?

activate_1?

over_1?

m1?

(b) TA for instance B

Rst

l2 (mch_top)

l3 (mch_bot)

l1 (pch_bot)

l0 (pch_top)

reset_1!
dInst_1 := 0

pch_vio_1?

dInst_1 + 1 == nInst_1
mch_over_1A?

dInst_1 + 1 < nInst_1
mch_over_1B?
dInst_1 += 1

dInst_1 + 1 < nInst_1
mch_over_1A?
dInst_1 += 1

dInst_1 + 1 < nInst_1
pch_over_1B?
dInst_1 += 1

dInst_1 + 1 < nInst_1
pch_over_1A?
dInst_1 += 1

dInst_1 + 1 == nInst_1
pch_over_1A?

dInst_1 + 1 == nInst_1
pch_over_1B?

dInst_1 + 1 == nInst_1
mch_over_1B?

over_1!
dInst_1 := 0

activate_1!
dInst_1 := 0

(c) The coordinator automaton

Fig. 18 The translated network of timed automata for the untimed chart in Fig. 4 (“one-TA-per-instance
line” translation)
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last message, or it does not really span across the prechart and thus before chart acti-
vation it has no interactions with other instance lines at all), then it will immediately
progress to the bottom position Pch_bot of its prechart portion, to be ready for a next
mandatory synchronization that involves all the instance lines in that chart (Table 2,
row 2 “intra-chart coordination”, upper-middle part).

R3 At position k on the prechart portion of Ii of Lu, if k = Pch_botLu,Ii −1, then we
mark lk as a committed location in Au, i, and we add a pch_overu, i!-labeled edge
from lk to lk+1 (i.e., Pch_botLu,Ii ) in Au, i. See Fig. 18(a), location l2.

The auxiliary channel pch_overu, i is used to notify the coordinator automaton
Coordu (explained below) of the completion of instance line Ii with its prechart por-
tion in chart Lu.

When all the instance lines in chart Lu progress to their respective Pch_bot po-
sitions, the prechart is successfully matched. Once this happens, all these instance
lines must immediately synchronize and progress to their respective Mch_top posi-
tions, meaning that the main chart is now activated. To model this kind of intra-chart
coordination at the prechart/main chart interface, for each chart Lu, we create a dedi-
cated (auxiliary) coordinator automaton Coordu (note that it is an untimed automaton
except for the notion of time that is induced by the UPPAAL committed locations).
This automaton will communicate with the automata that correspond to the instance
lines of Lu using auxiliary binary channels such that it can bookkeep how many in-
stance lines are done with their prechart portions. Once the coordinator automaton
realizes that the prechart has been successfully matched, it will immediately launch a
broadcast synchronization with all the timed automata that correspond to the instance
lines by using a broadcast channel.

Fig. 18(c) gives an example of the coordinator automaton for chart L1 of Fig. 4,
where pch_over1,A and pch_over1,B are binary channels, activate1 is a broadcast
channel which indicates that the main chart is to be activated, nInst1 is a constant that
denotes the number of instance lines that participate in chart L1 (hence “nInst”), and
dInst1 is an integer variable that denotes the number of instance lines that are done
with their prechart (or main chart) portions of L1 (hence “dInst”).

The coordinator automaton synchronizes all the timed automata that correspond
to the instance lines in the chart for a collective advancement (i.e., one onward ad-
vancement step for each automaton) according to the following rule (Table 2, row 2,
lower part):

R4 At position k of Ii of Lu, if k = Pch_botLu,Ii , then an activateu?-labeled TA edge
from lk to lk+1 will be assigned in Au, i. See Fig. 18(a), l3, and Fig. 18(b), l3.

Similarly, intra-chart coordination upon main chart completion will correspond
to the channels mch_overu, i (“instance line Ii of chart Lu has completed its main chart
portion”) and overu (“now that the main chart has been successfully matched, the
matching process of chart Lu will start all over again”).

(3) Handling inter-chart coordinations

In scenario-based modeling, the same message may well appear in two or more
charts. For example given an LSC system LS, in chart L1 there is an m-labeled mes-
sage occurrence mo1 sent from instance I1 to I2, and in chart L2 there is an m-labeled
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message occurrence mo2, also from I1 to I2. If at a certain global configuration (c̄,v)
these message occurrences (in the above example mo1 and mo2) are all enabled, then
their firings should be synchronized, i.e., either all of them are chosen to be fired, or
none of them is chosen. This is considered a kind of inter-chart coordination.

In the translated network of timed automata, this coordination can be accom-
plished by using a broadcast synchronization (in the above example we let m be
a broadcast channel). Recall that in a broadcast synchronization, there is only one
sender. Therefore, when translating the message occurrences (in the above example
mo1 and mo2) to edges in their respective timed automata, only one of the LSC po-
sitions that are associated with the message tails (i.e., sending locations) in LS can
correspond to the sole message-emitting TA edge in the translated TAs, and all others
will correspond to message-receiving TA edges. But considering that all message-
sending instance lines in the relevant charts have the equal possibility to initiate the
message broadcast synchronization, we propose a universal and symmetric solution:
for each m!-labeled edge from one TA location to another, we add an m?-labeled edge
between these two TA locations to “accompany” the m!-labeled edge. In other words,
we let all translated TA locations that correspond to the message-sending locations
(in the above example two locations in the translated TAs A1,1 and A2,1) have the
equal chance to act as the broadcast synchronization initiator (Table 2, row 3).

R5 If at position k on Ii of Lu there is a sending of an m-labeled message, then an
m?-labeled TA edge from lk−1 to lk will be added in Au, i. In the translated TAs,
m will be changed from a binary to a broadcast channel. See Fig. 18(a), polyline
edges (l0, l1), (l1, l2), (l4, l5).

(4) Handling cold and hot violations

Along an instance line of an LSC chart, if an arriving message is not enabled at
the current cut in the prechart, then there will be a cold violation. In this case, all
participating instance lines in this chart should be reset (i.e., brought back to their
initial positions) immediately. In the translation, this is accomplished by letting the
timed automaton that corresponds to the message receiving instance line “report” the
cold violation to the coordinator automaton in charge, which in turn immediately
initiates a broadcast synchronization to ask the timed automata that correspond to all
other instance lines of the chart to do a reset (Table 2, row 4, upper part).

R6 Assume that at position k on the prechart portion of instance line Ii of chart Lu,
there is a receiving of an m-labeled message from instance I j. If k≥Pch_topLu,Ii +
2, then for all m′-labeled messages in Lu such that m′ 6= m (note that m,m′ ∈Π ),
first an m′?-labeled outgoing TA edge from lk−1 will be added, then a fresh inter-
mediate committed TA location with invariant m′_src == src(m′)∧m′_dest ==
dest(m′) will be added, and then a pch_viou!-labeled TA edge that leads to l0 will
be added in Au, i. See Fig. 18(b), TA location Rst1 and edges (l1, Rst1), (Rst1, l0).

In the above rule, the auxiliary binary channel pch_viou (meaning “prechart vi-
olation” of chart Lu) is used to notify the coordinator automaton Coordu of the cold
violation. The resetu!-labeled broadcast edge will be added in Coordu. See Fig. 18(c),
TA edges (l0, Rst),(Rst, l0). In the prechart of Lu, for all positions s on all instance
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lines It such that Pch_topLu,It + 1 ≤ s ≤ Pch_botLu,It , we add a resetu?-labeled edge
from ls to l0 in Au, t . See Fig. 18(a), TA edges (l1, l0), (l3, l0).

If a message violates the event partial order in the main chart, then it is a hot vio-
lation. Once this happens, the corresponding TA will immediately arrive at a deadend
error location (Err) (Table 2, row 4, lower part).

R7 If at position k on the main chart portion of instance line Ii of chart Lu, there
is a receiving of an m-labeled message from instance I j, then for all m′-labeled
messages in Lu such that m′ 6= m, an m′?-labeled outgoing TA edge which arrives
at a deadend error location will be added to location lk−1. See Fig. 18(b), locations
Err1, Err2 and edges (l4, Err1), (l4, Err2).

(5) Prechart pre-matching

According to the semantics for invariant mode LSC chart, minimal events in the
prechart are constantly being matched for. For example in Fig. 4, m1 ·m1 ·m4 ·m2 is a
matching sequence for the second incarnation of this chart under the invariant mode.

R8 If at position 1 on the prechart portion of instance line Ii of chart Lu, there is a
sending of an m-labeled message to instance line I j at its position 1, then an m!-
labeled self-loop edge that carries assignment “m_src := Ii,m_dest := I j,prematchu
:= true” will be added to location l0 of Au, i. If location l0 in Au, i has an invari-
ant, then it will be enhanced with a further constraint “prematchu == false”.
See Fig. 18(a), location l0.

Similarly, if there is a receiving of an m-labeled message from I j, then we add
to l0 an m?-labeled edge, followed by an intermediate committed location which has
invariant “(m_src == I j)∧ (m_dest == Ii)∧ (prematchu == true)”, and then an
internal transition edge with assignment “prematchu := false” leading back to l0
(Fig. 18(b)).

The flag boolean variable prematchu is initialized to false. Once it is set true,
it means that chart Lu is currently undergoing a process of prechart pre-matching.

For simplicity, the semantics of prechart pre-matching has not been considered
in Section 3.2.1. A remedy to this is to add one more bullet to the “silent step” case,
stating that an m-consuming advancement step will just remain at the top cut >.

5.1.3 Dealing with time

For time-enriched LSCs, there are further constructs (i.e., clock constraints and clock
resets) to be considered during the translation. To mimic the behaviors of each clock
constraint and clock reset in an LSC chart, we use a linked sequence of edges in the
corresponding timed automaton. The atomicity of executing this sequence is ensured
by the UPPAAL feature of committed location.

(1) Translation of guards (clock constraints)

If an instance line has an m-labeled message sending that is guarded by a clock
constraint, then a natural idea is to put this constraint on the m!-labeled edge of the
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translated TA. While this is feasible in the “one-TA-per-chart” translation method, it
does not work in the “one-TA-per-instance line” method of this section. The reason is
that we need to use a broadcast channel m to handle the inter-chart coordination (see
Section 5.1.2); however, due to the restriction of UPPAAL, broadcast channels cannot
carry clock constraints [6]. To overcome this problem, in the translated TA, the upper
bound constraint (if any) such as x ≤ 5 will be tested prior to the message sending,
and the lower bound and/or clock difference constraints (if any) such as x ≥ 3 and
x− y≤ 2 will be tested immediately after the message sending (Table 2, row 5).
R9 If at position k on the main chart portion of instance line Ii of chart Lu there

is a sending of an m-labeled message which is guarded by a clock constraint
(Fig. 19(a)), then in Au, i there will be first an intermediate committed location
for upper bound constraint test. If true, then the next will be a normal location
lk with the upper bound constraint as the location invariant, which will in turn
be immediately followed by a message sending edge. Finally, there will be an-
other intermediate committed location for lower bound and/or clock difference
constraint test. See Fig. 19(b).
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(a) A guarded message

y <= 10

m3src == B &&
m3dest == C

y > 10
deadlocked := true

y <= 10

x >= 3

x < 3
deadlocked := true

m3!
m3src := B, m3dest := Cm3?

(b) TA for the sending instance line

y <= 10

m3src == B &&
 m3dest == C

y > 10
deadlocked := true

y <= 10

x < 3
deadlocked := true

x >= 3

m3?

(c) TA for the receiving in-
stance line

Fig. 19 Translating a guarded message to TA fragments

For the receiving position of the guarded message, the translation is similar, see
Fig. 19(c).

A clock constraint in the prechart portion is translated slightly differently. Since
in the prechart the messages are being monitored rather than being enforced, there
will be no pre-transition upper bound constraint test. Instead, it will also immediately
follow the message sending transition and will be merged with the lower bound and/or
clock difference constraint test.

(2) Translation of assignments (clock resets)

In a time-enriched LSC chart, an assignment (i.e., a set of clock resets) should
take place immediately after the synchronization of the message occurrence that it
is attached to. But in the translated TA, it cannot be put on the very edge that corre-
sponds to the message sending/receiving, because clock resets should not occur be-
fore the lower bound or clock difference constraint test which is supposed to happen
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immediately after the message synchronization. Neither can we append the TA edge
that carries the assignment to the destination locations of the lower bound or clock
difference constraint test, because if several identically-labeled message occurrences
are simultaneously enabled in their respective charts where those charts have differ-
ent guards and/or assignments for those message occurrences (Fig. 5, the m3-labeled
message occurrences), then there could be race conditions (e.g., the assignment x := 0
that is attached to m3 in Fig. 5(a) could happen before the lower bound test x ≥ 3 in
Fig. 5(b)). Clearly, this is not what we want.

To model the clock resets properly, for each message m ∈ Π in an LSC system,
if m is ever associated with an assignment, then we use a dedicated process (TA)
Am to coordinate all the clock resets of the corresponding message occurrences that
are engaged in the same broadcast synchronization on m. When the broadcast syn-
chronization happens, we use an integer variable m_count to bookkeep how many
instance lines in the LSC system have participated in this broadcast synchronization.
Whenever one of these instance lines is done with its lower bound and/or clock dif-
ference constraint test (if any), it will immediately notify Am of its completion using
a binary channel m_Rpt (i.e., “reporting to Am”), and after that it will wait there for
a synchronization on the broadcast channel m_Rst (i.e., “resetting clocks” command
from Am), along with which it can carry out its clock resets. In Am, an integer vari-
able m_done is increased by 1 each time when Am is notified by an instance line
(via m_Rpt?). Once m_done rises up to m_count, Am will immediately initiate the
broadcast synchronization (via m_Rst!) (Table 2, row 6).

R10 If at position k on instance line Ii of chart Lu there is a receiving of an m-labeled
message which has clock resets (Fig. 20(a), instance line on the right), then there
will be first an m_Rpt!-labeled outgoing edge from location lk in Au, i, then a
normal location, and then an m_Rst?-labeled outgoing TA edge that carries the
clock resets. See Fig. 20(b).
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(a) A message with clock
reset

m2src == A &&
m2dest == B

m2_Rst?
y := 0

m2_Rpt!

(b) TA for the re-
ceiver

m2_done < m2_count
m2_Rpt?

m2_done += 1

m2_done ==
 m2_count
m2_Rst!
m2_count := 0,
m2_done := 0

m2_Rpt?
m2_done += 1

(c) The dedicated TA Am2

Fig. 20 Translating a message with clock reset to TAs
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The dedicated TA Am just waits for all the relevant instance lines to be done with
their lower bound and/or clock difference constraint tests, and then synchronizes them
for clock resets (Fig. 20(c)).

(3) Just-in-Time message upper bound constraint test

When time-enriched LSC charts have upper-bound clock constraints, there are
conditional tests before message sending/receiving in the translated timed automata.
Given an m-labeled message occurrence in a chart, a potential problem is that in the
translated timed automata for the sending and receiving instance lines, the TA lo-
cations that correspond to the sending and the receiving positions of this message
may not be ready for this message synchronization at the same time (Fig. 5(b), the
m1-labeled message occurrence). In the symbolic exploration of the state space of
the translated network of timed automata, problems will arise if the upper bound of
some message sending/receiving is tested when actually it should not at that time. For
example in Fig. 5, assume that a message sequence m1 ·m2 has been observed, and
both charts have just entered their main charts, respectively. Note that a next m1 is
not enabled at the current cut (w.r.t.4). But according to our translation method men-
tioned earlier in this section (5.1.3), its guard will incorrectly add a further constraint
“x ≤ 2” to “(x ≤ 5)∧ (x ≥ 3 ∧ y ≤ 10)”. Consequently, in this example all possible
paths will end up with hot violations.

To avoid this kind of premature tests of upper bound constraints for message
occurrences, we associate each message occurrence mo in each chart Lu with two flag
boolean variables mo_u_maySnd and mo_u_mayRcv, denoting whether this message
may be sent or received in chart Lu, respectively. The upper bound constraint of mo
can be tested only if both flag variables evaluate to true.

R11 If at position k on instance line Ii of chart Lu there is a sending of message occur-
rence mo which has a clock constraint (Fig. 19(a)), then there will be a preceding
edge carrying the predicate “mo_u_mayRcv == true”. Once this message syn-
chronization is fired, mo_u_maySnd will be cleared.

For the receiving instance line of message occurrence mo, the corresponding pred-
icate will be “mo_u_maySnd == true”.

If mo is a minimal event in the prechart (resp. main chart), then mo_u_maySnd
and mo_u_mayRcv will have initial values true (resp. will be set to true by the
activateu synchronization). If mo is not a minimal event, then the flag variables will
be set to true by its predecessor events.

Given a message occurrence mo, if the predecessor positions of the head/tail po-
sitions of mo are also the head/tail (or tail/head) positions of another message oc-
currence, or mo is a minimal event, then mo_u_maySnd and mo_u_mayRcv will be
both true prior to the constraint tests. Otherwise, their truth values may differ, e.g.
in Fig. 21(a), message occurrence m1 for the current cut (the dashed free line). In
this case, the translated TA A2,A will go to location Wait to “sleep”, and will then be
woken up by a dedicated message mo1_Rcv that is sent by the TA A2,B (Fig. 21(b)).
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(a) An LSC fragment

Wait

Mch_top

x <= 2

m1_Rcv?

m1_c2_mayRcv
  == false

m1_c2_mayRcv
  == true

x <= 2 x > 2
hotviolated
  := true

(b) TA fragment for instance line A

Fig. 21 An LSC fragment of Fig. 5(b) and the corresponding TA fragment for its instance line A

5.1.4 Translating non-message simregions

In Sections 5.1.2 and 5.1.3, the simregions take the forms of pure message occur-
rences and message occurrences that are associated with conditions and/or assign-
ments, respectively. In this section, we consider the non-message simregions. As
mentioned in Section 3.1, we adopt the ASAP semantics for these simregions. De-
pending on how many instance lines a non-message simregion is anchored to, we
translate it in different ways:

– one instance line. A single edge will be created in the timed automaton that cor-
responds to this instance line to carry the condition and/or assignment of the non-
message simregion;

– two instance lines. We treat the non-message simregion as if there were an im-
plicit message that carries the condition and/or assignment, and this message were
sent from one to the other instance line. Accordingly, we create a fresh auxiliary
binary channel in the timed automata, and translate similarly as in Section 5.1.3;

– three or more instance lines. We treat the non-message simregion as if there were
an implicit synchronization among them that carries the condition and/or assign-
ment. Accordingly, we create a fresh auxiliary broadcast channel in the timed
automata, and translate similarly as in Section 5.1.3.

5.1.5 Translating monitored charts

In comparison with a driving universal chart, the translation of a monitored chart
is different in the point that a monitored chart only “listens to” the messages in the
LSC system and never emits messages by itself. When translating such a chart to a
network of timed automata, if at position s of instance line Ik there is a sending of an
m-labeled message, then instead of adding an m!-labeled TA edge from ls−1 to ls, we
only add an m?-labeled one in between.
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5.2 Complexity of translated timed automata

Let LS be a set of LSC charts L1,L2, . . . ,Ln, and let NTALS be the translated network of
timed automata. Let inst(Li), ML(Li), MA(Li) and MO(Li) denote the set of instance
lines, the set of message labels (i.e., “signals”), the message alphabet and the set of
message occurrences of chart Li, respectively.

Table 3 summarizes the complexity of the outcomes (more precisely the worst-
case outcomes) of the translation in different settings, namely, a single LSC chart or
an LSC system; untimed LSC chart or time-enriched LSC chart.

Table 3 The complexity of the outcomes of LSC-to-TA translation (“one-TA-per-instance line”)

number of A single chart L
untimed chart time-enriched chart

TAs |inst(L)|+1 |inst(L)|+ |MA(L)|+1
channels |ML(L)|+2 · |inst(L)|+4 |ML(L)|+2 · |inst(L)|+4+3 · |MA(L)|
auxiliary variables 2 · |MA(L)|+2 4 · |MA(L)|+2 · |MO(L)|+2

number of A set of driving charts L1, . . . ,Ln

untimed charts time-enriched charts
TAs ∑

n
i=1(|inst(Li)|+1) ∑

n
i=1(|inst(Li)|+1)+ |

⋃n
i=1 MA(Li)|

channels |
⋃n

i=1 ML(Li)|+
∑

n
i=1(2 · |inst(Li)|+4)

|
⋃n

i=1 ML(Li)|+∑
n
i=1(2 · |inst(Li)|+4)+

3 · |
⋃n

i=1 MA(Li)|
auxiliary variables 2 · |

⋃n
i=1 MA(Li)|+2n 4 · |

⋃n
i=1 MA(Li)|+2 ·∑n

i=1 |MO(Li)|+2n

For a time-enriched LSC system, we analyze the complexity of the translated
network of timed automata as follows:

Let the set LS of time-enriched charts L1,L2, . . . ,Ln have messages m1,m2, . . . ,mk,
message occurrences mo1,mo2, . . . ,mos, and instance lines Ii,1, Ii,2, . . . , Ii, ini , where
1≤ i≤ n, ini = #(inst(Li)) = |inst(Li)|.

According to Section 5.1.2 (“Handling intra-chart coordinations”) and Section
5.1.3 (“Translation of assignments”), in the worst case (i.e., each message has been
associated with some clock resets somewhere in LS), the translated network of timed
automata will be NTALS = {Ai, j | 1≤ i≤ n,1≤ j≤ #(inst(Li))}∪{Coordi | 1≤ i≤ n}
∪{Ami | 1≤ i≤ k}. Therefore, the number of timed automata is ∑

n
i=1(|inst(Li)|)+n+

|
⋃n

i=1 MA(Li)| (Table 3, lower part right column).
According to rule R2, each message label corresponds to a channel in NTALS. Ac-

cording to R3, R4 and R6, there will be a set of auxiliary channels Aux= {pch_overu, i,
mch_overu, i | 1 ≤ u ≤ n, 1 ≤ i ≤ #(inst(Lu))}∪ {activateu,overu, pch_viou,resetu |
1 ≤ u ≤ n} that will be used in NTALS. According to Section 5.1.3 (“Translation of
assignments”), in the worst case, there will be a set of auxiliary channels Aux′ =
{mi_Rpt,mi_Rst, mi_Rcv | 1 ≤ i ≤ k} for translating clock resets. Therefore, in the
worst case, the number of channels in NTALS will be |

⋃n
i=1 ML(Li)| + ∑

n
i=1(2 ·|inst(Li)|

+4)+3 · |
⋃n

i=1 MA(Li)|.
According to Section 5.1.2 (“Basic mapping rules”), there will be a set of aux-

iliary variables {mi_src, mi_dest | 1 ≤ i ≤ k}. According to rules R3 and R8, there
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will be a set of auxiliary variables {prematchu, dInstu | 1 ≤ u ≤ n}. According to
Section 5.1.3 (“Translation of assignments”), in the worst case, there will be auxil-
iary variables {mi_count, mi_done | 1≤ i≤ k}. Furthermore, according to R11, there
will be auxiliary variables {moi_maySnd, moi_mayRcv | 1 ≤ i ≤ s}. Therefore, the
total number of auxiliary variables in NTALS may be up to (2 · |

⋃n
i=1 MA(Li)|)+2n+

(2 · |
⋃n

i=1 MA(Li)|)+(2 ·∑n
i=1 |MO(Li)|). ut

The complexities for the other three settings can be analyzed similarly.

Remark 1 Although during the translation we introduce some auxiliary (coordina-
tor) automata, auxiliary channels and auxiliary integer data variables, we do not in-
troduce auxiliary clock variables. This is important because the time complexity of
model checking timed automata is much more sensitive to the number of clocks and
the clock upper bounds thereof in the system (e.g., reachability and emptiness prob-
lems have a factorial growth with the number of clocks). Furthermore, among all the
auxiliary variables, (n+2 ·∑n

i=1 |MO(Li)|) of them are boolean variables, and the rest
of them are bounded integer variables that have relatively small ranges. Still further,
rather than being able to take arbitrary values in their respective ranges, these aux-
iliary integer variables are inter-correlated and thus have a limited number of value
combinations. All these indicate that the translated network of timed automata does
not have an overwhelmingly large state space as it first appears to have.

Remark 2 In Sections 3 – 5, we assume a liberal object interaction context in the
sense that a message label (or “signal”) can be viewed as a member function of a class
in object-oriented programming; and instances of other classes can call the method of
a certain instance of the method-owner class (i.e., to send a message to that instance).
Therefore in the translation, each message m needs to be associated with two bounded
integer variable m_src and m_dest, representing the particular sending and receiving
instances, respectively.

In case that object-orientation is not a major concern, we can make the “message
sender/receiver uniqueness” assumption, i.e., each message label corresponds to a
unique sending process and a unique receiving process in the communicating system.
In other words, different messages must carry different message labels. Under this
assumption, for a set of untimed (resp. time-enriched) charts L1,L2, . . . ,Ln, in Table 3
the number of needed auxiliary bounded integer variables will decrease to 2n (resp.
to 2 · |

⋃n
i=1 MA(Li)|+2 ·∑n

i=1 |MO(Li)|+2n).

Remark 3 In Section 5.1.2 (“Basic mapping rules”), for each message m ∈ Π we
assign two bounded integer variables m_src and m_dest. Although this handling has
good readability and is easily comprehensible, it is not really necessary to assign so
many auxiliary integer variables even if we do not make the “message sender/receiver
uniqueness” assumption.

On one hand, if a message m∈Π is always sent from one instance line to another,
then we do not need to use m_src and m_dest at all. On the other hand, if a message
m ∈ Π has different sending and/or receiving instance lines, then let the number of
sender/receiver combinations be k. It suffices to associate m with only one auxiliary
bounded integer variable m_sd (“src-dest” of m) rather than m_src and m_dest. The
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range of m_sd could be [0, k−1]. The constraints and updates on m_src and m_dest
in Section 5 can be modified accordingly. In this way, the state space of the translated
network of timed automata will be further reduced.

Remark 4 Section 4.2 shows that the observer timed automaton which is obtained
by our first (“one-TA-per-chart”) translation has exponential space complexity. Since
this is due to the inherent complexity of the LSC formalism, the translation outcome
cannot be simpler. In Section 5.1, the translated network of timed automata also has
exponential space complexity when they are composed in parallel. A justification is
that each cut of the chart corresponds to a location vector of the network of timed
automata (this is shown in the proofs of Theorem 5 and its lemmas).

Since a number of auxiliary automata, locations and variables have been intro-
duced, the outcome of our “one-TA-per-instance line” translation may have a larger
state space than the first approach. However, the advantage of this approach is also
clear. We do not need to explicitly generate and store a (possibly huge) global tran-
sition system (i.e., the parallel composed timed automata), whose state space does
not necessarily need to be fully explored by the on-the-fly verification algorithms of
UPPAAL.

5.3 Equivalence of LSC and TAs

Theorem 5 Let LS be a set of time-enriched LSC charts whose message alphabet is
Π , and let NTALS be the translated network of timed automata which have a set Act of
normal and auxiliary channels. Then ∀γ1 ∈ (Π ∪{τ}∪R≥0)

ω .((γ1 |= LS)⇒∃γ2 ∈
(Act ∪{τ}∪R≥0)

ω .(γ2 |= NTALS)∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))), and ∀γ2 ∈ (Act ∪
{τ}∪R≥0)

ω .((γ2 |=NTALS)⇒∃!γ1 ∈ (Π ∪{τ}∪R≥0)
ω .(γ1 |= LS)∧(γ2|(Π∪R≥0) =

γ1|(Π∪R≥0))).

Theorem 5 indicates that each accepted timed trace γ1 in LS uniquely corresponds
to a cluster of accepted timed traces in NTALS. All these traces correspond to exactly
the same restricted trace on the message alphabet and time delays (Π ∪R≥0) as γ1
does.

The lemmas for theorems in Sections 5.3 and 5.4, and the proofs of these lemmas
and theorems can be found in Appendix D.

5.4 Verification problems

In the context of scenario-based verification, we would like to ask whether a system
that is modeled as a set LS of driving universal charts satisfies the requirements that
are specified as a separate monitored universal or existential chart L′. Here L′ will
be translated to a network of observer timed automata NTAL′ , i.e., they only “listen
to” the messages in NTALS, and never emit messages to NTALS by themselves. We
let CoordL′ .Mch_top and CoordL′ .Mch_bot denote that the coordinator automaton
CoordL′ for chart L′ is in its locations Mch_top and Mch_bot, respectively.

We have the following two main theorems:
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Theorem 6 Let LS be an LSC system, and L′ be a monitored universal chart, then
LS |= L′ ⇔ (NTALS ||NTAL′) |=(CoordL′ .Mch_top CoordL′ .Mch_bot).

Theorem 6 indicates that in order to check whether an LSC system satisfies the
requirements in a separate universal chart, we only need to check whether the respon-
siveness CTL property is satisfied by the parallel composition of their corresponding
networks of timed automata.

Theorem 7 Let LS be an LSC system, and L′ be a monitored existential chart, then
LS |= L′ ⇔ (NTALS ||NTAL′) |=E♦ CoordL′ .Mch_bot.

Theorem 7 indicates that in order to check whether an LSC system satisfies the
requirements in a separate existential chart, we only need to check whether the par-
allel composition of their corresponding networks of timed automata has a trace that
can be observed by the existential chart as a satisfying run.

6 Tools and experiments

6.1 “One-TA-per-chart” approach

Based on previous work [33], the approach in Section 4 has been implemented as a
prototype LSC editor and LSC-to-TA translator, which have been integrated into a
recent version of the UPPAAL frontend client (GUI) and backend verification server
[5], respectively. The LSC editor and translator support the LSC elements of instance
line, location, message, condition, assignment, simregion, prechart and main chart.
Furthermore, the LSC editor supports the creation and instantiation of LSC templates,
where the template parameters can be used to parameterize the instance lines and
messages in the charts. Both the translation and the composition algorithms have
been integrated into the UPPAAL verification server (Fig. 1, left part). In this way, the
user achieves scenario-based push-button verification.

We carry out experiments on the Train-Gate example [40]. The system model
consists of a number of Trains, each of which may want to cross the only bridge (i.e.,
to access a critical resource), and a Gate controller, which ensures correct signalling
with the trains (i.e., to sense the approaching and leaving of trains, and to command
the trains to stop and to resume). Each train uses a clock variable to keep track of its
timings of approaching/leaving the gate and being stopped/resumed by the gate. All
these trains are subject to certain timing constraints such that collisions are avoided
and a safe separation distance between any two trains is always maintained.

We can use time-enriched LSC charts to capture the scenario-based requirements
such as:

– L1 (“liveness”): Once a train approaches the gate, it must eventually (cross and
then) leave the gate; and

– L2 (“freedom from collisions”): If a second train approaches the gate before the
first approaching train completes its crossing, then the gate must signal the second
train to stop within a certain period of time, and after that the first train must leave
the gate (Fig. 22, LSC template “Scenario2”).



44

The original system TA models, the LSC requirements, and the translated and
composed system models can be found in [30].

Note that the LSC charts can have their own (i.e., “private”) clocks that do not
appear in the original system models, e.g., clock z in the chart template “Scenario2”
of Fig. 22.

Fig. 22 A scenario-based “freedom from collisions” requirement in the UPPAAL-integrated LSC editor

Table 4 presents the experimental results of verifying the Train-Gate system against
the scenario-based requirements L1 and L2. The time overheads and memory con-
sumptions as listed in the four rightmost columns of Table 4 are the sums for the
three consecutive phases, i.e., LSC-to-observer timed automaton translation, system
and observer timed automaton instrumentation and composition, and model checking
the composed system against the automatically extracted CTL formula. In compari-
son, columns 2 to 5 of Table 4 present the time and memory consumptions for “pure
verification”, i.e., merely to model check the translated and composed system (which
can be saved as a network of UPPAAL TAs (.xml model file) by the translator) against
the automatically extracted CTL formula (which can also be saved as a UPPAAL
query (.q property file) by the translator). Furthermore, we vary the number of trains
in the system to see how this approach scales. Since each train has a clock variable
and the monitored LSC chart may have a fresh clock variable, the total number of
clocks in the system is the number of the trains plus one.

As can be seen in Table 4, model checking an LSC-specified requirement against
a TA-modeled real-time system of up to 10 clocks (i.e., 9 trains plus 1 LSC chart)
can be achieved on an ordinary PC. Considering that the models of many real-life
applications have only a few clocks, our approach can be of practical value. Further-
more, it appears that both the time overheads and the memory consumptions increase
exponentially with the size of the system and number of clocks. Specifically, when
the number of trains increases to 10, UPPAAL does not issue a pass/fail verdict after
it has been running for more than 12 hours and consumed 2.2GB memory. Further-
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Table 4 Experimental results of scenario-based verification of the Train-Gate example

# of trains

performance results
〈CPU time: sec, memory: KB〉

conventional approach in UPPAAL approach of Section 4
(“pure verification”) (“translation + composition + verification”)

L1 L2 L1 L2
2 < 0.01 4108 < 0.01 4232 < 0.01 4220 < 0.01 4504
3 0.01 4208 0.01 4460 0.02 4492 0.01 4672
4 0.03 4324 0.03 4652 0.04 4936 0.03 5240
5 0.23 4664 0.23 4936 0.24 5058 0.24 6080
6 0.68 7252 0.73 7640 0.69 8660 0.75 8908
7 4.38 29892 4.46 27604 4.39 31884 4.48 29764
8 41.66 232924 39.49 191764 41.83 235504 39.61 194428
9 508.14 2127884 404.07 1700360 508.38 2167420 404.24 1703848

10 ( > 12 hours, ≈ 2.2GB )

Experiment platform: Intel Core 2 Duo P8700 CPU (2×2.53GHz), 4 GB RAM; Ubuntu 10.4,
UPPAAL 4.1.3.

more, system monitoring shows that the memory usage is almost stabilized within
this long procedure (12+ hours). All these seem to indicate that time complexity is
more of a problem in this approach.

By comparing the results of the “pure verification” and our scenario-based ver-
ification, it is clear that the latter approach is only a little more expensive than the
former one (Table 4). This is reasonable because translation and composition as syn-
tactical level manipulations are far less computation-intensive than the subsequent
model checking. Considering that manual construction of observer timed automata
is in general a time-consuming and error-prone process, our approach achieves auto-
mated scenario-based verification at the expenses of only a little extra efforts.

As a classic benchmark, the Train-Gate example has been widely examined in
real-time system modeling and verification, including LSC-based verification. The
scenario-based verification problems in [34] are very similar to ours, though the au-
thors use a variant of the Train-Gate TA models and define LSC in a different manner
(e.g., their LSC has subcharts and conditional constructs, but no guarded messages
with clock resets as in this article). For a Train-Gate system of 4 trains and an LSC
scenario that is very similar to our “freedom from collisions” property L2, their veri-
fication takes 6.4 seconds (dual Pentium 4 Hyper-Threading 2.8 GHz CPUs). As can
be seen in Table 4, we need 0.03 second. Although it is not fair to compare them
directly, the results may be indicative of the efficiency of our approach.

6.2 “One-TA-per-instance line” approach and comparison with previous approach

To realize the approach in Section 5, we have built a GUI-based LSC editor, with
which we can construct either universal or existential charts, and we have imple-
mented a prototype command line LSC-to-TA translator (“one-TA-per-instance line”
approach), which is capable of batch translation of the prescribed LSC charts. The
translator-generated timed automata and extracted CTL formulas comply with the
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UPPAAL timed automaton and query language syntax, and can thus be fed into UP-
PAAL. The LSC editor, the LSC-to-TA translator and the UPPAAL model checker
collectively constitute a tool chain.

We still use the Train-Gate problem to illustrate how our “one-TA-per-instance
line” approach performs. The system consists of two trains and one gate. The scenario-
based interaction behaviors are modeled as five driving LSC charts. The scenario-
based requirement is captured in a separate monitored LSC chart. We let this require-
ment be freedom from collisions (Section 6.1, property “L2”).

The set LS of driving charts and the monitored chart L′ are translated to networks
of timed automata NTALS and NTAL′ (Table 5, lower part), respectively. The models
of the driving/monitored LSC charts and the translated TAs can be found in [30].

Table 5 Experimental results of the approaches of Sections 4 and 5 using the same Train-Gate example

original and LSC-translated TA models model checking
TAs locations edges channels clocks variables time (s) memory (KB)

Train-Gate system 3 13 17 8 2 4
0.007 4232(original TA models)

monitored chart “L2” 1 5 32 6 1 4(approach of Sect. 4)

5 driving charts 23 251 352 65 5 57
3.93 25848(approach of Sect. 5)

monitored chart “L2” 5 55 75 16 1 19(approach of Sect. 5)

Experiment platform: Intel Core 2 Duo P8700 CPU (2×2.53GHz), 4 GB RAM; Ubuntu 10.4,
UPPAAL 4.1.3.

We also carry out comparative study of the “one-TA-per-chart” and “one-TA-per-
instance line” approaches using the same configuration of the Train-Gate problem as
above (i.e., two trains and one gate). We compare the two approaches in terms of the
sizes of the translated timed automata and the performances of the model checking
that are subsequently performed on these timed automata (Table 5).

As we can see, the amounts of translation outcomes of the driving charts (Table
5, middle columns data, row 3) and of the monitored chart (row 4) using the “one-
TA-per-instance line” approach are roughly in proportion to the numbers of the charts
(5 and 1 in this example, respectively). The reason is that these two kinds of charts
are translated in basically the same way (Section 5.1.5). However, the outcome of the
“one-TA-per-instance line” translation (Table 5, middle columns data, row 4) is more
complex than that of the “one-TA-per-chart” translation (row 2). The reason is that
many auxiliary channels and variables are needed to properly handle intra-/inter-chart
coordinations. In other words, the benefit of “distributed” translation usually comes
along with this kind of structure complication of translation.

Also from Table 5 we notice that model checking the translated five driving charts
against the translated monitored chart using the “one-TA-per-instance line” approach
(Table 5, right columns data, row 2) requires more CPU time and memory than model
checking the original Train-Gate TA system against the translated monitored chart us-
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ing the “one-TA-per-chart” approach (row 1). This is mainly because that the trans-
lated network timed automata of the five driving charts are far more complex than
the original TA models of the Train-Gate system [40], which consists of only three
simple TAs that have 2 clocks, 8 channels and 4 variables (Table 5, middle columns
data, row 1).

At a first glance it seems that our “one-TA-per-instance line” approach is very
likely to suffer from scalability problems: even for a small system, we need to cre-
ate a relatively large number of LSC charts to model the system behaviors and to
specify the user requirements. In this way, the translation will yield a large network
of timed automata. Consequently, we are left in doubt whether the efforts of deal-
ing with this TA system will outweigh the benefits of using LSCs. However, a close
examination of the LSC charts in this Train-Gate example reveals that we need to
create so many charts (and the respective clock variables for these charts) mainly be-
cause that our time-enriched LSC in its current form has only a limited number of
language constructs. Consequently, a single LSC chart captures only a small piece of
system behaviors or user requirements. If we extend it with e.g. the control structures
such as branching and looping, symbolic mechanisms such as symbolic messages
and symbolic instances, and with forbidden and ignored messages, then our LSC
models themselves will be much more succinct than what they are now (i.e., fewer
charts and fewer clocks will be needed to model the same system and specify the
same requirement). The numbers of translated timed automata and the clock vari-
ables can hopefully be kept within reasonable sizes. This likelihood and tendency
has been shown by previous work on the “one-TA-per-chart” translation of the richer
LSC models [33].

7 Translating iterative mode charts

When translating LSC charts to timed automata in Sections 4.1 and 5.1, we consid-
ered only the invariant activation mode.

As mentioned in Section 3.1, a universal chart under the iterative mode requires
that, as long as the main chart is currently active, the prechart will not be monitored
for further satisfaction. Compared with the invariant mode, satisfaction of a univer-
sal chart under the iterative mode is a weaker requirement. In other words, given an
LSC chart and a message sequence, it may happen that under the invariant mode, the
chart hot-violates this sequence, but under the iterative mode, the chart does not. For
example, for the LSC chart in Fig. 23(a), the message sequence “m1 ·m2 ·m1 · m3” is
hot-violated by the second incarnation of this chart under the invariant mode. How-
ever, it is not violated by any incarnation under the iterative mode, because under
this mode the second incarnation is “killed” immediately after the prechart of the first
incarnation is matched by the sub-sequence “m1 ·m2”.

To conduct the “one-TA-per-chart” translation for iterative mode charts, we con-
vert a chart into a timed automaton similarly as in Section 4.1 (except that we discard
the “prechart pre-matching” step). Now we maintain multiple copies of the trans-
lated TA. Each of these copies will become a chart incarnation (i.e., a “live” copy)
when necessary. When a new message arrives, the existing chart incarnations (live
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copies) will react to it as usual, and besides, at most one of the remaining chart
copies will be incarnated upon this message (this is ensured by using the auxiliary
binary semaphore MoreIncarnations, the “allocating” variable NxtIncarnation, and
the function IncNxtIncarnation() that updates NxtIncarnation, see Fig. 23 and the
UPPAAL declarations below).

The dynamics of the iterative mode activation is implemented by using a fresh
auxiliary broadcast channel kill. Once an incarnation of the chart notices that its
prechart has been successfully matched, it will immediately initiate a broadcast syn-
chronization on kill to reset (i.e., to “kill”) all other live copies that are still progress-
ing in their respective prechart portions.

As an example, if we interpret the LSC chart in Fig. 23(a) under the iterative
mode, then Fig. 23(b) is the corresponding TA template IterativeModeTemplate()
(for better legibility, we have omitted the guards on the sending and receiving instance
lines). This template has a template parameter

int[0, MaxIncarnationNum - 1] thisChartCopy

and it will be instantiated as follows when we make the system (component) declara-
tions in UPPAAL:

// There are at most two incarnations.
Chart0 = IterativeModeTemplate(0);
Chart1 = IterativeModeTemplate(1);

system Chart0, Chart1;

The global (variable, channel and function) declarations of the above system in
UPPAAL are as follows:

const int MaxIncarnationNum := 2; // The maximal number of incarnations for this chart.

int[0, MaxIncarnationNum - 1] NxtIncarnation := 0; // Which chart copy should be the
// next incarnation?

bool MoreIncarnations := true; // "Should the Pch be monitored or not?"

broadcast chan m1, m2, m3; // The message labels in the LSC chart
broadcast chan kill; // "kill" is a fresh auxiliary channel.

// Once an incarnation of the LSC chart enters its main chart, it
// should immediately reset all other incarnations of that chart.

// The function that shifts the pointer to the next chart incarnation
void IncNxtIncarnation() {

NxtIncarnation := (NxtIncarnation + 1) % MaxIncarnationNum ;
}

The LSC elements such as conditions and assignments can be added and trans-
lated similarly as in Section 4.1. Likewise, we can prove that the LSC chart L and
the translated timed automata OL,1,OL,2, . . . ,OL,n are behavior-equivalent. Here OL, i
denotes the timed automaton for the i-th chart copy, and n is the maximal number of
chart incarnations of L. We can also compose these observer timed automata with the
original system model S (i.e., a network of timed automata), and thus get the final
(modified) network of timed automata (S′ ||O′L,1 ||O′L,2 || . . . ||O′L,n).

To verify whether system S is satisfied by chart L under the iterative mode, we do
the following CTL model checking:

(S′ ||O′L,1 ||O′L,2 || . . . ||O′L,n) |= (li,min li,max), 1≤ i≤ n
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Fig. 23 An LSC chart and its translated timed automaton template (under the iterative mode)

where li,min and li,max denote the TA locations that correspond to the minimal and
maximal cuts of the main chart of the i-th incarnation of chart L, respectively.

To conduct the “one-TA-per-instance line” translation for iterative mode charts,
the above general idea also applies. We also maintain multiple copies of the translated
timed automaton for each instance line in each driving chart. In this case, each chart
Li will have its killi-broadcast channel, and the synchronization on this channel will
take place immediately after the activatei-broadcast synchronization in Li.

Remark 5 The two activation modes, i.e., invariant and iterative modes, can serve
different but complimentary purposes. When used as a monitored chart, a chart is
more difficult to be satisfied under the invariant mode than under the iterative mode.
This indicates that invariant mode is better for capturing safety-related scenario re-
quirements. On the other hand, when used as a driving chart, an iterative mode chart
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can act as a periodic event generator, i.e., before a sequence of messages in the main
chart are generated and dispatched to fulfil some commitment, it will not search for
an “assume” pattern and make any new commitments.

8 Related work

8.1 Verifying state/transition systems against scenario-based requirements

Model checking by definition and in its earliest forms takes a state/transition system
model and a temporal logic formula as the inputs. To model check state/transition-
based real-time systems against complex properties or scenario-based requirements,
various approaches have been proposed.

One solution is the observer automata (a.k.a. test automata [1]) approach, i.e.,
to construct a number of auxiliary automata to capture the complex properties or
scenario-based requirements, and then use these automata to “observe” the original
system model. This approach requires that the observer be compatible with the orig-
inal system model, and that the observation be non-intrusive and efficient (i.e., it
incurs as little extra communication and computation overheads as possible).

An observer timed automata approach to real-time system verification is sug-
gested in [1]. This approach has been used to model check practically relevant sys-
tems such as the B&O power controller [19] and some timed safety instrumented
systems [27]. Case studies thereof indicate that the approach is effective. However,
the approach also comes with some limitations:

– Manual construction of observer timed automata could be labor-intensive and
error-prone, and this is especially the case when the automata grow large;

– To synchronize with the observer timed automata, the original system models
may need to be modified and annotated. During this modification process, some
new errors might be introduced. Newly introduced timing errors are especially
difficult to diagnose; and

– Since an observer timed automaton and the original system usually engage in
“loose” channel synchronizations (i.e., no particular sending and receiving pro-
cess are specified for a synchronization on a certain channel (message label)),
they specify process interactions only liberally. To capture non-trivial scenario-
based requirements, the synchronizations between the observer automaton and
the original system should be carefully designed by using e.g. auxiliary variables,
semaphores or locking mechanisms. This is an extra burden for the designers.

Compared with the observer automata approach, in our method the observer au-
tomaton is constructed automatically, and it is guaranteed to observe the original
system in a non-intrusive way. Furthermore, the automatically created auxiliary vari-
ables (including semaphores) will enable our observer automaton to faithfully reflect
the LSC requirements where each message has its particular sending and receiving
process.

Scenario-based requirements on state/transition-based system models can also be
captured by using the assume-guarantee style visual formalisms such as Triggered
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MSC [36], Template MSC [15] or the even richer LSC [18], and then transformed
into directly verifiable formalisms. In particular LSCs can be translated into timed
Büchi automata (TBA) [25], timed automata [33], temporal logics [25,16,9,26,13,
8] or sequences of LSC elements [34], and the verification problem can be converted
to a model checking problem on existing tools [25,9], or solved directly [34].

An early attempt of introducing LSC features such as the initial and iterative acti-
vation modes and the activation condition (a Boolean expression which characterizes
the state of the system model when the scenario should start) into UML Sequence
Diagrams is made by Lettrari and Klose [31]. They develop a tool to monitor and test
the executable UML models (i.e., implementations of RHAPSODY UML models). In
comparison, our work follow the more mature LSC definition [18] to support also
the invariant mode and the notion of prechart, which details the activation conditions
under which they apply, and we aim at scenario-based verification.

Damm and Klose [12] propose to use LSCs in combination with STDs (Symbolic
Timing Diagrams) to specify scenario-based requirements on STATEMATE models,
and then carry out model checking. This methodology has been concretized and im-
plemented in [25], where an LSC chart is transformed into a timed Büchi automaton,
which is further transformed into a temporal logic formula. Further descriptions of
how LSC as a specification language can be used in a UML verification environ-
ment for the RHAPSODY tool are presented in [35]. In the work of [25], in order
to specify real-time requirements, timers [4,20] and timing annotations (or delayed
intervals) [4] are added to the LSC charts. To enable the transformation, each loca-
tion of the LSC chart is equipped with a discrete (integer) clock. Since timers can
only express timing constraints within a single chart and within a single process, and
delayed intervals can only express the minimal and maximal delays between two con-
secutive locations, these restrict the expression of timing constraints across processes
and across charts. Our LSC charts use TA-like real-valued clock variables. This flavor
of timing constraint agrees well with the original TA system model, and thus enable
smooth translation of timing information into the observer TA, as well as seamless
embedding of the observer TA into the UPPAAL verification framework.

An LSC to timed automata translation is proposed in [33]. When the LSC chart
is used as a monitored chart, this translation is similar to our “one-TA-per-chart”
translation in the sense that they are both based on the notion of LSC cut and its
advancements. However, when LSC serves as a modeling language, this method is
faced with the cut and configuration blow-up problem. In comparison, our “one-TA-
per-instance line” translation method does not need to explicitly enumerate and thus
create TA locations for a potentially huge number of cuts.

LSCs can also be translated into temporal logic formulas [16,26,13,8]. For the
kernel subset of LSC in [26], it has been shown that existential charts can be ex-
pressed using the CTL logic, and universal charts can be expressed using (LTL∩ CTL)
[16,26]. Similar results are achieved in [13]. However, these methods do not handle
explicit time in the charts. In [9], LSC is applied in hardware verification, where the
system models are given in Verilog and the user requirements are specified as LSCs.
These LSCs are translated to LTL formulas and then fed into the verification envi-
ronment FORMALCHECK. Since LSCs are used to specify hardware protocols at the
register transfer level, a discrete clock tick construct is introduced to explicitly rep-
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resent the passage of system time. Compared with [9], we use real-valued clocks to
represent various timing constraints.

As mentioned thus far, verification techniques that are based on LSC-to-temporal
logic translation in general tend to suffer from scalability problems. Industrial case
studies [23] show that the LTL formulas grow large even for LSCs of moderate size,
and thus formal verification becomes expensive. To overcome this limitation, Klose
and colleagues [24] investigate efficient model checking of Kripke structures against
LSC requirements. In our method, since our observer automaton is tightly coupled
with the original system, a very simple CTL property A�(lmin ⇒ A♦ lmax) can be
extracted from the observer automaton to capture the LSC requirements. In this way
we avoid translating LSCs to complex temporal logic formulas.

Another line of work [34] is to extract properties from LSCs as sequences of LSC
elements, and to develop verification algorithms to check whether these sequences
are respected by the FSM computation graph of the TA model that is exported from
UPPAAL. However, simultaneous regions (simregions) in their LSCs are used only
to model broadcast communications, and conditions cannot be a part of simregions.
Our notion of simregion uses the “[condition] [message]/[assignment]” pattern, thus
enables smooth translation to a TA edge.

8.2 Verifying object interaction-based systems against scenario-based requirements

In this case, the system is modeled as a set of driving universal LSC charts and the re-
quirement is specified as a set of monitored universal or existential charts. Monitored
universal charts should not be hot-violated, and monitored existential charts should
be matched at least once [18,7].

In the execution (or play-out) [18] of scenario-based models, the Play-Engine
checks whether the monitored charts are respected. This is enhanced in the smart
play-out mechanism, where planned state space exploration via model checking is
added to the Play-Engine to bypass some avoidable hot violation situations that are
caused by some “blind” interactions among the system processes. In a case study
of a telecommunication application, Combes and colleagues [10] check whether a
set of monitored existential charts can be satisfied by a set of driving charts without
violating any of them. Their method is based on the play-out and smart play-out
mechanisms in the Play-Engine.

In [37], LSCs are encoded as CSP processes. The CSP verification tool FDR is
employed to check whether a set of monitored existential charts can be satisfied by a
set of driving universal charts. This work considers untimed charts only.

Wang and colleagues [39] employ constraint logic programming (CLP) tech-
niques to enable the symbolic execution of LSC models. Their implementation sup-
ports both universal and existential charts, and supports timing constraints.

Playing-out [18,39,10] as a methodology of executing scenario-based models
does not have in mind verification as its goal. Although it is possible to check whether
a number of existential charts can be satisfied during (smart) playing-out, essentially
it is still considered as a kind of (guided) execution. Compared with [18,37,10], our
method allows the requirements to be specified also as universal charts. Furthermore,
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compared with [18,37,10], our method uses TA-like clock variables and clock con-
straints, and thus enables finer characterizations of timing requirements.

9 Conclusions and future work

This article proposes two approaches to the verification of state/transition-based and
object interaction-based real-time system models against scenario-based user require-
ments, respectively. We extend a kernel subset of the LSC language with timed
automata-like real-valued clock variables and timing constraints, define its seman-
tics, and use the time-enriched LSC charts both for system modeling and for prop-
erty specification. By means of behavior-equivalent model transformation and non-
intrusive event spying, we convert the scenario-based verification problems to CTL

real-time model checking problems in UPPAAL. By doing so we conclude that it is
feasible:

– to introduce important notions from the TA to the LSC formalisms to facilitate
scenario-based characterization of dense real-time systems;

– to employ the original TA constructs as well as the UPPAAL-extended TA features
to properly mimic the time-enriched LSC dynamics; and consequently

– to exploit the power of the UPPAAL model checker for scenario-based automatic
verification of non-trivial real-time systems.

The proposed first approach has been implemented as a new feature inside UP-
PAAL, and the second approach implemented as an LSC-to-TA translator which, to-
gether with our LSC editor and UPPAAL, constitutes a tool chain for scenario-based
verification. Since the translation, the composition and the underlying verification are
all automatic steps, our methods are fully automated. Preliminary experiments with a
Train-Gate system indicate that the proposed approaches are computationally feasible
and effective.

The benefits of building our scenario-based real-time system verification meth-
ods on top of the well-developed real-time model checker are twofold: (1) for system
analysts and designers who are interested in early-stage validations using live se-
quence charts, now they can scale up to the timed settings without having to develop
and implement the corresponding real-time verification algorithms; (2) for users of
conventional (real-time) model checkers that work with state/transition-based models
and temporal logical properties, now they can horizontally scale up to scenario-based
system models and scenario-based user requirements.

In our proposed approaches, the time-enriched LSC chart in its current form has
only a limited number of language constructs. To ease the scenario-based characteri-
zation of practically relevant complex systems using LSC and thus to realize the full
potential of scenario-based approaches, we need to support more language constructs
such as subchart, if-then-else structure, loop, forbidden and ignored messages, co-
region, and symbolic messages and instances. Accordingly, we need to implement
the full-fledged translators, and to apply the tool and tool chain to larger (industrial)
case studies. Another limitation of the current approaches is that counterexamples (if
any) can be displayed only in the translated timed automata. For the users’ conve-
nience, it will be extremely useful to trace the counterexamples back into the LSC
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system models and the LSC requirements. This needs to be achieved in the near fu-
ture.
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A BNF grammar of time-enriched LSC

The following BNF grammar describes our time-enriched LSC language.

LSC ::= TYPE MODE INSTANCES CHART

TYPE ::= type (existential | universal)

MODE ::= mode (initial | iterative | invariant)

INSTANCES ::= INSTANCES INSTANCES

| instance INST_ID NAME

CHART ::= chartbegin CHARTBODY chartend

CHARTBODY ::= CHARTBODY CHARTBODY

| message ELEM_ID INST_ID INST_ID YLOCATION NAME

| condition ELEM_ID (INST_ID)+ YLOCATION TEMP EXPR

| assignment ELEM_ID (INST_ID)+ YLOCATION UPDATE

| simregion ELEM_ID (INST_ID)+ YLOCATION

| pchbot ELEM_ID (INST_ID)+ YLOCATION

INST_ID ::= <numeral>

ELEM_ID ::= <numeral>

YLOCATION ::= <numeral>

TEMP ::= cold | hot

EXPR ::= <boolean expression>

UPDATE ::= <clock resets>

As can be seen from the BNF grammar, each primitive construct (i.e., message,
condition, assignment) has an element ID and a y-coordinate. This y-coordinate de-
notes the geographical distance from the element to the top of all instance lines (note
that all messages, conditions and assignments have horizontal layouts). It should not
be confused with the numbering of a “position” among all the points of communica-
tion, computation and synchronization along an instance line.

In the BNF grammar, a simregion is represented by the y-coordinate where its
constituent message, and/or condition, and/or assignment are anchored together (Fig. 5,
black filled circles).

Furthermore, a prechart is represented by its bottom y-coordinate vector that
spans across the relevant instance lines. When there is no prechart, the “pchbot” state-
ment will not appear in the LSC file.

B Timed automata in UPPAAL

We use the following notations: X is a set of real-valued clocks, and B(X) is the set
of conjunctions over simple conditions of the form x ./ c or x−y ./ c, where x,y∈ X ,
c ∈N, and ./ ∈{<,≤,=,≥,>}.

Definition 9 (timed automaton, TA [6]) A timed automaton is a tuple (L, l0,X ,Act,
E, Inv), where L is a set of locations, l0 ∈ L is the initial location, X is a set of clocks,
Act is the alphabet of actions, E ⊆ L× (Act ∪{τ})×B(X)×2X ×L is a set of edges
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between locations, each of which has an action, a guard and a set of clocks to be reset,
and Inv : L→ B(X) assigns invariants to locations. ut

UPPAAL has defined a number of extensions to the standard notations of timed
automata [2]. Specifically, an urgent location is such a TA location that freezes time,
i.e., time is not allowed to elapse when a process is in an urgent location. A committed
location is a special kind of urgent location whose outgoing transitions always have
higher priority to be fired than those from non-committed locations.

UPPAAL uses a mixture of handshake communication and broadcast communi-
cation. The CBS (Calculus of Broadcasting Systems [32])-style broadcast channels
allow one-to-many synchronization. If the emitting edge is enabled, then it can al-
ways fire. If the emitting edge is to fire, then all enabled receiving edges (might be 0
edge) will synchronize.

In UPPAAL an urgent channel means that if it is possible to trigger a synchroniza-
tion over that channel, then it cannot delay in the source state.

Furthermore, UPPAAL also supports bounded-range integer and boolean data vari-
ables, which can be used in the guards, assignment and location invariants.

A clock valuation is a function u : X → R≥0 that assigns each clock variable a
non-negative real number. Let R≥0

X be the set of all clock valuations. Let u0(x) = 0
for all x ∈ X . We may consider guards and invariants as sets of clock valuations. For
example, we use u ∈ Inv(l) to denote that valuation u satisfies Inv(l).

Definition 10 (semantics of TA [6]) Let (L, l0,X ,Act,E, Inv) be a timed automa-
ton. The semantics is defined as a labeled transition system 〈SS,s0,→〉, where SS ⊆
L× R≥0

X is the set of semantic states, s0 = (l0,u0) ∈ SS the initial state, and →⊆
SS× (Act ∪{τ}∪R≥0)×SS the transition relation such that:

– (l,u) d−→ (l,u+d) if ∀d′ : 0≤ d′ ≤ d .u+d′ ∈ Inv(l); and
– (l,u) a−→ (l′,u′) if there exists e = (l,a,g,r, l′) ∈ E such that u ∈ g, u′ = [r→ 0]u,

and u′ ∈ Inv(l′),

where for d ∈R≥0, u+d maps each clock x in X to the value u(x)+d, and [r→ 0]u
denotes the clock valuation which maps each clock in r to 0 and agrees with u over
X\r. ut

Definition 11 (run of TA) A run of a TA (L, l0,X ,Act,E, Inv) is a sequence of
states s0 · s1 · . . . that are connected by the transitions, i.e., ∀i≥ 0 .∃ui ∈ (Act ∪{τ}∪
R≥0).si ui−→ si+1. ut

The transition relation→ as mentioned above each time consumes only a single
letter u∈ (Act∪{τ}∪R≥0). We extend it to→∗ such that it consumes a (finite or infi-
nite) word w ∈ (Act∪{τ}∪R≥0)

∗∪ (Act∪{τ}∪R≥0)
ω . A word w that corresponds

to a run of the TA is called a timed trace of the TA.
A number of timed automata can be composed in parallel into a network of timed

automata over a common set of clocks and actions, Ai = (Li, l0,i,X ,Act,Ei, Invi),
1≤ i≤ n. A location vector l̄ = (l1, . . . , ln) is a vector of locations of the member TAs.
We compose the invariant functions into a common function over location vectors
Inv(l̄) =

∧
i Invi(li). We write l̄[l′i/li] to denote the vector where the i-th element li of

l̄ is replaced by l′i .
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Definition 12 (semantics of a network of TAs [6]) Let Ai = (Li, l0,i,X ,Act,Ei, Invi)
be a network of timed automata, 1 ≤ i ≤ n. Let l̄0 = (l0,1, . . . , l0,n) be the initial
location vector. The semantics is defined as a transition system 〈SS,s0,→〉, where
SS = (L1× . . .× Ln)×R≥0

X is the set of global semantic states, s0 = (l̄0,u0) ∈ SS
the initial global state, and →⊆ SS× (Act ∪{τ}∪R≥0)× SS the transition relation
defined by:

– (l̄,u) d−→ (l̄,u+d) if ∀d′ : 0≤ d′ ≤ d .u+d′ ∈ Inv(l̄);
– (l̄,u) τ−→ (l̄[l′i/li],u′) if there exists li

τ,g,r−−→ l′i such that u ∈ g, u′ = [r→ 0]u and
u′ ∈ Inv(l̄[l′i/li]);

– (l̄,u) a−→ (l̄[l′i/li, l′j/l j],u′) if a is a binary channel and there exist li
c!,gi,ri−−−→ l′i and

l j
c?,g j ,r j−−−−→ l′j such that u ∈ (gi∧g j), u′ = [ri∪ r j→ 0]u and u′ ∈ Inv(l̄[l′i/li, l′j/l j]);

and
– (l̄,u) a−→ (l̄[l′i/li, l′j/l j, l′k/lk, . . .],u′) if a is a broadcast channel and there exist an

li
c!,gi,ri−−−→ l′i and a maximal set { j,k, . . .}: l j

c?,g j ,r j−−−−→ l′j, lk
c?,gk,rk−−−−→ l′k, . . ., such that

u∈ (gi∧g j∧gk∧. . .), u′= [ri∪r j∪rk∪. . .→ 0]u and u′ ∈ Inv(l̄[l′i/li, l′j/l j, l′k/lk, . . .]).
ut

Runs and traces of a network of TAs are defined similarly as those for a single
TA.

C Proofs of lemmas and theorems in Section 4

Theorem 1 If a configuration (c,v) of L corresponds to a semantic state (l,v) of
OL, then: (1) each simregion s that follows (c,v) in L uniquely corresponds to an
outgoing edge (l, l′) in OL; and (2) the target configuration (c′,v′) of s in L uniquely
corresponds to the target semantic state (l′,v′) in OL.

Proof For each simregion s in L that immediately follows (c,v), according to Sec-
tion 4.1.3, s uniquely corresponds to an outgoing edge (l, l′) from l in OL. Since the
valuation function v is the same in (l,v) as in (c,v), and the condition in s is straight-
forward copied onto the TA edge (l, l′), the simregion s can be stepped over if and
only if the TA edge (l, l′) can be taken. Moreover, the assignment (if any) in s is also
straightforward copied onto the edge (l, l′). This indicates that the valuation function
in the LSC target configuration will be still the same as in the TA target semantic
state. Therefore, (c′,v′) uniquely corresponds to (l′,v′).

Specifically, if s is a non-message simregion that immediately follows (c,v) in
L, then according to the ASAP semantics, s will be stepped over immediately from
(c,v). Accordingly, the source location l is a committed location in OL, and the other
outgoing edges that correspond to message simregions will not be appended to l. All
these ensure that the TA edge that corresponds to s is taken immediately from state
(l,v). ut
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If in the LSC semantics (Section 3.2.1) we ignore the silent steps that are caused
by intra-chart coordinations and autonomous advancements of instance lines, then we
have:
Theorem 2 For any trace tr in OL: tr |= L⇔ (OL, tr) |= (lmin lmax).

Proof Let the initial cut of L be c0. According to Section 4.1.2, c0 corresponds to
the initial location l0 of OL. Since in the beginning all the clocks in L have the same
initial values as in OL, the initial configuration (c0,v0) of L uniquely corresponds to
the initial semantic state (l0,v0) of OL.

We consider only the legal (admissible) behaviors of OL. In other words, the traces
that lead to the sink TA location Err will be ignored. We consider the following cases:

(1) OL has only explicitly specified behaviors. By Theorem 1, each simregion
that immediately follows (c0,v0) uniquely corresponds to an outgoing edge from TA
location l0, and the target configuration (c′,v′) in L uniquely corresponds to the target
semantic state (l′,v′) in OL. On the other hand, in (c0,v0) of L, there could be a time
delay d ∈ R≥0 if and only if in (l0,v0) of OL there could be the same time delay d.
By recursively applying Theorem 1 and the above result, we can conclude that any
timed trace tr in OL is also a timed trace in L.

By assuming that OL has only explicitly specified behaviors, we know that there
is no undesired behavior in OL. If tr |= L, then by definition this particular tr in OL
also satisfies the path formula (lmin lmax), i.e., (OL, tr) |= (lmin lmax). Therefore,
we have tr |= L⇒ (OL, tr) |= (lmin lmax).

The reverse implication is proved similarly.
(2) OL includes behaviors of unconstrained events or cold violations. In this case,

each unconstrained event m at a particular cut c in L uniquely corresponds to an
m?-labeled self-loop edge at the corresponding location l in OL, and each cold viola-
tion uniquely corresponds to an edge leading to lpmin. The two-way implications are
proved similarly.

(3) OL includes behaviors of prechart pre-matching. In this case, the semantics of
tr |= L says that whenever tr matches the prechart Pch, the main chart Mch will be
matched afterwards (and this must happen before Pch begins a next round matching).
Considering that in OL, the locations lmin and lmax are two rendezvous points, thus
tr |= L means exactly the satisfaction of (lmin lmax) by tr.

To sum up, we conclude that for any trace tr in OL, we have tr |= L⇔ (OL, tr) |=
(lmin lmax). ut

Let the modified version of the original system model S be S′, and the modified
version of the observer timed automaton OL for chart L be O′L. Let the minimal and
maximal cuts of the main chart of L correspond to locations lmin and lmax of O′L,
respectively. When L is a universal chart, we have:

Lemma 1 If OL has no committed location, and all ch ∈Π are binary synchroniza-
tion channels, then S |= L⇔ (S′ ||O′L) |= (lmin lmax). ut

Proof Let (l̄,v) be a semantic state of the network of TAs of S, where l̄ is a loca-
tion vector, and v is the valuation of all clock variables. According to the UPPAAL
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semantics on binary synchronizations [38], for each binary synchronization channel
ch ∈Π , we have a transition (l̄,v) ch−→ (l̄′,v′) if in two different processes (TAs) of S,
there are two edges (li, li+1) and (l j, l j+1) labeled with ch! and ch?, respectively, such
that:

– v |= gi∧g j, where gi and g j are guards of the two edges, respectively;
– l̄′ = l̄[li+1/li, l j+1/l j];
– v′ = a j(ai(v)), where ai and a j are the assignments of the emitting and receiving

edges, respectively;
– v′ |= Invi+1 ∧ Inv j+1, where Invi+1 and Inv j+1 are the location invariants of the

target locations of the two edges, respectively;
– either (li or l j or both are committed locations), or no other location in l̄ is com-

mitted.

We need to show that the modifications of the original system model S and the
observer TA OL do not affect their legal (i.e. admissible) behaviors, i.e., the event no-
tification mechanism and the locking mechanisms neither increase nor decrease the
behaviors (traces) in S and OL. To this end, we prove that each synchronization in S
uniquely corresponds to a pair of consecutive synchronizations in (S′ ||O′L).

⇒)
By S |= L we know that the original system model S satisfies the requirements that

are specified in the LSC chart L. It follows that the observer TA OL does not restrict
the (legal) behaviors of S.

If at a semantic state (l̄,v) of S there is a synchronization (l̄,v) ch−→ (l̄′,v′), where
ch∈Π , we let the two coupling edges that carry ch! and ch? be (li, li+1) and (l j, l j+1),
respectively. Clearly, they satisfy all the five requirements as listed earlier in this
proof. According to the rules for modifying S, the edge (li, li+1) in S will corre-
spond to two edges (li, l′i) and (l′i , li+1) in S′, where l′i is a newly added committed
location. Also according to the modification rules, the semaphore mayFire evalu-
ates to false only when the current control is in a newly added committed location
(Fig. 13(a)). Now that the control is in li in S′, the semaphore mayFire should eval-
uate to true. This together with “v |= gi ∧ g j” (the first item requirement) indicates
that the guards for the edges (li, l′i) and (l j, l j+1) of S′ to synchronize on channel ch
are both satisfied. Besides, items 3-5 in the binary synchronization requirements also
apply to the ch-synchronization at (li, l′i) and (l j, l j+1). Therefore, there exists a tran-

sition (l̄,v) ch−→ (l̄′′,v′) in S′ with (li, l′i) and (l j, l j+1) as the coupling edges, where
l̄′′ = l̄′[l′i/li, l j+1/l j].

The second edge (l′i , li+1) in S′ will be immediately coupled with a corresponding
edge in O′L. By the assumption S |= L, we know that OL does not restrict the behaviors
of S via its own conditions (e.g., via g3 in Fig. 13(b)). This means that the cho-
synchronization between S′ and O′L will not get stuck there due to the restrictions of
O′L. Since after this synchronization, the clock variables in S′ remain unchanged, we
know that the location invariant Invi+1 on li+1 of S′ will still be satisfied. After this
synchronization, the two target locations in S′ will be li+1 and l j+1, thus coinciding
with the corresponding target locations li+1 and l j+1 in S. Therefore, we can conclude
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that given a trace tr in S, there exists a unique trace tr′ in (S′ ||O′L) such that tr′ and tr
correspond.

By the definition of S |= L (see Section 3.2), we know that if a timed trace µ in S
arrives at the minimal cut of the main chart of L, then µ must always be able to reach
the maximal cut of that main chart. By Theorem 2 and Section 4.1, we know that if
µ arrives at location lmin of O′L, then µ must always be able to reach location lmax of
O′L.

Since each trace µ in S can be equivalently mapped to a trace µ ′ in (S′ ||O′L),
clearly, if any µ ′ arrives at location lmin of O′L, then that µ ′ must always be able to
reach location lmax of O′L.

Since lmin and lmax are two locations in (S′ ||O′L), the above requirement can thus
be formulated as a UPPAAL property (S′ ||O′L) |= (lmin lmax).

⇐)
We need to prove that each trace tr′ in (S′ ||O′L) that satisfies the CTL property

uniquely corresponds to a trace tr in S that satisfies the LSC requirement.
Assume that in (S′ ||O′L) there is a synchronization (l̄,v) c−→ (l̄′,v′).
If c∈Π , then after removing “mayFire == true” from the condition and removing

“mayFire := false” from the assignment of the emitting edge (Fig. 13(a)), the edge
becomes exactly the corresponding edge in S. Note that the invariant (if any) at the
target location of this emitting edge is irrelevant of the semaphore mayFire. This
indicates that the synchronization between the corresponding edges in S can also fire.

If c is a fresh channel (i.e., in the form of cho), then the source location of the
c!-emitting edge in S′ must be a newly added committed location. This c! will be
synchronized with a c?-receiving edge in O′L. And it will bring the control in S′ from
the committed location to the target location, which coincides with the corresponding
target location in S. Due to the use of semaphore mayFire, no other synchronizations
in (S′ ||O′L) can preempt the execution of this c-synchronization.

The rest of the transitions in (S′ ||O′L) are just the same as those in S. Therefore
we can conclude that a trace tr′ in (S′ ||O′L) uniquely corresponds to a trace tr in S
such that tr′ and tr are equivalent. Now that (S′ ||O′L) |= (lmin  lmax), according to
the semantics of LSC chart satisfaction, we have S |= L. ut

Let S, L, OL, S′, O′L, lmin and lmax be the same as declared and explained in Lemma
1. When L is a universal chart, we have:

Theorem 3 S |= L⇔ (S′ ||O′L) |= (lmin lmax).

Proof This theorem is a generalization of Lemma 1 by canceling the restrictions.
If ch ∈ Π is a broadcast channel, the semantics of ch-synchronization [38] is a

little different. Since the modifications of the emitting edges in S do not affect the
receiving edges in S, we can still have a one-to-one mapping between the traces in S
and in (S′ ||O′L).

If there are committed locations in O′L, then we use the second semaphore NxtCmt
to guarantee the non-interrupted execution at those committed locations in O′L. Since
an edge (l, l′) starting from a committed location l in O′L represents an internal action
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(τ) transition (i.e., a local transition), it needs no synchronization with S′. Thus the
edge does not affect the behavior of S′.

To sum up, there is a one-to-one mapping of the traces in S and in (S′ ||O′L), even
in the presences of broadcast channels in S and committed locations in OL. Thus we
have S |= L⇔ (S′ ||O′L) |= (lmin lmax). ut

Let S, L, OL, S′, O′L and lmax be the same as explained in Theorem 3. When L is
an existential chart, we have:

Theorem 4 S |= L⇔ (S′ ||O′L) |= E♦ lmax.

Proof (idea) We can show that there is a one-to-one mapping between the traces in S
and in (S′ ||O′L) similarly as in Lemma 1 and Theorem 3.

The main difference between this theorem and Theorem 3 lies in the semantics of
a universal chart and of an existential chart. However, it is clear that the CTL formula
E♦ lmax represents exactly the existential chart requirements. So this theorem can be
proved similarly as in Lemma 1 and Theorem 3. ut

D Proofs of lemmas and theorems in Section 5

Let L be an untimed LSC chart whose instance lines I1, I2, . . . , In correspond to timed
automata A1,A2, . . . ,An, respectively, then the translated network of TAs will be NTAL
= {Ai | 1≤ i≤ n}∪{Coord}. According to rules R3, R4 and R6, there will be a set of
auxiliary channels Aux= {pch_overi,mch_overi | 1≤ i≤ n}∪{activate,over, pch_vio,
reset} that will be used in NTAL. Let the message alphabet of L be Σ , then the alphabet
of observable actions in NTAL will be Act = (Σ ∪Aux).

Lemma 2 Let L be an untimed LSC chart whose message alphabet is Σ , and let
NTAL be the translated network of timed automata which have a set Act of observ-
able actions. Then ∀γ1 ∈ (Σ ∪{τ})ω .((γ1 |= L)⇒∃γ2 ∈ (Act∪{τ})ω .(γ2 |=NTAL)∧
(γ2|Σ = γ1|Σ )), and ∀γ2 ∈ (Act∪{τ})ω .((γ2 |=NTAL)⇒∃!γ1 ∈ (Σ∪{τ})ω .(γ1 |= L)
∧(γ2|Σ = γ1|Σ )).

Proof We can prove the above two implications by proving that each cut of chart L
uniquely corresponds to a location vector in the network of timed automata NTAL,
and each advancement step in L uniquely corresponds to either a message synchro-
nization transition (ranging on Σ ∪Aux) or a sequence of concatenated message syn-
chronization and internal action transitions in NTAL, such that they consume exactly
the same letter from Σ if they are both restricted to Σ . Note that we restrict the LSC
advancement steps to represent only legal (i.e. admissible) behaviors.

Let the instance lines in chart L be I1, I2, . . . , In. They will be translated into
timed automata A1,A2, . . . ,An, respectively. Together with the auxiliary coordinator
automaton Coord they constitute NTAL.

The initial cut c0 of chart L corresponds to the LSC initial position vector (01,02,
. . . ,0n), where i j means that instance I j ∈ inst(L) is currently in its position i ∈
pos(L, I j). In the translated network of timed automata NTAL, automaton Coord is
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initially in its location l0
coord . By rule R1, each 0i in position vector (01,02, . . . ,0n) cor-

responds to a TA location l0
i (denoting location 0 in timed automaton Ai). Therefore,

cut c0 uniquely corresponds to the NTAL initial location vector l̄0 =(l0
1 , l

0
2 , . . . , l

0
n , l

0
coord).

We show how the advancement steps from the LSC initial position vector corre-
spond to the transitions in the network of timed automata. At LSC position vector
(01,02, . . . ,0n), there are two kinds of possible advancement steps:

– If there is an m-labeled message occurrence mo from position 1i of instance Ii to
position 1 j of instance I j (i.e., mo is a minimal event), then:
On one hand, by rule R2, there will be an m!-labeled TA edge from location l0

i to
l1
i in Ai, and an m?-labeled TA edge from location l0

j to l1
j in A j. According to

the LSC semantics, there is a message synchronization advancement step on
m in L from (01, . . . ,0i, . . . ,0 j, . . . ,0n) to (01, . . . ,1i, . . . ,1 j, . . . ,0n). Accord-
ingly, in NTAL there exists exactly a corresponding binary synchronization on
channel m between Ai and A j, and the location vector of NTAL will change
from (l0

1 , . . . , l
0
i , . . . , l

0
j , . . . , l

0
n , l

0
coord) to (l0

1 , . . . , l
1
i , . . . , l

1
j , . . . , l

0
n , l

0
coord).

On the other hand, according to the semantics of the invariant mode univer-
sal chart, the message as a minimal event can be constantly matched for
with L staying in the initial cut. By rule R8, in NTAL there will be first a
binary synchronization on channel m, i.e., (l0

1 , . . . , l
0
i , . . . , l

0
j , . . . , l

0
n , l

0
coord)

m−→
(l0

1 , . . . , l
0
i , . . . , l

PM
j , . . . , l0

n , l
0
coord), and then an immediately following internal

action transition that leads back to the initial location vector, i.e., (l0
1 , . . . , l

0
i , . . . ,

lPM
j , . . . , l0

n , l
0
coord)

τ−→ (l0
1 , . . . , l

0
i , . . . , l

0
j , . . . , l

0
n , l

0
coord). Here lPM

j is an auxiliary
TA location that is specially used for prechart pre-matching. In this case of
pre-matching, the m-synchronization advancement step in L uniquely corre-
sponds to a sequence of the tightly concatenated m−→ and τ−→ transitions.

Since a dedicated flag boolean variable prematch has been used to strengthen the
TA transition guards, assignments and the location invariants, it follows that
at NTAL location vector (l0

1 , . . . , l
0
i , . . . , l0

j , . . . , l
0
n , l

0
coord), there are only the two

above-mentioned possible interleaved executions between the two m!-labeled
outgoing edges from l0

i in Ii and the two m?-labeled outgoing edges from l0
j

in I j.
– If instance Ii has no interactions with other instance lines in the prechart, then

there is an immediate silent advancement step from (01, . . . ,0i, . . . ,0n) to (01, . . . ,1i,
. . . ,0n). By rule R3, l0

i will be a committed location in Ai of NTAL, and there will
be a pch_overi!-labeled edge from l0

i to l1
i . Furthermore, in automaton Coord

there will be a coupling pch_overi?-labeled edge either
– from l0

coord to l1
coord , corresponding to the case where Ii is the very last instance

line of L to complete its prechart portion; or
– from l0

coord to l0
coord , corresponding to the case where Ii is not yet the last

instance line of L to complete its prechart portion.
In the two cases, the location vector of NTAL will be changed from (l0

1 , . . . , l
0
i , . . . ,

l0
n , l0

coord) to (l0
1 , . . . , l

1
i , . . . , l

0
n , l

1
coord), and from (l0

1 , . . . , l
0
i , . . . , l

0
n , l

0
coord) to (l0

1 , . . . ,
l1
i , . . . , l

0
n , l0

coord), respectively. However, in both cases, there will be exactly one
binary synchronization transition on pch_overi in NTAL.
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The above two kinds of possible advancement steps indicate that there is an initial
correspondence between the position vector of L and the location vector of NTAL. 3

Since an untimed chart is a message-only chart, a cut vector is itself an LSC config-
uration, and a location vector is itself a semantic state of the translated network of
timed automata. 4 Therefore, there is an initial “LSC cut to TA location vector”, and
“LSC advancement step to TA (sequence of) transition” correspondence between L
and NTAL.

The above correspondences can be generalized by using induction. Assume that
at a cut c that corresponds to a position vector (p11, . . . , pii, . . . , p j j, . . . , pnn) in the
prechart of L, there is an m-labeled message occurrence sent from position (pi+1)i
of instance Ii to position (p j + 1) j of instance I j. If for cut c, there uniquely exists
a corresponding location vector l̄ in NTAL, then similar to the case of the initial cut,
we can prove that the message synchronization advancement step on m in L uniquely
corresponds to a binary synchronization transition in NTAL; and after this message
synchronization advancement step, the new cut c′ uniquely corresponds to the desti-
nation location vector l̄′ in NTAL. Proof by induction ensures that any normal (i.e.,
other than the prechart pre-matching ones) message synchronization advancement
step in the prechart of L uniquely corresponds to a message synchronization transi-
tion in NTAL.

When (p11, . . . , pii, . . . , p j j, . . . , pnn) is a position vector in the main chart of L,
the unique correspondence relation can be proved similarly.

Now we prove the unique correspondence for the case that involves the intra-
chart coordination (e.g., the prechart to main chart transition). Assume that in the
prechart of L, a cut c corresponds to position vector (p11, . . . , pii, . . . , pnn), where
pi + 1 = Pch_botL,Ii . If (p11, . . . , pii, . . . , pnn) uniquely corresponds to a location
vector (lp1

1 , . . . , lpi
i , . . . , lpn

n , l0
coord), then by rule R3, the internal advancement step

(p11, . . . , pii, . . . , pnn)
τ−→ (p11, . . . ,(pi+1)i, . . . , pnn) in L corresponds to either

– transition (lp1
1 , . . . , lpi

i , . . . , lpn
n , l0

coord)
pch_overi−−−−−→ (lp1

1 , . . . , lpi+1
i , . . . , lpn

n , l1
coord) in NTAL,

in which case Ii is the very last instance line of L to complete its prechart portion;
or

– transition (lp1
1 , . . . , lpi

i , . . . , lpn
n , l0

coord)
pch_overi−−−−−→ (lp1

1 , . . . , lpi+1
i , . . . , lpn

n , l0
coord) in NTAL,

in which case Ii is not yet the last instance line of L to complete its prechart por-
tion.

The above-mentioned first case will be followed by an intra-chart coordination,
i.e., there will be an immediately following silent advancement step in L, i.e., all in-
stance lines will move from their Pch_bot positions to their Mch_top positions simul-
taneously. By rule R4, the binary synchronization transition will be immediately fol-
lowed by a broadcast synchronization transition (lp1

1 , . . . , lpi+1
i , . . . , lpn

n , l1
coord)

activate−−−−→
3 More precisely the sub-location vector of NTAL that is projected to A1||A2|| . . . ||An. Note that the

edges in Coord correspond only to auxiliary messages rather than the observable messages in Σ or the
internal (τ) action.

4 Note that in the LSC chart, the message sender/receiver and other relevant information are not defined
as a part of the chart configuration. Accordingly, the auxiliary and bookkeeping variable information are
excluded from the semantic states of the translated timed automata.
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(lp1+1
1 , . . . , lpi+2

i , . . . , lpn+1
n , l2

coord), where p1+1 = Mch_topL,I1 , . . . , pi+2 =
Mch_topL,Ii , . . . , pn+ 1 = Mch_topL,In . Therefore in this case, there is a correspon-
dence between the behaviors of L and NTAL.

When (p11, . . . , pii, . . . , pnn) is a position vector in the main chart of L, the unique
correspondence for the case that concerns main chart completion can be proved sim-
ilarly.

Now we prove the unique correspondence for the case that involves cold vio-
lations. Since an untimed chart has no conditions, a cold violation is caused only
by the violation of the event partial order in the prechart. In this case, all the in-
stance lines in the prechart of L will be brought from where they are back to their
initial positions. Recall that psn : loc(L)→

⋃
Ii∈inst(L) pos(L, Ii) projects a location to

its position on its instance line. Formally, let us assume that L is in the cut c which
corresponds to the position vector (p11, . . . , pii, . . . , p j j, . . . , pnn) such that pkk <
Pch_botL,Ik ,1 ≤ k ≤ n. For any message label m ∈ Σ , if ∃mo ∈MO(L) .(lab(mo) =
m)∧(∃Ii, I j ∈ inst(L) .((src(mo) = Ii)∧(dest(mo) = I j)∧(psn(tail(mo)) 6= pi+1)∧
(psn(head(mo)) 6= p j+1))), then at cut c, the event partial order will be cold-violated
by any (external) m-labeled message from Ii to I j. For such an m-labeled message oc-
currence mo, by rule R6, the cold violation step (p11, . . . , pii, . . . , p j j, . . . , pnn)

m−→
(01, . . . ,0i, . . . ,0 j, . . . ,0n) in L uniquely corresponds to a sequence of three concate-
nated synchronizations in NTAL:
(lp1

1 , . . . , lpi
i , . . . , lp j

j , . . . , lpn
n , l0

coord)
m−→

(lp1
1 , . . . , lpi

i , . . . , lRst
j , . . . , lpn

n , l0
coord)

pch_vio−−−−→
(lp1

1 , . . . , lpi+1
i , . . . , l0

j , . . . , l
pn
n , lRst

coord)
reset−−→

(l0
1 , . . . , l

0
i , . . . , l

0
j , . . . , l

0
n , l

0
coord).

Note that according to rule R7, a hot violation in the main chart of L will end
up with a semantic state that has a deadend location in a certain TA of NTAL. This
transition will not be considered as a part of an accepted trace of NTAL.

In conclusion, each possible advancement step in L uniquely corresponds to a
sequence of concatenated message synchronization and internal action transitions in
NTAL. They consume exactly the same message label in Σ . Therefore, each accepted
trace in L uniquely corresponds to an accepted trace in NTAL modulo the message
alphabet Σ . ut

Let LS be a set of untimed LSC charts L1,L2, . . . ,Ln. Each chart Li contains the
instance lines Ii,1, Ii,2, . . . , Ii, ini , where 1 ≤ i ≤ n, and ini = #(inst(Li)) denotes the
number of instance lines in Li. The entire translated network of TAs will be NTALS =
{Ai, j | 1≤ i≤ n,1≤ j ≤ #(inst(Li))}∪{Coordi | 1≤ i≤ n}. The message alphabet
of LS will be the union of all the message alphabets for the individual charts, i.e.,
Π =

⋃n
i=1 Σi. The alphabet of observable actions will be Act = (Π ∪Aux).

Lemma 3 Let LS be a set of untimed LSC charts whose message alphabet is Π , and
let NTALS be the translated network of timed automata which have a set Act = Π ∪
Aux of normal and auxiliary channels. Then ∀γ1 ∈ (Π ∪{τ})ω .((γ1 |= LS)⇒∃γ2 ∈
(Act∪{τ})ω .(γ2 |=NTALS)∧(γ2|Π = γ1|Π )), and ∀γ2 ∈ (Act∪{τ})ω .((γ2 |= NTALS)
⇒∃!γ1 ∈ (Π ∪{τ})ω .(γ1 |= LS)∧ (γ2|Π = γ1|Π )).
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Proof In this case, in order to prove the above two implications, we need to prove that
each cut vector of LS uniquely corresponds to a location vector in NTALS, and each
advancement step in LS uniquely corresponds to an equivalence class of sequences
of concatenated (broadcast) synchronization and internal action transitions in NTALS.
Although elements in the equivalence class have different intermediate location vec-
tors, they have the same initial and final location vectors. They consume exactly the
same message in Π . Note that an advancement step in LS always represents a legal
behavior.

By Lemma 2, for each untimed chart Li in LS, each cut in Li uniquely corresponds
to a location vector in the corresponding network of timed automata NTALi , and each
advancement step in Li uniquely corresponds to either a single message synchroniza-
tion transition, or a sequence of concatenated message synchronization and internal
action transitions in NTALi .

The only semantic difference between the advancement steps of a single untimed
chart and of a set of untimed charts is that in the latter case there exist inter-chart
coordinations, i.e., across-chart broadcast synchronization on message occurrences
of the same message is possible. This implies that:

(1) At a cut vector of LS, if in more than one chart there are enabled message oc-
currences of the same message, then either all of them are chosen to be fired
simultaneously, or none of them is chosen to be fired;

(2) Due to the nature of broadcast synchronization in the translated network of TAs,
while a message at a cut vector of LS could correspond to a legal message syn-
chronization advancement step in a certain chart, meanwhile it could also lead
another chart to be reset by cold-violating the prechart of that chart (case 2.1),
or lead another chart to a deadlocked situation by hot-violating the main chart of
that chart (case 2.2).

In case (1), given a set LS of untimed LSC charts L1,L2, . . . ,Ln, we let ini =
#(inst(Li)), 1≤ i≤ n. We assume that the current cut vector c̄ of LS uniquely corre-
sponds to the position vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1, pn,2,
. . . , pn,inn), where pi, j ∈ pos(Li, I j) denotes the current position on instance I j of chart
Li. Without loss of generality, we assume that two m-labeled message occurrences
mo1 and mo2 are enabled at cut vector c̄ in two charts Li and L j, respectively. Specif-
ically, let (pi,a + 1) and (pi,b + 1) be the sending and receiving positions of mo1 in
Li, where 1≤ a,b≤ ini, and let (p j,c +1) and (p j,d +1) be the sending and receiving
positions of mo2 in L j, where 1≤ c,d ≤ in j. According to the trace-based semantics
for a set of charts, these two message synchronization advancement steps in Li and
L j will occur simultaneously. By rule R2, there will be an m!-labeled edge from lo-

cation lpi,a
i,a to lpi,a+1

i,a in Ai,a, and an m?-labeled edge from location l
pi,b
i,b to l

pi,b+1
i,b in

Ai,b, and similarly for chart L j. By rule R5, an extra m?-labeled edge from location
lpi,a
i,a to lpi,a+1

i,a will be added in Ai,a, and similarly in chart L j. Consequently, there will
be a broadcast synchronization on m among Ai,a, Ai,b, A j,c, A j,d , initiated either by
Ai,a, or by A j,c. In either case, after this broadcast synchronization on m in NTALS, the

locations of Ai,a, Ai,b, A j,c and A j,d will progress to lpi,a+1
i,a , l

pi,b+1
i,b , l

p j,c+1
j,c and l

p j,d+1
j,d ,

respectively. Therefore, the message synchronization advancement step on m in LS
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corresponds to two possible interleaved executions among Ai,a, Ai,b, A j,c and A j,d .
Since both interleavings consume the same message label m, they correspond to the
same portion of the accepted trace in NTALS. These two interleaved executions con-
stitute an equivalence class with respect to the message synchronization advancement
step on m.

In case (2.1), assume that the current cut vector c̄ of LS corresponds to po-
sition vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1, pn,2, . . . , pn,inn). With-
out loss of generality, we assume that an m-labeled message occurrence mo is cur-
rently enabled in Li, but not in L j, and that c̄ “cuts” the prechart of L j. According
to the semantics for a set of LSC charts, when message m is encountered, there will
be a normal advancement step in Li, and a cold violation advancement step in L j.
By Lemma 2, such a cold violation advancement step uniquely corresponds to a se-
quence of synchronizations in the relevant timed automata. Therefore, the system-
wide synchronization on m will also uniquely correspond to a system-wide sequence
of synchronizations in NTALS.

In case (2.2), assume that the current cut vector c̄ of LS corresponds to po-
sition vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1, pn,2, . . . , pn,inn). With-
out loss of generality, we assume that an m-labeled message occurrence mo is cur-
rently enabled in Li, but not in L j, and that c̄ “cuts” the main chart of L j. According to
the semantics for a set of LSC charts, when message m is encountered, there will be
a normal message synchronization advancement step in Li, and a hot violation in L j.
Specifically, let pi,a and pi,b be the sending and receiving positions of mo in Li, where
1≤ a,b≤ ini. We let the sub-position vector in L j be c j = (p j,1, p j,2, . . . , p j,in j). Ob-
viously, mo is not enabled at sub-cut c j. Since L j is hot-violated by mo, there must
exist a position, say p j,x, 1≤ x≤ in j, such that there is an m?-labeled edge from p j,x
to a sink error location Err in A j,x. After label m is consumed, the next semantic
state of NTALS will be reached. This semantic state will have a deadend location Err,
which indicates that the system will be deadlocked. Therefore, the TA transition step
leading to this semantic state will not be considered as a part of the accepted trace.
In this case, m will not be allowed to occur at cut vector c̄. This demonstrates how
the different charts constrain the behaviors of each others. In summary, in case (2.2),
a to-be-hot violating message in LS uniquely corresponds to a to-be-deadlocked TA
transition in NTALS.

Based on the above discussions, we conclude that there exists a unique corre-
spondence between the observable traces of a set of untimed LSC charts and their
corresponding network of timed automata. ut

Let L be a time-enriched chart whose instance lines I1, I2, . . . , In correspond to
timed automata A1,A2, . . . ,An, respectively. Let the message alphabet of L be {m1,m2,
. . . ,mk}. According to Section 5.1.3 (“Translation of assignments”) and Section 5.2,
in the worst case there will be an auxiliary timed automaton Ami for each mi, 1≤ i ≤ k.
Consequently, the translated network of TAs will be NTAL = {Ai | 1 ≤ i ≤ n} ∪
{Coord}∪{Ami | 1≤ i≤ k}.

According to rules R3, R4 and R6, there will be auxiliary channels Aux= {pch_overi,
mch_overi | 1≤ i≤ n}∪{activate,over, pch_vio,reset} used in NTAL. According to
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rule R10, there could be auxiliary channels Aux′ = {mi_Rpt, mi_Rst,mi_Rcv | 1≤ i≤
k} used in NTAL. Let the message alphabet of L be Σ , then the alphabet of observable
actions in NTAL will be Act = Σ ∪Aux∪Aux′.

Lemma 4 Let L be a time-enriched LSC chart whose message alphabet is Σ , and let
NTAL be the translated network of timed automata which have a set Act = Σ ∪Aux∪
Aux′ of normal and auxiliary channels. Then ∀γ1 ∈ (Σ ∪{τ}∪R≥0)

ω .((γ1 |= L)⇒
∃γ2 ∈ (Act ∪ {τ} ∪R≥0)

ω .(γ2 |= NTAL) ∧ (γ2|(Σ∪R≥0) = γ1|(Σ∪R≥0))), and ∀γ2 ∈
(Act∪{τ}∪R≥0)

ω .((γ2 |=NTAL)⇒∃!γ1 ∈ (Σ∪{τ}∪R≥0)
ω .(γ1 |=L)∧(γ2|(Σ∪R≥0)

= γ1|(Σ∪R≥0))).

Proof In order to prove the above two implications, we need to show that each con-
figuration of chart L uniquely corresponds to a certain semantic state of NTAL, and
each advancement step in L uniquely corresponds to a sequence of concatenated mes-
sage synchronization transitions, and/or internal action transitions, and/or time delay
transitions in NTAL such that they either consume exactly the same letter from Σ , or
undergo exactly the same period of time delay.

By Lemma 2, each cut of an untimed chart L uniquely corresponds to a semantic
state in NTAL, and each advancement step in L uniquely corresponds to either a mes-
sage synchronization transition, or a sequence of concatenated message synchroniza-
tion and internal action transitions in NTAL. For a time-enriched LSC chart, we keep
this skeleton correspondence, i.e., we map position pii of instance line Ii to location
lpi
i of the timed automaton Ai. Note that along an instance line of the time-enriched

chart, two adjacent LSC positions typically do not correspond to two adjacent lo-
cations in the corresponding translated TA. Between location lpi

i and lpi+1
i , where

0 ≤ pi ≤ (p_maxL,Ii − 1), according to rules R9, R10 and R11, we will add some
intermediate auxiliary TA locations, and add some TA edges to connect them.

Now we prove that a message synchronization advancement step on m in L uniquely
corresponds to a sequence of transitions in NTAL that consumes m exactly. Assume
that at a configuration c which corresponds to position vector (p11, . . . , pii, . . . , p j j, . . . ,
pnn) in L and at clock valuation v, there is an m-labeled message occurrence mo with
condition (clock constraints) g and assignment (clock resets) a sent from position
(pi+ 1)i of instance Ii to position (p j+ 1) j of instance I j. Assume that position pii
corresponds to location lpi

i in Ai, and position (pi+1)i corresponds to location lpi+1
i

in Ai, then there will be five intermediate locations between lpi
i and lpi+1

i in Ai, which
we denote as lpi,1

i , lpi,2
i , lpi,3

i , lpi,4
i and lpi,5

i . Here

– between lpi
i and lpi,1

i , there is a TA edge with the guard “m_mayRcv == true”;
– between lpi,1

i and lpi,2
i , there is a TA edge which tests the upper bound constraints;

– between lpi,2
i and lpi,3

i , there is an m!-labeled TA edge;
– between lpi,3

i and lpi,4
i , there is a TA edge which tests the lower bound and/or

clock difference constraints;
– between lpi,4

i and lpi,5
i , there is an m_Rpt!-labeled TA edge;

– between lpi,5
i and lpi+1

i , there is an m_Rst?-labeled TA edge.

Similarly, in A j there will also be five intermediate locations and the corresponding
edges that connect them. Specifically, if there are positions on other instance lines that
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are waiting for the completion of this message synchronization according to the par-
tial order relation (like the situation of Fig. 21), then there will be one more intermedi-
ate location lpi,6

i , and an m_Rcv!-labeled edge connecting lpi,6
i to lpi+1

i . According to
rule R11, the position sub-vector (pii, p j j) corresponds to the TA location sub-vector
(lpi

i , lp j
j ), where both locations are committed locations. After these two transitions

from (lpi
i , lp j

j ), the new location sub-vector (lpi,1
i , lp j,1

j ) will be reached, which are
also committed locations. Since a legal advancement step in L will not violate the
upper bound of the clock constraints, the upper bound constraint will evaluate to true
and thus the next location sub-vector will be (lpi,2

i , lp j,2
j ). From (lpi,2

i , lp j,2
j ) there will

be the message synchronization on m leading to (lpi,3
i , lp j,3

j ), which are again com-
mitted locations. After comparing the lower bound of clock constraints, the location
sub-vector (lpi,4

i , lp j,4
j ) will be reached. Now instance lines Ii and I j will immediately

report to the dedicated automaton Am, telling it that the instances are done with test-
ing the guarding flag boolean variables, testing the upper bound, message synchro-
nization, and testing the lower bound or clock difference. Once both instance lines
have notified Am of their completions, Am will immediately initiate an m_Rst-labeled
broadcast synchronization which brings Ai from lpi,5

i to lpi+1
i , and brings A j from lp j,5

j

to lp j+1
j . Specifically, if there is an lpi,6

i in Ai, then the m_Rst?-labeled edge will be

from lpi,5
i to lpi,6

i in Ai, and there will be an m_Rcv!-labeled edge from lpi,6
i to lpi+1

i .
In summary, the message synchronization step on m in L will uniquely correspond to
such a sequence of transitions in NTAL.

For a silent advancement step in L, it is the same as in the untimed case. In other
words, the corresponding proof for Lemma 2 also applies here.

For a time delay advancement step in L, since the upper bounds and lower bounds
of clock constraints are properly translated to tests that are prior to and after the
message synchronization in NTAL, a time delay of a period of d ∈R≥0 is allowed in
NTAL if and only if the same period d of time delay is allowed in L.

In all the three possible cases of an advancement step in L, there will be a uniquely
corresponding sequence of transitions in NTAL such that this sequence consumes
exactly the same message or the same amount of time delay as that step in L. ut

Let LS be a set of time-enriched LSC charts L1,L2, . . . ,Ln. Each chart Li contains
the instance lines Ii,1, Ii,2, . . . , Ii, ini , where ini = #(inst(Li)). Let the message alphabet
Π of LS be Π =

⋃n
i=1 Σi = {m1,m2, . . . ,mk}. Then in the worst case, the translated

network of TAs will be NTALS = {Ai, j | 1 ≤ i ≤ n,1 ≤ j ≤ #(inst(Li))}∪{Coordi |
1≤ i≤ n}∪{Ami | 1≤ i≤ k}. Similar to Lemma 4, we let Act = Π ∪Aux∪Aux′ (note
that here Aux and Aux′ are as defined in Section 5.2).

Theorem 5 Let LS be a set of time-enriched LSC charts whose message alphabet is
Π , and let NTALS be the translated network of timed automata which have a set Act of
normal and auxiliary channels. Then ∀γ1 ∈ (Π ∪{τ}∪R≥0)

ω .((γ1 |= LS)⇒ ∃γ2 ∈
(Act ∪{τ}∪R≥0)

ω .(γ2 |= NTALS)∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))), and ∀γ2 ∈ (Act ∪
{τ}∪R≥0)

ω .((γ2 |=NTALS)⇒∃!γ1 ∈ (Π ∪{τ}∪R≥0)
ω .(γ1 |= LS)∧(γ2|(Π∪R≥0) =

γ1|(Π∪R≥0))).
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Proof We need to prove that each cut vector of LS uniquely corresponds to a location
vector in NTALS, and each message synchronization advancement step in LS uniquely
corresponds to a sequence of concatenated message synchronization transitions, and
internal action transitions in NTALS. These transitions are connected by committed
locations in NTALS. Because any committed location appears as a junction location
only when it will be immediately followed (only) by a condition test, these concate-
nated transitions can be viewed as an atomic step. Although for the sake of inter-
chart coordination, the outgoing transitions from locations of different TAs may be
executed in an interleaved manner, the order of the consumed words in (Π ∪{τ})∗
remains the same. In other words, an accepted timed trace γ ∈ (Π ∪ {τ} ∪R≥0)

ω

may correspond to an equivalence class of timed traces in (Act ∪{τ}∪R≥0)
∗. They

consume exactly the same timed trace in (Π ∪R≥0)
∗. Proof details concerning the

translations of inter-chart message coordinations and message occurrences that are
associated with conditions and/or assignments are similar to that for Lemma 3 and
Lemma 4, respectively. ut

Let LS be an LSC system which consists of a set of (untimed or timed) driv-
ing universal charts L1,L2, . . . ,Ln. We translate LS to a network of timed automata
NTALS. Let L′ be a separate monitored universal chart (i.e., the “property chart”),
which will be translated to another network of timed automata NTAL′ . Let the TA lo-
cations CoordL′ .Mch_top and CoordL′ .Mch_bot denote that the main chart of L′ has
just been activated and has just been successfully matched, respectively. We have:

Theorem 6 LS |= L′ ⇔ (NTALS ||NTAL′) |= CoordL′ .Mch_top CoordL′ .Mch_bot.

Proof By Theorem 5, each accepted trace in LS uniquely corresponds to a cluster of
accepted traces in NTALS which consume exactly the same string from (Π ∪R≥0)

ω .
And similarly for L′ and NTAL′ .

The TA location CoordL′ .Mch_top represents the situation where the property
chart L′ has just been activated, and CoordL′ .Mch_bot the situation where L′ has just
been satisfied (i.e., successfully matched).

Since L′ is a property chart, its corresponding network of timed automata NTAL′

will never interfere with (or “drive”) the network of timed automata NTALS. This
means that after composing the TAs in NTAL′ with the TAs in NTALS, the behaviors in
NTALS will not be further constrained. Since both CoordL′ .Mch_top and CoordL′ .Mch_bot
are locations in the product automaton of (NTALS ||NTAL′), the right hand side for-
mula of this theorem captures exactly the assume-guarantee style responsiveness
property of the LSC requirement, which is exactly what we require of LS |= L′. ut

An LSC system LS satisfies a monitored existential chart L′ iff one of the traces
in LS is included in the traces of L′.

Theorem 7 LS |= L′ ⇔ (NTALS ||NTAL′) |= E♦ CoordL′ .Mch_bot.

Proof (idea) This theorem can be proved similarly as in Theorem 6, except that an
existential chart has no prechart and one satisfying run suffices to prove this property.

ut


