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SUMMARY

Uppaal is a tool suitable for model checking real-time systems described as networks of
timed automata communicating by channel synchronisations and extended with integer
variables. Its first version was released in 1995 and its development is still very active. It
now features an advanced modelling language, a user-friendly graphical interface, and a
performant model checker engine. In addition, several flavours of the tool have matured
in recent years. In this paper, we present how we managed to maintain the tool during
15 years, its current architecture with its challenges, and we give future directions of the
tool.
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INTRODUCTION

Uppaal is first of all a research tool born from the collaboration of Uppsala and Aalborg
universities [44]. It takes its theoretical roots from Alur and Dill’s pioneer work on timed
automata [2]. Its performance originally comes from zones [36] as a representation for states and
the efficient implementation of operators on its canonical data-structure known as difference
bound matrix (DBM) [13]. Since then the development has been fuelled by scientific results on
algorithms or new data structures [7, 8, 10, 18, 37, 38], academic case-studies [41, 17, 24, 28, 20],
industrial case-studies [39, 21, 12, 1, 4], and also teaching [27].
On the other hand, having such a tool helps to develop and test new theories and algorithms,

which has given us synergy during the last decade between tool development and theoretical
results.
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2 BEHRMANN ET AL.

Recently, the tool has blossomed into several domain specific versions, namely, Cora

[8, 9] (cost-optimal reachability), Tron [34, 35] (online testing), CoVer [29, 30] (offline test
generation), Tiga [6] (timed game solver), Port [25] (component based and partial order),
Pro (extension with probabilities, in progress), and Times [23, 3] (scheduling and analysis).
These extensions are made based on a common code base, re-using basic data structures to
represent states, store them, and perform common operations such as delay, intersection, or
computing successor states.

Cora is based on linearly priced timed automata [11]. The model extends timed automata
with a special cost variable whose rate is specified for every state. The algorithm uses guiding
to solve minimum cost reachability problems.

Tron is a testing tool suited for black-box conformance testing [43, 32] of timed systems.
It is mainly targeted for embedded software commonly found in various controllers. Testing is
done online in the sense that that tests are derived, executed, and checked while maintaining
the connection to the system in real-time.

CoVer is a tool for creating test suites from Uppaal models with coverage specified by
coverage observers a.k.a. observer automata.

Tiga is an extension for solving reachability and safety problems on timed game automata.
Its algorithm [16] is a symbolic extension of the on-the-fly algorithm suggested by Shann
et al [40] for linear-time model-checking of finite-state systems. It is used for controller
synthesis [31], it has application to testing [19], and it has been extended to synthesis under
partial observability [15].

Port is a version targeted to component-based modelling and verification. Its interface is
developed as an Eclipse plug-in. The tool supports graphical modelling of internal component
behaviour as timed automata and hierarchical composition of components. It is able to exploit
the structure of such systems and apply partial order reduction techniques successfully [26].

Pro is an extension for timed automata with probabilities [5, 33]. The model is extended
with branching nodes that allow the user to specify weights for every outgoing edge. The engine
can then compute probability bounds to reach specified states. It is work-in-progress.

Times is a tool-set for modelling, schedulability analysis, synthesis of (optimal) schedules
and executable code. Its modelling language is timed automata extended with tasks. It models
systems that can be described as a set of tasks that are triggered periodically or sporadically
by time or external events. The release pattern is given by a timed automaton and the tool
performs schedulability analysis on it. Times works by encoding the problem into timed
automata and it uses the Uppaal engine for the checks. It translates back the answer in
terms of Gantt chart to visualise schedules. There are other tools that are using Uppaal as a
back-end verification engine, e.g., REX [22].

In this paper we focus on the “core” tool Uppaal and present our experience in developing
and maintaining it for the last decade. In particular, we present the backbone architecture
that has allowed us to expand the tool on different variants of timed automata. The following
sections give an overview of the tool architecture, our experience in the process of building the
tool, and future development directions.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls



DEVELOPING UPPAAL OVER 15 YEARS 3

Figure 1. View of the “concrete” simulator of Tiga.

OVERVIEW OF THE TOOL ARCHITECTURE

Client-server architecture. The tool has two main components: a graphical user interface
written in Java and a model-checker engine written in C++. The interface runs almost
effortlessly on different platforms and we can exploit the rich functionalities available for
programming interfaces inherent to the libraries coming with the Java programming language.
The C++ language gives us both advanced object oriented programming and performance.
These two components form a basic client server architecture with the graphical interface
(client) communicating with the model checker (server) via a local pipe† or the network‡. This
separation of concerns makes Uppaal easier to port and maintain on different platforms.
The graphical interface has three “tabs” that correspond to the main tasks a user needs to

do: to edit a model in the editor, to simulate it in the simulator, and submit verification queries

†A common inter-process communication mechanism.
‡The verification can be done on a remote server, which is a rarely exploited feature.
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Figure 2. Pipeline architecture for the reachability filter.

to the model-checker. Additionally, the user may come back to the simulator to visualise a
trace generated by the verification. Figure 1 gives a view of the simulator of the tool. The
different variants of the tool have specialised interfaces and the figure shows the simulator
used in Tiga. On the left is the command part where the user can select transitions, go back
in the trace, play randomly, or navigate through the current trace (history of states). The list in
the middle shows the values of the variables and clocks. The timed automata are shown on the
right and below them a Gantt chart and a message sequence chart. The simulator of Uppaal

lacks the Gantt chart and has other similar components, although instead of navigating with
concrete clock valuations, the user sees symbolic states. The point here is to stress reuse of
components across different tools. It is important to amortise development costs over time on
different specialisations of the tool without having to rewrite everything from scratch. This is
obvious but the insidious consequence is that it is often difficult in practice to publish on these
new additions. This is due to the lack of dedicated conferences where tool developments can
be reported on.

Pipeline architecture. The model-checker itself (the engine) is designed around a pipeline
architecture [7] where each block or filter processes states and sends them to the next stage as
shown in Fig. 2. The figure shows the configuration for the reachability filter. Other algorithms
such as the liveness and the leadsto checkers have their own filters built on the same principle.
In this example, the initial state is pushed to the reachability filter in its delay component to
start the exploration. Then it runs its main loop that takes states from our (unified passed and)
waiting list structure, explores them, and puts the successors in that structure. This structure
(also called the PWList) implements one (coloured) state set with states marked waiting and
passed. It is unified in the sense that we have one structure instead of the traditional waiting
and passed lists that need two lookups in hash tables per loop iteration of the reachability
algorithm. Only states coloured as waiting are explored and inclusion check between symbolic
states is done against all states. The main chain for the exploration is Transition (which
transitions can be taken) - Successor (execution of the transitions) - Delay (let time pass)
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DEVELOPING UPPAAL OVER 15 YEARS 5

- Extrapolation (apply an appropriate extrapolation to ensure finite exploration) - PWList
(inclusion check and mark the state to be explored) - Query (evaluate the formula if the state
was not included).

In fact we inserted a LazyCopy filter to reduce copies of states between the transition
and successor filters. This filter really copies states only when necessary, e.g., computing one
successor only does not require a copy and two successors require one copy only. It acts as
a one place buffer. When priorities are used in the model, this filter is swapped by another
filter that is going to buffer transitions and sort them by priority, without changing the rest
of the pipeline. Some filters are optional, such as Sorter that can sort transitions, Trace that
is used to store traces, or Symmetry that is projecting the states to a representant of its
equivalence class (orbit) when symmetry is used in the model. In addition, different kinds
of extrapolations can be used depending on the model, which results in different kinds of
instances for the Extrapolation filter. We note that it is simpler to have the logic (in terms of
if statements) to instantiate the right type of a component once and use the generic design
to connect the components and use them transparently. The reader understands that the
combination of these features gives rise to a lot of configurations. The point here is to keep
orthogonal features separated.

The overall pipeline architecture allows us to reason about the algorithm in terms of blocks
that we can change if we need another semantics. Implementing another checker, e.g. a timed
game solver, is relatively easy and consists in adding components that will do the backward
propagation, changing the first filter to either explore forward or backward, add a post-
processing filter to detect what is winning or losing in the game after Extrapolation, and
changing the graph representation. The new pipeline still has the same structure and follows
the same design. To change the semantics of the game, e.g. to implement simulation checking
[14], we change Transition that implements the transition relation and Delay to allow turn-
based delays.

There are two important points that this architecture illustrates: object-oriented
programming and reuse of components. The filters are in practice abstract classes so these
components are managed at a high level. Second, we can reuse these filters for different pipeline
configurations, i.e., for different checkers. We note that the architecture is also fit for functional
languages.

Additional components. In addition to these components, Uppaal contains a virtual machine
to execute the compiled byte-code of our C-like input language supporting user defined
functions and types. This allows the user to write complex and compact models while still
limiting the state-space explosion – complexity can be concentrated in functions to avoid
using intermediate states.

We currently distribute some open source components, such as the parser and the difference
bound matrix (DBM) library. The DBM library has a Ruby binding, which allows for quick
prototyping. The parser understands the XML format we use in Uppaal, which allows other
researchers to use the same format. The DBM library handles DBMs and federations (unions
of DBMs) used to represent symbolic states. The DBM library supports a wide range of
operations including subtractions and merging of DBMs.
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TOOL BUILDING PROCESS

Tools are not prototypes. It is relatively easy to produce prototypes as proofs of concept of
some theory or algorithm to strengthen a paper but it is notoriously more difficult to develop
a tool that is going to survive the test of time. Unfortunately, prototypes are more common in
practice. Building and maintaining tools takes a lot of time and is generally given less academic
credits compared to more theoretical work, which explains the limited number of maintained
tools. In the domain of formal methods, tools are crucial and they also serve as a dissemination
means for theoretical results. Tools do have a positive impact through the case-studies they
allow other users to do, often in collaboration, which is important to amortise the development
cost (in terms of time) and earn publications (otherwise we perish)§.

Who develops? The first question for developing tools is who is going to do it? Most of the
time it is done by master or Ph.D. students, which makes sense economically since professors
cannot afford writing C++ code. However, when temporary developers who have their own
agenda (own thesis to write) work on the tools, there is the obvious issue that someone needs
to take over otherwise the tool will disappear. In addition, temporary developers do not have a
long term vision and are interested (rightfully so) in their own thesis. Over the years, changing
teams without a common interest or focus means that the code will degrade if there is no
control. What happened for us was that there were some Ph.D. students who stayed in the
team for a long time, long enough to lay down a solid architecture and durable design. As a
first rule of survival, one should have a solid design and encourage people to stick to it even if
they do not like it. At some point in time old design decisions will not make sense any more
but this is a different issue.

Code size. When the code grows (see Fig. 3) it is increasingly difficult for new people to
use the code so it becomes important to have some permanent staff to take care of it and
revise it so it can offer a limited and more useful interface. This is a considerable effort that
is essential to the survival of the tool. In the past we had a few such revisions: the pipeline
architecture, the virtual machine, and handling of federations in the model-checker. The size
and complexity of the code has now become a barrier for new internal people but it is also a
serious problem for external collaboration. We need a new revision to update the interfaces of
the different components and add more abstraction to the code. For long term development,
it is important to have some permanent staff to take care of such revisions and keep a long
term vision. However, it is a trade-off between academic and development work.

Code aging. Curiously code ages. This is due to the fact that developers forget old code
and new methods or libraries appear over the years, which makes the code become older or
deprecated. In addition, progress in compilers also means that special efforts in the past to make
some algorithms efficient are now obsolete, e.g., we can commonly address iteratively elements

§The well-known motto publish or perish emphasised by a system holding that name is a testament of the tool
development dilemma in academia.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–6
Prepared using speauth.cls



DEVELOPING UPPAAL OVER 15 YEARS 7

in matrices by expressions like dbm[i ∗ dim+ j] with confidence that the compiler will not use
relatively expensive multiplications for element accesses. To counter code aging, documentation
is vital. Our experience has been to “document” the code using doxygen formatted comments.
There is no real documentation apart from these comments, although some efforts have been
made to describe overall design decisions and the communication protocol. We have crash
courses to inform new programmers, which is a limited solution. As for the comments, they are
extensive and they keep the memory of former developers. It is a weakness in the development
process to lack stand-alone white papers that give technical details on the code but this has
not been our priority.

Life cycles. The tool has gone over different life cycles over the years. A life cycle can be
defined by major changes in architecture that are needed to accommodate new developments.
It happens when old designs become too obsolete for new additions that were not foreseen in
the past. The first cycle was with the original ATG graph editor¶ and an early custom simulator.
The second cycle introduced an integrated graphical editor, the client-server architecture still
in use today, and an improved engine. The third cycle is the current one with a modular
pipeline architecture. This pipeline architecture is probably the determinant factor for keeping
additions of new features without breaking the tool. In terms of features it is interesting to note
that early developments efforts were focused on performance improvements and then later on
interface and language features. The later developments of the tool introduced new algorithms
to handle different problems rather than improvements of the current algorithms.
During a cycle, the development is incremental, following the current design and making

changes until the amount of desired new features and algorithms conflicts too much with
the design. At this point there is a major effort to redesign (or re-factor) the code. The
current architecture has lived up to its expectations for the approximately 8 years, during
which we could re-use existing components and create new ones that we could litteraly plug
together. However, the plethora of new variants of the tool hides current internal issues with
the architecture and now is the time for a major update.

Distributed development. We use a centralised version management system (CVS and later
subversion), which allows distributed teams to work on the same code. This is common for
distributed projects. A given checkout of the repository contains all variants of the tool but
each of them is located in its own separated module. Developers are responsible for few modules
(their own) and modify other modules occasionally only. The key here is to have responsibility
for the different parts for maintenance. In addition, we have the simple rules committed code
must compile and any distributed code must pass the regression test. Since breaking these rules
produces heated reactions, they tend to be observed. The goal here is to keep discipline.

Testing. For a tool in the field of formal methods we would expect to apply formal verification
techniques to it to ensure its correctness. Let’s say research is not there yet. The code base has
currently 200+ KLoC in C++ that implement algorithms that are themselves notoriously

¶This is an editor tool used by Uppaal from 1995 to 1999.
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difficult to prove. There are tools we have used to assist us, such as gcov, purify, and
valgrind. However, what we routinely do is to test. We use regression testing on a battery of
known examples and results. When a bug is discovered, we insert that new example in the test
suite and make sure new versions pass the new tests. This is an automatic process handled by
a script.

Bug management. Another well known tool we are using is the bug management system
bugzilla. Bugs are not only program errors but also requested features. They are sorted by
priority that developers can set. Errors usually come with examples to reproduce them. They
are added to the regression tests when the errors are corrected. Sometimes a change in the
code triggers a new error that was not present in the past. We use binary search on the
revision number (in our subversion repository) to find which revision introduced the changes
that triggered that error. This is a simple and very effective technique.

Cross-platform. An integral part of the development process is to take care of cross-platform
development. Early on we decided to stick with one compiler, gcc/g++. We can use the same
code and change a few headers only and compile for Windows, Linux, and MacOS. By doing so
we can also take advantage of some useful gnu extensions. We dropped support for SunOS due
to absence of users and also machines installed with SunOS. All three supported platforms
are actively used with an increase for MacOS in recent years. What we do to manage this
is to keep third party libraries at a minimum. Currently we need libxml2 compiled for all
platforms and we use boost headers only. The rest is generated code by tools like bison and
flex. Compilation is done under Linux for Linux and Windows, MacOS binaries are compiled
on a Mac. We foresee problems in the future when supporting multi-threads since we will have
to use additional libraries such as Win32-pthread to support POSIX threads (to begin with,
the library needs to be patched for Win64).

Community. Finally, to survive, a tool needs its community. We have a discussion forum‖

that our user community uses to ask or answer questions and maintain an active discussion
on the tool. In fact, this helps us tremendously because we cannot handle all newcomers to
the tool individually and we are grateful to users who help each other. The community also
provides us with new problems and case-studies, which in turn instill progress in algorithms
and theory.

CHALLENGES

The first challenge is to manage complexity and size of the project. Implementing advanced
algorithms is tricky, specially when it is in a formal tool that is used for verification. As
shown in Fig. 3 the code (in kilo lines of code of C/C++) has been steadily growing. This
growth comes from new variants and algorithms that are added to the repository. The count

‖http://tech.groups.yahoo.com/group/uppaal/
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Figure 3. Evolution of the code base.

includes all code (used or not) for all variants of Uppaal for the model-checker engine only.
The graphical interface adds 40+ kLoC in Java.
The second challenge is to keep improving performance and features of the tool despite

growing algorithm complexity. Table I shows the evolution of the performance of the tool.
Experiments have been performed on a Pentium D 2.80GHz with 1GB RAM. We use memtime
that measures time and polls memory (not reliable below 0.1s). Entries marked ’-’ denote
verifications that were stopped after 2h or 900M. The models are available on www.uppaal.org
under Examples/benchmarks. Apart from the performance improvements, recent versions
support user-defined functions and symmetry reduction. These features are not used in the
experiments but they would further improve performance.
The third challenge is to cope with new extensions of the tool to explore different theoretical

paths. The current architecture has been pushed to implement the different known flavours
of Uppaal but also to extend every checker. Recent extensions to Uppaal include priorities
and stop-watches. Tiga was recently extended with a simulation checker. It is being extended
with a new timed interface checker. Although the overall pipeline architecture accommodates
these extensions, we have reached the limit of some “implementation details”. These are: 1)
there can be only one global system, 2) long wished features, such as clock constraints on
receiving edges of broadcast synchronisations, are now needed, 3) the engine is designed for
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Table I. Evolution of performance in terms of time (seconds) and memory consumption (MB).

Version CSMA5 CSMA7 CSMA12 Fischer5 Fischer7 Fischer12 HDDI7 HDDI12

3.0.39 8.4s - - 4.2s - - 36.3s -
7.2MB - - 10.6MB - - 20.1MB -

3.2.12 0.3s 417s - 1.6s - - 7.2s -
3.8MB 145MB - 6.8MB - - 11.9MB -

3.3.25 0.2s 198s - 1.1s - - 3.2s -
3.4MB 113MB - 6MB - - 8.4MB -

3.4.6 <0.1s 40.7s - 0.3s 4706s - 0.1s 5.3s
3.1MB 34.5MB - 4.9MB 267MB - 1.6MB 14.1MB

4.0.11 <0.1s 0.2s 33.8s <0.1s 0.4s 418s <0.1s 0.4s
1.6MB 38MB 115MB 1.6MB 38.1MB 300MB 1.6MB 38MB

4.1.2 <0.1s 0.2s 41.9s <0.1s 0.3s 341s 0.05s 0.2s
1.6MB 21.6MB 99MB 21MB 21.6MB 248MB 1.6MB 22.9MB

32-bit architectures, 4) there is no multi-core support, 5) there is only one kind of symbolic
state, and the list goes on. These are obstacles for doing compositional model-checking where
we would need to handle several systems and combine results. In addition, it is difficult to
adapt the engine to different kinds of systems without changing core structures such as the
states. Currently, when compiling Cora, one C macro is changed to swap to a different type
of DBM supporting costs. That works because we made sure the commonly needed interface
was exactly the same. This is a very limited solution.
Another challenge is to use modern technology to its full potential. Updating to 64-bit is

mainly technical. Taking real advantage of 64-bit is challenging. Modern compilers have the
ability to vectorize code∗∗ but this is still limited to simple algorithms and not to critical
O(n3) algorithms that we have. Going for multi-core support (multi-threaded Uppaal) is
more difficult. There have been experiments in the past in this direction and we know that the
current architecture could be adapted by having one thread per pipeline copy. This fits memory
locality but we also know that it did not work so well because blocking data-structures (access
protected by mutex) were major bottlenecks. It is crucial to have non-blocking structures such
as [42] if we want to use multi-cores efficiently, even though this is a temporary solution that
will last at most 10 years††. In addition, we want to make the components extendable more
easily in particular to allow more people to work on Uppaal without having to know what
most of the code is doing. The bottom line is that there are research opportunities but not all
issues are research related.

∗∗This in essence allows the use of SIMD instructions (single instruction, multiple data) on streams of data.
††Shared memory architectures do not scale and message passing based architectures will take over.
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FUTURE

We have shown in this paper the main challenges that we have faced in building Uppaal

over the years along with our own solutions. The conclusion is to get the synergy theory–
implementation–case-studies that in turn provides with publications. There is no bullet-proof
solution and we consider ourselves to have been lucky to have started at the right time and
got such a good response from the community to get this synergy.
Uppaal has already spawned one company, UP4ALL‡‡, that sells a version of the tool for

commercial uses. Another market we intend to target is testing. Research tools really have
a future if they can be applied and used outside academia, as witnessed by Lustre/SCADE.
However, their future as free academic tool is uncertain as discussed in this paper in relation
with the dilemmas. The situation is that tool paper tracks exist and show the interest in
academic tool development but they are often on the side of main conferences and they usually
accept short papers with short talks. This could be improved to stimulate tool development
in the community.
To continue the development on the academic path, we are exploring different domains

as the different flavours of Uppaal show. That also means that a new life-cycle with another
architectural revision is now needed to cope with more extensions of Uppaal. That will enable
us to let other researchers experiment with the internals of Uppaal and still maintain our
core engine.
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