
ECDAR: An Environment for Compositional

Design and Analysis of Real Time Systems

Alexandre David1, Kim. G. Larsen1, Axel Legay2,
Ulrik Nyman1, Andrzej Wąsowski3

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

3 IT University of Copenhagen, Denmark

Abstract. We present Ecdar a new tool for compositional design and
verification of real time systems. In Ecdar, a component interface de-
scribes both the behaviour of the component and the component’s as-
sumptions about the environment. The tool supports the important oper-
ations of a good compositional reasoning theory: composition, conjunc-
tion, quotient, consistency/satisfaction checking, and refinement. The
operators can be used to combine basic models into larger specifications
to construct comprehensive system descriptions from basic requirements.
Algorithms to perform these operations have been based on a game the-
oretical setting that permits, for example, to capture the real-time con-
straints on communication events between components. The composi-
tional approach allows for scalability in the verification.

1 Overview

The context. Contemporary IT systems are assembled out of multiple indepen-
dently developed components. Component providers operate under a contract
on what the interface of each component is. Interfaces are typically described
using textual documents or models in languages such as UML or WSDL. Unfor-
tunately, such specifications are subject to interpretation. To avoid the risk of
ambiguity, we recommend mathematically sound formalisms, such as interface
theories, whenever possible. A good interface theory supports refinement check-
ing (whether an interface can be replaced by another one), satisfaction checking
(whether an implementation satisfies the requirements expressed with the in-
terface), consistency checking (whether the interface can be implemented), a
composition operator (structurally combining interfaces), a conjunction operator
(computing a specification whose implementations are satisfying both operands),
and a quotient operation that is the adjoint for composition. It should also guar-
antee important properties such as independent implementability [10].
It has been argued [7, 10] that games constitute a natural model for inter-

face theories: each component is represented by an automaton whose transitions
are typed with input and output modalities. The semantics of such an automa-
ton is given by a two-player game: the input player represents the environment,
and the output player represents the component. Contrary to the input/output



model proposed by Lynch [13], this semantic offers (among many other advan-
tages) an optimistic treatment of composition (two interfaces can be composed
if there exists at least one environment in which they can interact together in a
safe way) and refinement (the refined system should accepts at least the same
inputs and not produce more outputs). Game-based interfaces were first devel-
oped for untimed systems [10, 8] and the composition and refinement operations
were implemented in tools such as TICC [1] or CHIC [5].

Example. We will demonstrate our tool, ECDAR, by executing a composi-
tional verification process. To that end we introduce a running example based
on a modified real-time version of Milner’s scheduler [14]. Fig. 1 (left) shows

(...)

(...)

Mi

Mi

Mi+1

reci

reci+1

reci+1

wi

wi

wi+1

M0

M1

M2

w0

w1

w2

rec1

rec2

SSi

Fig. 1. Overview of Milner’s scheduler
example and the sub-specification SSi.

a single node, which can receive a
start signal on reci. The node subse-
quently begins external work by out-
putting on wi. In parallel to this it can
forward the token by outputting on
reci+1, but only after a delay between
d and D time units. Fig. 1 (right) il-
lustrates a ring of such nodes Mi in
which some nodes have been grouped
together. This grouping exemplifies a
part of the specification, which we will
later be able to replace with an ab-
straction SSi in order to execute a compositional proof.

The timed case. The above example contains timing requirements that cannot
be handled with tools such as TICC or CHIC, designed for untimed systems.
There exist timed formalisms but they do not provide a satisfactory notions of
composition and refinement. We have recently proposed the first complete timed
interface theory based on timed games [6]. The idea is similar to the untimed
case: components are modelled using timed input/output automata (TIOAs)
with a timed game semantics [4]. Our theory is rich in the sense that it captures
all the good operations for a compositional design theory. In this paper we go
one step further and present Ecdar, a tool that implements the theory of [6].
We thus propose the first complete game-based tool for timed interfaces in the
dense time setting. Ecdar implements checkers such as satisfaction/consistency,
refinement, and satisfaction of TCTL formulas. The tool also supports the clas-
sical compositional reasoning operations of conjunction and composition. To the
best of our knowledge, Ecdar is the first tool to propose an implementation of
quotient. In addition, it comes with a user-friendly interface, where errors are
reported in an intelligible way.

2 An Integrated Environment for Design and Analysis

The user interface of Ecdar is divided into two parts: 1) the specification in-
terface where automata are specified in a graphical manner, and 2) the query
interface where one can ask verification questions.



w[i]!

rec[(i+1)%N]!

rec[(i+1)%N]! w[i]!

rec[i]?

x<=D

y>d

x<=D

x<=D

rec[i]?

rec[i]?
x=0,
y=0

rec[i]?

y>d
w[e]!

z=0

rec[e]!

w[0]!

z<=(N+1)*De!=0
e:id_t

e:id_t

Fig. 2. Left: Template for a single node Mi. Right: Template for the overall
specification.

Specification Interface. The specification interface of Ecdar uses the lan-
guage of Uppaal-tiga to describe timed I/O automata (instead of timed game
automata) with input and outputmodalities that are essential in this case. TIOAs
communicate via broadcast channels. Global (shared) variables are not permit-
ted. The user specifies whether the TIOA should be viewed as an implementation
or as a specification. For implementations, the tool checks on-the-fly if every state
respects the independent progress property [6], that progress must be ensured
by the implementation. Details are available at ecdar.cs.aau.dk. The tool has its
own engine, which reuses components of the game engine of Uppaal-tiga to
support the new operators.
We model the scheduler using templates, in an entirely modular way. One

only needs to instantiate more nodes to make a larger instance of the system. A
single node of our scheduler is shown in the left side of Fig. 2. In the initial loca-
tion of the specification, it is ready to receive a message on the channel rec[i]?.
After this there are two ways to return to the initial state depending on the order
in which it starts its work (w[i]!) and passes on the token (rec[(i+1)%N]!).
The first node of the system M0 is instantiated with a different initial location
(the bottom-most one), reflecting the fact that it holds the token initially. The
right side of Fig. 2 shows the overall specification S0 of the system. It requires
that w[0]! occurs at least every (N+1) ∗D time units. Remaining actions can
be executed freely.

Query Interface. The query interface provides two main checkers, the refine-
ment checker and the consistency checker. The refinement checker is used to
decide if an implementation satisfies a given specification or if a specification
refines another one. As stated in [6], refinement checking reduces to solving a
safety timed game between the two components. For our example one way to
verify that the scheduler is correct is to verify a property of the type:

refinement: ( M0 || M1 || M2 || M3 || M4 ) <= S0

We call this type of verification monolithic, since it constructs a specification
precisely representing the entire system. The tool provides a strategy to prove
or disprove the property, which can be used to refine the model. The strategy
can be played interactively. The consistency checker is used to check whether a



specification admits at least one implementation. This question reduces to the
one of deciding if there exists a strategy for the output player to avoid reaching
bad states in the specification, i.e., states that do not satisfy the independent
progress property. A pruning facility removes all the states not covered by the
strategy. It can drastically reduce the state-space of the system. Following a
similar principle, it is possible to constrain an interface with a TCTL∗ formula.
For example, like in [11], one can use a Büchi objective to remove states allowing
Zeno behaviours. This is the first time that a tool for compositional reasoning
proposes this feature in the dense time setting.

3 Illustration and Experiment

In our example we have a ring of N nodes. It is natural to verify the monolithic
property in order to show that the composed system refines the overall speci-
fication. Unfortunately, this strategy fails due to state-space explosion. As the
number of components is increased, the state space grows, and more nondeter-
minism and interleaving is introduced in the system.
In order to combat the problem we apply compositional verification. The idea

is to createN sub-specifications that are used in a series of refinement steps. First
one shows that M1 ≤ SS1. After this it is proved for increasing indexes, 1 to N

refinement: M1 <= SS1

refinement: ( SS1 || M2 ) <= SS2

refinement: ( SS2 || M3 ) <= SS3

refinement: ( SS3 || M4 ) <= SS4

refinement: ( SS4 || M0 ) <= S0

Fig. 3. Incremental verification.

that SSi||Mi+1 ≤ SSi+1. Finally the
property SSn||M0 ≤ S0 is checked. Fig. 3
gives the properties for five nodes. The
sub-specification aims at capturing the
important aspect of the subsystem needed
for the next step in the verification process
of the overall property. It is very impor-
tant to notice that the sub-specification is
like all the other components in the system created as a template and that thus
it is modelled only once and then instantiated with different indices.

rec[(i+1)%N]!

rec[1]?
rec[(i+1)%N]!

rec[1]?
w[e]!

w[e]!

rec[1]?

rec[1]?

rec[1]?

e:id_t

e>0 && e<=i

e>0 && e<=i

x<=i*D

e:id_t

e:id_t

w[e]!

x=0,
y=0 y<=N*d

x=0, 
y=0

e>0 && e<=ix>=i*d

y>N*d

Fig. 4. The sub-specification SSi that ab-
stracts the the sub-system M1|| . . . ||Mi.

Here the sub-specification SSi,
as shown in Fig. 4, is a model for
a sequence of nodes M1|| . . . ||Mi

(see Fig. 1). Informally SSi is
expressed as following, noting
that the relevant ports for this
subsystem are rec[1]?, w[e]!
(0<e<=i) and rec[i+1]!: Un-
der the assumption that a)
the time elapsing between two
rec[1]? is more than N ∗ d time-
units and b) there are no two
consecutive rec[1]? without a
rec[i+1]!, then it is guaranteed
that rec[i+1]! will occur within [i ∗ d, i ∗D] time units from rec[1]?.



We have performed experiments for different values of N , number of nodes
in the ring, and d the minimum time delay before passing on the token. We
have fixed the upper time limit for passing the token to 30. The results of the
experiments are shown in Table 1. The table shows the time used to check a
given property measured in seconds. For each value of N we have two rows.
The top one represents the verification of all the steps in the compositional
verification while the bottom row represents the verification of one monolithic
property. If the verification took more than 600 seconds we stopped it. We had
one instance where Ecdar ran out of memory which is indicated by om. The
time results that are written in italics are the cases in which the compositional
verification gave a negative result. In these cases one needs to propose more
precise sub-specifications in order to make the compositional verification work.
The monolithic method gives positive results in these cases.
In the case where d is close to D there is very little interleaving in the

system and in this case the verification of the monolithic property is the fastest.
The smaller the d value the more interleaving appears in the system and in these
complex cases the compositional verification shows its strength. The cases where
the compositional verification beats the monolithic are marked by boldface.

4 Related Work

In the untimed setting multiple contributions of Alfaro et al. focus on the oper-
ations of composition and refinement. Hence, tools such as TICC or CHIC only
provide these operations. Theories exists for quotient [3] and conjunction [12],
but they have not been implemented neither in TICC nor in CHIC. More re-
cently, Bauer et al. have proposed a new extension of interface automata with

Table 1. Results of the verification experiments.

d = 29 20 10 9 8 6 4

n = 5 0.080 0.097 0.191 0.169 0.172 0.151 0.205

monolithic 0.034 0.034 0.073 1.191 1.189 64.933 > 600

n = 6 0.102 0.133 0.231 0.228 0.238 0.238 0.294

monolithic 0.040 0.043 0.095 6.786 6.791 > 600 > 600

n = 8 0.225 0.349 0.516 0.515 0.540 0.600 0.582

monolithic 0.076 0.076 0.230 88.542 88.642 > 600 > 600

n = 12 0.830 1.414 1.802 1.895 1.831 2.079 2.181

monolithic 0.220 0.223 0.843 > 600 > 600 > 600 > 600

n = 20 4.990 9.739 12.377 11.923 12.041 12.438 12.764

monolithic 1.038 1.030 4.523 > 600 > 600 > 600 > 600

n = 30 22.053 45.709 55.728 55.345 55.112 54.702 56.164

monolithic 3.791 3.778 17.652 > 600 > 600 > 600 om



new definition for composition/compatibility and refinement; these results are
implemented in the MIO Workbench [2]. This work remains at the level of un-
timed systems, not considering operations such as quotient or pruning.
A first dense time extension of the theory of interface automata has been de-

veloped in [11]. The theory in [11] focuses exclusively on reducing composition
and consistency checking to solving timed games and does not provide any def-
inition and algorithms for refinement, conjunction, and quotient. In [9], Alfaro
and Faella proposed an efficient implementation of the algorithm used to solve
the timed games introduced in [11], but for the discretized time domain only. In
addition, they also proposed an extension of TICC to the timed setting. This
version of TICC does not provide the same services as Ecdar does. First, timed
TICC only supports consistency checking and composition; the usefulness of the
tool for compositional design of real time systems is thus limited. Second, the
tool does not offer a user friendly interface and the interactions with the user
are extremely limited. Last, the tool works on the discretized time domain only.
Hence, all the complications introduced by the dense setting are not studied.

References

1. B. T. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman, and
P. Roy. Ticc: A tool for interface compatibility and composition. In CAV, volume
4144 of LNCS, pages 59–62. Springer, 2006.

2. S. S. Bauer, P. Mayer, A. Schroeder, and R.Hennicker. On weak modal compatibil-
ity, refinement, and the mio workbench. In TACAS, volume 6015 of LNCS, pages
175–189. Springer, 2010.

3. P. Bhaduri. Synthesis of interface automata. In ATVA, volume 3707 of LNCS,
pages 338–353. Springer, 2005.

4. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR, 2005.

5. Chic, 2003. http://www-cad.eecs.berkeley.edu/˜tah/chic/.
6. A. David, K. Larsen, A. Legay, U. Nyman, and A. Wąsowski. Timed I/O automata:
a complete specification theory for real-time systems. In HSCC, 2010. Accepted.

7. L. de Alfaro. Game models for open systems. In Verif (Theory in Practice), volume
2772 of LNCS. Springer, 2003.

8. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable
interfaces. In FroCos, volume 3717 of lncs, pages 81–105. Springer, 2005.

9. L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with
an application to timed games. In CAV, volume 4590 of LNCS. Springer, 2007.

10. L. de Alfaro and T. A. Henzinger. Interface-based design. InMarktoberdorf Summer
School. Kluwer Academic Publishers, 2004.

11. L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Timed interfaces. In
EMSOFT, volume 2491 of LNCS, pages 108–122. Springer, 2002.

12. L. Doyen, T. A. Henzinger, B. Jobstman, and T. Petrov. Interface theories with
component reuse. In EMSOFT, pages 79–88. ACM Press, 2008.

13. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. Tech-
nical Report MIT/LCS/TM-373, The MIT Press, Nov. 1988.

14. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1982.


