
An Interface Theory for Timed Systems

Alexandre David1, Kim. G. Larsen1, Axel Legay2,
Ulrik Nyman1, Andrzej Wąsowski3

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France
3 IT University, Copenhagen, Denmark

1 The subject

Contemporary IT systems are assembled out of multiple independently devel-
oped components. Component providers operate under a contract on what the
interface of each component is. Interfaces are typically described using textual
documents or models in languages such as UML or WSDL. Unfortunately, such
specifications are subject to interpretation. To avoid the risk of ambiguity, we
recommend mathematically sound formalisms, such as interface theories, when-
ever possible. A good interface theory supports refinement checking (whether
an interface can be replaced by another one), satisfaction checking (whether
an implementation satisfies the requirements expressed with the interface), con-
sistency checking (whether the interface can be implemented), a composition
operator (structurally combining interfaces), a conjunction operator (comput-
ing a specification whose implementations are satisfying both operands), and a
quotient operation that is the adjoint for composition. It should also guarantee
important properties such as independent implementability [9].

Recently, building good interface theories has been the subject of intensive
studies (see e.g., [13, 8, 2, 12, 7, 10]). It has been argued [6, 9] that games consti-
tute a natural model for interface theories: each component is represented by an
automaton whose transitions are typed with input and output modalities. The
semantics of such an automaton is given by a two-player game: the input player
represents the environment, and the output player represents the component.
Contrary to the input/output model proposed by Lynch [14], this semantic of-
fers (among many other advantages) an optimistic treatment of composition (two
interfaces can be composed if there exists at least one environment in which they
can interact together in a safe way) and refinement (the refined system should
accepts at least the same inputs and not produce more outputs). Game-based
interfaces were first developed for untimed systems [9, 7] and the composition and
refinement operations were implemented in tools such as TICC [1] or CHIC [4].

Existing results on game-based interfaces are for untimed systems. However,
time can be a crucial parameter in practice, e.g. in embedded–system appli-
cations. We have recently proposed the first complete timed interface theory
based on timed games [5]. The idea is similar to the untimed case: components
are modeled using timed input/output automata (TIOAs) with a timed game



semantics [3]. Our theory is rich in the sense that it captures all the good op-
erations for a compositional design theory. Reporting on timed interfaces is the
main subject of this presentation. In our talk, we will discuss:

– the concept of interface theories, the mathematical requirements, and the
game-based approach;
– the theory introduced in [5];
– our new tool ECDAR [11], which implements the theory of [5].ECDAR is
the the first complete game-based tool for timed interfaces in the dense time
setting. Ecdar implements checkers such as satisfaction/consistency, refine-
ment, and satisfaction of TCTL formulas. The tool also supports the classical
compositional reasoning operations of conjunction and composition. To the
best of our knowledge, Ecdar is the first tool to propose an implementation
of quotient (that we will discuss intensively). In addition, it comes with a
user-friendly interface, where errors are reported in an intelligible way.
– Some applications to illustrate the use ECDAR and the advantages of com-
positional design.

References

1. B. T. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman, and
P. Roy. Ticc: A tool for interface compatibility and composition. In CAV, volume
4144 of LNCS, pages 59–62. Springer, 2006.

2. S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based
systems. In CONCUR’08, volume 5201 of Lecture Notes in Computer Science,
pages 508–522. Springer, 2008.

3. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR, 2005.

4. Chic, 2003. http://www-cad.eecs.berkeley.edu/~tah/chic/.
5. A. David, K. Larsen, A. Legay, U. Nyman, and A. Wąsowski. Timed I/O automata:
a complete specification theory for real-time systems. In HSCC, 2010. Accepted.

6. L. de Alfaro. Game models for open systems. In Verif (Theory in Practice), volume
2772 of LNCS. Springer, 2003.

7. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable
interfaces. In FroCos, volume 3717 of lncs, pages 81–105. Springer, 2005.

8. L. de Alfaro and T. A. Henzinger. Interface automata. In FSE’01, pages 109–120.
ACM Press, 2001.

9. L. de Alfaro and T. A. Henzinger. Interface-based design. InMarktoberdorf Summer
School. Kluwer Academic Publishers, 2004.

10. L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Timed interfaces. In
EMSOFT, volume 2491 of LNCS, pages 108–122. Springer, 2002.

11. http://www.cs.aau.dk/~adavid/ecdar/.
12. J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy approach. Proc. of
the IEEE, 91(1):127–144, 2003.

13. T. A. Henzinger and J. Sifakis. The embedded systems design challenge. In FM,
volume 4085 of LNCS, pages 1–15. Springer, 2006.

14. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. Tech-
nical Report MIT/LCS/TM-373, The MIT Press, Nov. 1988.

2


