
Methodologies for Specification of Real-Time

Systems Using Timed I/O Automata

Alexandre David1, Kim G. Larsen1, Axel Legay2,
Ulrik Nyman1, Andrzej Wąsowski3

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

3 IT University of Copenhagen, Denmark

Abstract. We present a real-time specification framework based on
Timed I/O Automata and a comprehensive tool support for it. The
framework supports various design methodologies including: top-down
refinement—for decomposition of abstract specifications towards increas-
ingly detailed models; bottom-up abstraction—for synthesis of complex
systems from more concrete models; and step-wise modularisation of
requirements—to factor out behaviours given by existing available com-
ponents from a complex global requirements specification to be imple-
mented. These methodologies are realized by consecutive applications of
operators from the following set: refinement, consistency checking, log-
ical and structural composition and quotienting. Additionally, our tool
allows combining the component-oriented design process with verifica-
tion of temporal logic properties increasing the flexibility of the process.

1 Context and Motivation

Industries developing complex embedded systems, such as aerospace and auto-
motive, have undergone deep organisational changes with tremendous impact on
development processes. In the past, they were vertically integrated companies,
internally supporting all design activities from specification to implementation.
Today they rely increasingly on external suppliers and on independent teams
to provide essential components of systems. It is no longer possible for a single
team to control the entire design process from specification to implementation.
Complex systems emerge from assembling multiple components. These com-

ponents are designed by independently working teams, who adhere to a common
agreement, a contract, on what the interface of each component should be. Such
an interface defines the behaviours expected from the component as well as the
environment in which it can be used. The main advantage is that it abstracts
from the way the component can be implemented.
In practice interfaces are described using textual documents or modelling lan-

guages such as UML or WSDL. Unfortunately, such specifications are ambiguous
and thus are subject to interpretation. We instead recommend relying on math-
ematically sound formalisms to reduce ambiguities. In this context, the vibrant
research area of compositional reasoning [20] gives the foundations that allow to

reason about properties of the global system based on properties of individual
components. The essential advantage of compositional reasoning is its support
for safe reuse of components, well known from other engineering disciplines.
Building specification theories is a subject of intensive studies [11, 14]. One

particularly successful direction are interface automata [14, 15, 23, 31]. In this
framework, an interface is represented by an input/output automaton [29], where
transitions are typed as input and output . The semantics is given by a two-
player game: the input player represents the environment, and the output player
represents the component itself. Contrary to the input/output model of [29],
this semantic offers an optimistic treatment of composition: two interfaces can
be composed if there exists an environment in which they can safely interact.
The existing interface theories focus primarily on composition (and some-

times on refinement). There hardly exist supporting tools that could be used
by engineers. Over the years of interaction with industrial partners, we have
collected the following requirements for interfaces theories. Notice that they sig-
nificantly exceed the usual scope of studying composition and refinement.

1. It should be decidable whether an interface admits an implementation.4

2. There must be a mechanism to safely replace a component by another one.
Technically this corresponds to the requirements of precongruence and com-
pleteness for Refinement. Refinement (written ≤), which is a preorder on the
set of interfaces, should satisfy the following property:
Every implementation satisfying a refinement of an interface should
also satisfy this interface.

3. To control design complexity, one should be able to decide whether there
exists an interface that refines two different interfaces (a shared refinement).

4. Different aspects of systems are often specified by different teams. The issue
of dealing with multiple aspects or multiple viewpoints is thus essential. It
should be possible to represent several interfaces (viewpoints) for the same
component, and to combine then in a conjunctive fashion. Conjunction (writ-
ten ∧) should satisfy the following property:
Given two viewpoints represented by two interfaces, any implemen-
tation that satisfies the conjunction must satisfy the two viewpoints.

5. The framework should provide a combination operation reflecting the stan-
dard interaction between systems. It should respect the refinement to sup-
port independent development:
Given two implementations of two interfaces, the composition of the
implementations satisfies the composition of their interfaces.

6. It should be possible to factor in existing components into general require-
ments, in order to facilitate reuse of accumulated assets. In interface theories
this is realized using a quotient operator.

7. Conjunction and composition must be associative and commutative, so that
the emergent behaviour of the system depends only on the specifications,
not on the order in which they have been combined.

4 In our theory, an implementation shall not be viewed as a program in a concrete
programming language but rather as an abstract mathematical object that represents
a set of programs sharing common properties.

2

8. There must exist a specification language to specify properties of interfaces
as well as a procedure to decide whether the interface satisfies the properties.

9. All the above operations and properties should be performed and checked
with efficient algorithms.

10. User-friendly tools providing comprehensible feedback to the user must be
available. For example, if an implementation violates a specification, a useful
feedback inspires the designer on how to correct it.

In [16], a timed extension of the theory of interface automata has been intro-
duced, motivated by the fact that time can be a crucial parameter in practice,
for example in embedded systems. The results of [16] focus mostly on structural
composition. Recently [12] we have proposed what seems to be the first complete
interface theory for timed systems (with respect to the above requirements). Our
specifications are timed input/output automata [21]—timed automata whose
sets of discrete transitions are split into input and output transitions. Contrary
to [16] and [21] our theory distinguishes between implementations and specifi-
cations. This is done by assuming that the former have fixed timing behaviour
and they can always advance either by producing an output or delaying. The
theory also provides a game-based algorithm to decide whether a specification is
consistent, i.e. whether it has at least one implementation. The latter reduces to
deciding existence of a strategy that despite the behaviour of the environment
will avoid states that cannot possibly satisfy the implementation requirements.
A pruning facility removes all the states not covered by the strategy. It can

drastically reduce the state-space of the system. Following a similar principle, it
is possible to constrain an interface with a timed temporal logic formula [1]. For
example, like in [16], one can use a Büchi objective to remove states allowing Zeno
behaviours. Our theory is rich in the sense that it captures all the good operations
for a compositional design theory presented above. Also all the algorithms have
been implemented. This implementation (available at [36]) comes as an extension
of the Uppaal-tiga tool-set [3]. Uppaal-tiga is a tool that implements a series
of algorithms for solving timed games [9] as well as checking timed temporal logic
properties. Working within Uppaal-tiga allows us to propose a state-of-the-art
user interface for verification tools.
In this paper our objectives are (1) to give more insight into design choices

made in [12], (2) to report on challenges of the implementation, (3) to discuss
design methodologies compatible with our theory, (4) to evaluate the implemen-
tation, and (5) to compare our results with other results in the same field.

2 Specifications and Implementations

We shall now introduce our component model.

Definition 1. A Timed I/O Transition System (TIOTS) is a quadruple S =
(StS , s0, Σ

S,−→S), where StS is an infinite set of states, s0 ∈ St is the initial
state, ΣS = ΣS

i
⊕ΣS

o is a finite set of actions partitioned into inputs (Σ
S
i
) and

outputs (ΣS
o) and −→S : StS × (ΣS ∪ R≥0) × St

S is a transition relation. We

3

write s a−→Ss′ instead of (s, a, s′) ∈ −→S and use i?, o! and d to range over inputs,
outputs and R≥0 respectively. In addition any TIOTS satisfies the following:

[time determinism] whenever s d−→Ss′ and s d−→Ss′′ then s′=s′′

[time reflexivity] s 0−→Ss for all s ∈ StS

[time additivity] for all s, s′′ ∈ StS and all d1, d2 ∈ R≥0 we have s d1+d2−−−−→Ss′′ iff
s d1−−→Ss′ and s′ d2−−→Ss′′ for an s′ ∈ StS

TIOTSs are semantic objects that represent timed interactive processes. In
our framework we use Timed I/O Automata as a syntactic domain in which
specifications and implementations are represented.

Definition 2. A Timed I/O Automaton (TIOA) is a tuple A = (Loc, q0,Clk, E,
Act, Inv) where Loc is a finite set of locations, q0 ∈ Loc is the initial location, Clk
is a finite set of clocks, E ⊆ Loc×Act×B(Clk)×P(Clk)×Loc is a set of edges
with B(Clk) being a set of clock constraints, Act = Acti⊕Acto is a finite set of
actions, partitioned into inputs and outputs respectively, and Inv : Loc 7→ B(Clk)
is a set of location invariants.

As for timed automata, a state of A is a pair (q, V) where q is a location and
V : Clk 7→ R≥0 is a valuation function that assigns a non-negative value to each
clock in Clk. We write u+ d to denote a valuation such that for any clock r we
have (u+ d)(r) = x+ d iff u(r) = x. Given d ∈ R≥0, we write u[r 7→ 0]r∈c for a
valuation which agrees with u on all values for clocks not in c, and returns 0 for
all clocks in c. We use 0 to denote the constant function mapping all clocks to
zero. The initial state of A is the pair (q0,0).
We visualise TIOAs using classical Timed Automata notation, extending it

with two types of transitions (inputs and outputs). See example in Figure 1.

The semantics of a TIOA A=(Loc, q0,Clk, E,Act, Inv) is a TIOTS [[A]]sem =
(Loc × (Clk 7→ R≥0), (q0,0),Act,−→), where −→ is the largest transition relation
generated by the following rules:

– Each (q, a, ϕ, c, q′) ∈ E gives rise to (q, u) a−→(q′, u′) for each clock valuation
u ∈ [Clk 7→ R≥0] such that u |= ϕ and u′ = u[r 7→ 0]r∈c and u

′ |= Inv(q′).
– Each location q ∈ Loc with a valuation u ∈ [Clk 7→ R≥0] gives rise to a
transition (q, u) d−→(q, u+ d) for each delay d ∈ R≥0 such that u+d |= Inv(q).

Observe that the TIOTSs induced by a TIOAs naturally satisfy the three axioms
of Definition 1. In the rest of the paper, we will only consider deterministic
TIOAs, whose corresponding TIOTSs are deterministic.
A TIOTS represents a two-player timed game [9]. The Input player (the en-

vironment) controls the input transitions of the TIOTS. The Output player (the
system) controls the output transitions. The formal definitions of strategy and
move outcomes for such a game are given in [12]. The set of winning states
from which one of the players has a strategy to satisfy a safety or a reachability
objective can be computed with algorithms presented in [9]—efficient symbolic
versions of well-known controller synthesis algorithms of [30].

4

We now define implementations and specifications in terms of TIOAs.

Definition 3. A specification automaton is a TIOA that is input-enabled, i.e.,
in each state all the inputs should be available.

The assumption of input-enabledness, also seen in many interface theories [28,
18, 34, 37, 32], reflects our belief that an input cannot be prevented from be-
ing sent to a system, but it might be unpredictable how the system behaves
after receiving it. Input-enabledness encourages explicit modelling of this un-
predictability, and compositional reasoning about it; for example, deciding if an
unpredictable behaviour of one component induces unpredictability of the entire
system. Observe that it is easy to check whether a TIOA is input-enabled. In
practice tools can interpret absent input transitions in at least two reasonable
ways. First, they can be interpreted as ignored inputs, corresponding to location
loops in the automaton. Second, they may be seen as unavailable (’blocking’)
inputs, which can be achieved by assuming implicit transitions to a designated
error state. Later, in Section 4.2 we will call such a state strictly undesirable and
give a rationale for this name.

The role of specifications in a specification theory is to abstract, or under-
specify, sets of possible implementations. Implementations are concrete exe-
cutable realizations of systems. We will assume that implementations of timed
systems have fixed timing behaviour (outputs occur at predictable times) and
systems can always advance either by producing an output or delaying. Formally:

Definition 4. An implementation is a specification that satisfies the two follow-
ing conditions:

1. Independent progress: implementations cannot get stuck in a state where
it is up to the environment to induce progress. In each implementation state
either an output is possible or one can delay until an output is enabled.

2. Output urgency: if an output is available, then it cannot be delayed.

Since specifications and implementations are TIOAs, their semantics are still
given in terms of TIOTs. We refer the interested reader to [12] for more details.

Example. Figure 1a specifies a vending machine that can serve tea or coffee. A
possible implementation of this machine can be found in Figure 1b. Both au-
tomata are deterministic. Note that the output transitions of the implementation
Impl arrive at a fixed moment in time and cannot be delayed, which guarantees
output urgency (the invariant guarantees progress and the guard constrains the
transition). Each time the output tea! from Idle to Idle is taken, the clock y
is reset. Without this reset, independent progress would not be guaranteed for
valuations of the clock y that are greater than 6.

We now introduce refinement—a notion of comparison between two specifi-
cations and a way to relate implementations to specifications. Refinement should
satisfy the following substitutability condition. If AS refines AT , it should be pos-
sible to replace AT with AS in every context and obtain an equivalent system.
Contrary to the other operations, refinement is defined at the level of TIOTSs.

5

a)

teacoin cof

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2Machine b)

teacoin cof

coin?

tea!
y=0

cof!

coin?

Idle

y<=5

Serving

y = 0

y==5

y <= 6
y==6Impl.

Fig. 1. a) Specification of a coffee and tea Machine and b) an implementation

Definition 5. Let AS and AT be two specification automata and S = (StS , s0, Σ,

−→S) and T = (StT, t0, Σ,−→T) be their corresponding timed transition systems.
We say that AS refines AT , written AS ≤AT , iff there exists a binary relation
R⊆StS×StT containing (s0, t0) and for all states sRt implies:

1. whenever t i?−−→
T t′ for some t′∈StT then s i?−−→

Ss′ and s′Rt′ for some s′∈StS

2. whenever s o!−−→
Ss′ for some s′ ∈ StS then t o!−−→

T t′ and s′Rt′ for some t′ ∈ StT

3. whenever s d−→
Ss′ for d ∈ R≥0 then t d−→

T t′ and s′Rt′ for some t′ ∈ StT

It is easy to see that the refinement is reflexive and transitive, so it is a pre-
order on the set of all specifications. Refinement can be checked for specification
automata by reducing the problem to a specific refinement game, and using a
symbolic representation to reason about it. See Section 5 for more details.
Satisfaction is a simple application of refinement. More precisely, we say that

an implementation satisfies a specification automaton iff it refines this specifica-
tion. As an example, observe that the automaton in Figure 1b is a refinement of
the one in Figure 1a, and thus it is also an implementation of it.
The set of all implementations of A is denoted [[A]]mod. In [12], we have

shown that the refinement relation is complete for our specification model, i.e,
AS refines AT iff the set of implementations that satisfy AS is included in the
set of implementations that satisfy AT .
A specification may be locally inconsistent in the sense that it may contain

bad states, i.e., states that do not satisfy the independent progress property5.
We say that a specification is consistent, and thus useful, if it admits at least
one implementation. It is important to have a procedure to decide whether a
specification admits at least one implementation. In [12], we have shown that this
question reduces to the one of deciding if there exists a strategy for the system
(Output player) to avoid reaching bad states in the specification. A pruning
facility removes from the TIOA all the behaviours that are not covered by the
strategy. It can drastically reduce the state-space of the automaton. In the rest
of the paper, we assume that bad states are always pruned away.

5 In section 4, we shall observe that the combination of two specifications without bad
states may lead to a specification with bad states.

6

a)

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpec

b)

grant pubpatent coin

patent!

pub?

grant?

grant?

pub?

coin!

grant?
BA

z<=2

CD

grant?

pub?

z=0

pub?

z<=2

z=0

Administration

Fig. 2. a) University specification UniSpec. b) Specification of an Administration.

3 Design Methodologies

In the following we introduce three different development methodologies sup-
ported by our framework. These development methodologies are in no way in
conflict with each other, but should more be seen as prototype work-flows that in
a concrete development process would be combined. First we present the running
example that will be used in presenting the methodologies.

The example is based on a very simplified view of a modern university. The
purpose of the university is to file as many patents as possible. More precisely
the requirements imposed on the university is given by the TIOA UniSpec as
presented in Figure 2a. The border around the specification shows the input and
output sort by incoming and outgoing arrows respectively. The initial state of
the specification is marked by a double circled state. Given that the university
receives a grant (solid transition marked with grant?) after a delay of less than
two time units it will output (dashed transition marked with patent!) a patent
within the next 20 time units. If the first grant comes after more than two time
units or any subsequent grant comes more than two time units after a patent has
been filed then the behaviour of the university becomes unpredictable, which is
modelled by the leftmost state in the specification.

Stepwise Refinement. The first methodology presented is the classic top-down
development through stepwise decomposition and refinement. Starting from the
overall specification of Figure 2a one can refine this into a specification that
contains several parallel components. The refinement is based on a knowledge of
how the system under design is supposed to meet the overall requirements. This
refined specification can again be refined further, until the desired level of detail
has been reached. It is important to note that the independent implementability
property allows for these refinement steps to be taken for individual components,
greatly increasing the scalability of the framework through compositional design.

We will decompose the University specification into three components: an
Administration, a Coffee/Tea machine and a Researcher. The responsibility of
the Administration (Figure 2b) is to convert the grants provided to the University
into coins that can be used in the coffee and tea machine. The coffee and tea
Machine (Figure 1a) will then in turn provide the Researcher (Figure 3a) with

7

a)

coftea
pub

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researcher
b)

grant pubpatent coin

patent!

pub?

grant?

grant?

pub?

coin!

grant?
BA

z<=2

CD

grant?

pub?

z=0

pub?

z<=2

z=0

Administration2

Fig. 3. Specifications for the a) Researcher and b) Administration2.

Administration || Machine || Researcher ≤ UniSpec

Administration2 || Machine || Researcher 6≤ UniSpec

Stepwise refinement

Fig. 4. One possible step in Top-down development: Modifying a component
and rechecking refinement.

coffee and tea so that the researcher can produce publications. The Administration
component also has the responsibility of converting publications into patents.
The top line in Figure 4 shows a successful refinement check which shows

that the three components together refine the overall specification.
The bottom part of Figure 4 shows an additional step in the refinement pro-

cess. Here a single component is updated (Administration to Administration2).
This new version (Figure 3b) differs in a single transition. If it receives a publi-
cation (pub?) in the initial, left most state, then it will not loop but instead shift
to the lower left state indicating that it is ready to output a patent based on
this publication. This new version of the administration is thus able to receive
and process free publications that it has not payed for.
Figure 4 shows that the refinement check fails after this update of the model.

By the independent implementability property this could also have been discov-
ered by checking whether Administration2 refines Administration, which indeed
it does not. This might come as a surprise to the developer as it seems like
a reasonable improvement to be able to accept free publications. We defer the
discussion of how to solve this issue to Section 5.
In stepwise refinement this step of decomposing and refining individual com-

ponents is applied iteratively, until a suitable level of detail is reached.

Bottom-up Synthesis. The second development methodology that our framework
supports is a bottom-up development process through stepwise composition. Here
we assume that actual implementations of some components already exist and
that models are made that describe the behaviour of these components. The aim

8

consistency: Administration || Machine || Researcher

consistency: Administration || Machine

Adding a component

Fig. 5. One possible step in Bottom-up development: Checking consistency be-
fore and after adding an extra component.

Machine || Researcher || Administration ≤ UniSpec

Machine || Researcher ≤ UniSpec \\ Administration

Factoring out some behaviour

Fig. 6. One possible step in Stepwise modularisation of requirements: Factoring
out the behaviour of the Administration.

of the bottom-up development in our setting is to verify that a complete system
can be built from the preexisting components. Figure 5 shows one possible step in
a bottom-up development process. Here a consistency check is performed on the
parallel composition of two components after which another component is added
and the consistency check is redone. The bottom up development methodology
could easily be combined with refinement checking where the overall require-
ments are stepwise refined to see what the actual combination of components
can guarantee in terms of behaviour and timing.

Stepwise Modularisation of Requirements. The third and more novel type of
development methodology that our framework supports is the Stepwise modu-
larisation of requirements. Here the idea is, like for the top-down development
to start with a general specification of the requirements to the system and then
using the quotient operator to factor out behaviour that is already implemented
by existing components, so that one is left with a specification for the missing be-
haviour. This specification, which is synthesised by the tool, can now be further
refined to provide the implementation of missing functionality in terms of new
components. In that this process generalises stepwise refinement and bottom-up
synthesis. Figure 6 shows how one component can be moved from one side of
the refinement check to the other by factoring out the behaviour.

Another aspect of our framework that can be used orthogonally to the three
described development ideas is conjunction. Conjunction allows to specify dif-
ferent aspects or requirements to a component and then compose these using
logical conjunction, such that an implementation would have to individually
satisfy each conjunct in order to satisfy the conjunction. Figure 7 shows an ex-
ample of two specifications that each handle one aspect of the responsibilities of
the Administration component. Figure 7a describes an alternation between the

9

a)

grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1 b)

grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

Fig. 7. Example of two conjuncts, each handling one aspect, that make up a
different model of the Administration component.

coin! and grant? while Figure 7b describes the alternation between patent! and
pub?. Together these form an alternative and slightly more loose specification of
the administration. It is the case that both Administration and Administration2
refine the conjunction HalfAdm1∧HalfAdm2, while the opposite is not the case.
Finally the tool is able to verify TCTL∗ [1] properties on the specifications.

This feature is made possible thanks to the modified underlying verification
engine. This will be exemplified in section 5.

4 Combining Specification Automata

In this section, we discuss the three main operations defined on specification
automata, namely: conjunction, composition, and quotient. All of these were
used to support different design processes described in the previous section.
In the rest of the section, we will consider two specification automata AS =

(Loc1, q
1
0 ,Clk1, E1, Act

1, Inv1) and AT = (Loc2, q
2
0 ,Clk2, E2, Act

2, Inv2). For tech-
nical reasons, we also assume that Clk1 ∩ Clk2 = ∅.

4.1 Conjunction

Conjunction allows to test whether several specifications can be simultaneously
met by the same component. In our framework, conjunction can only be defined
if ActSi = ActTi and ActSo = ActTo . The operation reduces to check whether
the two specifications can progress in the same way. Formally the conjunction
of AS and AT , denoted AS ∧ AT , is the TIOA A = (Loc, q0,Clk, E,ActS , Inv)
given by: Loc = LocS × LocT , q0 = (qS0 , q

T
0), Clk = ClkS ⊎ ClkT , Inv((qS , qT)) =

Inv(qS) ∧ Inv(qT). The set of edges E is defined by the following rule:

– If (qS , a, ϕS , cS , q
′
S) ∈ ES and (qT , a, ϕT , cT , q

′
T) ∈ ET this gives rise to

((qS , qT), a, ϕS ∧ ϕT , cS ∪ cT , (q
′
S , q

′
T)) ∈ E.

10

AS0

AS1

AS2

InvS

a?

gi

ri

· · ·

o!

hl

sl

· ·
·

AT0

AT1

AT2

InvT

a?

uj

tj

· · ·

o!

vm

pm

· ·
·

AS0T0

AS1T1 AS2T2

InvA ∧ InvB

a?

gi ∧ uj

ri ∪ tj

· · · o!

hl ∧ vm

sl ∪ pm

· · ·

Fig. 8. Two states of TIOAs AS and AT are combined into one TIOA A with
the conjunction operator for one step. This process is then iterated.

An example of how the conjunction of two specific states from two different
TIOA with example input and output transitions will look is given in Figure 4.1.
Conjunction may introduce locally inconsistent states. For example, assume

that AS reaches a state from s where the only available action is the output a
and AT reaches a state t from where the only available action is the output b.
Assume also that AS and AT cannot delay in s and t. In (s, t), the conjunction
will not issue any output and will not be able to delay, which violates the inde-
pendent progress property. As stated in Section 2, locally inconsistent states can
be removed with the help of a pruning operation. In the rest of the paper, we
assume that each conjunction is immediately followed by a pruning.

In [12], we have shown the following results:

– The set of implementations satisfying a conjunction is the intersection of the
implementation sets of the operands: [[(AS ∧AT)]]mod=[[AS]]mod ∩ [[AT]]mod.
– The conjunction of AS and AT corresponds to the greatest lower bound of
their implementations sets: if A≤AS and A≤AT we have that A≤AS ∧AT .
– The conjunction operation (also if combined with pruning) is associative and
commutative, so among others: [[(AS∧AT)∧AU]]mod = [[AS∧(AT ∧AU)]]mod.

4.2 Composition

We shall now define structural composition, also called parallel composition, be-
tween specifications. Roughly speaking, this operation computes the classical
product between timed specifications [21], where components synchronise on
common inputs/outputs. Two components are composable iff the intersection
between their output alphabets is empty. Formally the parallel composition of
AS with AT , denoted AS ||AT , is the TIOA A = (Loc, q0,Clk, E,Act, Inv) given
by: Loc = LocS × LocT , q0 = (qS0 , q

T
0), Clk = ClkS ⊎ ClkT , Inv((qS , qT)) =

Inv(qS) ∧ Inv(qT) and the set of actions Act = Acti ⊎ Acto is given by Acti =
ActSi \ActTo ∪ActTi \ActSo and Acto = ActSo ∪ActTo . The set of edges E is defined
by the following rules:

1. If (qS , a, ϕS , cS , q
′
S) ∈ ES with a ∈ ActS \ActT then for each qT ∈ LocT this

gives ((qS , qT), a, ϕS , cS , (q
′
S , qT)) ∈E

11

2. If (qT , a, ϕT , cT , q
′
T) ∈ ET with a ∈ ActT \ActS then for each qS ∈ LocS this

gives ((qS , qT), a, ϕS , cS , (qS , q
′
T)) ∈E

3. If (qS , a, ϕS , cS , q
′
S) ∈ ES and (qT , a, ϕT , cT , q

′
T) ∈ ET with a ∈ ActS ∩ ActT

this gives rise to ((qS , qT), a, ϕS ∧ ϕT , cS ∪ cT , (q
′
S , q

′
T)) ∈ E.

The first rule represent all the cases where AS makes an individual move, be it
input or output, because a is not in the signature of AT . Similarly the second rule
handles all individual moves by the second componentAT . The third rule handles
all synchronisations between the two components, no matter the combination of
input and/or output. The rule is so simple because the type of the resulting
transition is given by the sets Acti and Acto. The new output set, Acto, is just a
simple union of the outputs, while the input set, Acti, is all the inputs that are
not outputs of the other component.

Observe that if we compose two locally-consistent specifications using the
above product rules, then the resulting product is also locally consistent. More-
over, unlike [16], our specifications are input-enabled, and there is no way to
define an error state in which a component can issue an output that cannot be
captured by the other component. The absence of “model-related” error states
allows us to define more elaborated errors specified by the designer [12]. As an
example, a temporal property written in some logic such as TCTL∗ can be in-
terpreted over our specification, which when analysed by a model checker, will
result in partitioning of the states into good ones (say satisfying the property)
and bad ones (violating the property).

In contrast to conjunction, parallel composition is used to reason about exter-
nal use of two (or more) components. We assume an independent implementation
scenario, where the two composed components are implemented by independent
designers. The designer of any of the environment components can only assume
that the composed implementations will adhere to original specifications being
composed. Consequently if an error occurs in parallel composition of the two
specifications, the environment is the only entity that is possibly in a position
to avoid it. Thus, each composition is followed by a pruning operation where all
the states from which the environment has no strategy to avoid the set of bad
states are removed.

In [12], we have shown the following important results regarding composition.

– Any implementation of composition can be realized by implementations of
composed specifications: [[(AS ||AT)]]mod = [[AS]]mod||[[AT]]mod.

– The composition operation (also if combined with a pruning) is associative
and commutative, so among others: [[(AS ||AT)||AU]]mod = [[AS ||(AT ||AU)]]mod.

– Refinement is a precongruence with respect to parallel composition; for any
specifications AS , AT , and AU such that AS ≤ AT and AS composable with
AU , we have that AT composable with AU and AS ||AU ≤ AT ||AU . Moreover
if AT compatible with AU then AS compatible with AU .

12

a)
AT0

AT1
AT2

AT3InvT

i?

gT

rT

· · ·
oS !

hT

sT

· ·
·

oX !kT qT

··
·

b)
AS0

AS1
AS2

AS3InvS

i?

uS

tS

· · ·
oS !

vS

pS

· ·
·

oX !wS zS
··
·

d)

T0\\S0

lu

l∅

T1\\S1

T3\\S3

lul∅T2\\S2

¬In
vS

Ac
t?/

!

¬I
n
vT

∧I
n
vS

in
e
w

?

gT ∧us i? rT ,tS
k
T ∧w

s

o
x !

s
T ,p

S

¬
G

s

o
s ?

v
s
∧
¬
G

T
o
s
?

h
T
∧
v
s

o
s
?

s
T
,p

S

c)

X

S

T

i?

os!

ox!

Fig. 9. Initial states of two example TIOA a) AT , b) AS , c) an overview of the
communication flow and d) the initial state of the resulting quotient.

4.3 Quotient

An essential operator in a complete specification theory is the one of quotienting.
It allows for factoring out behaviour from a larger component. If one has a large
component specification AT and a small one AS then AT \\AS is the specification
of exactly those components that when composed with AS refine AT . In other
words, AT \\AS specifies the work that still needs to be done, given availability
of an implementation of AS , in order to provide an implementation of AT . This
is a non trivial operation which reduces to synthesis of a timed game. To the best
of our knowledge, we are the first to compute the quotient in a timed setting.
We require that for the dividendAT and the divisorAS the following relations

on action sets hold: ΣS
i
⊆ ΣT

i
and ΣS

o ⊆ ΣT
o . If these requirements on the input

and output sets are met, then the quotient of AT by AS , which is denoted
AT \\AS is the TIOA given by: Loc = LocT ×LocS ∪{lu, l∅}, q0 = (qT0 , q

S
0), Clk =

ClkT ⊎ ClkS ⊎ {xnew}, Inv((qT , qS)) = Inv(lu) = true and Inv(l∅) = {xnew ≤ 0}.
The two new states lu and l∅ are respectively universal and inconsistent. The
set of actions Act = Acti ⊎ Acto is given by Acti = ActTi ∪ ActSo ∪ {inew} and
Acto = ActTo \ActSo . The set of edges E is defined by the following rules:

1. if qT ∈LocT , qS ∈ LocS , a∈Act then ((qT , qS), a,¬InvS(qS), {xnew}, lu)∈E
2. if qT ∈LocT , qS∈LocS then ((qT, qS), inew,¬InvT (qT)∧InvS(qS), {xnew}, l∅)∈E
3. if (qT , a, ϕT , cT , q

′
T) ∈ ET and (qS , a, ϕS , cS , q

′
S) ∈ ES this gives ((qT , qS), a,

ϕT ∧ ϕS , cT ∪ cS , (q
′
T , q

′
S)) ∈ E

4. for each (qS , a, ϕS , cS, q
′
S) ∈ ES with a ∈ ActSo this gives rise to ((qT , qS), a,

ϕS ∧ ¬GT , {xnew}, l∅) where GT =
∨
{ϕT | (qT , a, ϕT , cT , q

′
T)}

5. if (qT, a, ϕT , cT, q
′
T)∈ET , a /∈ActS then ((qT, qS), a, ϕT, cT , (q

′
T , qS)) ∈ E

13

6. for each (qT , a, ϕT , cT , q
′
T) ∈ ET with a ∈ ActSo this gives rise to ((qT , qS), a,

¬GS , {}, lu) where GS =
∨
{ϕS | (qS , a, ϕS , cS , q

′
S)}

7. for each a ∈ Acti this gives rise to (l∅, a, xnew = 0, {}, l∅)
8. for each a ∈ Act this gives rise to (lu, a, true, {}, lu)

The quotients input set, Acti, consists of the inputs to the outer component
AT and the outputs of the existing inner component AS (See Figure 9c) and
a new fresh input action inew. The output set of the quotient, Acto, is simply
the output set of the outer component, AT , minus the outputs handled by the
existing inner component AS . The resulting quotient has two new special states
lu and l∅. The first universal state, lu, represents all the cases where the existing
inner component As has violated the guarantees of the outer component AT and
thus there are no restrictions on the future behaviour of the quotient. The second
inconsistent state, l∅, represents all the cases where the quotient by taking this
action would itself violate the assumptions of the other components.
In the above definition we have eight rules. The first rule creates a new

transition leading to the universal state with a guard that equals the original
invariant of the existing inner specification. The second rule reflects the case
where the invariant of AT is not satisfied while the invariant of AS is. The third
rule handles all regular synchronisation where the guards of both components are
satisfied. The fourth rule handles the case where the inner component generates
an output at a time where it is not allowed by any of the matching guards in the
outer component AT . The fifth rule handles the cases where AT takes an action
which is not in the action set of AS . The sixth rule represents all the cases where
AT takes an action which is not allowed by any of the matching guards in AS

thus leading to the universal state. Finally the seventh rule makes the l∅ state
inconsistent and the eighth rule ensures that the universal state has all possible
behaviour. Figure 9 illustrates one step in the computation of a quotient.
Like Conjunction, the quotient operation may produce (locally) inconsistent
specifications. Hence, each quotient operation has to be followed by a pruning.
In [12], we have shown that the quotient operation produces the most liberal

specification with respect to refinement. Formally we have the following theorem.

Theorem 6. For any two specification automata AS and AT such that the quo-
tient is defined, and for any implementation X over the same alphabet as T \\S
we have that S||X is defined and S||X ≤ T iff X ≤ T \\S.

5 Tool Implementation

We begin with summarising the functionality of the tool, and proceed later to
present a running example.
Our specification theory has been implemented as an extension of Uppaal-

tiga [3], which is an engine for solving timed games. We have made two major
modifications to the original engine. The first modification was to enrich the in-
put language in order to allow for the description of specifications/implementations
and operations between them; the second one was to modify the timed-game al-
gorithms in order to take the compositional reasoning methodology into account.

14

Modelling Language. The input syntax of Uppaal-tiga is identical to the one
of Uppaal [4, 26] – a tool for specifying, combining and verifying properties of
timed automata. The user-friendly interface of Uppaal is divided in two parts:
1) the specification interface where automata are specified in a graphical manner,
and 2) the query interface where one can ask verification questions. The main
difference between the input language of Uppaal-tiga and Uppaal is that, due
to the game interpretation, transitions are typed with control modalities. The
specification interface of our tool is similar to the one of Uppaal-tiga, except
that we decorate transitions with input and output modalities, which allows
the user to specify timed I/O automata. Like timed automata, interfaces can
communicate via broadcast channels, but global variables are not permitted.
The query interface allows the user to (a) check whether a TIOA is a proper
implementation or a specification, (b) to apply composition operations and (c)
to check refinement relations. More details can be found at [36].
Each time we specify a TIOA, the tool automatically checks whether it is

deterministic and input-enabled. In case of an implementation, the tool also
checks whether it satisfies the output urgency and independent progress prop-
erties. Also, the tool automatically computes the set of states for which the
specification is consistent. When the specification is combined with another one,
this information is used in order to avoid involving bad states.

Timed Interface Operators. We have implemented the composition, conjunction,
and refinement operators. Quotient is being implemented. These operators are
available from the query interface. We now give details regarding the modifica-
tions we have made on the original version of Uppaal-tiga.
As we have seen, the operations of conjunction, composition, and quotienting

may produce specifications with bad states. Such states need to be identified and
pruned away. For doing so, we have adapted the game algorithm implemented
in Uppaal-tiga. The main challenge, in terms of implementation, is that the
original algorithms work on fixed input automata. In our case the automata are
not known in advance since they result from the successive pruning operations.
The problem of checking whether AS refines AT reduces to the one of solving

a timed game between two players on the graph-product of AS and AT [12]. The
first player, or attacker, plays outputs on AS and inputs on AT , whereas the
second player, or defender, plays inputs on AS and outputs on AT . One can
show that Refinement does not hold if and only if the attacker can put the
defender in a bad state. There are two kinds of bad states in this game: 1)
the attacker may delay and violates invariants on AT , which is, the defender
cannot match a delay, and 2) the defender has to play a given action and cannot
do so, i.e., a deadlock with respect to the game. In [8], we have proposed and
implemented an efficient algorithm for solving such a game.

We illustrate the input language and the functionalities of the tool with the uni-
versity example presented in Section 3. We fist consider the part of the example
in which the administration is split in two parts (see Figure 7). We thus have
four implementations (Machine, HalfAdm1, HalfAdm2, and Researcher) and one

15

E
n
g
in
e

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2

Machine
pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1
grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researcher

grant? grant?

grant?

patent! patent!

grant?
GrantStartEnd

u=0

u<=2

u=0

u<=20
u>2

UniSpec

ex
p
lo
re

a
n
d
p
ru
n
e

in
te
rn
al

T
IO
A

&&

co
nj
un
ct

||

co
m
po
si
ti
on

combine with operator
≤

re
fin
em
en
t
ch
ec
k

yes/no+strategy

Fig. 10. Illustration of the steps performed in a concrete refinement check. The
grey box represents the part carried out internally by the verification engine.

specification (UniSpec). All of these machines can easily be drawn in the speci-
fication interface. In the query interface, specifications and implementations are
declared as follows: specification: UniSpec, and implementation: HalfAdm1. The
tool automatically plays a safety-game followed by a pruning in order to remove
locally inconsistent states. The tool also makes sure that the implementation
and the specification satisfy Definitions 3 and 4. If this is not the case, or if the
specification admit no implementation, then the tool stops.

We combine implementations with composition and conjunction operators as
follows. The interface of the administration is the conjunction of two interfaces,
one specifying when to output coins (after grants) and the other when to deliver a
patent (after a publication). This is a better (and less restrictive approach) than
to specify manually the combination of both. Then we compose the interfaces
of the researcher, the university, and the machine. To check if this composition
refines our original specification we check the following query

refinement: (Researcher || (HalfAdm1 && HalfAdm2) || Machine) <= UniSpec.

Figure 10 illustrates the different steps of the verification. The checker ex-
plores each component locally and prunes them from inconsistent states. The
results of the exploration of the two “half-administrations” are conjuncted and
pruned. Then the three automata are composed and pruned. The same is done
for the specification and then the safety-game algorithm is used to check whether
refinement holds. If at any step an automaton turns to be inconsistent then the
check stops and the tool reports the error to the user. In this latter case, the
user can invoke the simulator of Uppaal-tiga which will play the game until
it breaks down. This information can be used to improve/change the design of
the specification or of the implementation.

For the above example, it turns out that the refinement does not hold. The
tool reveals that the UniSpec interface does not allow patents to be produced
without a preceding grant. However, the composition allows researchers to pub-

16

lish with free tea, which is accepted by the conjunction of the two half adminis-
trations, which results in a patent. If we check instead

refinement: (Researcher || Administration || Machine) <= UniSpec.

with the administration of Figure 2b then the refinement holds as mentioned in
Section 3 because this administration does not accept patents without grants
first. However, specifying the administration manually exhibits a restricting be-
haviour that is not present in the cleaner conjunction of the two smaller specifi-
cations. Here the right correction would be to allow for free patents in UniSpec.
The conclusion is that the user should not try to make the conjunction by hand
and use conjunctions to specify more accurate specifications.
Finally, we illustrate the advantage of being capable to model check TCTL

properties on TIOAs. We would like to avoid considering zeno behaviours. The
idea is to combine our specification with an observer and then make sure that
the observer visits infinitely often a state in which time advances. The latter can
be specified with a TCTL property. The observer Obs has two states reset and
advance and a witness clock w. The observer issues a non shared output from
reset to advance if w > 1. Then it directly moves back to reset and resets the
clock. The observer is then composed with the specification. There will be no
synchronisation between the observer and the specification. Non zeno behaviours
in the composition are those where Obs visits the state advance infinitely often.
We use the following property that checks for refinement with an additional
Büchi condition constraining the composition.

refinement: (Researcher || Administration2 || Machine || Obs

: A[] A<> Obs.advance) <= UniSpec.

6 Related Work

In this section, we compare our results with other timed interface theories.

Input/Output automata model There have been several other attempts to pro-
pose an interface theory for timed systems (see [14, 16, 13, 7, 6, 10, 35, 17, 27] for
some examples). Our model shall definitely be viewed as an extension of the
timed input/output automaton model proposed by Lynch et al. [21]. The major
differences are in the game-based treatment of interactions and the addition of
quotient and conjunction operators.

Timed Interfaces by de Alfaro et al. In [16], de Alfaro et al. proposed timed
interfaces, a timed extension of the interface model they introduced in [14]. Like
for specification automata, the syntax of a timed interface is similar to the one
of a timed input/output automaton [22] and the semantic is given by a timed
game. However, unlike specification automata, timed interfaces are not forced
to be deterministic or input-enabled. The absence of input-enabledness allows
for defined error states in the composition where one component can issue an

17

output that cannot be captured by the other component. Two timed interfaces
are said to be compatible if there exists an environment in which they can
work together while avoiding such error states. This definition of compatibility
allows to capture the timing between interfaces: “what are the temporal ordering
constraints on communication events between components?”. Unfortunately, the
work in [16] is incomplete. Indeed there is no notion of implementation and
refinement. Moreover, conjunction and quotient are not studied. Also, de Alfaro
et al. did not consider more elaborated error states specified by the user with
some timed temporal logic. Finally, the theory has only been implemented in
a prototype tool called TICC [13], which does not handle continuous time. A
main drawback of TICC is its textual input language that is far from modern
graphical specification languages used by engineers.

Timed Modal Specifications In [23] Larsen proposes modal automata, which are
deterministic automata equipped with transitions of the following two types:may
and must . The components that implement such interfaces are simple labelled
transition systems. Roughly, a must transition is available in every component
that implements the modal specification, while a may transition need not be.
Recently [7, 6] a timed extension of modal automata was proposed, which em-
beds all the operations presented in the present paper. However, modalities are
orthogonal to inputs and outputs, and it is well-known [24] that, contrary to
the game-semantic approach, they cannot be used to distinguish between the
behaviours of the component and those of the environment. Aside from the or-
thogonality between input/output and may/must modalities. Our model does
not allow to combine/compare automata that share common clock names, while
in [7, 6] they restrict themselves to even-clock automata [2] for doing so. We are
convinced that our theory directly extends to an event-clock automata version
of TIOA with shared clocks. Finally, our work is implemented, while the work
in [7, 6] is not implemented.

7 Conclusion

We have proposed a complete game-based specification theory for real time sys-
tems, in which we distinguish between a component and the environment in
which it is used. To the best of our knowledge, our contribution is the first
game-based approach to support both refinement, consistency checking, logical
and structural composition, and quotient. Our results have been implemented
in the Uppaal tool family [3].
In the future one could extend our model with global variables. This was

already suggested by Berendsen and Vaandrager in [5], but only for structural
composition and refinement and without the game-based semantic.
One could also investigate whether our approach can be used to perform

scheduling of timed systems (see [13, 19, 17] for examples). For example, the
quotient operation could perhaps be used to synthesise a scheduler for such
problems. It would also be of interest to add stochastic features to the model.

18

In [33, 25], we have proposed a model which takes advantages of both interface
automata and modal specifications. One should follow a similar direction in the
timed setting and combine our model with the one proposed in [7, 6].
Finally, our notion of error states is still primitive and in the future we plan

to allow the users to define their own error states. This will be done with the
help of some temporal logic, just like it was done for a refinement in [8].

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 211:1–13, 1999.

3. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games! In CAV, volume 4590 of LNCS. Springer,
2007.

4. G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. Uppaal 4.0. In QEST, pages 125–126. IEEE Computer Society, 2006.

5. J. Berendsen and F. W. Vaandrager. Compositional abstraction in real-time model
checking. In FORMATS, volume 5215 of LNCS. Springer, 2008.

6. N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet. A compositional approach
on modal specifications for timed systems. In ICFEM, LNCS. Springer, 2009.

7. N. Bertrand, S. Pinchinat, and J.-B. Raclet. Refinement and consistency of timed
modal specifications. In LATA, volume 5457 of LNCS, Tarragona, Spain, 2009.
Springer.

8. P. Bulychev, T. Chatain, A. David, and K. G. Larsen. Efficient on-the-fly algorithm
for checking alternating timed simulation. In FORMATS, volume 5813 of LNCS,
pages 73–87. Springer, 2009.

9. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR, 2005.

10. K. Čerāns, J. C. Godskesen, and K. G. Larsen. Timed modal specification - theory
and tools. In Proceedings of the 5th International Conference on Computer Aided
Verification (CAV’93), volume 697 of LNCS, pages 253–267. Springer, 1993.

11. A. Chakabarti, L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Resource
interfaces. In R. Alur and I. Lee, editors, EMSOFT 03: 3rd Intl. Workshop on
Embedded Software, LNCS. Springer, 2003.

12. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wąsowski. Timed I/O
automata: a complete specification theory for real-time systems. In HSCC, 2010.
Accepted.

13. L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with
an application to timed games. In CAV, volume 4590 of LNCS. Springer, 2007.

14. L. de Alfaro and T. A. Henzinger. Interface automata. In FSE, pages 109–120,
Vienna, Austria, Sept. 2001. ACM Press.

15. L. de Alfaro and T. A. Henzinger. Interface-based design. InMarktoberdorf Summer
School. Kluwer Academic Publishers, 2004.

16. L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Timed interfaces. In
EMSOFT, volume 2491 of LNCS, pages 108–122. Springer, 2002.

17. Z. Deng and J. W. s. Liu. Scheduling real-time applications in an open environ-
ment. In in Proceedings of the 18th IEEE Real-Time Systems Symposium, IEEE
Computer, pages 308–319. Society Press, 1997.

19

18. S. J. Garland and N. A. Lynch. The IOA language and toolset: Support for design-
ing, analyzing, and building distributed systems. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, 1998.

19. T. A. Henzinger and S. Matic. An interface algebra for real-time components. In
IEEE Real Time Technology and Applications Symposium, pages 253–266. IEEE
Computer Society, 2006.

20. T. A. Henzinger and J. Sifakis. The embedded systems design challenge. In FM,
volume 4085 of LNCS, pages 1–15. Springer, 2006.

21. D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager. Timed i/o automata:
A mathematical framework for modeling and analyzing real-time systems. InRTSS,
pages 166–177. IEEE Computer Society, 2003.

22. D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager. The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool
Publishers, 2009.

23. K. G. Larsen. Modal specifications. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems, volume 407 of LNCS, pages 232–246. Springer,
1989.

24. K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface
and product line theories. In R. D. Nicola, editor, ESOP, volume 4421 of LNCS,
pages 64–79. Springer, 2007.

25. K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o automata for interface
and product line theories. In ESOP, volume 4421 of Lecture Notes in Computer
Science, pages 64–79. Springer, 2007.

26. K. G. Larsen, B. Steffen, and C. Weise. Continuous modeling of real-time and
hybrid systems: From concepts to tools. STTT, 1(1-2):64–85, 1997.

27. I. Lee, J. Y.-T. Leung, and S. H. Son. Handbook of Real-Time and Embedded
Systems. Chapman, 2007.

28. N. Lynch. I/O automata: A model for discrete event systems. In Annual Con-
ference on Information Sciences and Systems, pages 29–38, Princeton University,
Princeton, N.J., 1988.

29. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. Tech-
nical Report MIT/LCS/TM-373, The MIT Press, Nov. 1988.

30. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems (an extended abstract). In STACS, pages 229–242, 1995.

31. R. Milner. Communication and Concurrency. Prentice Hall, 1988.
32. R. D. Nicola and R. Segala. A process algebraic view of input/output automata.
Theoretical Computer Science, 138, 1995.

33. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone.
Modal interfaces: unifying interface automata and modal specifications. In EM-
SOFT, pages 87–96. ACM, 2009.

34. E. W. Stark, R. Cleavland, and S. A. Smolka. A process-algebraic language for
probabilistic I/O automata. In CONCUR, LNCS, pages 189–2003. Springer, 2003.

35. L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces for composing
real-time systems. In EMSOFT, pages 34–43. ACM, 2006.

36. http://www.cs.aau.dk/~adavid/tiga/tio.html.
37. F. W. Vaandrager. On the relationship between process algebra and input/output
automata. In LICS, pages 387–398, 1991.

20

