
Developing Uppaal over 15 Years

Gerd Behrmann1, Alexandre David2, Kim Guldstrand Larsen2, Paul
Pettersson3, and Wang Yi4

1 NORDUnet A/S, Copenhagen, Denmark
2 Department of Computer Science, Aalborg University, Denmark

3 Mälardalen Research and Technology Centre, Mälardalen University, Sweden
4 Department of Information Technology, Uppsala University, Sweden

behrmann@ndgf.org, {adavid,kgl}@cs.aau.dk, paul.pettersson@mdh.se,

yi@it.uu.se

Abstract. Uppaal is a tool suitable for model checking real-time sys-
tems described as networks of timed automata communicating by chan-
nel synchronizations and extended with integer variables. Its first version
was released in 1995 and its development is still very active. It now fea-
tures an advanced modelling language, a user-friendly graphical interface,
and a performant model checker engine. In addition, several flavors of
the tool have matured in recent years. In this paper, we present how we
managed to maintain the tool during 15 years, its current architecture
with its challenges, and we give future directions of the tool.

1 Development History

Uppaal is first of all a research tool born from the collaboration of Uppsala and
Aalborg universities [24]. Its theory comes from [1] with decidability results based
on regions. Its performance originally comes from zones [18] as a representation
for states. Since then the development has been fuelled by scientific results on
algorithms or new data structures such as [4,5,6,9,19,20] and very importantly by
case studies that pushed us to push the limits of the tool, such as [7,10,11,21,22].
On the other hand, having such a tool helps to develop and test new theories
and algorithms, which has given us a synergy during the last decade between
tool development and publications.

Recently, the tool has blossomed into several domain specific versions, namely,
Cora [5] (cost-optimal reachability), Tron [17] (online testing), CoVer [15,16]
(coverage testing), Tiga [3] (timed game solver), Port [13,14] (component
based), Pro (extension with probabilities, in progress), and Times [12,2] (schedul-
ing and analysis). These extensions are made based on a common code base,
re-using basic data structures to represent states, store them, and perform some
basic computations.

How have we managed to get going for 15 year across different physical sites
with changing teams? The first reason is our commitment to have an efficient tool
implementing our research results. A tool strengthens and sometimes disprove
theories. Second, we use a centralized version management system (cvs and then



subversion), which allows distributed teams to work on the same code. A given
checkout of the repository contains all variants of the tool but they all live in
their own separated modules. Developers are responsible for few modules and
modify other modules occasionally only. Finally, we are using a bug management
system (bugzilla) and we do regression testing. We update our battery of tests
with examples that trigger new bugs. To find which changes in the repository
history trigger a new bug, we use binary search on the revision numbers until
we find a revision n where the bug is not present and a revision n + 1 where it
is present. This is a very effective technique.

In the long term, the code base goes through different life cycles. The first
cycle was with the original atg graph editor and an early custom simulator. The
second introduced an integrated graphical editor, the client-server architecture
still in use today, and an improved engine. The third cycle is the current one with
a modular pipeline architecture. The development is incremental during a cycle,
following the current design and making changes until the amount of desired
features and new algorithms reaches a threshold. Then there is a major effort
to re-design or re-factor the code and we continue. The current architecture has
lived up to its expectations for approximately 8 years, during which we could
re-use existing components and create new ones that we could litteraly plug
together. However, now is the time for a major update.

2 Current Architecture Overview

Uppaal is based on a client-server architecture with the graphical interface
(client) communicating with the model checker (server) via a local pipe or the
network. This separation of concerns makes Uppaal easier to port and maintain
on different platforms.

The model checker itself is designed around

PWListTransition

Successor Delay Extrapolation

Initial state

Fig. 1. Simplified pipeline archi-
tecture.

a pipeline architecture [4] where each block
or filter processes states and sends them to
the next stage as shown in Fig. 1. The dif-
ferent stages include, e.g., delay, extrapola-
tion, or storing states. Typically the reach-
ability analysis pipeline has a while loop
taking states from our (unified) passed and

waiting list structure and explores them by pushing them to the first filter. The
chain is Transition (which transitions can be taken) - Successor (execution of
the transitions) - Delay (let time pass) - Extrapolation (apply an appropriate ex-
trapolation to ensure finite exploration) - PWList (inclusion check and mark the
state to be explored) - Query (evaluate the formula if the state was not included).
Implementing another checker, e.g. a timed game solver, is relatively easy and
consists in adding components that will do the backward propagation, changing
the first filter to either explore forward or backward, add a post-processing filter
to detect what is winning or losing in the game after Extrapolation, and changing
the graph representation. To change the semantics of the game, e.g. to implement



simulation checking [8], mainly consists in changing Transition that implements
the transition relation and changing Delay to allow turn-based delay.

In addition to these components, Uppaal contains a virtual machine to exe-
cute the compiled byte-code of our C-like input language supporting user defined
functions and types. This is abstracted in the form of Expression objects that
we can re-use across different flavours of Uppaal, which makes other extensions
such as adding probabilities easier.

We currently distribute some open source components, such as the parser
and the difference bound matrix (DBM) library. The parser understands the
XML format we use in Uppaal, which allows other researchers to use the same
format. The DBM library handles DBMs and federations (unions of DBMs)
used to represent symbolic states. The DBM library supports a wide range of
operations including subtractions and merging of DBMs.

3 Challenges

The current architecture has been pushed to implement the different known
flavours of Uppaal but also to extend every checker. Recent extensions to Up-

paal include priorities and stop-watches. Tiga was recently extended with a
simulation checker. It is being extended with a new timed interface checker.
Although the overall pipeline architecture accommodates these extensions, we
have reached the limit of some “implementation details”. These are: 1) there can
be only one global system, 2) long wished features, such as clock constraints on
receiving edges of broadcast synchronizations, are now needed, 3) the engine is
designed for 32-bit architectures, 4) there is no multi-core support, 5) there is
only one kind of symbolic state, and the list goes on.

Updating to 64-bit is mainly technical. Going for multi-core support (multi-
threaded Uppaal) is more challenging. There have been experiments in the past
in this direction and we know that the current architecture could be adapted by
having one thread per pipeline copy. This fits memory locality but we also know
that it did not work so well because blocking data-structures (access protected
by mutex) were major bottlenecks. It is crucial to have non-blocking structures
such as [23]. In addition, we want to make the components extendable more
easily in particular to allow more people to work on Uppaal without having to
know what most of the code is doing.

4 Future

Uppaal has already spawned one company, UP4ALL5, that sells a version of the
tool for commercial uses. Another market we intend to target is testing. Research
tools really have a future if they can be applied and used outside academia, as
witnessed by Lustre/SCADE. The current trend of our research is to explore
different domains as the different flavors of Uppaal show. That also means

5 To contact UP4ALL email sales@uppaal.com.



that a new life-cycle with another architectural revision is now needed to cope
with more extensions of Uppaal. That will enable us to let other researchers
experiment with the internals of Uppaal and still maintain our core engine.

5 Acknowledgements

It is important to remember that Uppaal is the result of the cumulative ef-
forts of many collaborators. Among them we would like to thank early pioneers
Johan Bengtsson and Fredrik Larsen, former contributor of the graphical inter-
face Carsten Weise, and active contributor and maintainer Marius Mikučionis
(Uppaal and Tron). We also thank contributors of different extensions of Up-

paal, among them Didier Lime (Tiga), John H̊akansson (Port), Anders Hes-
sel (CoVer), Leonid Mokrushin (Times), Jakob Illum (Cora), Arild Haugstad
(Pro).

References

1. R. Alur and D. L. Dill. Automata for Modeling Real-Time Systems. In Proc. of
ICALP, volume 443 of LNCS, pages 322–335, 1990.

2. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: A tool
for modelling and implementation of embedded systems. In J.-P. Katoen and
P. Stevens, editors, Proc. of the 8th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, number 2280 in Lecture
Notes in Computer Science, pages 460–464. Springer–Verlag, 2002.

3. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games! In CAV’07, number 4590 in LNCS, pages
121–125. Springer, 2007.

4. G. Behrmann, A. David, K. G. Larsen, and W. Yi. Unification & Sharing in Timed
Automata Verification. In SPIN Workshop 03, volume 2648 of LNCS, pages 225–
229, 2003.

5. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, and J. Romijn.
Efficient Guiding Towards Cost-Optimality in Uppaal. In T. Margaria and W. Yi,
editors, Proc. of the 7th Int. Conf. on TACAS, number 2031 in LNCS, pages 174–
188. Springer-Verlag, 2001.

6. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient Timed
Reachability Analysis Using Clock Difference Diagrams. In Proc. of the 12th Int.
Conf. on CAV, volume 1633 of LNCS. Springer, 1999.

7. J. Bengtsson, W. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson, P. Pet-
tersson, and W. Yi. Verification of an Audio Protocol with Bus Collision Using
Uppaal. In R. Alur and T. A. Henzinger, editors, CAV96, number 1102 in LNCS,
pages 244–256. Springer-Verlag, July 1996.

8. P. Bulychev, T. Chatain, A. David, and K. G. Larsen. Efficient on-the-fly Algo-
rithm for Checking Alternating Timed Simulation. In FORMATS’09, number 5813
in LNCS, pages 73–87. Springer, 2009.

9. A. David, J. H̊akansson, K. G. Larsen, and P. Pettersson. Model Checking Timed
Automata with Priorities using DBM Subtraction. In Proc. of the 4th Int. Conf.
on FORMATS, volume 4202 of LNCS, pages 128–142, 2006.



10. A. David, M. O. Möller, and W. Yi. Formal Verification of UML Statecharts with
Real-Time Extensions. In R.-D. Kutsche and H. Weber, editors, FASE, 5th Int.
Conf. 2002, volume 2306 of LNCS, pages 218–232. Springer, 2002.

11. A. David and W. Yi. Modelling and Analysis of a Commercial Field Bus Protocol.
In Proc. of Euromicro-RTS’00, pages 165–172. IEEE Computer Society, 2000.

12. E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous pro-
cesses: Schedulability and decidability. In J.-P. Katoen and P. Stevens, editors,
Proc. of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, number 2280 in Lecture Notes in Computer
Science, pages 67–82. Springer–Verlag, 2002.

13. J. H̊akansson, J. Carlson, A. Monot, P. Pettersson, and D. Slutej. Component-
Based Design and Analysis of Embedded Systems with UPPAAL PORT. In S. D.
Cha, J.-Y. Choi, M. Kim, I. Lee, and M. Viswanathan, editors, ATVA, volume
5311 of LNCS, pages 252–257. Springer, 2008.

14. J. H̊akansson and P. Pettersson. Partial Order Reduction for Verification of Real-
Time Components. In Proc. of the 5th Int. Conf. on FORMATS, LNCS. Springer-
Verlag, 2007.

15. A. Hessel and P. Pettersson. A Test Case Generation Algorithm for Real-Time
Systems. In H.-D. Ehrich and K.-D. Schewe, editors, Proc. of the Fourth ICQS,
pages 268–273. IEEE Computer Society, 2004.

16. A. Hessel and P. Pettersson. Cover — A Test-Case Generation Tool for Timed
Systems. In A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp, editors,
Testing of Software and Communicating Systems: Work-in-Progress and Position
Papers, Tool Demonstrations, and Tutorial Abstracts of TestCom/FATES, pages
31–34, 2007.

17. K. Larsen, M. Mikučionis, and B. Nielsen. Online Testing of Real-time Systems
Using Uppaal. In FATES’04, LNCS, Linz, Austria, September 2004.

18. K. G. Larsen, P. Pettersson, and W. Yi. Model-Checking for Real-Time Systems.
In Proc. of Fundamentals of Computation Theory, number 965 in LNCS, pages
62–88, August 1995.

19. F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. Efficient Verification of Real-
Time Systems: Compact Data Structures and State-Space Reduction. In Proc. of
the 18th IEEE RTSS, pages 14–24. IEEE Computer Society Press, December 1997.

20. F. Larsson, P. Pettersson, and W. Yi. On Memory-Block Traversal Problems in
Model Checking Timed Systems. In S. Graf and M. Schwartzbach, editors, Proc. of
the 6th Conf. on TACAS, number 1785 in LNCS, pages 127–141. Springer-Verlag,
2000.

21. M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gear-Box
Controller. In Proc. of the 4th Workshop on TACAS, number 1384 in LNCS, pages
281–297. Springer-Verlag, March 1998.

22. H. Lönn and P. Pettersson. Formal Verification of a TDMA Protocol Startup
Mechanism. In Proc. of the Pacific Rim Int. Symp. on Fault-Tolerant Systems,
pages 235–242, December 1997.

23. C.-H. Shann, T.-L. Huang, and C. Chen. A practical nonblocking queue algorithm
using compare-and-swap. In Seventh International Conference on Parallel and
Distributed Systems, pages 470–475, 2000.

24. W. Yi, P. Pettersson, and M. Daniels. Automatic Verification of Real-Time Com-
municating Systems By Constraint-Solving. In D. Hogrefe and S. Leue, editors,
Proc. of FORTE’94, pages 223–238. North–Holland, 1994.


