
Chapter 6

Tools for Model-Checking Timed Systems

6.1. Introduction

In this chapter we present different tools for verication of timed systems. UP-
PAAL [LAR 97a, BEH 04b] is a tool for model-checking real-time systems developed
jointly by Uppsala and Aalborg Universities. The rst version of UPPAAL was re-
leased in 1995 [LAR 97a] and has been in constant development since then [BEN 98,
AMN 01, BEH 01a, BEH 02, DAV 02, DAV 03, DAV 06]. It has been applied suc-
cessfully to case-studies ranging from communication protocol to multimedia appli-
cations [HAV 97, LON 97, DAR 97, BOW 98, HUN 00, IVE 00, DAV 00, LIN 01].
The tool is designed to verify systems that can be modeled as networks of timed
automata [ALU 90a, ALU 90b, HEN 92, ALU 94] extended with integer variables,
structured data types, user dened functions, and channel synchronisation. UPPAAL-
CORA is a specialized version of UPPAAL that implements guided and minimal cost
reachability algorithms [BEH 01b, BEH 01c, LAR 01]. It is suitable in particular to
cost-optimal schedulability problems [BEH 05a, BEH 05b]. UPPAAL-TIGA [BEH 07]
is a specialization of UPPAAL designed to verify systems modeled as timed game au-
tomata where a controler plays against an environment. The tool synthesizes code
represented as a strategy to reach control objectives [DEA 01, ASA 98, MAL 95,
TRI 99]. The tool is based on a recent on-the-y algorithm [CAS 05] and has already
be applied to an industrial case study [JES 07]. The tool can also handle timed games
with partial observability [CAS 07] and has been extended more recently to check for

Chapter written by Alexandre DAVID, Gerd BEHRMANN, Peter BULYCHEV, Joakim BYG,
Thomas CHATAIN, Kim G. LARSEN, Paul PETTERSSON, Jacob Illum RASMUSSEN, Jirí SRBA,
Wang YI, Kenneth Y. JOERGENSEN, Didier LIME, Morgan MAGNIN, Olivier H. ROUX and
Louis-Marie TRAONOUEZ .

179

180 Communicating Embedded Systems.

simulation of timed automata and timed game automata. TAPAAL [BYG 09] is an
editor, simulator and verier for timed-arc Petri nets and for the verication task it
translates nets into networks of timed automata and uses the UPPAAL engine for the
actual verication. It is developed at the Aalborg University.

ROMÉO [GAR 05b, LIM 09] is a tool for model-checking time Petri-nets [ZUB 80,
ZUB 85, RAZ 85, BER 91b, ABD 01a, ABD 01b] and Petri nets with stopwatches[ROU 04].
It is developed by IRCCyN in Nantes. Since its rst version in 2001, the software has
beneted from regular improvements, both theoretical and experimental. Theoreti-
cal researches aim to widen the classes of models and properties on which the tool
can perform model-checking. From an experimental point of view, developments
focus on the use of up-to-date efcient libraries (e.g. the Parma Polyhedra Library
[BAG 02]). The rst releases of ROMÉO were mostly based on translations to other
tools. The tool not only allows state space computation of TPN and on-the-y model-
checking of reachability properties, but it also performs translations from TPNs to
Timed Automata (TA) that preserve the behavioural semantics (timed bisimilarity) of
the TPNs. Recent research stresses on the emergence of autonomous model-checking
algorithms. ROMÉO now provides an integrated TCTL model-checker and has gained
in expressivity with the addition of parameters. Although there exists other tools to
compute the state-space of stopwatch models, Romeo is the rst one that performs
TCTL model-checking on stopwatch models [MAG 08]. Moreover, it is the rst tool
that performs TCTL model-checking on timed parametric models [TRA 08]. Indeed,
Romeo now features an efcient model-checking of time Petri nets using the Uppaal
DBM Library, the model-checking of stopwatch Petri nets and parametric stopwatch
Petri nets using the Parma Polyhedra Library and a graphical editor and simulator of
these models. Furthermore, its audience has led to several industrial contracts, such
as DGA, SODIUS, Dassault Aviation and EADS.

In this chapter we present the architecture of the tools, the basic model-checking
algorithms, and the main techniques developped over the past years to improve per-
formance both in time and space.

6.2. UPPAAL

6.2.1. Timed Automata and Symbolic Exploration

UPPAAL is based on an extension of timed automata. A timed automaton is a
nite-state machine extended with clock variables. It uses a dense-time model where
a clock variable evaluates to a real number. All the clocks progress synchronously.
A system is modeled as a network of such timed automata in parallel. Furthermore,
the model is extended with (bounded) integer variables. The query language used
to specify properties to be checked is a subset of TCTL (timed computation tree
logic) [ALU 90a, HEN 94, BAI 08].

Tools for Model-Checking 181

A state of the system is dened by the locations of all automata, the clock values,
and the values of the integer variables. The system changes state by ring a transition.
A transition may consist of one edge in any of the automata that can take such an
edge, or several edges when a synchronization is involved (hand-shake or broadcast
synchronization).

A timed automaton is a nite directed graph annotated with conditions over and
resets of non-negative real valued clocks. We recall here the denition of a timed
automaton (Denition 6.1). We omit here F and R.

DEFINITION 6.1 (TIMED AUTOMATON).�– A Timed AutomatonA is a tuple (L, l0, X, Σε,
E, Inv) where: L is a nite set of locations; l0 ∈ L is the initial location; X is
a nite set of positive real-valued clocks; Σε = Σ ∪ {ε} is a nite set of actions
and ε is the silent action; E ⊆ L × C(X) × Σε × 2X × L is a nite set of edges,
e = 〈l, γ, a, R, l′〉 ∈ E represents an edge from the location l to the location l ′ with
the guard γ, the label a and the reset set R ⊆ X ; Inv ∈ C(X)L assigns an invariant
to any location. We restrict the invariants to conjuncts of terms of the form x ' r for
x ∈ X and r ∈ N and '∈ {<,≤}.

We recall that a clock valuation (1.2) ν over a set of variables X is an element of
RX

≥0. For ν ∈ RX
≥0 and d ∈ R≥0, ν+d denotes the valuation dened by (ν+d)(x) =

ν(x) + d, and for X ′ ⊆ X , ν[X ′)→ 0] denotes the valuation ν ′ with ν′(x) = 0 for
x ∈ X ′ and ν ′(x) = ν(x) otherwise. We give now the semantics of a timed automaton
(Denition 6.2).

DEFINITION 6.2 (SEMANTICS OF A TIMED AUTOMATON).�– The semantics of a
timed automaton A = (L, l0, C, Σε, E, Act, Inv) is a timed transition system SA =
(Q, q0, Σε, →) with Q = L × (R≤0)X , q0 = (l0,0) is the initial state, and → is
dened by: i) the discrete transitions relation (l, v) a−→ (l′, v′) iff ∃ (l, γ, a, R, l′) ∈ E
s.t. γ(v) = tt, v′ = v[R)→ 0] and Inv(l′)(v′) = tt; ii) the continuous transition
relation
(l, v)

ε(t)−−−→ (l′, v′) iff l = l′, v′ = v + t and ∀ 0 ≤ t′ ≤ t, Inv(l)(v + t′) = tt.

The problem when exploring is that the semantics of timed automata results in
an innite transition system. There exists an exact nite state abstraction based on
convex polyhedra in RX called zones [YI 94, LAR 95] (a zone can be represented by
a conjunction in C(X)). This abstraction leads to the following symbolic semantics of
timed automata (TA).

DEFINITION 6.3 (SYMBOLIC SEMANTICS OF TA).�– Let Z0 = Inv(l0) ∧∧
x,y∈X x = y = 0 be the initial zone. The symbolic semantics of a timed automa-

ton (L, l0, X, Σε, E, Inv) over X is dened as a transition system 〈S, ∫0,⇒〉 called
the symbolic reachability graph, where S ⊆ L × C(X) is the set of symbolic states,

182 Communicating Embedded Systems.

∫0 = (l0, Z0) is the initial state, ⇒ is the transition relation and is dened by the
following rules:

�– (l, Z) δ⇒ (l, widen(m, (Z ∧ Inv(l))↑ ∧ Inv(l))), and
�– (l, Z) e⇒ (l′, r(γ ∧ Z ∧ Inv(l)) ∧ Inv(l′)) if e = (l, γ, a, R, l′) ∈ E,

where Z↑ = {u + d | u ∈ Z ∧ d ∈ R≥0} (the future operation), and r(Z) = {[x)→
0]u | x ∈ R, u ∈ Z} (the reset operation). The function widen : N× C(X) → C(X)
widens the clock constraints with respect to the maximum constant m of the timed
automaton. This operation is also called normalization [YI 94] or extrapolation.

The relation δ⇒ represents the delay transitions and e⇒ the edge transitions. The
classical representation of a zone is the Difference Bound Matrix (DBM) [ROK 93,
WON 94, BEN 02].

In UPPAAL, timed automata are composed into a network of timed automata over a
common set of clocks and actions, consisting of n timed automataA i = (Li, l0i , X, Σε,
Ei, Invi), 1 ≤ i ≤ n. A location vector is a vector l̄ = (l1, . . . , ln). We compose the
invariant functions into a common function over location vectors I(l̄) = ∧iInvi(li).
We write l̄[l′i/li] to denote the vector where the ith element l i of l̄ is replaced by l′i. In
the following we dene the semantics of a network of timed automata (NTA).

DEFINITION 6.4 (SEMANTICS OF NTA).�– Let Ai = (Li, l0i , X, Σε, Ei, Invi) be a
network of n timed automata. Let l̄0 = (l01, . . . , l0n) be the initial location vector. The
semantics is dened as a transition system 〈S, s0,→〉, where S = (L1×· · ·×Ln)×RX

is the set of states, s0 = (l̄0, u0) is the initial state, and →⊆ S × S is the transition
relation dened by:

�– (l̄, u) d−→ (l̄, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l̄).

�– (l̄, u) a−→ (l̄[l′i/li], u′) if there exists li
ε,γ,Ri−−−−→ l′i s.t. u ∈ γ,

u′ = [Ri)→ 0]u and u′ ∈ I(l̄[l′i/li]).

�– (l̄, u) a−→ (l̄[l′j/lj, l′i/li], u′) if there exist li
γi,c?,Ri−−−−−→ l′i and

lj
γj,c!,Rj−−−−−→ l′j s.t. u ∈ (γi ∧ γj), u′ = [Ri ∪Rj)→ 0]u and u′ ∈ I(l̄[l′j/lj, l′i/li]).

The symbolic semantics of timed automata is naturally extended to networks of
timed automata. We omit conditions on S that dene location vectors of 2 L as valid,
that is, the locations may not belong to the same automaton. In addition, we omit
for the sake of simplicity the integer variables that UPPAAL supports. The denitions
would be extended by adding a set of integers and actions over these integers that
would be part of the state. Further extensions supported by UPPAAL are:

Tools for Model-Checking 183

�– Broadcast Channels If a channel c is declared broadcast then one process taking
the action c! synchronizes with all other processes that have enabled edges that can
take the action c?.

�– Urgent Channels If a channel is declared urgent then time cannot elapse in a
given state if a transition involving an urgent channel is possible.

�– Urgent Locations A state having an urgent location in its location vector cannot
delay.

�– Committed Locations A state having a committed location in its location vector
cannot delay and must take a transition that leaves a committed location or deadlock.

Other syntactic contructions are dened on top as a convenience for the user.
These include arrays of integer variables, clocks, or channels, user-dened functions
and structured data types. For a more complete reference see the updated version
of [BEH 04b] available on www.uppaal.org.

UPPAAL implements a symbolic exploration algorithm based on the symbolic se-
mantics of timed automata. In the reachability 6.2.4 or liveness 6.2.5 algorithms UP-
PAAL computes successor states symbolically in the following way: When a transition
is taken, the next state is delayed innitely (if possible) and the invariant of the state
is applied. This computes all the (timed) successors w.r.t. a given transition. Thus, in
the algorithms, computing successors will refer to trying all possible actions followed
by delay.

6.2.1.0.1. Example

We give as an example the well-known Fischer�’s mutual exclusion algorithm [ABA 92,
KRI 96] with two processes for the sake of simplicity. The protocol scales with any
number of processes, each having its own identier (in the example only 1 and 2).
Figure 6.1 shows the model of the protocol. The processes want to avoid being in

wait

req
x<=k

A

cs

id== 0 x = 0

x<=k

x = 0,
id = 1 id== 0

x = 0

x>k && id==1

id = 0

wait

req
x<=k

A

cs

id== 0 x = 0

x<=k

x = 0,
id = 2 id== 0

x = 0

x>k && id==2

id = 0

Figure 6.1. Timed automata model of Fischer’s mutual exclusion protocol.

their critical sections (cs) at the same time. The protocol is using a shared idener
(id) to choose which process should access the critical section and a clock to force

184 Communicating Embedded Systems.

the processes to wait at least k time units before entering cs. Processes may retry
and go back to req. Figure 6.2 shows the symbolic exploration of the model. The

x1
k

k
x2

(A,A,0) x1
k

k
x2

(req,A,0)

x1
k

k
x2

(A,req,0)

x1
k

k
x2

(req,req,0)

x1
k

k
x2

(wait,A,1)

x1
k

k
x2

(cs,A,1)

Figure 6.2. Symbolic exploration of Fischer’s mutual exclusion protocol.

gure shows the locations and the integer variable as a tuple and the zone graphically.
Resetting a clock corresponds to projecting the zone on the axis corresponding to that
clock. Delaying corresponds to removing the upper bounds on the zone (but keeping
the diagonal constraints). Applying a guard corresponds to intersecting a zone with
the zone corresponding to the set of states described by the guard, or constraining the
zone by the constraint of the guard. The (symbolic) initial state is delayed from the
origin and the symbolic successors are computed from there. Either the rst process
goes to req or the second does, performing a reset of its clock, followed by a delay
bounded by the invariant in req. From (req,A,0), either the rst process continues
or the second tries to go to req. If the rst process moves then again we have a reset
followed by a delay but no invariant this time. From (wait,A,1) we apply the con-
straint of the guard to the zone and we obtain the states that can reach (cs,A,1). The
exploration continues from there.

6.2.2. Queries

The properties that can be checked by UPPAAL, as illustrated in Fig. 6.3 are dened
in a subset of TCTL and are of the form:

�– A[] φ �“always globally φ�”,
�– E <> φ �“exists eventually φ�”,
�– A <> φ �“always eventually φ�”,
�– E[] φ �“exists globally φ�”, or
�– φ −− > ψ �“φ always leads to ψ�”, equivalent to A[](φ→ A <> ψ)

Tools for Model-Checking 185

A[]

A<>

E<>

E[]

Figure 6.3. UPPAAL basic queries.

where φ and ψ are boolean expressions over locations, variables, and clocks. These
queries are dened on paths: A applies for all paths and E for one existing path. �“[]�”
queries all states along paths and <> queries one state along paths. Figure 6.3 shows
traces of states and paths for which CTL formulas hold. The lled states are those for
which a given φ holds. Bold edges are used to show the paths the formulas evaluate
on. The time part (TCTL) comes from the clock constraints used in φ (and ψ).

The formulas A[] φ and E <> φ are reachability properties and are symmetric:
A[] φ = ¬E <> ¬φ. The A[] φ properties are also called safety properties because
they check for a formula to hold for all the states. If such a property is not satised
then E <> ¬φ characterizes counter-example paths. The reachability algorithm
checks for E <> φ.

The formulas A <> φ and E[] φ are liveness properties and are symmetric as
well: A <> φ = ¬E[] ¬φ. These properties involve a loop detection algorithm be-
cause E[] φ holds for an innite trace where every state satises φ. As the (symbolic)
statespace is nite, we are looking for loops. The liveness algorithm checks for E[] φ.

186 Communicating Embedded Systems.

6.2.3. Architecture of the Tool

The tool is separated into two main components: the graphical user interface (GUI)
�– the client �– and the model-checker engine �– the server. The GUI is written in Java
and is easily deployed on different platforms whereas the engine is recompiled for
every platform. We refer here to the architecture of the engine [DAV 03], the perfor-
mance critical part of the tool. The data structures of the engine are designed around a
data ow centric architecture that forms a pipeline. The data going through the lters
are states or states and a transition.

The different components, as shown in Fig. 6.4, are sources where states are cre-
ated (typically the initial state), sinks where states disappear (typically checking an
expression), buffers where states are pushed to and pulled from, and lters where
states are pushed to and forwarded to the next component after processing. In ad-
dition, a pump shows where the main loop of the reachability or liveness algorithm
executes.

source

sink

buffer

filter pump

Figure 6.4. Filter components in UPPAAL.

The benets of using pipeline components are flexibility, code reuse, and effi-
ciency. The exibility comes from the possibility to exchange a component for an-
other to congure the pipeline to use, e.g., different storage structures to implement an
exact exploration, an under-approximation or an over-approximation. Such dynamic
congurations allows us to skip completely some stages in the pipeline if they are not
necessary, e.g., storing traces. The code reuse comes from the reuse of the components
accross different algorithms, e.g., the reachability and the liveness pipeline.

The common components that are used in the reachability 6.2.4 and the live-
ness 6.2.5 pipelines are:

�– Transition that computes which transitions can be taken from a given states,
�– Successor that res a transition from a given state,
�– Delay that computes the delay of state (if possible) bounded by its invariant,
�– Extrapolation + Active clock reduction that applies the extrapolation according

to the maximal (clock) constants of the model and at the same time active clock reduc-
tion. It appears that having locally −∞ for the maximal constant of a given clock has
the same effect as to free the constraints of that clock with the extrapolation algorithm.

Tools for Model-Checking 187

6.2.4. Reachability Pipeline

The reachability algorithm is storing its states inside a so called PWList data struc-
ture [BEH 03b] that is unifying the traditional passed and waiting queues of model-
checkers. Let us consider symbolic states to be of the form (l, Z) where l is the loca-
tion vector and Z a zone. For simplicity we omit the integer variables. A traditional
reachability algorithm would look like the one depicted in Fig. 6.5. Such an algorithm
uses two main structures, namely the passed list to store previously explored states
and the waiting list to store states to be explored. The algorithm starts with the initial
state where I(l0) refers to its invariant. The expression ∀(l ′, Z ′) : (l, Z) → (l′, Z ′)
refers to computing all successors (l ′, Z ′) of (l, Z). The algorithm basically loops
over the states in the waiting list, tests if the goal state has been found, computes the
successors, and push the ones that are new to the waiting list. When this algorithm
is implemented we have to put states in two hash tables (for efcient look-up) and
make two inclusion checkings, i.e., we need to see if a states is included either in the
passed or the waiting list before adding it. The second inclusion check is implicit in
the algorithm when a state is added to the waiting list. Inclusion checking is crucial to
improve performance (to avoid redundant exploration) but it costs O(n 2) where n is
the number of clocks.

waiting = {(l0, Z0 ∧ I(l0))}
passed = ∅
while waiting 2= ∅ do

(l, Z) = select state from waiting
waiting = waiting \ {(l, Z)}
if goal(l, Z) then return true
if ∀(l, Y) ∈ passed : Z 2⊆ Y then

passed = passed ∪ {(l, Z)}
∀(l′, Z ′) : (l, Z) → (l′, Z ′) do
if ∀(l′, Y ′) ∈ waiting : Z ′ 2⊆ Y ′ then

waiting = waiting ∪ {(l′, Z ′)}
endif

done
endif

done
return false

Figure 6.5. Traditional reachability algorithm.

In contrast to having these two structures, a unied structure contains all the states
but some of them are colored waiting while the others are colored passed (the imple-
mentation behind is using a colored state set). We note by (P, W) the unied structure.

188 Communicating Embedded Systems.

P denotes all states (that are considered as passed) and W marks the subset of them
that are waiting. A PW-List is described as a pair (P, W) ∈ 2S × 2S , where S is the
set of symbolic states, W ⊆ P , and the two functions put : 2S × 2S × S → 2S × 2S

and get : 2S × 2S → 2S × 2S × S, such that:
�– get(P, W) = (P, W \ {(l, Z)}, (l, Z)) for some (l, Z) ∈ W .
�– put(P, W, (l, Z)) ={

(P \ I, W ∪ {(l, Z)}) if ∀(l, Y) ∈ P : Z 2⊆ Y

(P, W) otherwise,
where I = {(l, Y) ∈ P

∣∣ Y ⊂ Z}.

The get function removes states from W and leaves them in P . The put function
removes the states of P that are included in the new state (the set I) and add this new
state to W . Removing states from P implicitly removes them from W too because
W ⊆ P . Similarly, states added to W are also added to P .

Figure 6.6 shows the simplied algorithm using the PW-List structure. Now there
is no redundancy in the state-set and states are not between sets but merely re-colored.
In addition, we need only one hash table and we have one inclusion check. In practice
we only need a list of references to keep track of the subset W .

(P, W) = {(l0, Z0 ∧ I(l0)), (l0, Z0 ∧ I(l0))}
whileW 2= ∅ do

(P, W, (l, Z)) = get(P, W)
if goal(l, Z) then return true
∀(l′, Z ′) : (l, Z) → (l′, Z ′) do

(P, W) = put(P, W, (l′, Z ′)) done
done
return false

Figure 6.6. UPPAAL reachability algorithm.

The reachability pipeline of UPPAAL is based on the algorithm of Fig. 6.6 with
the PWList structure at its center. The pipeline is depicted in Fig. 6.7. The pipeline
computes symbolic successors, which is separated into computing transitions, ring
them, delaying, and extrapolating. Expressions are evaluated at the end of the pipeline.
The attentive reader notices that checking the goal in the implementation is not at the
same place as in the algorithm. We do this after computing every successor. This way,
we avoid going through the waiting list before nding out that the searched state is
there and we can terminate earlier. The initial state (corresponding to the zero point)
is inserted in the pipeline at the delay stage and then treated as a successor.

Tools for Model-Checking 189

Expression

Delay Extrapolation Active clock reduction

Accept? Dealloc

yes

no
PWList

TransitionSuccessor

Trace

Initial
state

Figure 6.7. The reachability pipeline of UPPAAL.

6.2.5. Liveness Pipeline

The liveness algorithm is given in Fig. 6.8. The algorithm keeps track of a set of
passed states P that verify A <> φ and a stack Stk of states that verify ¬φ. The
other states are not yet explored. The delay operation is special here and is restricted
to states verifying ¬φ. The goal of the algorithm is to nd a loop of states that verify
¬φ. Such a loop would be a counter-example to A <> φ. If the algorithm nds a
state for which there is an unbounded delay or a deadlock then this is also a counter-
example. The reader notices that the recursive call is made with the proper action α in
practice to keep track of the current path.

The liveness pipeline based on the algorithm of Fig. 6.8 is given in Fig. 6.9. Here
the recursive call is unfolded with a waiting list that keeps track of transitions that
need to be red. As the algorithm shows, when the Search function returns, states are
moved from the stack Stk to the set of passed states P . The main loop (the pump)
explores and moves these states. The successor transitions are pushed to the waiting
list. The source states are pushed to the stack if they are not explored, and they are
also checked for unbounded delay or deadlock. If a state exits the pipeline, it is the
entry to an innite path, counter-example of A <> φ.

190 Communicating Embedded Systems.

proc Eventually(S0,φ)
Stk = ∅
P = ∅
Search(delay(S0,¬φ))
exit(true)

end

proc Search(S)
if loop(S, Stk) then
exit(false)

fi
S = S ∧ ¬φ
push(Stk, S)
if unbounded(S) ∨ deadlock(S) then
exit(false)

fi
if ∀S′ ∈ P : S " S′ then
foreach S ′ : S

α⇒ S′ do
Search(delay(S ′,¬φ))

od
fi
P = P ∪ {pop(Stk)}

end

Figure 6.8. UPPAAL liveness algorithm.

6.2.6. Leadsto Pipeline

The leadsto pipeline is checking A[](φ → A <> ψ) properties. The algorithm
here is to launch a liveness check from all states that satisfy φ. This is implemented as
a composition of the two previous pipelines as illustrated in Fig. 6.10. The reachability
and liveness pipelines can be used as lter components themselves. States satisfying
φ are pushed to the liveness pipeline that is fed by the expression ψ. A state that exits
the liveness pipeline is an entry to an innite path, counter-example of A <>;ψ.

6.2.7. Active Clock Reduction

Active clock reduction is a technique to remove irrelevant clock constraints to
states. If a clock is reset before being tested later then its value is irrelevant before the
reset.

DEFINITION 6.5 (INACTIVE CLOCK).�– A clock x is inactive at a state S if on all
paths from S, x is always reset before being tested. In practice, the reduction is done

Tools for Model-Checking 191

Delay Extrapol.+act. clock red.

Transition

Successor

Trace

Initial
state

Expression
Deadlocked?

Unbounded?

Accept?

Loop?

Passed

Stack

yes

yes

Waiting

Figure 6.9. The liveness pipeline of UPPAAL.

Reachability Liveness

p leadsto q

Initial
state

Figure 6.10. The leadsto pipeline of UPPAAL.

in two steps: i) There is a static analysis for every process that computes the set of
active clocks for every location, and ii) during the verication the set of active clocks
for a given state is obtained by computing the union of active clocks for the locations
in the current location vector. Only clock constraints for the active clocks are saved in
zones.

6.2.8. Space Reduction Techniques

6.2.8.0.2. Avoid Storing All States

One reduction technique (available with the -S1 option of the model-checker) is to
avoid storing all states. It turns out that, in order to ensure termination, we only need
to store states that contain loop entries (in the passed list). Another more aggressive

192 Communicating Embedded Systems.

heuristic (option -S2)has been developed to store even fewer states while still ensuring
termination [BEH 03a].

6.2.8.0.3. Sharing Data
States are tuples of the form (L, V, Z) where L is a location vector, V is a variable

vector, and Z is a zone (DBM in practice). Although states are uniquely stored (if
they are not included into a larger one w.r.t. their zones), it appears that the individual
components L, V , and Z of the states are repeated among all the states. The reason
behind it is that when changing state, a system often keeps either its location vector,
variables, or zone. Therefor we can share these individual parts among all states. In
practice, this gives typically 80% reduction in memory [BEH 03b].

6.2.8.0.4. Minimal Graph
We need to tighten the constraints of our DBMs to be able to check for inclusion

(in O(n2), n being the number of clocks). The inclusion check is done by comparing
all constraints cij and c′ij by pairs. The tightening is done by running a shortest paths
algorithm, typically Floyd�’s [FLO 62]. This tightening results in a unique representa-
tion of a given zone, the canonical form of DBMs. This is useful for storing DBMs
uniquely but it consumes space in O(n2). Figure 6.11 shows what the shortest paths
algorithm does (shortest paths closure from (a) to (b)) if we see a DBM as a graph with
vertices being clocks and the edges from xj to xi being weighted by the constraints
xi − xj ≤ cij, which represents a distance. In [LAR 97b] a reduction was presented
that reduces the number of necessary constraints to represent a zone. Applying this
algorithm (shortest paths reduction from (b) to (c)) results in a minimal graph in the
sense that the number of edges is minimal. This cost O(n3) in time. Although we
still have O(n2) edges in the worst case, in practice we get O(n) in average. UPPAAL
stores this reduced number of edges and can restore the full DBM, i.e., the full graph,
by running its shortest paths algorithm on it (and we get back to (b)).

x1 x2

x3x0

4

10

3 2

5

2

(b)

x1 x2

x3x0

4

4

3 2

5

2
3

1

1

2
2

7

(a)

Shortest paths closure Shortest paths reduction

(c)

x1 x2

x3x0

4

3 2
2

3

7

Figure 6.11. Shortest paths closure and reduction.

In a nutshell, the shortest paths reduction algorithm works in two main steps: i) It
computes equivalence classes of the clocks, which is done by detecting zero cycles,

Tools for Model-Checking 193

and ii) it chooses one representant per equivalence class and removes redundant edges
between them.

We note that computing the shortest paths algorithm costs O(n3) in time so it is
vital for performance to avoid doing it if possible. It turns out that most operations on
DBMs (delay, intersection, etc. . .) can be done on a canonical DBM in such a way
that they preserve canonicity at no additional cost. We also note that we still do not
know of any efcient way of applying these operations directly on the minimal graph.
However, if the constraints of a (canonical) DBM are less or equal than the constraints
(that are present) of a minimal graph then we can deduct that the DBM is included.

6.2.8.0.5. Symmetry Reduction

UPPAAL implements the algorithm presented in [HEN 03]. This algorithm nds
equivalence classes of states w.r.t. symmetry (a.k.a. orbits) and chooses representant
states by sorting the states (in the same equivalence class). The algorithm is imple-
mented with the help of the scalar type that denes a set (of some size) of different
but un-ordered scalar numbers. Figure 6.12 shows the experimental performance gains
obtained on Fischer�’s protocol.

Figure 6.12. Experimental results for the symmetry reduction on Fischer’s
protocol.

194 Communicating Embedded Systems.

6.2.9. Approximation Techniques

Sometimes systems are still too complex to be veried exactly. For these cases it
is useful to apply approximation techniques.

6.2.9.0.6. Over-Approximation: Convex-hull

UPPAAL implements the convex-hull over-approximation technique [BAL 96] that
consists in computing the convex-hull of some zones instead of keeping all of them.
Figure 6.13 illustrates the following example: In some automaton there are two paths
that lead to the state S3, thus giving two different zones that are depicted graphically.
The technique stores the convex union of these two zones (in fact the smallest zone
that contains both of these). Even though we are adding more states, the technique is
still useful for safety properties.

S2

S1 S6

S5

S3

S4

x<5,y<5x<3,y<3

x>2,y>2x>1,y>1 y

x1 3 5

1

3

5

x,2,y>3

Convex hull

Figure 6.13. Example of convex-hull.

6.2.9.0.7. Under-Approximation: Bit-State Hashing

UPPAAL implements the bit-state hashing under-approximation technique [HOL 91,
HOL 98]. This techniques consists in storing only one bit per state instead of its full
location vector, variables, and zone. This is done by allocating a big hash table of size
N (bits) initially lled with zeros and setting the hash(state)%N bit to one when
states are visited (hash function applied to a state modulo N). There will be collisions
that may conclude that a state was visited although it was not and avoid exploring it
further. The technique is still useful for reachability properties.

Tools for Model-Checking 195

6.2.10. Extensions

6.2.10.0.8. Robust Reachability
Traditionally, the verication is done considering all clocks perfect but in practice

it is not the case and clocks are known to drift slightly over time. Specialized algo-
rithms are needed to compute robust reachability analysis w.r.t. such drifts. One robust
reachability algorithm is available in the recent development snapshot versions of the
tool. The algorithm of [DAW 06] is implemented and is accessible via properties of
the form E <> ∗ φ and A[] ∗ φ.

6.2.10.0.9. Merging DBMs
The convex-hull technique is an over-approximation technique that reduces the

number of zones dramatically. UPPAAL offers an exact technique [DAV 05] to merge
DBMs on-the-y. This technique replaces two or more DBMs by their convex-hull
union when the union is exact in the sense that no extra states are added. States are
merged in the passed list but also in the waiting list if possible. We note that although
the data-structure we are using unies waiting and passed states, we do not want to
mix them when we merge to avoid duplicate exploration of states. This option is active
by default in the development snapshot.

6.2.10.0.10. Stop-watches
Reachability analysis of timed automata augmented with stop-watches is undecid-

able but there is an efcient over-approximation technique to check such automata [CAS 00].
The technique consists in modifying the delay operator of DBMs such that clocks that
are stopped keep their upper-bounds. Syntactically, the user adds to the invariant of a
state expressions of the type x′ == expr where expr evaluates to 0 or 1. This tech-
nique has proven useful in modeling schedulability problems since we want to check
safety properties, e.g., deadlines are never missed. This extension is available in the
development snapshot.

6.2.10.0.11. Supremum Values
When analyzing systems for worst case execution or response time, typically on

models that schedule processes, it is useful to know maximal value of clocks that
measure execution or response time. The development version of UPPAAL supports a
special kind of property, namely, sup: expr_list where expr_list is a list of expressions
that evaluate either to clocks or to integer values. The tool explores all the states and
computes the maximal reached values for the integer variables or the maximal upper
bound for the clocks.

6.2.10.0.12. Other Extensions
UPPAAL implements the generalized sweep line method [KRI 02]. The user needs

to dene progress measures to take advantage of it. Different extrapolation algo-
rithms [BEH 04a] have been implemented. These approximations take advantage of

196 Communicating Embedded Systems.

maximal upper bounds as before but also maximal lower bounds. A distributed ver-
sion of UPPAAL has been developed [BEH 00] that runs on clusters. From the model
point-of-view, an acceleration technique has been developed that improves reachabil-
ity analysis on models containing cycles [HEN 02].

6.3. UPPAAL-CORA

When computing traces that satisfy reachability properties, UPPAAL provides an
algorithm for computing the time-wise shortest trace that satises the reachability
property. This feature can be exploited for solving a number of general scheduling
problems such as the famous travelling salesman problem.

UPPAAL-CORA is an extension of UPPAAL that performs minimum cost reacha-
bility analysis for timed automata models augmented with costs. These models, called
priced timed automata, have been independently proposed and their reachability prob-
lems proven to be a decidable in [BEH 01b] and [ALU 01]. UPPAAL-CORA has been
successfully applied to a number of scheduling case studies such as lacquor scheduling
and aircraft landing, [BEH 05a, BEH 05b].

6.3.1. Priced Timed Automata

A priced timed automaton is dened similarly to a timed automaton (Denition 6.1)
except that it is augmented with a cost function Cost : (L ∪ E) → N that assigns a
non-negative integral value to locations and edges. If we consider a network of priced
timed automata, the semantics of the cost function is such that when delaying in a
state, the cost grows by a rate given by the sum of the costs of the locations, and when
taking a transition the cost grows by the sum of the costs of the edges involved. We
note that costs grow monotonically.

To efciently analyze priced timed automata using symbolic semantics, UPPAAL-
CORA uses the notion of priced zones, indicated by Z , [LAR 01]. Priced zones are
convex abstractions over clock valuations similarly to regular zones together with an
afne cost function over the zone. The cost function in UPPAAL-CORA is imple-
mented as a linear combination of the intégral coefcients associated to the clocks
of a zone. The use of priced zones complicates the computations of discrete and de-
lay successors of symbolic states as these operations need zones to be split into sets
of smaller disjoint zones in order to maintain the afnity of the cost function. This
results in a signicantly larger number of symbolic states that need to be explored.
For a thorough description of the algorithms for computing delay and successors of
symbolic states with priced zones, we refer to [LAR 01].

Figure 6.14 depicts the UPPAAL-CORA minimum cost reachability algorithm
which outputs the minimum cost of satisfying a reachability property or ∞ if the

Tools for Model-Checking 197

(P, W) = {(l0,Z0 ∧ I(l0)), (l0,Z0 ∧ I(l0))}
cost = ∞
whileW 2= ∅ do

(P, W, (l,Z)) = get(P, W)
if goal(l,Z) andmincost(Z) < cost then

cost = mincost(Z)
continue

endif
ifmincost(Z) + remain(l,Z) < cost
∀(l′,Z ′) : (l,Z) → (l′,Z ′) do

(P, W) = put(P, W, (l′,Z ′))
done

endif
done
return cost

Figure 6.14. UPPAAL-CORA minimum cost branch-and-bound reachability
algorithm.

property is unsatisable. The algorithm is a variation of the classical branch-and-
bound algorithm tted to the UPPAAL framework. The algorithm maintains a cost
variable to keep track of the best solution found so far. The value of the cost vari-
able is updated every time a better solution is found. The bounding of the algorithm
is achieved by not exploring successors of states that cannot improve on the best so-
lution. The allow for a heuristic search algorithm, UPPAAL-CORA lets the user to
dene remaining costs for states, i.e., a lower bound estimates on the cost required to
satisfy the reachability property. If the remaining estimate is misused by not providing
a valid lower bound estimate, the algorithm does not guarantee correctness.

The pipeline for UPPAAL-CORA is similar to the one of UPPAAL for the reacha-
bility algorithm depicted in 6.7. The difference is that the pipeline does not terminate
upon nding a solution to the reachability problem but continues until there are no
more states in the waiting list and reports the value of the cost variable as the solution
to the reachability problem. Furthermore, there is no extrapolation operator dened
for UPPAAL-CORA. The reader may then question why the algorithm terminates.
Indeed, the guaranteed termination follows from two facts: First, it is well known
that any timed automaton can be converted to a bounded timed automaton with upper
bound invariants on all clocks. This means that the number of zones is nite. Second,
given that the cost assignments of a priced timed automaton are integral, it is a known
fact that cost functions over bounded zones are well-quasi ordered, meaning that for a
given zone, there cannot exist an innite sequence costs functions without one even-
tually included in a previous one of the sequence [LAR 01]. These facts combined
guarantee the termination of the algorithm.

198 Communicating Embedded Systems.

The minimum cost algorithm utilizes the PW-List data struture used in UPPAAL.
In order to correctly use the PW-List data structure, the inclusion check needs to be
modied to handle the cost information contained in priced zones. Obviously, it not
enough for a priced zone Z to include another priced zone Z ′, the cost function of
Z further needs to be consistently smaller than Z ′ in order for Z to include Z ′. In
UPPAAL-CORA this check is implemented by solving the linear program given by
minimizing the difference between the cost functions of Z ′ and Z over the zone of
Z ′. If the solution is positive we know that Z includes Z ′. Moreover, the bounding
of states with costs greater than the best found solution so far (potentially including a
remaining estimate) is also implemented as part of the insertion into the PW-List.

One of the key aspects of the UPPAAL-CORA algorithm is solving the linear
programs arising from inclusion checks on priced zones and computation of mini-
mum costs of priced zones. Since zones have the property that they can be described
solely by difference constraints, the linear programs can exploit this structure. It turns
out that the minimization problem is basically the dual problem of the min-cost ow
problem which is well known to have more efcient algorithms than general linear
programming problems, [AHU 93, RAS 06]. Thus, UPPAAL-CORA converts every
priced zone minimization problem to the related min-cost ow problem and solves
this instead. This approach greatly increases the running time of the tool.

6.3.2. Example

Figure 6.15 depicts an example of how the cost rates of location and costs of edges
are used in UPPAAL-CORA. Note that cost is a built-in variable and does not need
to be declared. The cost increases continuously with a rate of 1 in A and 2 in B.
In addition taking the transition to C adds 3 to the cost. The automaton could take
immediately the transition to B but then it would have to wait in B where the cost rate
is higher than in A. Moreover, the automaton must delay at least one unit of time in B
because of y. The reader can convince herself that the minimal cost to reach C is 6,
waiting one unit of time both in A and B.

Figure 6.15. An example of a UPPAAL-CORA model.

Tools for Model-Checking 199

6.4. UPPAAL-TIGA

6.4.1. Timed Game Automata

UPPAAL-TIGA implements the rst efcient truly on-the-y algorithm for solving
timed games [CAS 05]. It is an extension of [LIU 98] with time. Our input models
are specied as networks of Timed Game Automata [MAL 95] (TGA) where edges
are marked either controllable or uncontrollable (see Fig. 6.16). This denes a two
players game with on one side the controller and on the other side the environment.
Winning conditions of the game are specied through TCTL formulas. The tool is
designed to generate strategies for a controller to reach an objective or to maintain
safety whatever the environment (playing as an opponent) does.

L0

L1

L2

L3

L4

Goal

x ≤ 1; c1

x < 1;
u3

x > 1; u1

x ≤ 1; c2

x < 1; u2;
x := 0

x ≤ 1; c4

Figure 6.16. An example of Timed Game Automaton.

As an example, let us consider the timed game automaton of Fig. 6.16. It has
one clock x and two types of edges: controllable (c i) and uncontrollable (ui). The
reachability game consists in nding a strategy for the controller to reach the state
Goal, no matter which uncontrollable transitions (u i) the opponent takes. For all
initial states of the form (l0, x) with x ≤ 1, there is such a strategy. This strategy
consists in:

�– taking c1 immediately in all states (l0, x) with x ≤ 1;
�– taking c2 immediately in all states (l1, x) with x ≤ 2;
�– taking c3 immediately in all states (l2, x);

200 Communicating Embedded Systems.

�– and delaying in all states (l3, x) with x < 1 until the value of x is 1 at which
point the edge c4 is taken.

DEFINITION 6.6 (NETWORK OF TIMED GAME AUTOMATA (NTGA)).�– A NTGA
is a NTA G with the set of transitions Ei of each automaton A〉 partitioned into con-
trollable (Ec

i) and uncontrollable (Eu
i) actions. We denote Ec def=

⋃
i∈{1,...,n} Ec

i and
Eu def=

⋃
i∈{1,...,n} Eu

i . In addition, invariants are restricted to Invi : Li → C′(Xi)
where C ′ is the subset of C using constraints of the form x ≤ k.

Given a NTGA G and a control property, the reachability (resp. safety) control
problem consists in nding a strategy f for the controller such that all the runs of
G supervised by f satisfy the formula. The different control properties handled by
UPPAAL-TIGA are:

�– control: A[φ U ψ], i.e., reach ψ while avoiding ¬φ,
�– control: A <> ψ, i.e., reach ψ, shortcut for A[true U ψ],
�– control: A[φW ψ], i.e., possibly reach ψ while avoiding ¬φ, and
�– control: A[] φ, i.e., avoid ¬φ, shortcut for A[φW false].

The formal denition of the control problems is based on the denitions of strate-
gies and outcomes. In any given situation, the strategies suggest to do a particular
action after a given delay. A strategy [MAL 95] is described by a function that during
the course of the game constantly gives information as to what the players want to do,
under the form of a pair (e, δ) ∈ (E × R≥0) ∪ {(⊥,∞)}. (⊥,∞) means that the
strategy wants to delay forever.

The environment has priority when choosing its actions. In addition, it can decide
not to take action, unless it is forced to do so. Uncontrollable actions can be forced to
happen only in states q where an invariant requires to take action and no controllable
transition is possible and there is a possible uncontrollable transition (from the loca-
tion involving that invariant). For more details on the different cases where so called
�“forced�” actions occur, we refer the reader to the manual of UPPAAL-TIGA available
from http://www.cs.aau.dk/~adavid/tiga/. The implemented semantics is slightly dif-
ferent from [CAS 05] the game could be won only through controllable actions, which
means that there was no �“forced�” action.

6.4.2. Reachability Pipeline

We adapt the reachability algorithm of [CAS 05] based on transition as depicted
in Fig. 6.17 to an algorithm based on states for the reachability pipeline of UPPAAL-
TIGA given in Fig. 6.18. Upon close look at the algorithm, it appears that we need

Tools for Model-Checking 201

Initialisation:
Passed ← {S0};
Waiting ← {(S0,α, S′) |S′ = Postα(S0)↗};
Win[S0] ← ∅;
Depend[S0] ← ∅;

Main:
while ((Waiting 2= ∅) ∧ (s0 2∈ Win[S0])) do

e = (S,α, S′) ← pop(Waiting);
if S′ 2∈ Passed then

Passed ← Passed ∪ {S′};
Depend[S′] ← {(S,α, S′)};
Win[S′] ← S′ ∩G;
Waiting ← Waiting ∪ {(S′,α, S′′) |S′′ = Postα(S′)↗};
ifWin[S′] 2= ∅ thenWaiting ← Waiting ∪ {e};

else (* reevaluate *)
Win∗ ← Predt(Win[S]∪

⋃
S

c−→T
Predc(Win[T]),⋃

S
u−→T

Predu(T \ Win[T])) ∩ S;
if (Win[S] # Win∗) then

Waiting ← Waiting ∪Depend[S]; Win[S] ← Win∗;
ifWin[S′] # S′ thenDepend[S′] ← Depend[S′] ∪ {e};

endif
endwhile

Figure 6.17. SOTFTR: Symbolic On-The-Fly Algorithm for Timed
Reachability Games

only the destination state S ′ to explore forward and the source state S to explore back-
ward. Following this remark, the waiting queue in the pipeline contains states and a
direction for the exploration. The state-graph stores in addition the winning and los-
ing subsets. Although the algorithm does not show it, we can keep track of the losing
states as well. The upper part of the pipeline is computing successors similarly to the
reachability pipeline of UPPAAL. The bottom part is back-propagating information
(winning or losing states).

The implementation in Fig. 6.18 works as follows: When popping a state s that
needs to be explored forward (source of a transition), the successors s ′ are computed
and checked against the state-graph. Further successors will be computed (s ′, F) if s′

is not included in the graph and s ′ is not winning (because then the game ends). In
addition, we need to back-propagate some update to the source (s, B) if s ′ turned out
to be winning. When popping a state s ′ to be explored backward, we need to go back
to all sources that lead to s′. To do that we compute the predt operation [CAS 05]

202 Communicating Embedded Systems.

State-graph

Waiting queue

Transition Successor Delay Extrapolation+

Source
s,F

forward.

Destination
s�’,B

backward.
Predecessor predt

win
lose?

s�’,F

update?
s,Bupdate?

s*,B

Inclusion
check+add

Initial
state

Figure 6.18. The reachability pipeline of UPPAAL-TIGA.

(temporal predecessors of winning states while avoiding losing states) and we back-
propagate the winning subsets to the sources (s∗, B) for those sources that have new
winning subsets.

We note that the given algorithm computes only the set of winning states but not
a strategy. Strategies are computed on-the-y by adding the mapping state-to-action
when a given state is winning and taking this action leads to another winning state.
In addition, if the winning part derives from a delay then the mapping adds the delay
action instead. The only important point is to keep previously assigned states and not
change their mappings when more winning states are discovered on-the-y. This is to
guarantee progress on the already known paths and avoid being caught in a loop.

6.4.3. Time Optimality

Time optimality for reachability games consists in computing the best (optimal)
time the controller can guarantee to reach a winning state: If t ∗ is the optimal-time,
the controller has a strategy that guarantees to reach a winning state within t ∗ time
units whatever the opponent is doing, and moreover, the controller has no strategy to
guarantee this for any t < t∗. This problem is solved [CAS 05] by adding a new clock
z to the original TGA and the invariant Inv(() ≡ z ≤ T for all locations (where T
is an upper-bound to reach the winning state. Furthermore, z is unconstrained in the

Tools for Model-Checking 203

initial state. The algorithm is then to compute the x-point of all winning states and
use z to deduct the optimal time. In practice, we compute iteratively the upper-bound
on-the-y to prune the state-space when a solution is found and then we continue the
search to rene the current optimal. The optimal time is given in the initial state by
the interval between the max of z on the zero axis and T . When pruning and updating
T , the algorithm effectively converges to T being the upper-bound and the max of z
being zero.

Timed optimality queries are dened by control_t*(u,g): A[φ U ψ], which is,
only for reachability. The additional expression u denes an upper-bound to prune the
search, corresponding to T in the algorithm. This upper-bound is updated on-the-y.
The expression g gives a lower bound from the current state in the search to the (goal)
winning state. States that are at time t + g > u are pruned. Here t is the elapsed time
from the initial state. In case of doubt, it is always possible to assign u to a large value
and g to zero, but meaningful values will help the search greatly.

6.4.4. Cooperative Strategies

In games where there is no winning strategy it may be useful to know what is
the maximal set of states for which there is a winning strategy and how the environ-
ment can �“help�” the controller to reach such states. We call such strategies coopera-
tive [DAV 08]. By �“helping�” we mean either the environment takes friendly uncon-
trollable actions or it lets the controller take action instead of preventing it. The result
of the search is then a partition between i) states that have a winning strategy, ii) states
that need cooperation of the environment, and iii) states for which there is no hope of
winning.

The algorithm is using the previous reachability analysis algorithm as a compo-
nent. The algorithm is shown in Fig. 6.19. The main idea is to compute the x-point
of the original model (and construct the strategy on-the-y) and then recompute a x-
point of the modied model where we consider all transitions controllable, i.e., the
environment is helping, but very importantly, we complete the previously obtained
strategy. By completing we mean adding more states to the previous mapping but we
keep the previously assigned states. These additional actions are part of the cooper-
ative strategy, the original actions dene the winning sub-strategy, and for all other
states there is no hope of winning. The algorithm computes these two x-points,
although the rst one may terminate early if we know that there is a winning strategy
from the initial state, which we test. If the set of winning states is not reachable at
all then there is no hope. In fact, there is a cooperative strategy iff a winning state is
reachable (in the worst case the environment always cooperate).

Cooperative strategies are queried with E <> Φ where Φ is an ordinary UPPAAL-
TIGA formula (including control:). The algorithm is generalized to safety as well
where the environment needs to avoid losing states.

204 Communicating Embedded Systems.

fixpoint(G,l0, Z0)
if win(l0, Z0) then return true
if ¬reached(Win) then return false
fixpoint(G[c/u],l0, Z0)
return true

Figure 6.19. UPPAAL-TIGA cooperative reachability algorithm.

6.4.5. Timed Games with Büchi Objectives

In games with Büchi objectives, at least one of the goal states must be visited
innitely often. The obtained strategy guarantees this while maintaining some other
(optional) safety property. The algorithm is based on the symbolic on-the-y timed
reachability algorithm of [CAS 05] (SOTFTR) with a few notable changes as follows:

�– The set Win (or winning states) contains only the states that can reach Goal
(the set of goal states) but not Goal itself (unless these states can themselves reach
some goal states) contrary to the original algorithm where Goal was always included
in Win.

�– The algorithm does not stop exploring states even if they are goal states.
�– The algorithm is not on-the-y any more in the sense that it needs to complete

the search (forward and backward).

Initialization:
G = Goal
Win = SOTFTR(G)

Main:
while G 2= G ∩Win do

G = G ∩Win
Win = SOTFTR(G)

done

Figure 6.20. Simplified algorithm for solving timed games with Büchi
objectives.

Figure 6.20 shows the simplied algorithm using parts of the original algorithm
with the aforementioned changes. The rst step is to run the original algorithm that
returns the set of winning states. The input Goal is the set of all goal states. The
second step is to compute the xed point of the set of goal states that are also winning,
i.e., that can reach other goal states. Upon update of the set, we back-propagate again
the set of goal states to compute which states are winning. We note that the call to

Tools for Model-Checking 205

SOTFTR in the loop executes only the back-propagation part. In addition, in order to
be declared winning, a goal state must reach another goal state by a discrete transition.
Delaying is not enough, e.g., if x ≥ 0 is asked with x being a clock we still need
discrete transitions to be taken (this is the current semantics but it may change in the
future).

The complexity of this algorithm is quadratic in the size S of the underlying un-
timed game (based on the region graph) of the game, which is in line with results on
untimed games [CHA 06b]. It is straight-forward to extend this algorithm to be on-the-
y. In essence, we add to the main while loop condition ¬(∀S ∈ Passed, Goal[S] =
Win[S]∧ q0 ∈ Win[S0]). Also, we stop the SOTFTR procedure with this condition.
This basically means that if all the goal states we have explored so far and the initial
state are winning, we can stop because they can all enforce some of these goal states
we have already explored.

The syntax for these properties is of the form (i) control: A[] (p and A<>
q) and (ii) control: A[] A<> q, where p is the safety predicate and q the Büchi
control objective.

y=0

NonZeno

y==1
Init

x>=2

x>=2

B

loop

Bad

x<2

A

x>=2

(a) (b)

Figure 6.21. (a) Monitor automaton to avoid zeno behaviour. (b) Example
exhibiting zeno behaviour.

A major application is to generate non-zeno strategies. If we add the automaton
of gure 6.4.5.(a) to some system (the guard y == 1 is unimportant and the constant
can be tuned to the particular model), then we can ask UPPAAL-TIGA to reach the
NonZeno state as a Büchi objective in addition to some other safety property we want
the original system to satisfy. In the example of gure 6.4.5.(b), the control objective
is to avoid the Bad state. There is a winning strategy that consists in looping without
delaying in the loop state. However, this strategy is zeno. If we add the automaton
of gure 6.4.5.(a) and we update the query to make NonZeno a repeated location,
there will be no such strategy any more. In addition, if we x the model and we add

206 Communicating Embedded Systems.

the reset x=0 to the loop transition, the zeno strategy is still possible with a classical
safety objective. With the Büchi objective however, we get a non-zeno strategy.

6.4.6. Timed Games with Partial Observability

UPPAAL-TIGA supports timed games with partial observability. Theoretical re-
sults on decidability are known on control of systems for event-based partial observa-
tion [LAM 00, BOU 03] and state-based partial observation [ARN 03, CHA 06a]. In
this section we summarize the algorithm proposed in [CAS 07] where we consider the
problem of controller synthesis for timed games under state-based partial observation.
Given a timed game automaton and a nite collection of observations (state predi-
cates), we compute if there exists a strategy such that a controller seeing only these
observations can guarantee a safety or reachability control objective. In addition, these
strategies are stuttering invariant in the sense that repeated identical observations will
not change the strategy. The game is played as follows: Initially and whenever the
observation of the system state changes, player 1 (the controller) proposes to take an
action or to delay. The proposed action may be taken whenever and as long as it is
enabled in the system until the observation changes. Delay means that the player is
waiting for a change of observation. Then player 2 (the environment) decides the
evolution of the system according the rules:

1) if player 1 chose a discrete action then player 2 can choose to play this action
or another of its (enabled and uncontrollable) actions or let time pass while the action
of player 1 is not enabled �– as long as the observation does not change,

2) if player 1 chose to delay then player 2 can choose to play its own (enabled and
uncontrollable) actions or let time pass �– as long as the observation does not change,

3) player 1 can choose again what to do as soon as the observation changes.

The rst rule entails that actions of the controller are urgent and that the environment
has priority. Also, the controller does not know a priori whether his proposed action
has effectively been taken or not.

The property supported are the same reachability and safety property as with per-
fect information but extended with observation. In practice, the query language is
extended by prexing a list of observations to the ordinary control queries. The sup-
ported queries are:

�– { o1, o2,...} control: A[p U q]: must reach q while maintaining p,
�– { o1, o2,...} control: A[p W q]: may reach q while maintaining p,
�– { o1, o2,...} control: A<> q: must reach q,
�– { o1, o2,...} control: A[] p: maintain p.

Tools for Model-Checking 207

The expressions p, q, o1, o2 . . . are state predicates. This extension has been used
in the context of testing [DAV 09].

eject?
eject?

eject?

eject?

eject?
eject?
eject?

x=0

E1

E3L

H

Bad

E2

E4x=0

x<=10*SCALE

x>6*SCALE

x<=5*SCALE

E0

x>9*SCALE

x>4*SCALE

x>=11*SCALE

Figure 6.22. Timed game for sorting heavy and light bricks.

24 26

166 164

30 34

172 176

38 42

180 184

46 50

188 192

54 58

196 200

62

135 27

165 169

31 35

173 177

39 43

181 185

47 51

189 193

55 59

197 201

63 67

205 209

71137 295

162

0

HL E
y EyLy Hy

Partition:
delay
y=0
eject!

Actions:

Figure 6.23. Generated strategy to sort light and heavy boxes.

Figure 6.22 illustrates an example of a game played with imperfect information.
The goal is to sort heavy and light boxes and avoid the bad state Bad. To do so, the
controller must eject the box at the right moment. The controller can reset its own
clock y or synchronize on the eject channel. However, the controller can only observe
the states H , L, one of E1, E2, E3, or E4 (E), Bad, and if y ∈ [0, 1/2). In addition,
if the controller ejects the box at the wrong moment then the Bad state is reached.
Figure 6.4.6 shows the obtained strategy (here determinized and reduced). The gener-
ated controller is discretizing time with the only clock it can control by doing a series
of reset/delay to measure time. The length of the chain depends on observing a light
or heavy box. The states are partitioned in function of the observations. In 6.22 we
note that the model is parameterized the variable SCALE to encode [0, 1) or [0, 1/2)

208 Communicating Embedded Systems.

while keeping the same query. The language limits the use of constraints to integers
so we scale the timing constraints of the model instead. Interestingly, the property is
not satised if the accuracy on y is too low (i.e. y ∈ [0, 1)) but it is if we have a ner
observation (i.e. y ∈ [0, 1/2)). The query for this example is:

{ Box.E1 or Box.E2 or Box.E3 or Box.E4, Box.H, Box.L,
Controller.y >= 0 and Controller.y < 1 } control: A[] not
Box.Bad

6.4.6.0.13. Algorithm

To solve such games with partial observation, we extend the timed game structure
of UPPAAL-TIGA with two disjoint alphabets of actions σ1 and σ2 for the set of
actions of the players 1 and 2. The algorithm given in Fig. 6.24 is similar in its main
structure to the previous algorithm for solving timed games with perfect information of
Fig. 6.17. It has two phases of exploring the states forward and then back-propagating
winning or losing information. The main differences are that we are exploring sets
of symbolic states (W). Furthermore, the successor states depend on the observations
because the algorithm needs to compute a local x-point at every step to nd out
which states (and thus construct a set of them) leave the current observation. This is
what W ′ = Nextα(W) is doing. The observation sets (of states) are given by γ(o).
In addition, the back-propagation is simpler than before because we do not need to
use the predt operator. Another remark is that it is possible that when computing the
successors for a given action, there is a way to either deadlock or loop in the same
observation. This is a sink for the current set of states (and action) and it is considered
to be losing. We refer to [CAS 07] for a more complete description of the theory and
the algorithm.

6.4.6.0.14. Implementation

The pipeline architecture is depicted in Fig. 6.25. The pipeline has different levels,
the top level working on sets of (symbolic) states. Sets are explored forward or back-
ward. The forward exploration is the most complex part since it needs to constrain the
successor computation w.r.t. observations. As mentioned in the algorithm description,
we have a local reachability lter (a compound lter) that has a second level where the
exploration is done at the state level. The action lter on the gure has another inter-
nal level that decomposes into computing the successor (basically the chain transition
- successor - delay - extrapolation) and takes care of sorting the successors in func-
tion of their actions. The observation identier computes and check the observation
to see if the states belong to the same observation or not, in particular it is detecting
the winning and losing observations. We note that states are split in function of the
observations and that the state-space is partitioned in function the observations.

Tools for Model-Checking 209

Initialization:
Passed ← {{s0}};
Waiting ← {({s0},α, W ′) |α ∈ Σ1, o ∈ O, W ′ = Nextα({s0}) ∩ o ∧W ′ 2= ∅};
Win[{s0}] ← ({s0} ⊆ γ(Goal) ? 1 : 0);
Losing[{s0}] ← ({s0} 2⊆ γ(Goal) ∧ (Waiting = ∅ ∨ ∀α ∈ Σ1, Sinkα(s0) 2= ∅) ? 1 : 0);
Depend[{s0}] ← ∅;

Main:
while ((Waiting 2= ∅) ∧Win[{s0}] 2= 1 ∧ Losing[{s0}] 2= 1)) do

e = (W,α, W ′) ← pop(Waiting);
if s′ 2∈ Passed then

Passed ← Passed ∪ {W ′};
Depend[W ′] ← {(W,α, W ′)};
Win[W ′] ← (W ′ ⊆ γ(Goal) ? 1 : 0);
Losing[W ′] ← (W ′ 2⊆ γ(Goal) ∧ Sinkα(W ′) 2= ∅ ? 1 : 0);
if (Losing[W ′] 2= 1) then (* if losing it is a deadlock state *)

NewTrans ← {(W ′,α, W ′′) |α ∈ Σ, o ∈ O, W ′ = Nextα(W) ∩ o ∧W ′ 2= ∅};
ifNewTrans = ∅ ∧Win[W ′] = 0 then Losing[W ′] ← 1;

if (Win[W ′] ∨ Losing[W ′]) thenWaiting ← Waiting ∪ {e};
Waiting ← Waiting ∪NewTrans;

else (* reevaluate *)
Win∗ ←

∨
c∈Enabled(W)

∧
W

c−→W ′′ Win[W ′′] ;
ifWin∗ then

Waiting ← Waiting ∪Depend[W]; Win[W] ← 1;
Losing∗ ←

∧
c∈Enabled(W)

∨
W

c−→W ′′ Losing[W ′′] ;
if Losing∗ then

Waiting ← Waiting ∪Depend[W]; Losing[W] ← 1;
if (Win[W ′] = 0 ∧ Losing[W ′] = 0) then Depend[W ′] ← Depend[W ′] ∪ {e};

endif
endwhile

Figure 6.24. OTFPOR: On-The-Fly Algorithm for Partially Observable
Reachability Timed Game Structures

6.4.7. Simulation Checking

UPPAAL-TIGA can be used to check weak alternating simulation relation, i.e., the
simulation relation that is dened over the set of pairs of timed game automata (TGA)
and that treats silent actions separately from other actions.

In this section we are checking whether there exists a simulation relation be-
tween two TGA A = (LA, l0A, XA, Σc ∪ {εc}, Σu ∪ {εu}, EA, InvA) and B =

210 Communicating Embedded Systems.

 (Set)
 Waiting List

 (Set)
 Back-propagation

 (State)
 PWList

 Action Filter

Forward

Backward

Same Observation

 Set Builder

Change
Observation

Local Reachability

 Observation
 Identif ier

Figure 6.25. Pipeline architecture for reachability analysis of timed games
with partial observability.

(LB, l0B, XB, Σc, Σu, EB, InvB) be two TGA. Remark that we have imposed that
B has any silent actions, whereas A may have controllable (ε c) or uncontrollable εu

silent transitions. It is a natural limitation, because abstract models usually do not have
any invisible behavior. Secondly, A is not allowed to have uncontrollable silent loops,
i.e., sequences of states q1, . . . , qn such, that q1

εu−→u q2
εu−→u . . .

εu−→u qn
εu−→u q1.

The presence of such silent loops would complicate the simulation checking algo-
rithm.

Let us dene q
εu∗−−→u

a−→u q′ iff there exists a sequence of states q1, . . . , qn such,
that q = q1, qi

εu−→u qi+1 (for i = 1 . . . n − 1) and qn
a−→u q′. We use subscripts c

and u to distinguish between controllable and uncontrollable transitions, i.e. q
a−→c q′

is controllable and q
a−→u q′ in uncontrollable.

DEFINITION 6.7 (TIMED WEAK ALTERNATING SIMULATION).�– A weak alternat-
ing simulation relation between two TGA A and B is a relation R ⊆ QA ×QB such
that (q0A, q0B) ∈ R and for every (qA, qB) ∈ R and for every action a ∈ Σc ∪Σu:

�– (qA
εc−→c q′A) =⇒ ((q′A, qB) ∈ R) (silent transitions)

�– (qA
a−→c q′A) =⇒ ∃q′B (qB

a−→c q′B ∧ (q′A, q′B) ∈ R) (controllable)

�– (qB
a−→u q′B) =⇒ ∃q′A (qA

εu∗−−→u
a−→u q′A ∧ (q′A, q′B) ∈ R) (uncontrollable)

�– (qA
δ−→ q′A) =⇒ ∃q′B (qB

δ−→ q′B ∧ (q′A, q′B) ∈ R) (delay)

Tools for Model-Checking 211

We write A ≤ B if there exists a weak alternating simulation relation between A and
B. The intuition behind this denition is that every controllable transition that can be

taken from qA must be matched by an equally labeled controllable transition from q B .
And on the other hand, every uncontrollable transition in B tends to make B harder to
control than A; then we require that it is matched by an equally labeled uncontrollable
transition in A. It is also necessary to check that if the controller of A is able to avoid
playing any action during a given delay, then the controller of B is able to do the same.

It can be shown that timed weak alternating simulation preserves the satisability
of formulas of the universal fragment of TCTL (i.e. formulas of the form A[] φ,
A <> φ, φ −− > ψ). This means that if A ≤ B and A satises some TCTL formula
that doesn�’t contain E path quantier, then B also satises this formula. Timed weak
alternating simulation can be checked between networks of timed automata as well.

In order to check for timed weak alternating simulation between networks of timed
automata in UPPAAL-TIGA, one should use a query of the form {A 1, . . . , Am} <=
{B1, . . . Bn}. We assume for simplicity that we are checking simulation between sin-
gle automata. Consider that we are checking {A} ≤ {B}. There are several restric-
tions on the automata A and B in UPPAAL-TIGA. Firstly, B is not allowed to have any
silent actions. It is a natural limitation, because abstract models usually do not have
any invisible behavior. Secondly, A is not allowed to have uncontrollable silent loops,
i.e., sequences of states q1, . . . , qn such, that q1

ε−→u q2
ε−→u . . .

ε−→u qn
ε−→u q1. The

presence of such silent loops would complicate the simulation checking algorithm.

6.4.7.0.15. Algorithm

UPPAAL-TIGA uses a well-known game-theoretic approach to the simulation
checking problem that reduces the simulation checking problem to solving a two-
players game [ETE 01]. In this game one player, Spoiler, tries to put the models
in inconsistent state by taking controllable transitions in A and uncontrollable in B,
and the other player, Duplicator, tries to prevent Spoiler of doing that by repeating
Spoiler�’s transition in the opposite model.

Consider the task of checking weak alternating simulation between TGAs A =
(LA, l0A, XA, Σc∪{εc}, Σu∪{εu}, EA, InvA) and B = (LB, l0B, XB, Σc, Σu, EB , InvB)A =
(LA, l0A, XA, Σc∪{εc}, Σu∪{εu}, EA, InvA) and B = (LB, l0B, XB, Σc, Σu, EB , InvB).
The game states of a simulation checking game are represented by tuples (l A, lB, Z, a),
where lA ∈ LA, lB ∈ LB , Z ⊆ RXA∪XB

≥0 and a ∈ {⊥} ∪ Σ. We will use functions
Z(S) and Type(S) that return the third component of a game state S and its owner
correspondingly. All the game states (lA, lB, Z, a) such that a = ⊥ are the states of
the player Spoiler and we will use the shortcut (lA, lB, Z)S for identifying them. All
other states belong to player Duplicator and we�’ll use shortcut (lA, lB, Z, a)D for
them. The initial game state is S0 = (lA0, lB0, {*0}↗∩ [[InvA(lA0)]])S .

212 Communicating Embedded Systems.

For two game states S1 and S2 we will write S1 → S2 if there is a game transition
from S1 to S2. The transition relation of the simulation checking game is constructed
as follows:

�– (lA, lB, Z)S → (l′A, lB, Z ′)S iff e = (lA, g, εc, Y, l′A) ∈ Ec
A and Z ′ =

Poste(Z)↗∩ [[InvA(l′A)]]
�– (lA, lB, Z)S → (l′A, lB, Z ′, a)D iff e = (lA, g, a, Y, l′A) ∈ Ec

A, a ∈ Σc and
Z ′ = Poste(Z)

�– (lA, lB, Z)S → (lA, l′B, Z ′, a)D iff e = (lB, g, a, Y, l′B) ∈ Eu
B and Z ′ =

Poste(Z)
�– (lA, lB, Z, a)D → (lA, l′B, Z ′)S iff e = (lB, g, a, Y, l′B) ∈ Ec

B , Z ′ =
Poste(Z)↗∩ [[InvB(l′B)]]

�– (lA, lB, Z, a)D → (l′A, lB, Z ′)S iff e = (lA, g, a, Y, l′A) ∈ Eu
A, Z ′ =

Poste(Z)↗∩ [[InvA(l′A)]]
�– (lA, lB, Z, a)D → (l′A, lB, Z ′, a)D iff e = (lA, g, εu, Y, l′A) ∈ Eu

A, Z ′ =
Poste(Z)

Each game state S includes a possibly innite set of clock valuations Z(S), some of
them are winning for Spoiler. The function Win(S) ⊆ Z(S) will be used to dene
them.

DEFINITION 6.8 .�– Let us say that function Win denes the set of winning states of
the player Spoiler, if the following requirements are fullled:

�– if Type(S) = Spoiler and S = (lA, lB, Z)S , then

Win(S) = Z(S) ∩
(
Z(S) ∩

(
¬ [[InvB(lB)]] ∪

⋃
α=S→S′ Predα(Win(S′))

))↘
,

�– if Type(S) = Duplicator, then
Win(S) = Z(S) \

⋃
α=S→S′ Predα(Z(S′) \ Win(S′)),

�– Win is the least such function according to the preorder f ≤ g ≡ ∀S(f(S) ⊆
g(S)).

The rst point of this denition stands for the fact that Spoiler wins in some state if
the invariant of A is violated or if he can delay and move to some other winning state.
The second point means that Duplicator loses in some state if he can�’t move to some
other game state, which is winning for him.

It can be proved that if Win satises denition 6.8, then A ≤ B iff *0 2∈ Win(S0).
The winning subsets dened by Win function can be computed incrementally until
the xpoint is reached. However if we see at some point that *0 ∈ Win(S0), then we
can already build a counterexample showing that simulation is violated and thus avoid
building and solving the whole game graph.

Tools for Model-Checking 213

Given two models A and B and query {A} <= {B} UPPAAL-TIGA explores
a simulation game graph using on-the y algorithm which is implemented using the
pipeline architecture (see Fig. 6.18). Compared to the original algorithm for solving
arbitrary timed games we modied the forward and backward lters (where winning
conditions are dened) as well as the transition and delay lters (where the game
transition relation is dened).

We exploited the fact that simulation checking game is turn-based, i.e., in each
game state only one player is permitted to take a move. This allows us to simplify the
algorithm to avoid using the expensive function pred t that is necessary to have in the
case when both players can take a move from the same state.

6.5. TAPAAL

6.5.1. Introduction

TAPAAL is a platform independent tool for modelling, simulation and verica-
tion of timed-arc Petri nets. TAPAAL provides a stand-alone editor and simulator,
while the verication module translates timed-arc Petri net models into networks of
timed automata and uses the UPPAAL engine for the automatic analysis. The tool is
available at www.tapaal.net.

Since the introduction of Petri nets by Carl Adam Petri [PET 62] in 1962 numerous
extensions of the basic place/transition model were studied and supported by a number
of academic as well as industrial tools [HEI 09]. Many recent studies on Petri net
models are concerned with adding timed features that can be associated to places,
transitions, arcs or tokens in the net. A recent overview aiming at a comparison of the
different time dependent models (including timed automata) is given in [SRB 08].

The model considered in TAPAAL is a Timed-Arc Petri Net (TAPN) [BOL 90,
HAN 93]. It associates an age (real number) to each token in the net and time inter-
vals to arcs that restrict the ages of tokens that can be used for ring a transition. The
advantages of this model are an intuitive semantics and a number of positive decid-
ability results of problems like coverability and boundedness (for detailed references
see [SRB 08]). On the other hand, the impossibility to describe urgent behaviours
limits its modelling power and wider applicability.

TAPAAL extends the TAPN model with new features such as invariants for mod-
elling of urgency and transport arcs for modelling systems like production lines and
workow processes. It provides an intuitive modelling environment for editing and
simulating of TAPN models. The verication module of TAPAAL allows for auto-
matic checking of bounded TAPN models against safety and liveness requirements
via a translation to networks of timed automata. The UPPAAL [UPP 09] engine is
then used as a back-end for the actual verication.

214 Communicating Embedded Systems.

The connection between bounded TAPN and timed automata was studied in [SIF 96,
SRB 05, BOU 08] and while theoretically satisfactory, the translations described in
these papers are not suitable for a tool implementation as they either cause an expo-
nential blow-up in the size or create a new parallel component with a fresh local clock
for each place in the net. As UPPAAL performance becomes signicantly slower
with the growing number of parallel processes and clocks, the verication of larger
nets with little or no concurrent behaviour (few tokens in the net) becomes intractable.

TAPAAL implements a novel translation technique where a new parallel compo-
nent (with a local clock) is created for every token in the net. One of the main ad-
vantages of this approach is the possibility to use active clock reduction and symmetry
reduction techniques recently implemented in UPPAAL. As a result the size of veri-
able models increases by orders of magnitude as demonstrated on several examples.

6.5.2. Definition of Timed-Arc Petri Nets Used in TAPAAL

The set I of time intervals is dened by the following abstract syntax where a and
b range over N and a < b:

I ::= [a, b] | [a, a] | (a, b] | [a, b) | (a, b) | [a,∞) | (a,∞) .

The set IInv of invariants is dened as the following subset of time intervals
(IInv ⊆ I) where b and b′ range over N and b′ > 0:

I ::= [0, b] | [0, b′) | [0,∞) .

Let I ∈ I. Given a time point d ∈ R≥0, the validity of the expression d ∈ I is
dened in the usual way, e.g., d ∈ [a, b) iff a ≤ d < b and d ∈ (a,∞) iff a < d.

A Timed-Arc Petri Net with transport arcs and place invariants (TAPN) is a tuple
N = (P, T, F, c, Ftarc , ctarc, ι), where

�– P is a nite set of places,
�– T is a nite set of transitions such that T ∩ P = ∅,
�– F ⊆ (P × T) ∪ (T × P) is a flow relation,
�– c : F |P×T → I is a function assigning a time interval to every arc from a place

to a transition,
�– Ftarc ⊆ (P × T × P) is the set of transport arcs which satises

∀(p, t, p′) ∈ Ftarc , ∀r ∈ P. [(p, t, r) ∈ Ftarc ⇒ p′ = r ∧

(r, t, p′) ∈ Ftarc ⇒ p = r ∧

(p, t) /∈ F ∧ (t, p′) /∈ F],

Tools for Model-Checking 215

�– ctarc : Ftarc → I is a function assigning a time interval to every transport arc,
and

�– ι : P → IInv is an invariant assignment of invariants to places.

REMARK 6.1 .�– The conditions imposed on the transport arcs guarantee that for any
p ∈ P and any t ∈ T there is at most one p′ ∈ P such that (p, t, p′) ∈ Ftarc and at
most one p′′ ∈ P such that (p′′, t, p) ∈ Ftarc . In other words, for any given p and t, if
there is a transport arc of the form (p, t, p ′) or (p′′, t, p) then the places p′ and p′′ are
uniquely dened. Whenever the places p ′ and p′′ are not relevant for the context, we
shall simply denote the transport arcs as (p, t, _) or (_, t, p).

The preset of a transition t in the net is dened as •t = {p ∈ P | (p, t) ∈
F ∨ (p, t, _) ∈ Ftarc}, and the postset of a transition t is dened as t• = {p ∈ P |
(t, p) ∈ F ∨ (_, t, p) ∈ Ftarc}.

By B(R≥0) we denote the set of nite multisets on R≥0. Let B ∈ B(R≥0) and
d ∈ R≥0. We dene B + d in such a way that we add the value d to every element of
B, i.e., B + d

def= {b + d | b ∈ B}.

Let N = (P, T, F, c, Ftarc , ctarc , ι) be a TAPN. A marking M on the net N is
a function M : P → B(R≥0) such that every p ∈ P and every x ∈ M(p) satises
x ∈ ι(p). Each place is thus assigned a certain number of tokens, and each token
is annotated with a real number (age). We moreover consider only markings such
that all their tokens satisfy the place invariants imposed by the invariant assignment
ι. By |M | we denote the total number of tokens in the marking M , formally |M | =∑

p∈P |M(p)| where |M(p)| is the cardinality of the multiset M(p). The set of all
markings on N is denoted by M(N).

A marked TAPN is a pair (N, M0) where N is a timed-arc Petri net and M0 is an
initial marking. As initial markings we allow only markings with all tokens of age 0.

Let us now outline the dynamics of TAPNs. We introduce two types of transition
rules: firing of a transition and time delay.

For a TAPN N we say that a transition t ∈ T is enabled in a marking M if
�– in all places p ∈ •t there is a token x such that its age belongs to the time interval

on the arc from p to t, and
�– if there is a transport arc of the form (p, t, p ′) then moreover the age of the token

in p satises also the invariant imposed by p′.

If a transition t is enabled then it can fire. This means that it consumes one token
(of an appropriate age) from each place in •t, and then produces one new token to

216 Communicating Embedded Systems.

every place in t•. The age of the newly produced token is either 0 for the standard
arcs, or it preserves the age of the consumed token in case of a transport arc.

Another behaviour of the net is a so-called time delay step where all tokens in the
net grow simultaneously older by a given time factor (a real number in general). A
time delay step is allowed only as long as all invariants in places are satised.

Formal denitions of transition ring and time delay steps follow.

Transition Firing
In a marking M , we can re a transition t if it is enabled, i.e.

∀p ∈ •t. ∃x ∈ M(p). [x ∈ c(p, t) ∨ (x ∈ ctarc(p, t, p′) ∧ x ∈ ι(p′))] .

Before ring t, we x the sets C−
t (p) and C+

t (p) for all places p ∈ P so that
they satisfy the following equations (note that all operations are on multisets,
and there may be several options for xing these sets):

�– for every p ∈ P such that (p, t) ∈ F
C−

t (p) = {x} where x ∈ M(p) and x ∈ c(p, t),
�– for every p ∈ P such that (t, p) ∈ F

C+
t (p) = {0}, and

�– for every p, p′ ∈ P such that (p, t, p′) ∈ Ftarc

C−
t (p) = {x} = C+

t (p′) where x ∈ M(p), x ∈ ctarc(p, t, p′) and x ∈ ι(p′);
�– in all other cases (when the place in the argument is unrelated to the ring

of the transition t) we set the above sets to ∅.

Firing a transition t in the marking M yields a new marking M ′ dened as

∀p ∈ P. M ′(p) =
(
M(p) \ C−

t (p)
)
∪ C+

t (p) .

Time Delays
In a marking M we can let time pass by d ∈ R≥0 time units if

∀p ∈ P. ∀x ∈ M(p). (x + d) ∈ ι(p)

and this time delay step then yields a marking M ′ dened as

∀p ∈ P. M ′(p) = M(p) + d .

A TAPN N = (P, T, F, c, Ftarc , ctarc , ι) generates a timed labelled transition system
where states are markings of N , the set of actions is T , and the transition relation is
dened by M

t−→ M ′ whenever the ring of a transition t in a marking M yields a

Tools for Model-Checking 217

marking M ′, and M
d−→ M ′ whenever a time delay of d time units in a marking M

yields a marking M ′.

In a marked TAPN (N, M0) we say that a marking M is reachable iff M0 −→∗ M .
A marked net N is k-bounded for a natural number k if the total number of tokens
in any of its reachable markings is less than or equal to k. A marked net is called
bounded if it is k-bounded for some k.

6.5.3. TAPAAL Logic

In order to introduce TAPAAL logic formulae we have to dene the set of atomic
proposition AP . Let

AP def= {p ,- n | p ∈ P, n ∈ N and ,- ∈ {<,≤, =,≥, >}}.

The interpretation is that a proposition p ,- n is true in a marking M iff the number
of tokens in the place p respects the given proposition with respect to n.

We shall now dene a subset of Computation Tree Logic (CTL) used in TAPAAL
(essentially mimicking the logic used in UPPAAL, except for the leads-to operator).
The logical formulae are given by the following abstract syntax

ψ ::= EFϕ | EGϕ | AFϕ | AGϕ
ϕ ::= p ,- n | ¬ϕ | ϕ ∧ ϕ

where p ,- n ∈ AP and EF, EG, AF and AG are the standard CTL temporal operators.

The satisfaction relation M |= ψ for a marking M and a formula ψ is dened
inductively as follows:

�– M |= p ,- n iff |M(p)| ,- n,
�– M |= ¬ϕ iff M 2|= ϕ,
�– M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2,
�– M |= EFϕ iff M −→∗ M ′ and M ′ |= ϕ

�– M |= EGϕ iff there is a (nite or innite) alternating run ρ of the form

M = M1
d1−→ M ′

1
a1−→ M2

d2−→ M ′
2

a2−→ M3
d3−→ M ′

3
a3−→ M4

d4−→ M ′
4

a4−→ . . .

such that for all i and for all d, 0 ≤ d ≤ di we have Mi[d] |= ϕ (where Mi[d] is the
unique marking reachable from M i by time delay of d time units) and

(i) ρ is innite, or
(ii) ρ is nite and ends in Mk where for every d ∈ R≥0 we have Mk

d−→ and
Mk[d] |= ϕ, or

218 Communicating Embedded Systems.

(iii) ρ is nite and ends in a state M ′ (where M ′ is either of the form Mk or M ′
k)

such that whenever M ′ d−→ M ′[d] is possible for a d ∈ R≥0 then M ′[d] |= ϕ and
there is no marking M ′′ such that M ′[d] t−→ M ′′ for any t ∈ T ,

�– M |= AFϕ iff M 2|= EG¬ϕ, and
�– M |= AGϕ iff M 2|= EF¬ϕ.

REMARK 6.2 .�– The meaning of the EGϕ formula is that there should exist amaximal
run of the system such that at any point the formula ϕ is satised. The conditions (i),
(ii) and (iii) list the three possibilities when a run is considered as maximal. It is either
if (i) it consists of an innite alternating sequence of actions and time delays (note that
Zeno behaviours are not excluded), or (ii) it ends in a state where the invariants allow
time to diverge, or (iii) it ends in a state from which no discrete transitions are possible
after any time delay (this includes time-locks).

6.5.4. Tool Details

TAPAAL offers an editor, simulator and verier for TAPN. It is written in Java
6.0 using Java Swing for the GUI components and is so available for the majority of
existing platforms.

TAPAAL�’s graphical editor features all necessary elements for the creation of
TAPN models, including invariants on places and transport arcs. The user interface
supports, among others, a select/move feature for moving a selected sub-net of the
model as well as an undo/redo buttons allowing the user to move backward and for-
ward in the history during a creation of larger models. Constructed nets are saved
in an interchangeable XML format. An important aspect of the graphical editor is
that it disallows to draw syntactically incorrect nets and hence no syntax checks are
necessary before calling further TAPAAL modules.

The simulator part of TAPAAL allows to inspect the behaviour of a TAPN by
graphically simulating the effects of time delays and transition rings. When ring a
transition the user can either manually select the concrete tokens that should be used
for the ring or simply allow the simulator to automatically select the tokens based on
some predened strategy (the youngest, the oldest or a random token). The simulator
also allows the user to step back and force in the simulated trace, which makes it easier
to investigate alternative net behaviours.

TAPAAL�’s verification module allows for checking of safety and liveness queries
in the constructed net. Queries are created using a novel graphical query dialog, com-
pletely eliminating the possibility of introducing syntactical errors and offering an
intuitive and easy to use query formulation mechanism. The TAPAAL query language

Tools for Model-Checking 219

is a subset of the CTL logic comprising EF, AG, EG and AF temporal operators 1,
however, several TCTL properties can be veried by encoding them into the net. The
actual verication is done by the UPPAAL verication engine via translating TAPN
models into networks of timed automata. The verication calls to UPPAAL are seam-
lessly integrated inside the TAPAAL environment and the returned error traces (if any)
are displayed in the TAPAAL�’s simulator. For the safety questions concrete traces are
displayed whenever the command-line UPPAAL engine can output them, otherwise
the user is offered an untimed trace and can in the simulation mode experiment with
suitable time delays in order to realize the displayed trace in the net. A number of
verication/trace options found in UPPAAL are also available in TAPAAL, including
a symmetry reduction option which often provides improvements of the verication
times in orders of magnitude, though at the expense of disallowing trace options (a
current limitation of UPPAAL). Finally, it is possible to check if the constructed net
is k-bounded for any given k. If the net is not bounded, the tool provides a suitable
under-approximation of the behaviour of the net (by asking for a maximum number
of tokens that can be used during any transition ring sequence).

6.6. ROMÉO : A Tool for the Analysis of Timed Extensions of Petri Nets

In this paper, we present the features of ROMÉO, a tool that allows to analyse and
simulate timed extensions of Petri nets that are Time Petri Nets (TPNs). The tool
ROMÉO allows state space computation of TPN and on-the-y model-checking of
reachability properties. ROMÉO is a free software available for Linux, MacOSX and
Windows platforms.

It can be downloaded at URL http://romeo.rts-software.org/.

ROMÉO analyses T-Time Petri nets, i.e. nets such that each transition t is associ-
ated to a time interval [a(t), b(t)] (in the following, we call such nets time Petri nets).
It does not only allow to compute the state space of the models but also to perform
on-the-y model-checking of quantitative temporal properties. It is able to translate
time Petri nets into timed automata preserving the behavioral semantics (w.r.t. time
bisimulation) of the net. The software allows to model and process an extension of
time Petri nets that encompass preemption features: time Petri nets with inhibitor arcs
(ITPNs). In order to model specications that are not yet completely dened, param-
eters can be added to both TPN and ITPN models. ROMÉO is able to deal with such
extensions and gives the possibility to check quantitative temporal properties.

1. At the moment the EG and AF queries are supported only for nets with transitions that do not
contain more than two input and two output places.

220 Communicating Embedded Systems.

The current or past contributors to the software are the following: Olivier (H.)
Roux, Didier Lime, Guillaume Gardey, Morgan Magnin, Charlotte Seidner, Louis-
Marie Traonouez and Gilles Bénattar.

6.6.1. Models

6.6.1.1. Time Petri Nets
Time Petri nets have been dened by Merlin [MER 74]. Time is integrated to the

Petri net model by adding a timing interval associated to each transition. For a given
transition, this interval species when it can be red regarding the instant when the
transition has been newly enabled the most recently

DEFINITION 6.9 (TIME PETRI NET).�– A Time Petri net is a 7-uple N =
〈P, T,•(.), (.)•, a, b, M0〉 where:

�– P = {P1, . . . , Pm} is a nite and non-empty set of places ;
�– T = {t1, . . . , tn} is a nite and non-empty set of transitions ;
�– •(.) : T → NP is the backward incidence function ;
�– (.)• : T → NP is the forward incidence function ;
�– a : T → N and b : T → N ∪ {∞} are functions giving, for each transition, its

earliest and latest ring times (a‖eqb) ;
�– M0 ∈ NP is the initial marking of the net.

A marking M of the net is an element of NP such that ∀p ∈ P , M(p) is the
number of tokens in the place p.

A transition t is said to be enabled by the marking M if the number of tokens in
M in each input place of t is greater or equal to the value on the arc between this place
and the transition (i.e. M ≥• t). We denote it by t ∈ enabled(M).

A transition t is said to be disabled by the ring of t ′ from marking M if it is
enabled by M but not by M −• t′. We then denote it by t ∈ disabled(M, t′).

A transition t is said to be newly enabled by the ring of the transition t ′ from the
marking M if it is enabled by the new marking M −• t′ + t′• but was not by M −• t′.
We denote it by t ∈↑enabled (M, t′) where ↑enabled (·, ·) is dened as follows:

↑enabled (M, t′) = {t ∈ T M −• t′ + t′• ≥• t ∧ (t = t′ ∨ ¬(M −• t′ ≥• t)}.

We dene the semantics of a dense-time TPN as a time transition system. In this
model, two kinds of transitions may occur: time transitions when time elapses and
discrete transitions when a transition of the net is red.

Tools for Model-Checking 221

DEFINITION 6.10 (SEMANTICS OF A DENSE-TIME TPN).�– The semantics of a
dense-time TPN N is dened as a Timed Transition system S dense

N = (Q, q0, T,→)
such that:

�– Q = NP × (R+)T ;
�– q0 = (M0, 0) ;
�– →∈ Q × (R+ ∪ T) × Q is the transition relation including a time transition

relation and a discrete transition relation :
- let q = (M, ν) ∈ Q and q′ = (M, ν′) ∈ Q be two states of the net, the

continuous time transition relation is dened ∀d ∈ R+ by:

(M, ν) d−→ (M, ν′) if ∀ti ∈ T,

{
ν′(ti) = ν(ti) + d
M ≥• ti ⇒ ν′(ti) ≤ b(ti) ;

- let q = (M, ν) ∈ Q and q′ = (M ′, ν′) ∈ Q be two states of the net, the
discrete transition relation is dened ∀ti ∈ T by:

(M, ν) ti−→ (M ′, ν′) ssi






ti ∈ enabled(M)
M ′ = M −• ti + t•i
a(ti) ≤ ν(ti) ≤ b(ti)

∀tk ∈ T, ν′(tk) =
{

0 if tk ∈↑ enabled(M, ti)
ν(tk) otherwise.

In the dense-time approach, time is seen as "jumping" from one integer to the other,
with no care of what may happen between. The behaviors of a discrete-time model
are obviously included in the behaviors of the corresponding model with a dense-time
semantics. We dene the discrete-time semantics of a time Petri net N by a transition
system with two kinds of discrete transitions: rst, a transition relation modifying
the marking of the net and, second, a transition corresponding to a discrete elapsing
of time (which is characterized by an increment of one time unit for all the clocks
associated to transitions). We choose to write this transition system under the form of
a timed transition system Sdiscrete

N = (Q, q0, T,→): starting from the denition we
previously gave for dense-time semantics, we replace the continuous time transition
relation by a discrete-time transition relation:

(M, ν) 1−→ (M, ν′) ssi ∀ti ∈ T,

{
ν′(ti) = ν(ti) + 1
M ≥• ti ⇒ ν′(ti) ≤ b(ti).

6.6.1.2. Petri Nets with Stopwatches

In order to take into account the global complexity of systems, models now encom-
pass the notion of actions that can be suspended and resumed. This implies extending

222 Communicating Embedded Systems.

traditional clock variables by "stopwatches". Several extensions of TPNs that ad-
dress the modeling of stopwatches have been proposed: Scheduling-TPNs [ROU 02] ,
Preemptive-TPNs [BUC 04] (these two models add resources and priorities attributes
to the TPN formalism) and Inhibitor Hyperarc TPNs (ITPNs) [ROU 04]. ITPNs intro-
duce special inhibitor arcs that control the progress of transitions. These three models
belong to the class of PNs extended with stopwatches (SwPNs) [BER 07].

Roméo implements ITPNs. Inhibitor hyperarcs make it easier to model systems
with priority relations between transitions, but they do not increase the theoretical
expressivity of the model compared to inhibitor arcs. That is why we can equivalently
work on time Petri nets with inhibitor arcs or inhibitor hyperarcs. For the sake of
simplicity, we focus on nets with inhibitor arcs (ITPNs) in this chapter.

DEFINITION 6.11 (TIME PETRI NETS WITH INHIBITOR ARCS).�– A time Petri net
with inhibitor arcs (ITPN) is a n-tuple N = (P, T,•(.), (.)•, ◦(.), a, b, M0), where

�– P = {p1, p2, . . . , pm} is a non-empty nite set of places,
�– T = {t1, t2, . . . , tn} is a non-empty nite set of transitions,
�– •(.) ∈ (NP)T is the backward incidence function,
�– (.)• ∈ (NP)T is the forward incidence function,
�– ◦(.) ∈ (NP)T is the inhibition function,
�– a : T → N and b : T → N ∪ {∞} are functions giving, for each transition, its

earliest and latest ring times (a‖eqb) ;
�– M0 ∈ NP is the initial marking of the net,

A transition t is said to be inhibited by the marking M if the place connected to
one of its inhibitor arc is marked with at least as many tokens than the weight of the
considered inhibitor arc between this place and t: 0 < ◦t ≤ M . We denote it by
t ∈ inhibited(M). Practically, inhibitor arcs are used to stop the elapsing of time for
some transitions: an inhibitor arc between a place p and a transition t means that the
stopwatch associated to t is stopped as long as place p is marked with enough tokens.

Transitions that are enabled but inhibited are said to be suspended.

A transition t is said to be active in the marking M if it is enabled and not inhibited
by M .

A transition t is said to be firable when it has been enabled and not inhibited for at
least a(t) time units.

DEFINITION 6.12 (SEMANTICS OF A DENSE-TIME ITPN).�– Given a time domain
T, the semantics of a dense-time ITPN N is dened as a Timed Transition System
Sdense
N = (Q, q0, T,→) such that:

Tools for Model-Checking 223

�– Q = NP × (R+)T ;
�– q0 = (M0, 0) ;
�– →∈ Q × (T ∪ R) × Q is the transition relation including a continuous time

transition relation and a discrete transition relation.
- The time transition relation is dened ∀d ∈ R+ by:

(M, ν) d−→ (M, ν′) if ∀ti ∈ T,



ν′(ti) =

{
ν(ti) + d if ti ∈ enabled(M) et ti ∈ active(M)
ν(ti) otherwise,

M ≥• ti ⇒ ν′(ti) ≤ b(ti);

- The discrete transition relation is dened ∀ti ∈ T by:

(M, ν) ti−→ (M ′, ν′) if ,




ti ∈ enabled(M) and ti ∈ active(M),
M ′ = M −• ti + t•i ,
a(ti) ≤ ν(ti) ≤ b(ti),

∀tk ∈ T, ν′(tk) =
{

0 if tk ∈↑ enabled(M, ti)
ν(tk) otherwise.

The discrete-time semantics of ITPNs results from the replacement of the contin-
uous time transition by a discrete time transition in the the denition we previously
gave for dense-time semantics:

(M, ν) 1−→ (M, ν′) if ∀ti ∈ T,



ν′(ti) =

{
ν(ti) + 1 if ti ∈ enabled(M) and ti ∈ active(M)
ν(ti) otherwise,

M ≥• ti ⇒ ν′(ti) ≤ b(ti).

ROMÉO also implements reset arcs for both TPNs and ITPNs. Reset arcs allow
to remove all the tokens that a place contains, making it easier to model systems with
reset functions included.

6.6.1.3. Parametric Petri Nets with Stopwatches
These two classes of Petri nets previously presented can be extended with the

use of parameters, for instance to model specications that are not yet completely
dened. In this purpose, parametric time Petri nets and parametric Petri nets with
stopwatches [TRA 08] are parametric extensions of respectively time Petri nets and
Petri nets with stopwatches, in which the ring intervals of the transitions can be
replaced by parametric ring intervals that involve time parameters.

224 Communicating Embedded Systems.

We present below the denition and the semantics of the parametric time Petri net
with inhibitor arcs model (PITPN) that extends the ITPN model with parameters.

DEFINITION 6.13 (DEFINITION AND SEMANTICS OF PITPN).�– A PITPN is a n-
tuple N = 〈P, T, Par, •(.), (.)•, ◦(.), a, b, M0, Dp〉, where:

�– Par = {λ1,λ2, . . . ,λl} is a nite set of parameters; let Γ(Par) be the set of
linear expressions over Par;

�– a : T → Γ(Par) is the function that gives the earliest firing time of a transition,
expressed as a linear expression over the set of parameters;

�– b : T → Γ(Par) ∪ {∞} is the function that gives the latest firing time of a
transition, that is either a linear expression over the set of parameters or equal to ∞;

�– Dp ⊆ NPar is the domain of the parameters;

and such that for a valuation ν ∈ Dp, the semantics !N "ν = 〈P, T, •(.), (.)•, ◦(.),
aν , bν , M0〉 of N is a non parametric ITPN such that aν and bν dene the ring in-
tervals of the transitions by replacing in a and b the parameters by their valuations ν.

6.6.2. Global Architecture

ROMÉO consists of a graphical user interface (GUI) (written in Tcl/Tk), a dedi-
cated library for networks simulation and a computation module MERCUTION, writ-
ten in C++. It is dedicated to the design, simulation, state space computation, model-
checking and control of dense-time TPNs and their extension to stopwatches thanks to
inhibitor arcs. The tool implements automatic translations of discrete-time TPNs and
ITPNs into untimed Petri nets and counter automata. It also allows to symbolically
compute the state space of discrete-time ITPNs.

ROMÉO offers a parametric extension for both TPNs and ITPNs. In these latter ex-
tensions, ROMÉO supports the use of parametric linear expressions in the time bounds
of the transitions, and allows to add linear constraints on the parameters to restrict
their domain.

We will give further details on these features in the following paragraphs.

6.6.3. Systems Modelling

In a system modelling activity, the ROMÉO GUI allows to model reactive sys-
tems or preemptive reactive systems using TPNs or ITPNs. Both benet from an
easy graphical representation and from an easy representation of common real-time
features (parallelism, synchronization, resources management, watch-dogs, . . .).

Tools for Model-Checking 225

As a design helper, ROMÉO implements on-line simulation and reachability model-
checking on TPNs and ITPNs . It allows the early detection of some modeling issues
during the conception stage.

6.6.4. Verification of Properties

Once the system have been described thanks to a Petri net model (TPNs or ITPNs),
a crucial step is to formalize specications corresponding to safe behaviors. Properties
then should be written thanks to observers or a dedicated timed logic.

6.6.4.1. On-Line Model Checking

ROMÉO provides an on-line model-checker for reachability. Properties over mark-
ings can be expressed and tested. It is then possible to test the reachability of a marking
such that it veries M(P1) = 1∨M(P3) ≥ 3 where M(Pi) is the number of tokens in
the place Pi of the net. The tool returns a trace leading to such a marking if reachable.

In [GAR 05a, BOU 06] the authors went further in the model-checking of time
Petri nets, by dening a specic TCTL logic for time Petri nets in dense time, called
TPN-TCTL. The decidability of the model-checking of TPN-TCTL on time Petri nets
is proved, and they have shown that its complexity is PSPACE.

They also have introduced a restricted subset of TPN-TCTL with no recursion in
the formulae for which they can propose on-the-y model-checking. Moreover, this
subset appears to be sufcient to verify many interesting properties on time models.
Reachability properties can be checked with formulae such as ∃♦ [a,b](p) (where [a, b]
is a time interval, with b possibly innite, and p a property on the markings of the
net) and safety properties with ∀! [a,b](p). Liveness properties can be checked with
∀♦[a,b](p) or by using a bounded response property such as p " [0,b] q. It is equivalent
to ∀!(p ⇒ ∀♦[0,b](q)), and thus allows one level of recursion.

The method is extended to the state-class graph in [HAD 06] and leads to efcient
model-checking algorithms for TPNs that are implemented in ROMÉO.

6.6.4.1.1. Model-Checking of a Subset of TCTL on Petri Nets with Stopwatches

In dense time, it has been shown that state and marking accessibility are not decid-
able on Petri nets with stopwatches, even if bounded [BER 07]. Those two problems
become however decidable once a discrete time semantics is considered [MAG 06].
Then, an efcient method to compute the symbolic state-space of a Petri net with
stopwatches has been proposed in [MAG 08].

The method consists in extending the classical symbolic representations of dense
time (handled by convex polyhedra) to discrete time. For this purpose, a solution

226 Communicating Embedded Systems.

could be to compute the state-space of discrete time nets as the discretization of the
state-space of the associated dense time models. However, altough this solution is
correct for time Petri nets, it is not for Petri nets with stopwatches: indeed, in these
latter this method can add wrong discrete behaviors, that is to say behaviors that are
not permissible with the discrete time semantics. A solution has been proposed to
overcome this problem: it consists in decomposing the polyhedra that represent the
timing information of the net into an union of simpler polyhedra, that assures the
validity of the computation of the symbolic successor.

It is thus possible to check real-time properties expressed by TCTL formulae on
bounded Petri nets with stopwatches in discrete time, through a simple adaptation of
the tool ROMÉO [GAR 05b].

Let us give an intuitive overview of the process. In [GAR 05a, BOU 06], the au-
thors propose a method to check properties expressed in the TCTL logic (or in a sub-
class of TCTL logic) on time Petri nets by using the zone-based graph. This method
is naturally extended to the state-class graph in [HAD 06]. Actually, its principles
are general and can be applied to all time extensions of Petri nets such that the r-
ing domains of the state-classes can be represented by DBM. Besides, the authors of
[MAG 08] propose an algorithm to compute the state-space of Petri nets with stop-
watches in discrete time by using only DBM. By combining the two previous proce-
dures, an elegant method to check TCTL formulae on Petri nets with stopwatches in
discrete time is obtained.

Thanks to the implementation of these algorithms in ROMÉO, the tool is able to
check quantitative temporal properties on Petri nets with stopwatches with a discrete
time semantics.

6.6.4.1.2. Parametric Model-checking of Petri Nets with Stopwatches

Parametric model-checking can be used to synthesize constraints on the parameters
of a parametric model to assure that a property is veried. However, the parametric
reachability problem is known to be undecidable in general [ALU 93].

For parametric time Petri nets and parametric Petri nets with stopwatches, semi-
algorithms are proposed in [TRA 08] to verify parametric TCTL formulae (in which
the bounds of the temporal constraints can be replaced by parameters). The goal is to
determine the valuations of the parameters, such that for these valuations the model
veries the formula. The method consist in extending the model-checking approach
for time Petri nets propose in [HAD 06], by dening the parametric state-class graph
of a parametric model and on-the-y parametric model-checking semi-algorithms of
a subset of parametric TCTL.

Tools for Model-Checking 227

These semi-algorithms are implemented in the tool ROMÉO [LIM 09]. As a result,
it can synthesize a set of constraints (a disjunction of polyhedra encoded with the
Parma Polyhedra Library [BAG 02]) that represents the set of solutions.

6.6.4.2. Off-Line Model Checking
6.6.4.2.1. Verication based on observers

Observers are a method to model check TPNs and ITPNs. It consists in adding to
the Petri net - in a non-intrusive manner - places and transitions to model the property
to check. The property is transformed in testing for the reachability of a given marking
[TOU 97]. Then, as for the construction of the state class graph, it is possible to check
properties on TPNs/ITPNs with observers.

A main advantage of this approach is the transformation of a property into a reach-
ability or a trace execution problem. Nevertheless, observers are still a not easy way
to model check TPNs and ITPNs. On the one hand, there is no automatic procedure to
build observers: it is sometimes quite difcult to turn a property to check into a reach-
ability problem with observers. On the other hand, for each property to be checked,
a new state class graph has to be built and the observer can dramatically increase the
size of the state space.

6.6.4.2.2. Verication based on translations into other models
An interesting alternative to check temporal quantitative propertives on time Petri

nets consists in building a translation of the nets into Timed Automata (TA). There
exists efcient tools working on this model and which are capable to check such prop-
erties. There are two main families of translations: on the one hand, structural transla-
tions (like the translation introduced in [CAS 06] that takes as input a TPN with nite
or innite latest ring times) and, on the other hand, translations with state space
computation (see, for example, the translation of [LIM 04a, LIM 06] which consists
in building the state space of a TPN as a timed automaton).

ROMÉO implements various theoretical methods allowing to translate the analyzed
models into automata, timed automata or stopwatch automata (SWA). This method
benets from the existence of efcientmodel checking tools available on these models
(MEC, ALDEBARAN, UPPAAL, KRONOS, HYTECH). These translations extend the
class of properties that can be checked by the use of the observers to temporal (LTL,
CTL) and quantitative temporal (TCTL) logics.

A rst translation consists in the computation of the state class graphs (SCG) that
provide nite representations for the behavior of bounded nets preserving their LTL
properties [BER 91a]. For bounded TPNs the algorithm is based on DBM (Difference

228 Communicating Embedded Systems.

Bounds Matrix) data structure whereas, for ITPNs, the semi-algorithm is based on
polyhedra (using the Parma Polyhedra Library [BAG 02]).

Two different methods are implemented for TPNs to generate a TA that preserves
its semantics (in the sense of timed bisimilarity): the rst one is derived from TA
framework [GAR 06], the other one from the classical state class graph approach [LIM 03].
In the latter method, we reduce the number of clocks needed during the translation, so
that the subsequent verication on the resulting TA is more efcient. In both methods,
the automata are generated in UPPAAL or KRONOS input format.

Concerning ITPNs, the approximated and exact methods introduced in [LIM 04b,
MAG 05] are implemented. The rst one allows a fast translation into a stopwatch
automaton using an overapproximating semi-algorithm (DBM-based). Despite the
overapproximation, it has been proven that the SWA is timed-bisimilar to the original
ITPN. The SWA is produced in the HYTECH input format and is computed with a
low number of stopwatches. Since the number of stopwatches is critical for the com-
plexity of the verication, the method increases the efciency of the timed analysis of
the system; moreover, in some cases, it may just make the analysis possible while it
would be a dead-end to model the system directly with HYTECH. The second method
computes the exact state space of ITPNs. The algorithms may not terminate as the
reachability problem is undecidable on dense-time ITPNs. But it may act as a (slower
but still efcient) replacement for the DBM over-approximation in the cases when the
over-approximation introduces an innite number of markings while the net is actually
bounded and prevents this method to yield results.

6.6.5. Using ROMÉO in an example

The features of ROMÉO that have been previously presented are illustrated in this
section in a scheduling problem taken from [BUC 04]. We consider a system of three
tasks: task1 and task3 are periodic, task2 is sporadic. The periods are expressed in
function of a time parameter a and are respectively a, 2.a and 3.a for the tasks 1, 2 and
3. The system has xed priorities between the tasks: task1 has the greatest priority,
then task2 and then task3.

We design a PITPN model of this system in ROMÉO. The graphical user interface
of the tool is presented in Figure 6.26. We choose in the control panel the type of net
we want to edit, and we add the elements of the net (places, transitions, arcs).

We obtain the model presented in Figure 6.27, in which the inhibitors arcs, drawn
with a circle end, are used to model the priorities between the tasks. Besides, we can
restrict the domain of the parameter, so that Dp = {30 ≤ a ≤ 70}.

Tools for Model-Checking 229

Figure 6.26. GUI of ROMÉO with the control panel

The simulator of ROMÉO can be used to test scenarios for an early verication of
some properties. Then, we can perform model-checking on the model. The interesting
problems on this system rst concern the schedulability of the three tasks, which is
expressed by the property that the PITPN model is safe (i.e. 1−bounded). We can
verify this property in ROMÉO with a TCTL formula:

∀Pi, ∀![0,∞[(M(Pi) ≤ 1)

The result of the parametric model-checking is a > 48, as shown in Figure 6.28.

230 Communicating Embedded Systems.

Figure 6.27. PITPN model of the system with constraints on the parameters

We can add this new constraint in ROMÉO, which assures that the system is now
schedulable, and consequently we can verify new properties on the model. For exam-
ple, we can compute the worst case response time (WCRT) of task3 with the para-
metric TCTL formulae:

M(P31) > 0 "[0,b] M(P32) > 0

This formula uses a new parameter b that is a maximum bound for the WCRT. The
result of the parametric model-checking with ROMÉO is b ≥ 96 and thus 96 is the
WCRT of task3, which is in accordance with [BUC 04] in which a = 50..

6.7. Bibliography

[ABA 92] ABADI M., LAMPORT L., �“An Old-Fashioned Recipe for Real Time�”, Proc. of REX
Workshop “Real-Time: Theory in Practice”, num. 600LNCS, p. 1�–27, Springer, 1992.

[ABD 01a] ABDULLA P.A., �“Using (Timed) Petri Nets for Verication of Parameterized
(Timed) systems�”, VEPAS’2001, Verification of Parameterized Systems, ICALP’2001 satel-
lite workshop, 2001.

Tools for Model-Checking 231

Figure 6.28. Parametric model-checking

[ABD 01b] ABDULLA P.A., NYLÉN A., �“Timed Petri Nets and BQQs�”, Proceedings of
ICATPN’2001, 22nd International Conference on application and theory of Petri nets,
2001.

[AHU 93] AHUJA R.K., MAGNANTI T.L., ORLIN J.B., Network Flows - Theory, Algorithms,
and Applications, Prentice Hall, 1993.

[ALU 90a] ALUR R., COURCOUBETIS C., DILL D.L., �“Model-checking for Real-time Sys-
tems�”, 5th Symposium on Logic in Computer Science (LICS’90), p. 414�–425, 1990.

[ALU 90b] ALUR R., DILL D.L., �“Automata for Modeling Real-Time Systems�”, Proc. of Int.
Colloquium on Algorithms, Languages, and Programming, vol. 443 of LNCS, p. 322�–335,
1990.

[ALU 93] ALUR R., HENZINGER T.A., VARDI M.Y., �“Parametric Real-time Reasoning�”,
ACM Symposium on Theory of Computing, p. 592-601, 1993.

[ALU 94] ALUR R., DILL D.L., �“A theory of timed automata�”, Theoretical Computer Sci-
ence, vol. 126, num. 2, p. 183�–235, 1994.

[ALU 01] ALUR R., LA TORRE S., PAPPAS G.J., �“Optimal Paths in Weighted Timed Au-
tomata�”, Fourth International Workshop on Hybrid Systems: Computation and Control,
vol. 2034 of Lecture Notes in Computer Science, p. 49�–62, Springer, 2001.

232 Communicating Embedded Systems.

[AMN 01] AMNELL T., BEHRMANN G., BENGTSSON J., D�’ARGENIO P.R., DAVID A.,
FEHNKER A., HUNE T., JEANNET B., LARSEN K.G., MÖLLER M.O., PETTERSSON P.,
WEISE C., YI W., �“UPPAAL - Now, Next, and Future�”, CASSEZ F., JARD C., ROZOY B.,
RYAN M. (dir.),Modelling and Verification of Parallel Processes, num. 2067Lecture Notes
in Computer Science Tutorial, p. 100�–125, Springer�–Verlag, 2001.

[ARN 03] ARNOLD A., VINCENT A., WALUKIEWICZ I., �“Games for Synthesis of Controllers
with Partial Observation�”, Theoretical Computer Science, vol. 1, num. 303, p. 7-34, 2003.

[ASA 98] ASARIN E., MALER O., PNUELI A., SIFAKIS J., �“Controller Synthesis for Timed
Automata�”, Proc. IFAC Symp. on System Structure & Control, p. 469-474, Elsevier Science,
1998.

[BAG 02] BAGNARA R., RICCI E., ZAFFANELLA E., HILL P.M., �“Possibly Not Closed Con-
vex Polyhedra and the Parma Polyhedra Library�”, Proceedings of the 9th International
Symposium on Static Analysis, p. 213�–229, Springer-Verlag, 2002.

[BAI 08] BAIER C., KATOEN J.P., Principles of Model Checking, MIT Press, 2008.

[BAL 96] BALARIN F., �“Approximate reachability analysis of timed automata�”, 17th IEEE
Real-Time Systems Symposium, IEEE Computer Society Press, 1996.

[BEH 00] BEHRMANN G., HUNE T., VAANDRAGER F., �“Distributed Timed Model Checking
- How the Search Order Matters�”, Proc. of 12th International Conference on Computer
Aided Verification, Lecture Notes in Computer Science, Chicago, Springer, Juli 2000.

[BEH 01a] BEHRMANN G., DAVID A., LARSEN K.G., MÖLLER M.O., PETTERSSON P.,
YI W., �“UPPAAL - Present and Future�”, Proc. of 40th IEEE Conference on Decision and
Control, IEEE Computer Society Press, 2001.

[BEH 01b] BEHRMANN G., FEHNKER A., HUNE T., LARSEN K.G., PETTERSSON P.,
ROMIJN J., �“Efcient Guiding Towards Cost-Optimality in UPPAAL�”, MARGARIA T.,
YI W. (dir.), Proceedings of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, num. 2031Lecture Notes in Computer Science,
p. 174�–188, Springer, 2001.

[BEH 01c] BEHRMANN G., FEHNKER A., HUNE T., LARSEN K.G., PETTERSSON P.,
ROMIJN J., VAANDRAGER F., �“Minimum-Cost Reachability for Priced Timed Automata�”,
BENEDETTO M.D.D., SANGIOVANNI-VINCENTELLI A. (dir.), Proceedings of the 4th In-
ternational Workshop on Hybris Systems: Computation and Control, num. 2034Lecture
Notes in Computer Sciences, p. 147�–161, Springer, 2001.

[BEH 02] BEHRMANN G., BENGTSSON J., DAVID A., LARSEN K.G., PETTERSSON P., YI
W., �“UPPAAL Implementation Secrets�”, Proc. of 7th International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems, 2002.

[BEH 03a] BEHRMANN G., LARSEN K.G., PELANEK R., �“To store or not to store�”, Pro-
ceedings of the 15th International Conference on Computer Aided Verification, vol. 2725
of LNCS, p. 433�–445, Springer Verlag, 2003.

[BEH 03b] BEHRMANN G., DAVID A., LARSEN K.G., YI W., �“Unication & Sharing in
Timed Automata Verication�”, SPIN Workshop 03, vol. 2648 of LNCS, p. 225�–229, 2003.

Tools for Model-Checking 233

[BEH 04a] BEHRMANN G., BOUYER P., LARSEN K., PELNEK R., �“Lower and upper bounds
in zone based abstractions of timed automata�”, TACAS 2004, vol. 2988 of LNCS, p. 312�–
326, Springer�–Verlag, 2004.

[BEH 04b] BEHRMANN G., DAVID A., LARSEN K.G., �“A Tutorial on UPPAAL�”,
BERNARDO M., CORRADINI F. (dir.), Formal Methods for the Design of Real-Time Sys-
tems: 4th International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM-RT 2004, num. 3185LNCS, p. 200�–236, Springer�–
Verlag, September 2004.

[BEH 05a] BEHRMANN G., BRINKSMA E., HENDRIKS M., MADER A., �“Scheduling Lac-
quer Production by Reachability Analysis �– A Case Study�”, Workshop on Parallel and
Distributed Real-Time Systems 2005, p. 140-, IEEE Computer Society, 2005.

[BEH 05b] BEHRMANN G., LARSEN K.G., RASMUSSEN J.I., �“Optimal scheduling using
priced timed automata�”, ACM SIGMETRICS Perform. Eval. Rev., vol. 32, num. 4, p. 34�–
40, ACM Press, 2005.

[BEH 07] BEHRMANN G., COUGNARD A., DAVID A., FLEURY E., LARSEN K.G., LIME
D., �“UPPAAL-TIGA: Time for Playing Games!�”, Proceedings of the 19th International
Conference on Computer Aided Verification, num. 4590LNCS, p. 121�–125, Springer, 2007.

[BEN 98] BENGTSSON J., LARSEN K.G., LARSSON F., PETTERSSON P., WANG Y., WEISE
C., �“New Generation of UPPAAL�”, Int. Workshop on Software Tools for Technology Trans-
fer, June 1998.

[BEN 02] BENGTSSON J., Clocks, DBMs and States in Timed Systems, PhD thesis, Uppsala
University, 2002.

[BER 91a] BERTHOMIEU B., DIAZ M., �“Modeling and verication of time dependent systems
using time Petri nets�”, IEEE transactions on software engineering, vol. 17, num. 3, p. 259�–
273, 1991.

[BER 91b] BERTHOMIEU B., DIAZ M., �“Modeling and verication of time dependent sys-
tems using time Petri nets�”, IEEE Trans. on Software Engineering, vol. 17, num. 3, p. 259�–
273, 1991.

[BER 07] BERTHOMIEU B., LIME D., ROUX O.H., VERNADAT F., �“Reachability Problems
and Abstract State Spaces for Time Petri Nets with Stopwatches�”, Journal of Discrete Event
Dynamic Systems (DEDS), vol. 17, num. 2, Springer, 2007, To appear.

[BOL 90] BOLOGNESI T., LUCIDI F., TRIGILA S., �“From Timed Petri Nets to Timed LO-
TOS�”, Proceedings of the IFIP WG 6.1 Tenth International Symposium on Protocol Speci-
fication, Testing and Verification (Ottawa 1990), p. 1�–14, North-Holland, Amsterdam, 1990.

[BOU 03] BOUYER P., D�’SOUZA D., MADHUSUDAN P., PETIT A., �“Timed Control with
Partial Observability�”, Proc. 15th Conf. on Computer Aided Verification (CAV’2003),
vol. 2725 of LNCS, p. 180-192, Springer, 2003.

[BOU 06] BOUCHENEB H., GARDEY G., ROUX O.H., TCTL model checking of Time Petri
Nets, Report num. number RI2006-14, IRCCyN, 2006.

[BOU 08] BOUYER P., HADDAD S., REYNIER P.A., �“Timed Petri nets and timed automata:
On the discriminating power of zeno sequences�”, Information and Computation, vol. 206,

234 Communicating Embedded Systems.

num. 1, p. 73-107, 2008.

[BOW 98] BOWMAN H., FACONTI G.P., KATOEN J.P., LATELLA D., MASSINK M.,
�“Automatic Verication of a Lip Synchronisation Algorithm using UPPAAL�”, JAN
FRISO GROOTE B.L., VAN WAMEL J. (dir.), In Proceedings of the 3rd International Work-
shop on Formal Methods for Industrial Critical Systems. Amsterdam , The Netherlands,
1998.

[BUC 04] BUCCI G., FEDELI A., SASSOLI L., VICARIO E., �“Time state space analysis of
real-time preemptive systems�”, IEEE transactions on software engineering, vol. 30, num. 2,
p. 97�–111, February 2004.

[BYG 09] BYG J., JOERGENSEN K., SRBA J., �“TAPAAL: Editor, Simulator and Verier of
Timed-Arc Petri Nets�”, Submitted to ATVA’09 tool track, 2009.

[CAS 00] CASSEZ F., LARSEN K.G., �“The Impressive Power of Stopwatches�”, CONCUR
2000, vol. 1877 of LNCS, p. 138�–152, Springer-Verlag, 2000.

[CAS 05] CASSEZ F., DAVID A., FLEURY E., LARSEN K.G., LIME D., �“Efcient On-the-y
Algorithms for the Analysis of Timed Games�”, CONCUR’05, vol. 3653 of LNCS, p. 66�–80,
Springer�–Verlag, August 2005.

[CAS 06] CASSEZ F., ROUX O.H., �“Structural Translation from Time Petri Nets to Timed
Automata �– Model-Checking Time Petri Nets via Timed Automata�”, The journal of Systems
and Software, vol. 79, num. 10, p. 1456-1468, Elsevier, 2006.

[CAS 07] CASSEZ F., DAVID A., LARSEN K.G., LIME D., RASKIN J.F., �“Timed Control
with Observation Based and Stuttering Invariant Strategies�”, Proceedings of the 5th Inter-
national Symposium on Automated Technology for Verification and Analysis, vol. 4762 of
LNCS, p. 192�–206, Springer, 2007.

[CHA 06a] CHATTERJEE K., DOYEN L., HENZINGER T., RASKIN J.F., �“Algorithms for
Omega-Regular games with Incomplete Information�”, Computer Science Logic, vol. 4207
of LNCS, p. 287�–302, Springer, 2006.

[CHA 06b] CHATTERJEE K., HENZINGER T., PITERMAN N., �“Algorithms for Buchi Games�”,
GDV 06, August 2006.

[DAR 97] D�’ARGENIO P.R., KATOEN J.P., RUYS T.C., TRETMANS J., �“The bounded re-
transmission protocol must be on time!�”, In Proceedings of the 3rd International Workshop
on Tools and Algorithms for the Construction and Analysis of Systems, vol. 1217 of LNCS,
p. 416�–431, Springer�–Verlag, April 1997.

[DAV 00] DAVID A., YI W., �“Modelling and Analysis of a Commercial Field Bus Protocol�”,
Proceedings of the 12th Euromicro Conference on Real Time Systems, p. 165�–172, IEEE
Computer Society, 2000.

[DAV 02] DAVID A., BEHRMANN G., LARSEN K.G., YI W., �“New UPPAAL Architecture�”,
PETTERSSON P., YI W. (dir.),Workshop on Real-Time Tools, Uppsala University Technical
Report Series, 2002.

[DAV 03] DAVID A., BEHRMANN G., LARSEN K.G., YI W., �“A Tool Architecture for the
Next Generation of UPPAAL�”, 10th Anniversary Colloquium. Formal Methods at the Cross
Roads: From Panacea to Foundational Support, LNCS, 2003.

Tools for Model-Checking 235

[DAV 05] DAVID A., �“Merging DBMs Efciently�”, 17th Nordic Workshop on Programming
Theory, p. 54�–56, DIKU, University of Copenhagen, October 2005.

[DAV 06] DAVID A., HÅKANSSON J., LARSEN K.G., PETTERSSON P., �“Model Checking
Timed Automata with Priorities using DBM Subtraction�”, Proceedings of the 4th Inter-
national Conference on Formal Modelling and Analysis of Timed Systems (FORMATS’06),
vol. 4202 of LNCS, p. 128�–142, 2006.

[DAV 08] DAVID A., LARSEN K.G., LI S., NIELSEN B., �“Cooperative Testing of Uncontrol-
lable Timed Systems�”, Fourth Workshop on Model-Based Testing MBT�’08, March 2008.

[DAV 09] DAVID A., LARSEN K.G., LI S., NIELSEN B., �“Timed Testing under Partial Ob-
servability�”, Proceedings of the 2nd International Conference on Sofware Testing, Verifica-
tion, and Validation, IEEE Computer Society, 2009, To appear.

[DAW 06] DAWS C., KORDY P., �“Symbolic Robustness Analysis of Timed Automata.�”, FOR-
MATS, vol. 4202 of Lecture Notes in Computer Science, p. 143-155, Springer, 2006.

[DEA 01] DE ALFARO L., HENZINGER T.A., MAJUMDAR R., �“Symbolic Algorithms for
Innite-State Games�”, Proc. 12th Conf. on Concurrency Theory (CONCUR’01), vol. 2154
of LNCS, p. 536-550, Springer, 2001.

[ETE 01] ETESSAMI K., WILKE T., SCHULLER R.A., �“Fair Simulation Relations, Parity
Games, and State Space Reduction for BÃ¼chi Automata�”, Automata, Languages and
Programming, vol. 2076 of LNCS, p. 694�–707, Springer, 2001.

[FLO 62] FLOYD R.W., �“Acm algorithm 97: Shortest Path�”, Communications of the ACM,
vol. 5, num. 6, Page345, 1962.

[GAR 05a] GARDEY G., Contribution à la vérication et au contrôle des systèmes temps réel
�– Application aux réseaux de Petri temporels et aux automates temporisés, PhD thesis,
Université de Nantes et École Centrale de Nantes, décembre 2005.

[GAR 05b] GARDEY G., LIME D., MAGNIN M., ROUX O.H., �“Roméo: A tool for analyzing
time Petri nets�”, Proceedings of the 17th International Conference on Computer Aided
Verification, vol. 3576 of LNCS, p. 418-423, Springer Berlin, 2005.

[GAR 06] GARDEY G., ROUX O.H., ROUX O.F., �“State Space Computation and Analysis
of Time Petri Nets�”, Theory and Practice of Logic Programming (TPLP). Special Issue
on Specification Analysis and Verification of Reactive Systems, vol. 6, num. 3, p. 301�–320,
Cambridge University Press, 2006.

[HAD 06] HADJIDJ R., BOUCHENEB H., �“On-the-y TCTL model checking for Time Petri
Nets using state class graphs�”, ACSD, p. 111-122, IEEE Computer Society, 2006.

[HAN 93] HANISCH H., �“Analysis of Place/Transition Nets with Timed-Arcs and its Appli-
cation to Batch Process Control�”, Proceedings of the 14th International Conference on
Application and Theory of Petri Nets (ICATPN’93), vol. 691 of LNCS, p. 282�–299, 1993.

[HAV 97] HAVELUND K., SKOU A., LARSEN K.G., LUND K., �“Formal Modelling and Anal-
ysis of an Audio/Video Protocol: An Industrial Case Study Using UPPAAL�”, Proceedings
of the 18th IEEE Real-Time Systems Symposium, p. 2�–13, December 1997.

[HEI 09] HEITMANN F., MOLDT D., MORTENSEN K.,
RÖLKE H., �“Petri Nets Tools Database Quick Overview�”,

236 Communicating Embedded Systems.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/ quick.html,
Accessed: 28.4.2009.

[HEN 92] HENZINGER T.A., NICOLLIN X., SIFAKIS J., YOVINE S., �“Symbolic Model
Checking for Real-Time Systems�”, Proc. of IEEE Symposium on Logic in Computer Sci-
ence, 1992.

[HEN 94] HENZINGER T.A., �“Symbolic Model Checking for Real-time Systems�”, Informa-
tion and Computation, vol. 111, p. 193�–244, 1994.

[HEN 02] HENDRIKS M., LARSEN K.G., �“Exact Acceleration of Real-Time Model Check-
ing�”, ASARIN E., MALER O., YOVINE S. (dir.), Electronic Notes in Theoretical Computer
Science, vol. 65, Elsevier Science Publishers, April 2002.

[HEN 03] HENDRIKS M., BEHRMANN G., LARSEN K., NIEBERT P., VAANDRAGER F.,
�“Adding Symmetry Reduction to Uppaal�”, LARSEN K., NIEBERT P. (dir.), Proceedings
of the First International Workshop on Formal Modeling and Analysis of Timed Systems
(FORMATS 2003), vol. 2791 of LNCS, p. 46-49, Springer Verlag, 2003.

[HOL 91] HOLZMANN G.J., Design and Validation of Computer Protocols, Prentice-Hall,
1991.

[HOL 98] HOLZMANN G.J., �“An Analysis of Bitstate Hashing�”, Formal Methods in System
Design, vol. 13, p. 289�–307, 1998.

[HUN 00] HUNE T., LARSEN K.G., PETTERSSON P., �“Guided Synthesis of Control Programs
Using UPPAAL�”, LAI T.H. (dir.), Proc. of the IEEE ICDCS International Workshop on
Distributed Systems Verification and Validation, p. E15�–E22, IEEE Computer Society Press,
April 2000.

[IVE 00] IVERSEN T.K., KRISTOFFERSEN K.J., LARSEN K.G., LAURSEN M., MADSEN
R.G., MORTENSEN S.K., PETTERSSON P., THOMASEN C.B., �“Model-Checking Real-
Time Control Programs �— Verifying LEGO Mindstorms Systems Using UPPAAL�”, Proc.
of 12th Euromicro Conference on Real-Time Systems, p. 147�–155, IEEE Computer Society
Press, June 2000.

[JES 07] JESSEN J.J., RASMUSSEN J.I., LARSEN K.G., DAVID A., �“Guided Controller Syn-
thesis for Climate Controller Using UPPAAL-TIGA�”, Proceedings of the 19th International
Conference on Formal Modeling and Analysis of Timed Systems, num. 4763LNCS, p. 227�–
240, Springer, 2007.

[KRI 96] KRISTOFFERSON K.J., LAROUSSINIE F., LARSEN K.G., PETTERSSON P., YI W.,
A Compositional Proof of a Real-Time Mutual Exclusion Protocol, Report num. RS-96-55,
BRICS, December 1996.

[KRI 02] KRISTENSEN L., MAILUND T., �“A Generalised Sweep-Line Method for Safety
Properties�”, Proc. of FME’02, vol. 2391 of LNCS, p. 549�–567, Springer-Verlag, 2002.

[LAM 00] LAMOUCHI H., THISTLE J., �“Effective control synthesis for DES under partial
observations�”, Proceedings of the 39th IEEE Conference on Decision and Control, p. 22�–
28, 2000.

[LAR 95] LARSEN K.G., PETTERSSON P., YI W., �“Model-Checking for Real-Time Sys-
tems�”, Proc. of Fundamentals of Computation Theory, num. 965Lecture Notes in Computer

Tools for Model-Checking 237

Science, p. 62�–88, August 1995.

[LAR 97a] LARSEN K.G., PETTERSSON P., YI W., �“UPPAAL in a Nutshell�”, Int. Journal
on Software Tools for Technology Transfer, vol. 1, num. 1�–2, p. 134-152, Springer�–Verlag,
October 1997.

[LAR 97b] LARSSON F., LARSEN K.G., PETTERSSON P., YI W., �“Efcient Verication of
Real-Time Systems: Compact Data Structures and State-Space Reduction�”, Proc. of the
18th IEEE Real-Time Systems Symposium, p. 14�–24, IEEE Computer Society Press, De-
cember 1997.

[LAR 01] LARSEN K.G., BEHRMANN G., BRINKSMA E., FEHNKER A., HUNE T., PET-
TERSSON P., ROMIJN J., �“As Cheap as Possible: Efcient Cost-Optimal Reachability for
Priced Timed Automata�”, BERRY G., COMON H., FINKEL A. (dir.), Proceedings of CAV
2001, num. 2102Lecture Notes in Computer Science, p. 493�–505, Springer, 2001.

[LIM 03] LIME D., ROUX O.H., �“State class Timed Automaton of a Time Petri Net�”, The
10th International Workshop on Petri Nets and Performance Models, (PNPM’03), IEEE
Computer Society, Sept. 2003.

[LIM 04a] LIME D., Vérication d�’applications temps réel à l�’aide de réseaux de Petri tem-
porels étendus, PhD thesis, Université de Nantes et École Centrale de Nantes, décembre
2004.

[LIM 04b] LIME D., ROUX O.H., �“A translation based method for the timed analysis of
scheduling extended time Petri nets�”, The 25th IEEE International Real-Time Systems
Symposium, (RTSS’04), p. 187�–196, Lisbon, Portugal, IEEE Computer Society Press, De-
cember 2004.

[LIM 06] LIME D., ROUX O.H., �“Model checking of time Petri nets using the state class
timed automaton�”, Journal of Discrete Events Dynamic Systems - Theory and Applications
(DEDS), vol. 16, num. 2, p. 179�–205, Kluwer Academic Publishers, 2006.

[LIM 09] LIME D., ROUX O.H., SEIDNER C., TRAONOUEZ L.M., �“Romeo: A Parametric
Model-Checker for Petri Nets with Stopwatches�”, KOWALEWSKI S., PHILIPPOU A. (dir.),
15th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2009), vol. 5505 of Lecture Notes in Computer Science, p. 54-57, York,
United Kingdom, Springer, March 2009.

[LIN 01] LINDAHL M., PETTERSSON P., YI W., �“Formal Design and Analysis of a Gear-
box Controller�”, Springer International Journal of Software Tools for Technology Transfer
(STTT), vol. 3, num. 3, p. 353�–368, 2001.

[LIU 98] LIU X., SMOLKA S., �“Simple Linear-Time Algorithm for Minimal Fixed Points�”,
Proc. 26th Conf. on Automata, Languages and Programming (ICALP’98), vol. 1443 of
LNCS, p. 53-66, Springer, 1998.

[LON 97] LÖNN H., PETTERSSON P., �“Formal Verication of a TDMA Protocol Startup
Mechanism�”, Proc. of the Pacic Rim Int. Symp. on Fault-Tolerant Systems, p. 235�–242,
December 1997.

[MAG 05] MAGNIN M., LIME D., ROUX O., �“An efcient method for computing exact
state space of Petri nets with stopwatches�”, third International Workshop on Software

238 Communicating Embedded Systems.

Model-Checking (SoftMC’05), Electronic Notes in Theoretical Computer Science, Edin-
burgh, Scotland, UK, Elsevier, July 2005.

[MAG 06] MAGNIN M., MOLINARO P., ROUX O.H., �“Decidability, expressivity and state-
space computation of Stopwatch Petri nets with discrete-time semantics.�”, 8th International
Workshop on Discrete Event Systems (WODES’06), Ann Arbor, USA, July 2006.

[MAG 08] MAGNIN M., LIME D., ROUX O., �“Symbolic state space of Stopwatch Petri nets
with discrete-time semantics�”, CORTADELLA J., REISIG W. (dir.), The 29th International
Conference on Application and Theory of Petri Nets and other models of concurrency
(ICATPN 2008), Lecture Notes in Computer Science, Xi�’an, China, Springer, June 2008.

[MAL 95] MALER O., PNUELI A., SIFAKIS J., �“On the Synthesis of Discrete Controllers
for Timed Systems�”, Proc. 12th Symp. on Theoretical Aspects of Computer Science
(STACS’95), vol. 900, p. 229-242, Springer, 1995.

[MER 74] MERLIN P., A study of the recoverability of computing systems, PhD thesis, De-
partment of Information and Computer Science, University of California, Irvine, CA, 1974.

[PET 62] PETRI C., Kommunikation mit Automaten, PhD thesis, Darmstadt, 1962.

[RAS 06] RASMUSSEN J.I., LARSEN K.G., SUBRAMANI K., �“On using priced timed au-
tomata to achieve optimal scheduling�”, Form. Methods Syst. Des., vol. 29, num. 1, p. 97�–
114, Kluwer Academic Publishers, 2006.

[RAZ 85] RAZOUK R.R., PHELPS C.V., �“Performance analysis using timed Petri nets�”, Pro-
tocol Testing, Specification, and Verification, p. 561�–576, 1985.

[ROK 93] ROKICKI T.G., Representing and Modeling Digital Circuits, PhD thesis, Stanford
University, 1993.

[ROU 02] ROUX O.H., DÉPLANCHE A.M., �“A T-time Petri net extension for real time-task
scheduling modeling�”, European Journal of Automation (JESA), vol. 36, num. 7, p. 973�–
987, 2002.

[ROU 04] ROUX O.H., LIME D., �“Time Petri Nets with Inhibitor Hyperarcs. Formal Seman-
tics and State Space Computation�”, CORTADELLA J., REISIG W. (dir.), The 25th Inter-
national Conference on Application and Theory of Petri Nets (ICATPN 2004), vol. 3099
of Lecture Notes in Computer Science, p. 371�–390, Bologna, Italy, Springer-Verlag, June
2004.

[SIF 96] SIFAKIS J., YOVINE S., �“Compositional specication of timed systems�”, Proceed-
ings of the 13th Annual Symposim on Theoretical Aspects of Computer Science (STACS’96),
vol. 1046 of LNCS, p. 347�–359, Springer-Verlag, 1996.

[SRB 05] SRBA J., �“Timed-Arc Petri Nets vs. Networks of Timed Automata�”, Proceedings of
the 26th International Conference on Application and Theory of Petri Nets (ICATPN 2005),
vol. 3536 of LNCS, p. 385�–402, Springer-Verlag, 2005.

[SRB 08] SRBA J., �“Comparing the Expressiveness of Timed Automata and Timed Extensions
of Petri Nets�”, Proceedings of the 6th International Conference on Formal Modelling and
Analysis of Timed Systems (FORMATS’08), vol. 5215 of LNCS, p. 15�–32, Springer-Verlag,
2008.

Tools for Model-Checking 239

[TOU 97] TOUSSAINT J., SIMONOT-LION F., THOMESSE J.P., �“Time constraint verications
methods based time Petri nets�”, 6th Workshop on Future Trends in Distributed Computing
Systems (FTDCS’97), p. 262�–267, Tunis, Tunisia, 1997.

[TRA 08] TRAONOUEZ L.M., LIME D., ROUX O.H., �“Parametric Model-Checking of Time
Petri Nets with Stopwatches Using the State-Class Graph�”, CASSEZ F., JARD C. (dir.), 6th
International Conference on Formal Modelling and Analysis of Timed Systems (FORMATS
2008), vol. 5215 of Lecture Notes in Computer Science, p. 280-294, Saint-Malo, France,
Springer, September 2008.

[TRI 99] TRIPAKIS S., ALTISEN K., �“Controller Synthesis for Discrete and Dense-Time Sys-
tems�”, Proc. World Congress on Formal Methods in the Development of Computing Systems
(FM’99), vol. 1708 of LNCS, p. 233-252, Springer, 1999.

[UPP 09] UPPAAL, www.uppaal.com, Accessed: 28.4.2009.

[WON 94] WONG-TOI H., Symbolic Approximations for Verifying Real-time Systems, PhD
thesis, Stanford University, 1994.

[YI 94] YI W., PETTERSSON P., DANIELS M., �“Automatic Verication of Real-Time Com-
municating Systems By Constraint-Solving�”, HOGREFE D., LEUE S. (dir.), Proc. of the
7th Int. Conf. on Formal Description Techniques, p. 223�–238, North�–Holland, 1994.

[ZUB 80] ZUBEREK W.M., �“Timed Petri nets and preliminary performance evaluation�”, Pro-
ceedings of the 7th anual symposium on Computer Architecture, p. 88�–96, ACM Press,
1980.

[ZUB 85] ZUBEREK W.M., �“Extended D-timed Petri nets, timeouts, and analysis of com-
munication protocols�”, Proceedings of the 1985 ACM annual conference on the range of
computing : mid-80’s perspective, p. 10�–15, ACM Press, 1985.

240

