
Efficient On-the-fly Algorithm for Checking

Alternating Timed Simulation ⋆

Peter Bulychev1, Thomas Chatain2, Alexandre David3, and Kim G. Larsen3

1 Lomonosov Moscow State University, Russia
peter.bulychev@gmail.com
2 LSV, ENS Cachan, France
chatain@lsv.ens-cachan.fr

3 CISS, Aalborg University, Denmark
{adavid,kgl}@cs.aau.dk

Abstract In this paper we focus on property-preserving preorders be-
tween timed game automata and their application to control of partially
observable systems. We define timed weak alternating simulation as a
preorder between timed game automata, which preserves controllability.
We define the rules of building a symbolic turn-based two-player game
such that the existence of a winning strategy is equivalent to the simula-
tion being satisfied. We also propose an on-the-fly algorithm for solving
this game. This simulation checking method can be applied to the case of
non-alternating or strong simulations as well. We illustrate our algorithm
by a case study and report on results.

1 Introduction

Since the introduction of timed automata [3] the technology and tool support
[18,8,6] for model-checking and analysis of timed automata based formalisms
have reached a level mature enough for industrial applications as witnessed by a
large and growing number of case studies. Most recently, efficient on-the-fly algo-
rithms for solving reachability and safety games based on timed game automata
have been put forward [9] and made available within the tool Uppaal-Tiga. The
tool has been recently used in an industrial case study [17] with the company
Skov A/S for synthesizing climate control programs to be used in modern pig
and poultry stables. Also Uppaal-Tiga has been used for autonomous robot
control [1]. Despite this success, the state-space explosion problem is a reality
preventing the tools from scaling up to arbitrarily large and complex systems.
We need complementary techniques allowing for the verification and analysis
efforts to be carried out on suitable abstractions.

Assume that S is a timed (game) automaton and assume that φ is a property
to be established (solved) for S. Now S may be a timed automaton too complex

⋆ This work has been supported by the EC FP7 under grant numbers
INFSO-ICT-224249 (Multiform www.ict-multiform.eu) and ICT-214755 (Quasi-
modo www.quasimodo.aau.dk), and the VKR Center of Excellence MT-LAB
(www.mtlab.dk).

for our verification tool to settle the property φ, or S may be a timed automa-
ton with a number of unobservable features that can not be exploited in any
realizable strategy for solving the game. The goal of abstraction is to replace
the complex (or unobservable) model S with an abstract timed automaton A

being smaller in size, less complex and fully observable. This method requires
the user not only to supply the abstraction but also to argue that the abstrac-
tion is correct in the sense that all relevant properties established (controllable)
for A also hold (are controllable) for S; i.e. it should be established that S ≥ A

for some property-preserving relationship ≥ between timed (game) automata. If
one wants to detect errors in S (i.e to show that φ is not satisfied on S) rather
than show its correctness, he can prove that φ is not satisfied on A and show
that A ≥ S.

The possible choices for the preorder ≥ obviously depend heavily on the class
of properties to be preserved as well as the underlying modeling formalism. In
this paper we introduce the logic ATCTL being a universal fragment of the
real-time logic TCTL [2]. We introduce the notion of weak alternating timed
simulation between timed game automata. This relation is proved to preserve
controllability with respect to ATCTL. We reduce the problem of checking given
notion of simulation to the problem of solving timed reachability turn-based
game of two players. Also we provide symbolic on-the-fly algorithm for solving
this game, which is a derivative of the algorithm of solving timed games proposed
in [9]. It should be mentioned that in our algorithm we have exploited the fact
that simulation-checking game is turn-based, i.e., in each game state only one
player is permitted to make a move. This makes our algorithm simpler than
the one, proposed in [9]. This algorithm can be also applied to checking non-
alternating weak simulation, i.e., to the case when there are no uncontrollable
transitions in timed automata.

Related work. Decidability for timed (bi)simulation between timed automata
was given in [10] using a “product” region construction. This technique provided
the computational basis of the tool Epsilon [11]. In [21] a zone-based algorithm
for checking (weak) timed bisimulation – and hence not suffering the region-
explosion in Epsilon – was proposed though never implemented in any tool.

For fully observable and deterministic abstract models timed simulation may
be reduced to a reachability problem of S in the context of a suitably constructed
testing automaton monitoring that the behavior exhibited is within the bounds
of A [16].

Alternating temporal logics were introduced in [4] and alternating simulation
between finite-state systems was introduced in [5].

The application of our method using weak alternating simulation for the
problem of timed control under partial observability improves the direct method
proposed in [13] to solve the same problem.

The current paper has been preceeded by the paper [12]. In that paper the
simulation-checking task has been reduced to the task of reachability analy-
sis of timed game automata, which in turn can be performed using the tool

2

Uppaal-Tiga [9]. This reduction was tricky because the formalism of timed
game automata is not well suited for expressing simulation-checking games. In
the current paper we use another more natural formalism for defining simulation-
checking games. The new simulation-checking games are turn-based (only one
player owns each game state), and that makes them easier to solve. The current
paper is self-contained and does not refer to [12].

Overview of the paper. In Section 2 we present the models of timed au-
tomata and timed game automata as well as the logic ATCTL. In Section 3 we
define weak alternating timed simulation preorder. We prove that it preserves
controllability with respect to ATCTL, and propose the algorithm of solving it.

2 Timed Games and Preliminaries

2.1 Timed Automata

Let X be a finite set of real-valued variables called clocks. We denote B(X) the
set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | ϕ∧ϕ where k ∈ Z,
x ∈ X and ∼ ∈ {<,≤,=, >,≥}. A valuation of the variables in X is a mapping
v : X 7→ R≥0. We write ~0 for the valuation that assigns 0 to each clock. For
Y ⊆ X, we denote by v[Y] the valuation assigning 0 (resp. v(x)) for any x ∈ Y

(resp. x ∈ X \ Y). We denote v + δ for δ ∈ R≥0 the valuation s.t. for all x ∈ X,
(v + δ)(x) = v(x) + δ. For g ∈ B(X) and v ∈ RX

≥0, we write v |= g if v satisfies

g. We denote [[g]] = {v ∈ RX
≥0 | v |= g}.

Definition 1 (Timed Automaton [3]). A Timed Automaton (TA) is a tuple
A = (L, l0, Σ,X,E, Inv) where L is a finite set of locations, l0 ∈ L is the initial
location, Σ is the set of actions, X is a finite set of real-valued clocks, Inv : L →
B(X) associates to each location its invariant and E ⊆ L×B(X)×Σ × 2X ×L

is a finite set of transitions, where t = (l, g, a,R, l′) ∈ E represents a transition
from the location l to l′, labeled by a, with the guard g, that resets the clocks in
R. One special label τ is used to code the fact that a transition is not observable.

A state of a TA is a pair (l, v) ∈ L×RX
≥0 that consists of a discrete part and

a valuation of the clocks. From a state (l, v) ∈ L×RX
≥0 s.t. v |= Inv(l), a TA can

either let time progress or do a discrete transition and reach a new state. This is
defined by the transition relation −→ built as follows: for a ∈ Σ, (l, v)

a
−−→ (l′, v′)

if there exists a transition e = (l, g, a, Y, l′) in E s.t. v |= g, v′ = v[Y] and
v′ |= Inv(l′), we denote the fact that e is enabled from v by Enabled(e, v)

and abbreviate v′ = Poste(v). For δ ≥ 0, (l, v)
δ

−−→ (l, v′) if v′ = v + δ and
v, v′ ∈ [[Inv(l)]]. Thus the semantics of a TA is the labeled transition system
SA = (Q, q0,−→) where Q = L×RX

≥0, q0 = (l0,~0) and the set of labels is Σ∪R≥0.
A run of a timed automaton A is a sequence (q0, δ1, q1, t1, q

′
1, δ2, q2, t2, q

′
2 . . .) of

alternating time and discrete transitions in SA. We use Runs(q,A) for the set of
runs that start in state q. We write Runs(A) for Runs((l0,~0), A). If ρ is a finite
run we denote Duration(ρ) the total elapsed time all along the run.

3

Let’s define q
a+

−−−→ q′ iff q
a

−−→ q′ or there exists a sequence of states q1, . . . , qn

such, that q
a

−−→ q1
a

−−→ . . .
a

−−→ qn
a

−−→ q′, and define q
a∗

−−−→ q′ iff q
a+

−−−→ q′

or q = q′. We use the superposition of transitions: q
a

−−→
b

−−→ q′ iff ∃q′′ · q
a

−−→

q′′
b

−−→ q′.

2.2 Symbolic Operations on Clock Valuations

The state space of timed automaton is infinite and thus it should be handled
using symbolic methods. Consider set of clocks X and a set of clock valuations
Z ⊆ RX

≥0. We use the following abbreviations Zր = {v + δ|v ∈ Z ∧ δ ∈ R≥0}

and Zց = {v|{v}ր ∩ Z 6= ∅}, these operations are called future and past
correspondingly. Difference bounded matrixes (DBM) can be used to encode [[g]]
for every g ∈ B(X) [7]. The set of DBMs is closed under the future (ր), past(ց),
intersection (

⋂

) union (
⋃

) and complementary (¬) operations.
We use symbolic extension of Poste function: Poste(Z) = {Poste(v)|v ∈ Z ∧

Enabled(e, v)}, also we use Prede(Z) = {v|Poste(v) ∈ Z}. These two functions
can be implemented using operations on DBMs.

2.3 ATCTL

In this article, we consider the restricted subset of universal fragment of the
real-time logic TCTL [2], we call it ATCTL.

Definition 2 (ATCTL). A formula of ATCTL is either A φ1Utφ2 or A φ1Wt

φ2, where A denotes the quantifier “for all path” and Ut (resp. Wt) denotes the
temporal operator “until” (resp. “weak until”), t ∈ Z ∪ {+∞} and the φi’s are
sets of observable actions.

A run ρ of a timed automaton A satisfies φ1 Ut φ2 iff there exists a prefix ρ′

of ρ such that: 1) all observable actions of ρ′ are in φ1 and 2) the last action of
ρ′ is in φ2 and 3) Duration(ρ′) ≤ t. Then we write ρ |= φ1 Ut φ2.

A run ρ of a timed automaton A satisfies φ1 Wt φ2 iff either it satisfies
φ1 Ut φ2 or only actions of φ1 occur in ρ. Then we write ρ |= φ1 Wt φ2. When
all the runs of a timed automaton A satisfy a property φ, we write A |= A φ. In
the following, the proposed notions of strategies and outcome are similar to the
setting of asymmetric concurrent games in [14].

2.4 Timed Games

Definition 3 (Timed Game Automaton [19]). A Timed Game Automa-
ton (TGA) G is a timed automaton with its set of transitions E partitioned
into controllable (Ec) and uncontrollable (Eu) transitions. We assume that a
controllable transition and an uncontrollable transition never share the same ob-
servable label. In addition, invariants are restricted to Inv : L → B′(X) where
B′ is the subset of B using constraints of the form x ≤ k, which is needed to
handle forced actions.

4

Given a TGA G and a control property φ ≡ A φ1 Ut φ2 (resp. A φ1 Wt φ2)
of ATCTL, the reachability (resp. safety) control problem consists in finding a
strategy f for the controller such that all the runs of G supervised by f satisfy
the formula. By “the game (G,φ)” we refer to the control problem for G and φ.

The formal definition of the control problems is based on the definitions of
strategies and outcomes. In any given situation, the strategies suggest to do a
particular transition e after a given delay δ. A strategy [19] is described by a
function that during the course of the game constantly gives information as to
what the players want to do, in the form of a pair (δ, e) ∈ (R≥0×E)∪{(∞,⊥)}.
(∞,⊥) means that the strategy wants to delay forever.

The environment has priority when choosing its actions: If the controller
and the environment want to play at the same time, the environment actually
plays. In addition, the environment can decide not to take action if an invariant
requires to leave a state and the controller can do so.

Assumptions. We consider only runs that are infinite and contain infinitely
many observable transitions. We assume that from every state, either a delay
action with positive duration or a controllable action can occur.

Definition 4 (Strategies). Let G = (L, l0, Σ,X,E, Inv) be a TGA. A strategy
over G for the controller (resp. the environment) is a function f from the set of
runs Runs((l0,~0), G) to (R≥0 × Ec) ∪ {(∞,⊥)} (resp. (R≥0 × Eu) ∪ {(∞,⊥)}).

We denote (δ(ρ), e(ρ))
def

= f(ρ) and we require that for every run ρ leading to a
state q,

– if δ(ρ) = 0 then the transition e(ρ) is possible from q.
– for all δ′ ≤ δ(ρ), waiting δ′ time units after ρ is possible and the augmented

run ρ′ = ρ
δ′

−→ (abusing notation) satisfies: f(ρ′) = (δ(ρ) − δ′, e(ρ)).

Furthermore, the controller is forced to play if an invariant expires, (and, by
assumption it can always play). This can be specified as follows: if no positive
delay is possible from q, then the strategy of the controller satisfies δ(ρ) = 0.

A strategy is called a memoryless strategy if it depends only on the last state
of a run. We assume only memoryless strategies.

The restricted behavior of a TGA G when the controller plays a strategy fc

and the opponent plays a strategy fu is defined by the notion of outcome.

Definition 5 (Outcome). Let G = (L, l0, Σ,X,E, Inv) be a TGA and fc,
resp. fu, a strategy over G for the controller, resp. the environment. The out-
come Outcome(q, fc, fu) from q in G is the (possibly infinite) maximal run

ρ = (ρ0, . . . , ρi, . . .) such that for every i ∈ N (or 0 ≤ i <
|ρ|
2 for finite runs),

– ρ2i = min{δc(ρ0, . . . , ρ2i−1), δu(ρ0, . . . , ρ2i−1)}

– ρ2i+1 =

{

eu(ρ0, . . . , ρ2i) if δu(ρ0, . . . , ρ2i) = 0
ec(ρ0, . . . , ρ2i) otherwise

A strategy fc for the controller is winning in the game (A,A φ) if for every
fu, Outcome(q0, fc, fu) satisfies φ. We say that a formula φ is controllable in A,
and we write A |= A φ, if there exists a winning strategy for the game (A,A φ).

5

3 Playing Games with Timed Games

In this section we let A and B be two timed game automata. We want to find
conditions that ensure that any property of ATCTL that is controllable in B is
also controllable in A.

In the context of model-checking, simulation relations allow us to verify some
properties of a concrete model using a more abstract version of the model, after
checking the fact that the abstract model simulates the concrete one.

Here we are also considering the more general problem of controller synthesis:
Some actions are controllable (the models A and B are TGA) and we want to
use an abstraction of the model to build controllers for some properties of the
concrete model. For this we define weak alternating simulation relation, such
that if A ≥ B, then any property of ATCTL that is controllable in B is also
controllable in A.

3.1 Weak Alternating Simulation

We define weak alternating simulation relation as a relation R between the states
of A and those of B such that if (qA, qB) ∈ R, then every property that is con-
trollable in B from qB is also controllable in A from qA. Thus every controllable
transition that can be taken from qB must be matched by an equally labeled
controllable transition from qA. And on the other hand, every uncontrollable
transition in A tends to make A harder to control than B; then we require that
it is matched by an equally labeled uncontrollable transition in B.

Progress of time. It is necessary to check that if the controller of B is able to
avoid playing any action during a given delay, then the controller of A is able
to do the same. To understand why this is required, think of a control property
where the goal is simply to reach a given time without playing any observable
action, unless the environment plays an uncontrollable action. If the controller
of B is able to wait, then it has a winning strategy for this property. So the
controller of A must be able to win too.

Symmetrically, we should in principle check that if the environment of A is
able to avoid playing any action during a given delay, then the environment of
B is able to do the same. Actually this property does not need to be checked
since, by assumption, the environments are never forced to play.

τ actions. We consider the case when there are no τ transitions in the model
A. It is a natural limitation, because abstract models usually do not have any
invisible behavior. Besides that, permitting the τ transitions in A complicates
the definition and the computation of the corresponding simulation relation,
because in this case any delay in B can be matched by a series of delays in A

separated by τ transitions.
Model B can contain τ transitions. Controllable τ transitions in B don’t have

to be matched in A, but the state, which is reachable by controllable τ transi-
tion from qB , should be still simulated by qA. Additionally any uncontrollable

6

observable transition in B is allowed to be preceded by a finite amount of un-
controllable τ transitions. The last point makes our simulation weaker (i.e. more
pairs of models satisfy our definition) but still preserves the observable features.

Definition 6 (Timed Weak Alternating Simulation). A weak alternating
simulation relation between two TGAs A = (LA, lA0, Σ \ {τ},XA, EA, InvA)
and B = (LB , lB0, Σ,XB , EB , InvB) is a relation R ⊆ QA × QB such that
(q0A, q0B) ∈ R and for every (qA, qB) ∈ R and for every observable action a

– (qB
τ
−→c q′B) =⇒ ((qA, q′B) ∈ R) (τ action)

– (qB
a
−→c q′B) =⇒ ∃q′A (qA

a
−→c q′A ∧ (q′A, q′B) ∈ R) (controllable)

– (qA
a
−→u q′A) =⇒ ∃q′B (qB

τ∗
−→u

a
−→u q′B ∧ (q′A, q′B) ∈ R) (uncontrollable)

– (qB
δ
−→ q′B) =⇒ ∃q′A (qA

δ
−→ q′A ∧ (q′A, q′B) ∈ R) (delay)

We write A ≥ B if there exists a weak alternating simulation relation between
A and B.

Theorem 1. If A and B are two timed games such that A ≥ B, then for every
formula A φ ∈ ATCTL, if B |= A φ, then A |= A φ.

Proof (Proof Outline). We show how to build a winning strategy fc
A for the

controller in A from a winning strategy fc
B for the controller in B using the

relation R. The strategy fc
A that we build is such that for every strategy fu

A

for the environment in A, there exists a strategy fu
B (that we build also from

fu
A using R) such that the outcome of fu

A and fc
A in A matches the outcome

of fu
B and fc

B in B (w.r.t. the observations) and one can play the two games
simultaneously such that all along the plays the current state qA in A is related
by R to the current state qB in B.

The strategy fc
A is built by playing a fake game in B that imitates (w.r.t R)

the game in A.

– When the environment of A plays a transition, play an equally labeled un-
controllable transition in the fake game B such that the states in A and B

are still related by R.
– When the controller of A plays an observable transition, play an equally

labeled controllable transition in the fake game B such that the states in A

and B are still related by R.
– Otherwise let time elapse in B as it elapses in A.

The rest of the proof consists in showing that the strategy fc
A is well defined,

i.e. the required actions are possible. This is done by induction on the length of
the finite runs of the games.

Like the case of untimed weak simulation, timed weak simulation doesn’t
respect the branching structure of the models [20]. Thus if we allow nested
quantifiers in the considered logic ATCTL, then weak timed simulation will not
preserve the satisfiability of its formulas.

7

In the current paper we don’t study a characterization of timed alternating
simulation in terms of logic, it is planned for a future work.

Theorem 1 can be used to show that all the formulas that are uncontrollable
for the abstract model A are also uncontrollable for the concrete model S (by
checking S ≥ A). However, if we want to show that all the formulas controllable
in A are also controllable in model S that contains invisible behaviour, then
we can’t apply theorem 1 straightforwardly. For this case we can check the
simulation between the inverted models according to the following theorem:

Theorem 2. If TGAs A′ and B′ are obtained from TGAs A and B by replacing
controllable transitions by uncontrollable transitions and vice versa (i.e. Ec

B′ =
Eu

B, Eu
B′ = Ec

B, Ec
A′ = Eu

A, Eu
A′ = Ec

A) and B′ ≥ A′, then for every formula
A φ ∈ ATCTL, if B |= A φ, then A |= A φ.

3.2 Simulation Checking Game

In this section we consider the task of checking weak alternating sim-
ulation between TGAs A = (LA, lA0, Σ \ {τ},XA, EA, InvA) and B =
(LB , lB0, Σ,XB , EB , InvB), i.e. A ≥ B. We assume that LA ∩ LB = ∅ and
XA ∩ XB = ∅.

There is an uncontrollable τ loop in TGA M iff there is a reachable state

q ∈ QM such that q
τ+
−−→u q. We assume that there are no uncontrollable τ loops

in B.
We use one of the well known methods of checking simulation relations.

The method reduces the simulation checking task to the task of solving a two-
players game [15]. In this game one player, Spoiler, tries to put the models in
an inconsistent state by taking controllable transitions in B and uncontrollable
in A. The other player, Duplicator, tries to prevent Spoiler from doing that by
repeating Spoiler’s transition in the opposite model. The simulation checking
game is infinite for our case because the state spaces of the original models are
infinite. Therefore we solve our game using symbolic methods.

Definition of Simulation Checking Game. The simulation checking game
is turn-based, which means that in each game state only one player is allowed
to make a move. The game states are represented by the tuples (lA, lB , Z, a),
where lA ∈ LA, lB ∈ LB , a ∈ {⊥} ∪ Σ \ {τ} and Z ⊆ RXA∪XB

≥0 . All the game
states (lA, lB , Z, a) such that a = ⊥ are states of the player Spoiler and we
use the shorthand (lA, lB , Z)S for identifying them. All other states belong to
player Duplicator and we’ll use the shorthand (lA, lB , Z, a)D for them. We use
the function Type() which given a game state as an input returns its owner. We
use an abbrevation Z(S) for the third component of a game state S.

For two game states S1 and S2 we write S1 → S2 if there is a game transition
from S1 to S2. The game transition relation is constructed as follows:

– (lA, lB , Z)S → (lA, l′B , Z ′)S iff e = (lB , g, τ, Y, l′B) ∈ Ec
B and Z ′ =

Poste(Z)ր ∩ [[InvB(l′B)]]

8

– (lA, lB , Z)S → (lA, l′B , Z ′, a)D iff e = (lB , g, a, Y, l′B) ∈ Ec
B , a 6= τ and Z ′ =

Poste(Z)
– (lA, lB , Z)S → (l′A, lB , Z ′, a)D iff e = (lA, g, a, Y, l′A) ∈ Eu

A and Z ′ =
Poste(Z)

– (lA, lB , Z, a)D → (l′A, lB , Z ′)S iff e = (lA, g, a, Y, l′A) ∈ Ec
A, Z ′ =

Poste(Z)ր ∩ [[InvB(lB)]]
– (lA, lB , Z, a)D → (lA, l′B , Z ′)S iff e = (lB , g, a, Y, l′B) ∈ Eu

B , Z ′ =
Poste(Z)ր ∩ [[InvB(l′B)]]

– (lA, lB , Z, a)D → (lA, l′B , Z ′, a)D iff e = (lB , g, τ, Y, l′B) ∈ Eu
B , Z ′ = Poste(Z)

Remind that observable controllable and uncontrollable transitions of one
model never share the same label, thus controllable transition in B can’t be
matched by uncontrollable transition in B and uncontrollable transition in A

can’t be matched by controllable transition in A.
Consider the initial game state S0 = (lA0, lB0, {~0}

ր∩ [[InvB(lB0)]])S . The set
of all game states, which are reachable from S0 by the game transition relation,
is finite and can be built by forward exploration.

For each game transition α = (S′ → S′′) we store the transition e of one of
the models, which has been used in it. It allows us to define function Predα :
2Z(S′′) → 2Z(S′) (resp. Postα : 2Z(S′) → 2Z(S′′)), such that it returns the set of
all the predecessors (resp. successors) of Z ′′. For instance if α = (S′ → S′′) is a
transition of the first type, in which transition e of the model B has been used,
and Z ′′ ⊆ Z(S′′), then Predα(Z ′′) = Z(S′) ∩ {(sA, sB)|(sA, s′B) ∈ Z ′′ ∧ sB ∈
Prede(s

′
B)}.

The fourth (delay) requirement of the simulation definition is not presented in
the game rules, because this requirement can be checked by player Spoiler alone
and thus he can modify the set of concrete winning states without interacting
with Duplicator.

As it has been mentioned before model B is not allowed to have uncontrol-
lable τ loops. It makes sense for the transitions of the last type because otherwise
Duplicator could move along such a loop forever and thus win even if there is
no simulation. Conservative static analysis can be used to detect τ loops before
running simulation checking algorithm.

Simulation-checking games for finite-state automata are finite and thus can
be solved by back-propagating the set of game states which are known to be
winning for Spoiler [15]. In our case each game state S includes a possibly
infinite set of clock valuations Z(S), some of them are winning for Spoiler. We
use function Win(S) ⊆ Z(S) to store them.

Definition 7. Let us say that function Win defines the set of winning states of
the player Spoiler, if the following requirements are fulfilled:

– if Type(S) = Spoiler and S = (lA, lB , Z)S, then

Win(S) = Z(S) ∩
(

Z(S) ∩
(

¬[[InvA(lA)]] ∪
⋃

α=S→S′ Predα(Win(S′))
)

)ց

,

– if Type(S) = Duplicator, then
Win(S) = Z(S) \

⋃

α=S→S′ Predα(Z(S′) \ Win(S′)),

9

– Win is the least such function according to the preorder f ≤ g ≡ ∀S(f(S) ⊆
g(S)).

The first point of this definition stands for the fact that Spoiler wins in a
state of the concrete game if the invariant of A is violated or if he can delay
and move to some other winning state. The second point means that Duplicator

loses in a state of concrete game if he can’t move to some other game state,
which is winning for him.

Theorem 3. For every two models A and B there is one and only one function
Win, such that it satisfies definition 7.

Theorem 4. Let Win be a function which satisfies definition 7. Then A simu-
lates B with respect to weak alternating simulation iff ~0 6∈ Win(S0).

Solving Simulation Checking Game Our goal is to build the function Win

which defines the set of winning states for Spoiler, and then checks whether
Spoiler wins in the initial state. We can do it by firstly building game graph in
the forward manner and than back-propagating the values of the Win function.
If we use this approach, we have to build the entire game graph even if there is
no simulation and it can be proved after a few steps. To avoid this we develop
an efficient on-the-fly algorithm based on the algorithm for solving timed games
[9]. This algorithm combines forward exploration of a state-space and backward
propagation of a winning set. Being on-the-fly, the symbolic algorithm may ter-
minate before having explored the entire state-space, i.e. as soon as a winning
strategy has been identified.

The symbolic on-the-fly algorithm for computing simulation-checking game
is given in Figure 1. The algorithm is based on a waiting-list, Waiting, of edges
in the game graph to be explored, and a passed-list, Passed, containing all the
symbolic states of the simulation-graph encountered so far by the algorithm.

For each explored game state S the symbolic representation of the set of
corresponding winning states is stored in Win[S] ⊆ Z(S). The set Depend[S]
indicates the set of predecessors of S which must be reevaluated when new
information about Win[S] is obtained. Each time when an edge e = (S, S′) is
considered with S′ ∈ Passed and Win[S′] (Z(S′) the edge e is added to the
dependency set of S′ in order that possible future information about additional
winning states within S′ may also be back-propagated to S.

There is a major difference between the original algorithm [9] and the deriva-
tive algorithm, presented in this paper. The function Predt(X,Y) has been used
in the original algorithm for back-propagation of winning states. It returns the
set of the states, from which we can reach X by time elapsing and along the
path we avoid Y . The simulation-checking game is turn-based, it means that in
each game state only one player can make a move. Thus the set of the states to
be avoided during the back-propagation is empty and the past operator (Xց)
can be used instead of the Predt(X,Y) function. The Predt(X,Y) function is
more expensive to compute than operator Xց (when Y is nonempty).

10

Initialization:

S0 = (lA0, lB0,~0
ր ∩ [[InvB(lB0)]]))S

Win[S0] = [[InvB(lB0)]] ∩ ([[InvB(lB0)]] ∩ ¬[[InvA(lA0)]])
ց

Waiting = {(S0, S)|S0 → S}
Depend[S0] = ∅
Passed = ∅

Main:

while ((Waiting 6= ∅) ∧ (~0 /∈ Win[S0])) do
(S, S′) = pop(Waiting)
ifS′ /∈ Passed then

Passed = Passed ∪ {S′}
Depend[S′] = {(S, S′)}
(lA, lB , Z, a) = S′

if Type(S′) = Spoiler

Win[S′] = Z(S′) ∩ (Z(S′) ∩ ¬[[InvA(lA)]])ց

else if {S′′|S′ → S′′} = ∅ then
Win[S′] = Z(S′)

else
Win[S′] = ∅

end if
Waiting = Waiting ∪ {(S′, S′′)|S′ → S′′}
if Win[S′] 6= ∅ then

Waiting = Waiting ∪ {(S, S′)}
else (* reevaluate *)

if Type(S) = Spoiler then

Win∗ = Win[S] ∪ (Z(S) ∩ (
S

α=S→S′′ Predα(Win[S′′]))ց)
else

Win∗ = Z(S) \
S

α=S→S′′ Predα(Z(S′′) \ Win[S′′])
end if
if Win∗ 6⊆ Win[S] then

Waiting = Waiting ∪ Depend[S]; Win[S] = Win∗;
end if
Depend[S′] = Depend[S′] ∪ {(S, S′)}

end if
end while

Figure 1. On-The-Fly Algorithm for Solving Simulation Checking Games

11

Theorem 5. The given algorithm terminates. Upon its termination there are
two possible situations:

– ~0 ∈ Win[S0] is fulfilled and A doesn’t simulate B

– Win defines the set of winning states of Spoiler in the simulation checking
game

It follows from the theorem 1 that A simulates B if and only if ~0 6∈ Win[S0]
upon termination of the given algorithm.

3.3 Handling forced transitions

If we remove the assumption that a controller can always make a transition, then
it will be possible for a model to come to a state where an invariant has expired
and only an environment is able to play. We consider infinite runs only and thus
environment will be forced to play in this case. Theorem 1 is not valid for models
with such kind of forced transitions. However this special case can be handled
by complementing these uncontrollable transitions by controllable transitions
which are enabled only when the invariants of their source states expire. From a
controllability point of view the transformed models are equivalent to the original
models. Thus it is correct to apply theorem 1 to transformed models to prove
that all the ATCTL formulas that are controllable for one model with forced
environment transitions are also controllable for the other model.

3.4 Handling unobservable transitions

Consider the task of checking whether A ≥ B. In the current paper A is not
allowed to have any τ transitions. This restriction seems to be reasonable because
A is typically an abstraction and doesn’t contain any invisible activity. If this
restriction is removed, then the simulation relation is more complex to define
and to compute, because in this case we have to allow to match one delay in
B by series of delays and τ transitions in A. For instance, the delay for 2 time
units in B could be matched in A by delay for 1 time unit, τ transition to some
other state and than again by delay for 1 time unit in that state. This makes
it impossible to apply the proposed algorithm and more complex to develop the
appropriate one.

4 Experimental Results

The problem of timed controllability under partial observability has been studied
in the paper [13]. In this task a controller has only imperfect or partial informa-
tion on the state of the system. This imperfect information is given in terms of
a finite number of observations on the state of the system. The controller can
only use such observations to distinguish states and base its strategy on.

12

Figure 2. Concrete model of a box (left) and abstract model (right).

In paper [12] we showed that this problem can be solved by generating con-
troller strategy for an abstract and fully observable model and proving that this
abstract model simulates the original one.

We use the same model as we used in the case study in the paper [12]. A box
is placed on a moving conveyor belt to reach a place where it is filled. The box
has to go through a number of steps, that is a parameter N in the model. Each
step takes a variable duration (0 to 1 time unit); consequently, the exact time
when the box arrives in the state Ready is unknown. And the box might stay
only N + 3 time units in the state Ready.

Thus the challenge for the controller is to fill the box while it is in the state
Ready. This would be easy if the controller observes the progress of the box on
the conveyor belt. But we assume precisely that this is not the case. Then the
controller has to fill the box at a time where it is sure that the box is in the state
Ready, however the box has progressed on the conveyor belt.

Figure 2 (left part) shows a model of the system as a timed game automaton.
The loop represents the progress on the conveyor belt, incrementing the variable
pos, which represents the position on the belt. We therefore introduce a fully
observable, abstract model, shown in Figure 2 (right part). In both models all
the transitions are non observable except transitions which end at the states Win
and Loose, and they are marked by fill and remove actions correspondingly.
We can use Uppaal-Tiga to check this model for controllability. To guarantee
that the strategy obtained from this abstract model also correctly controls our
original concrete model we use proposed algorithm to establish a timed weak
alternating simulation between the two models and apply theorem 2.

We have checked the simulation between the abstract and the concrete model
for different values of N using the algorithm proposed in the current paper and
using the algorithm proposed in the paper [12]. Table 1 shows the execution time
obtained experimentally for these two algorithms. It could be seen that the new
algorithm is better than the old one as it checks the simulation relation in linear
time, while the timed game obtained using the old method is solved only in
quadratic time. The main reason for that is that we avoid computing expensive
Predt function, as we are using turn-based simulation checking games.

13

proposed algorithm

N time (in seconds)

1000 0.051
2000 0.098
3000 0.147
4000 0.196
5000 0.247
6000 0.304
7000 0.356
8000 0.411
9000 0.468
10000 0.525
15000 0.805
20000 1.085

reduction-based algorithm [12]

N time (in seconds)

100 0.3
200 0.9
300 2.0
400 3.5
500 5.4
600 7.7
700 10.4
800 13.6
900 17.1
1000 21.1

Table 1. Experimental results

5 Conclusion

In the current paper weak alternating timed simulation has been defined which
preserves controllability w.r.t. ATCTL. We have proposed the algorithm for
checking this simulation by finding a winning strategy in a symbolic two-players
simulation checking game.

We showed that this simulation checking game can be solved using a modifi-
cation of the on-the-fly algorithm, proposed in the paper [9]. We have exploited
the fact that our simulation-checking game is turn-based, i.e. in each game state
only one player is permitted to make a move. It made it possible to use more
effective algorithm than the original algorithm for solving arbitrary timed games.

The proposed algorithm has been implemented as a part of the tool Uppaal-

Tiga. It has a user-friendly GUI and a user is allowed to play a simulation
checking game against the tool to find the reason for the simulation to be fullfilled
or to be not fulfilled.

We compared the algorithm proposed in the current paper with the algorithm
proposed in the paper [12] and demonstrated that the new algorithm performs
better than the old one.

The methods developed in this paper allow user to check for refinement
of timed models, which can be useful in CEGAR-like approaches or iterative
development of models.

References

1. Y. Abdeddäım, E. Asarin, M. Gallien, F. Ingrand, C. Lessire, and M. Sighireanu.
Planning Robust Temporal Plans A Comparison Between CBTP and TGA Ap-
proaches. In Proceedings of the International Conference on Automated Planning
and Scheduling International Conference on Automated Planning and Scheduling
(ICAPS’07). AAAI, September 2007.

14

2. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Inf.
Comput., 104(1):2–34, 1993.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. R. Alur, Th. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
In FOCS, pages 100–109, 1997.

5. R. Alur, Th. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In CONCUR, volume 1466 of LNCS, pages 163–178. Springer, 1998.

6. G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review, 2005.

7. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
Lecture Notes in Computer Science, pages 87–124, New York, NY, USA, 2004.
Springer.

8. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
model-checking tool for real-time systems. In CAV, volume 1427 of LNCS, pages
546–550, 1998.

9. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR, volume 3653 of LNCS,
pages 66–80, 2005.

10. K. Cerans. Decidability of bisimulation equivalences for parallel timer processes.
In CAV, volume 663 of LNCS, pages 302–315. Springer, 1992.

11. K. Cerans, J. C. Godskesen, and K. G. Larsen. Timed modal specification – theory
and tools. In CAV, volume 697 of LNCS, pages 253–267. Springer, 1993.

12. T. Chatain, A. David, and K.G. Larsen. Playing games with timed games. Research
Report LSV-08-34, Laboratoire Spécification et Vérification, ENS Cachan, France,
December 2008. 15 pages.

13. A. David, F. Cassez, K. G. Larsen, D. Lime, and J.-F. Raskin. Timed control
with observation based and stuttering invariant strategies. In 5th International
Symposium on Automated Technology for Verification and Analysis (ATVA 2007),
Lecture Notes in Computer Science. Springer, 2007.

14. Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and
Mariëlle Stoelinga. The element of surprise in timed games. In CONCUR 2003 -
Concurrency Theory, volume 2761 of LNCS, pages 144–158, 2003.

15. K. Etessami, T. Wilke, and R.A. Schuller. Fair simulation relations, parity games,
and state space reduction for buchi automata. In SIAM Journal on Computing,
volume 34, pages 1159–1175, 2001.

16. H. E. Jensen, K. G. Larsen, and A. Skou. Scaling up Uppaal automatic verification
of real-time systems using compositionality and abstraction. In FTRTFTS, volume
1926 of LNCS, pages 19–30. Springer, 2000.

17. J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David. Guided controller
synthesis for climate controller using uppaal-tiga. In Proceedings of the 19th
International Conference on Formal Modeling and Analysis of Timed Systems,
number 4763 in LNCS, pages 227–240. Springer, 2007.

18. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Journal of Software
Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

19. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS, volume 900, pages 229–242. Springer, 1995.

20. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. J. ACM, 43(3):555–600, 1996.

21. C. Weise and D. Lenzkes. Efficient scaling-invariant checking of timed bisimulation.
In STACS, volume 1200 of LNCS, pages 177–188, 1997.

15

