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Abstract. This paper deals with targeted testing of timed systems with
uncontrollable behavior. The testing activity is viewed as a game between
the tester and the system under test (SUT) towards a given test purpose.
The SUT is modeled as Timed Game Automaton and the test purpose
is specified in Timed CTL formula. We can employ a timed game solver
UPPAAL-TIGA to check if the test purpose is ture w.r.t. the model,
and if yes, to generate a winning strategy and use it for black-box con-
formance testing. Specifically, we show that in case the checking yields a
negative result, we can still test the SUT against the test purpose as long
as the SUT reacts to our moves in a cooperative style. We present an
operational framework of cooperative winning strategy generation, test
case derivation and execution. The test method is proved to be sound and
complete. Preliminary experimental results indicate that this approach
is applicable to non-trivial uncontrollable timed systems.

1 Introduction

In the field of model-based testing of real-time systems [5][7][9][16][11][8][13][3][12]
[15], a considerable proportion of work [7][9][16][11][8][13][3][12] employ timed
automata or TTS to model the systems. Among them some make the assump-
tions that the system TA model is deterministic, output-urgent and has isolated
outputs [7][16][8]. “Output-urgent” means that if the system can produce an
output, then it should be produced immediately. “Isolated output” means that
anytime when the system can produce an output, it cannot accept inputs and
cannot produce a different output. These three assumptions contribute to the
testability property [16] of timed automata by ensuring that given an input se-
quence fragment there is only one output emitted at a precise point in time,
or lifted a little higher, by making it possible for an environment to “drive” a
timed automaton through all of its transitions. However, in many cases these
assumptions are unnecessarily strong. For example in the simple Smart Light
problem [8], the light model with output-urgency and isolated outputs (see Fig.
2) is too demanding in the sense that we should have one TA node exclusively
for producing each output, and we should have strict timing of the output.
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Fig. 2. Controllable TA of the light.

In this paper we aim to cancel the assumptions of determinism, isolated
outputs and output-urgency, and present a test method for uncontrollable timed
systems, i.e., systems with non-deterministic choices, uncontrollable outputs and
timing uncertainty of outputs. By “uncontrollable outputs” we mean that it is
the system under test (SUT) rather than the tester that determines whether or
which one of the several possible outputs will occur. By “timing uncertainty of
outputs” we mean that the SUT can produce an output during a certain time
interval rather than only at a fixed time point, or in other words, the timing of
outputs is unpredictable by the tester. The benefits of permitting uncontrollable
behavior in the system models include allowing the implementors some freedom,
providing the tester with high-level or abstract requirements, and yielding more
natural and succinct models.
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Fig. 3. TIOGA of an ideal light.
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Fig. 4. TIOGA of a problematic light.

Systems with non-determinism, uncontrollable outputs and timing uncer-
tainty of outputs may be modelled as timed game automata (TGA) [14], which
is a variant of TA with their actions partitioned into controllable and uncon-
trollable ones. For example, Fig. 3 is a TGA of the light, where solid lines carry
controllable actions (inputs) and dotted lines uncontrollable actions (outputs).



In a timed control problem, a control program (or “controller”, e.g. Fig. 1)
actively offers inputs to and passively observes outputs from a plant that models
the system in question (e.g., Fig. 3). A run of the system involves a sequence
of controller-chosen stimuli and plant-produced reactions aiming to satisfy a
given test purpose (e.g., “location Bright can always be eventually reached”).
Therefore it can be viewed as a timed I/O game where the controller acts as
a player and the plant acts as the opponent. For a given control objective we
can possibly synthesize a control strategy, guided by which the control program
ensures that the plant will be operating in a desired manner and will thus fulfill
the control objective.

The problem of dense-time controller synthesis has been solved using back-
wards fix-point computation [14]. As an improvement a truly on-the-fly al-
gorithm [4] is proposed and has been implemented in the timed game solver
UPPAAL-TIGA [2], which checks whether a user-specified test purpose can be
satisfied by a TGA, and if so, it efficiently synthesizes a winning strategy for
that test purpose. Specifically, in this paper we address the problem that in case
an affirmative test purpose as above is checked to be false due to problematic
TIOGA model (see Fig. 4) or too strong test purpose, we can make a “retreat”
by relaxing the test purpose such that to some extent it requires cooperation
from the plant, say, “location Bright can always be eventually reached as long
as the system reacts to our moves in some desired manner”. We use UPPAAL-
TIGA to check whether this weakened test purpose can be satisfied, and if yes,
to synthesize a cooperative winning strategy. Since a (cooperative) strategy is a
step-by-step guidance towards the goal states of the model which fulfill the given
test purpose, it can be viewed as a test and used for conformance testing [6].

From a game point of view, testing of untimed systems has been discussed in
[18], but to our knowledge no such reported work for timed systems. Although
strategy synthesis is inherently much more expensive than some other approaches
to timed testing such as reachability analysis, the idea and method proposed in
this paper opens up the possibility of testing TA-modeled uncontrollable timed
systems towards a broader type of test purposes.

2 Test Setup

In this paper we endeavor to test whether a black-box system implementation
IMP complies with its specification SPEC with respect to some given test pur-
pose. As illustrated in Fig. 5, there are three steps in our testing framework:
game strategy generation, test case generation, and test execution.

2.1 Timed I/O Game Automaton

Let X be a finite set of real-valued clocks, then C(X) is the set of constraints
generated by grammar ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ, where k ∈ Z, x, y ∈X
and ∼ ∈ {<,≤,=,≥, >}.
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Fig. 5. The framework of strategy-based testing.

A timed automaton (TA) [1] is a tuple S = (L, l0, Act, X,E, Inv) where L is
a finite set of locations, l0 ∈ L is the initial location, Act is the set of actions, X
is a finite set of real-valued clocks, E ⊆ L× C(X)×Act× 2X × L is a finite set
of transitions, Inv : L → C(X) associates to each location its invariant.

In timed game automaton [14], actions are partitioned into controllable ones
and uncontrollable ones. Now we make a further assumption that all output
actions Actout are uncontrollable and all input actions Actin are controllable.

A timed I/O game automaton (TIOGA) is a timed automaton with its set of
actions Act partitioned into controllable actions Actc and uncontrollable actions
Actu such that Actc = Actin and Actu = Actout.

This paper uses the simple Smart Light problem [8] as an example. Fig. 1 is
a TA of the user or the “environment” of the light (the “controller”). Fig. 4 is a
“problematic” TIOGA of the light (the “plant”), where controllable actions (in
solid lines) model the inputs from the controller to the plant, and uncontrollable
actions (in dotted lines) model the outputs from the plant to the controller.
The user interacts with the light by touching a touch-sensitive pad. In Fig. 4,
there are three brightness levels for the light: Off, Dim and Bright. The light is
initially in location Off. There are uncontrollable behavior in L1, L2, . . . , L6.

The semantics of a TA or a TIOGA S = (L, l0, Act, X, E, Inv) is defined
as a timed I/O transition system (TIOTS) (S, s0, Actin, Actout,→), where S ⊆
L × RX is the set of semantic states of location and clock vector, s0 = (l0, 0)
is the initial state, and →⊆ S × (Actin ∪ Actout ∪R≥0)× S satisfies the sanity
constraints of time determinism and time additivity.

Let s ∈ S, and α ∈ (Act ∪R≥0). If ∃s′ ∈ S.s
α−→ s′, we write s

α−→. Here α
can be extended to strings of actions and time delays.

A timed trace σ ∈ (Act ∪R≥0)∗ is of the form σ = d1a1d2a2 . . . akdk+1. We
define the set of timed traces of state s as: TTr(s) = {σ ∈ (Act ∪R≥0)∗|s σ−→}.

For a state s and a timed trace σ, we define the set of states that can be
reached after σ: s After σ = {s′|s σ−→ s′}. If the set is a singleton, then we
just denote it as the target state. The set of (immediately) observable outputs
or delays at state s is defined as: Out(s) = {a ∈ (Actout ∪ R≥0)|s a−→}. These
two definitions can be extended to sets of states as usual.

A run of a TIOGA S is a timed trace in its TIOTS. We use Runs(s,S) to
denote the set of all runs of S that start from s ∈ S. Let Runs(S) = Runs(s0,S).
If σ is a finite run, then last(σ) denotes the last semantic state of σ.



In this paper we only impose the “strong input-enabledness” restriction on
the TIOGA model of the plant. In particular we do not require the plant model to
be deterministic, or output-urgent (thus allowing timing uncertainty of outputs),
or have isolated outputs (thus allowing uncontrollable outputs). Such a TIOGA
is called an uncontrollable TIOGA, and its corresponding TIOTS is called an
uncontrollable TIOTS.

The parallel compositions of several TIOGA (TA) or several TIOTS’s can be
defined in the usual manner.

2.2 Timed Conformance Relation

Definition 1 (Timed Input-Output Conformance relation, tioco [12]). Let
i, s ∈ S be two states of a TIOTS. The timed input-output conformance relation
tioco between i and s is defined as:

i tioco s iff ∀σ∈TTr(s).(Out(i After σ) ⊆ Out(s After σ)).

As test hypothesis we assume that the behavior of the IMP can be modelled
by a TIOTS I, which has the same sets of input actions Actin and output
actions Actout as the specification TIOGA S. Let the initial state of I be i0, and
the initial semantic state of S be s0. If i0 tioco s0, we say that I is a correct
implementation of the specification, denoted I tioco TIOTS(S). Furthermore, I
is assumed to be deterministic and controllable.

We can also use other timed versions of Tretmans’ ioco relation [17][11][13][15].

2.3 Test Purpose

We aim to conduct targeted rather than comprehensive testing of whether an
IMP conforms to a SPEC, thus we use a test purpose [10]. In this paper, we
use annotated Timed CTL formulas to specify test purposes, e.g., control: A 〈〉
Bright means that whatever uncontrollable outputs the system may produce
according to the SPEC model, we can always choose to trigger input transition
or to delay such that the system is guaranteed to reach the goal location Bright.
In the weakened case we write E 〈〉 control: A 〈〉 Bright, which means that we can
always be guided to reach Bright as long as the system is willing to cooperate
with us by producing outputs in some desired manner.

3 Cooperative Winning Strategy

A reachability control problem is that given a TIOGA S and a set of goal states
K of its corresponding TIOTS, we should find a game strategy f such that S
supervised by f can reach some states in K. If a state in K is reached, then the
play of the game is said to be winning.

A strategy f is a function that during the course of a timed game constantly
gives information as to what the player (the “controller”) should do in order
to win the game against the opponent (the “plant”). At a given state of the



run, the player can be guided either to offer a particular input and bring it to a
particular state, or to do nothing at this time point and just wait (denoted “λ”).

When a test purpose ϕ is checked to be true, then there must exist a winning
strategy for ϕ. A strategy being winning means that if the controller acts strictly
according to what the strategy suggests, then whatever responses the plant might
make, the behavior of the plant will satisfy the test purpose.
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Fig. 6. Playing games with cooper-
ative winning strategies.

When a test purpose ϕ is checked to
be false, then there does not exist a win-
ning strategy. For example in the TIOGA
of Fig. 4, there is no winning strategy for
control: A 〈〉 Bright. A case in point is
that in L5 we might be constantly brought
back to Off. For this negative case, we
make a “retreat” by assuming that the op-
ponent is not too “hostile”. The basic idea
is that in order to reach the goal states,
we hope that the opponent reacts in favor
of us.

The principle of playing games with a
cooperative winning strategy is illustrated
in Fig. 6. The state space of the timed
game is partitioned into three areas: the
winning “safe zone”, the possibly winning zone, and the losing “no-hope zone”.
For the weakened test purpose in Section 2.3, it means that if the opponent is
willing to cooperate, then we can possibly reach a state, from which the goal
location Bright is always eventually reachable (the “safe zone”).

Definition 2 (Cooperative Strategy). Let S = (L, l0, Act, X,E, Inv) be a
TIOGA, (S, s0, Actin, Actout,→) be its TIOTS, and → = →in ∪→out ∪→d. A
cooperative strategy f over S is defined as a partial function:

f : S → {coop}×(→in ∪ →out ∪ {λ}) ∪ {winning}×(→in ∪ {λ}).
The projection function fstg indicates which stage (“cooperative” or “win-

ning”) f is currently in, and fmov denotes the suggested or desired move of f .
For transition t ∈ →\→d, let ev(t) be the event, and tgt(t) be the target state.
In the cooperative stage, if a strategy-desired output occurs as expected, then
the opponent is said to be cooperating, otherwise the strategy is violated.

Definition 3 (Supervised Run). Let S = (L, l0, Act, X, E, Inv) be a TIOGA
and f a cooperative strategy over S. Let s be a state in the TIOTS of S. The
f -supervised runs of S from s is a subset SupRuns(s, f) ⊆ Runs(s,S) defined as:

– s ∈ SupRuns(s, f),
– σ′ = (σ e−→ s′) ∈ SupRuns(s, f) if σ ∈ SupRuns(s, f), σ′ ∈ Runs(s,S) and

one of the following three conditions holds:
• e ∈ Actu and ((fstg(last(σ)) = winning)∨ ((fstg(last(σ)) = coop)∧ (e =

ev(fmov(last(σ)))))),



• e ∈ Actc and e = ev(fmov(last(σ))),
• e ∈ R≥0 and ∀e′ ∈ [0, e).∃s′′ ∈ S.((last(σ) e′−→ s′′) ∧ (fmov(s′′) = λ)),

– σ ∈ SupRuns(s, f) if σ is an infinite run whose finite prefixes are all included
in SupRuns(s, f).

Given a TIOGA S = (L, l0, Act, X, E, Inv) and a set of goal states K ⊆
L×RX of its corresponding TIOTS, let (S,K) be a reachability game. A maxi-
mal run σ is either an infinite run, or a finite run such that either last(σ) ∈ K,
or (last(σ) /∈ K)∧ ((last(σ) α−→) ⇒ (α = 0)). A finite or infinite run σ = s0

α0−→
s1

α1−→ . . . sn
αn−→ . . . is winning if ∃k ≥ 0.(sk ∈ K). A run σ is losing if σ is max-

imal and ∀0 ≤ k ≤ min{index(last(σ)),∞}.(sk /∈ K). The set of all maximal
runs starting from state s is denoted by MaxRuns(s), and the set of all winning
runs starting from state s is denoted by WinRuns(s,S,K).

Definition 4 (Cooperative Winning Strategy). Let S = (L, l0, Act, X, E, Inv)
be a TIOGA, f a cooperative strategy over S, and s a state in the TIOTS of S.
We say f is winning from state s if MaxRuns(s)∩SupRuns(s, f) ⊆ WinRuns(s,S, K).
If f is winning from s0, then f is called a cooperative winning strategy.

For the TIOGA in Fig. 4 and the weakened test purpose E 〈〉 control: A 〈〉
Bright, UPPAAL-TIGA automatically generates a cooperative winning strat-
egy, as is shown in Fig. 7, where the strategy-desired outputs are in dotted lines.

Usually there exists more than one cooperative winning strategy for the same
TIOGA and weakened test purpose. We use Strategy(S, ϕ) to denote the set of
all cooperative winning strategies for TIOGA S and weakened test purpose ϕ.

Fig. 7. An example cooperative winning strategy.



4 Test Case Generation

A test case for uncontrollable reactive systems should be adaptive rather than
streamlined, thus it should have a tree structure rather than be just a linear
I/O sequence. Note that a cooperative winning strategy neither drives the test
execution nor issues test verdicts. To have more operational tests, we define a
test case as a tree-like TA which permits non-reset clock assignments, and we
derive this TA from the TIOGA model S and the strategy f .

Given a TA location l, we use outgoing(l) to denote the set of output actions
originating from l. Given a state s in the TIOTS of a TA, we use location(s) to
denote the corresponding location of s in the TA.

Definition 5 (Test Case). A test case is a TA T = (Lt, l0t, Act, Xt, Et, Invt)
where Lt is a set of locations containing those marked pass, fail and inconc, which
are all the terminal nodes, l0t ∈ Lt is the initial location, Act = Actin ∪ Actout,
Xt is a set of clocks, Invt associates to each location its invariant, and Et is the
transition relation such that:

– T is deterministic,
– T has bounded behavior, i.e., ∀σ = σ1σ2σ3 . . . ∈ Runs(T ).∃n > 0.(|{i|σi ∈

Actin ∪Actout}|<∞ ∧ (Σ{σi|σi ∈ R≥0}) < n),
– ∀lt ∈ (Lt\{pass, fail, inconc}).∀α ∈ Actout.(α ∈ outgoing(lt)).
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Fig. 8. An example test case TA.

The basic idea of test case
generation is to keep looking up
the generated cooperative winning
strategy and the SPEC model to
decide when to make what move
against the IMP in (forthcoming)
test execution, and which decision
(pass, fail, inconc, or to continue
on by recursively building the test
tree) to make upon every possibly
observed output from IMP.

Let s be a semantic state of S,
s0 be the initial state. We use w =
width(fmov(s)) to denote the width
of the observing window of the next
move according to the strategy. Let
x ∈ Xt be a unique clock variable
for recording the timing constraints
in f and for building invariants and
transitions in the test case TA. We use another unique clock variable h ∈ Xt to
record the time when a strategy-desired output happens. A location lt of the test
case TA is called a conditional branching location if at this location the branching
is based on the just-recorded occurrence time h of an output action. Thus lt is
the destination location of the transition of an observed output. Algorithm 4.1



Algorithm 4.1 TestCase(S, f)
Input: TIOGA specification S, cooperative winning strategy f ;
Output: a test case TA T ;
Initialization: w :=0; x :=0; h :=0; add node(s0);
Main: BuildTestCase(s0).
Procedure BuildTestCase(s) /*s: semantic state in S, node in T */

1: if s does not correspond to a conditional branching location then
2: w := width(fmov(s));
3: add invariant “x ≤ w” for node s in T ;
4: for each o ∈ Actout do /* to wake up on every possible output */
5: if o ∈ outgoing(location(s)) then
6: if the destination state of this transition is a goal state then

7: add edge(“s
o!−→ pass”); /* to add a node pass and an edge in T */

8: else if (fstg(s) = coop) ∧ (o 6= ev(fmov(s))) then /*not a desired output*/

9: add edge(“s
o!−→ inconc”);

10: else /* continue on by recursion on a conditional branching location */

11: add edge(“s
o!,h:=x,x:=0−→ s′”); s′ := (s After h) After o; BuildTestCase(s′);

12: else

13: add edge(“s
o!−→ fail”);

14: end for
15: case fmov(s) of /* to delay a period, offer an input, or observe an output */
16: “λ”:
17: if ((s After w) hits invariant of location(s)) ∧ (fmov(s After w) = λ) then
18: add edge(“s

x=w−→ fail”); /* acc. to semantics of forced actions */
19: else
20: add edge(“s

x=w,x:=0−→ s′”); s′ := s After w; BuildTestCase(s′);
21: “to offer input i”:

22: add edge(“s
x=w,i?−→ s′”); s′ := tgt(fmov(s After w)); BuildTestCase(s′);

23: “to observe output o”:
24: if (fstg(s) = coop) ∧ ({fmov(s)} ∩ →out 6= ∅) ∧ (no output happens) then
25: add edge(“s

x=w−→ inconc”);
26: end case
27: else /* s corresponds to a conditional branching location */
28: add invariant “x = 0” for s; /* an “urgent” location in T */
29: branching according to f and the value of h;
30: recursive calls of BuildTestCase();

End Procedure



sketches out the main idea of test case derivation. For space reasons we do not
elaborate on some tricky parts such as conditional branching and the choice of
a small parametric value of δ.

A key point of our test generation algorithm is the semantics of forced actions.
We adopt the following semantics: if a location invariant of the TIOGA is hit,
then we check whether there is some outgoing edge with enabled input action
leading to other location, or some self-looping edge with enabled input action
and clock resets. If there is no such edge, then we check whether there is some
outgoing edge with output action leading to other location, or some self-looping
edge with output action and clock resets. If there is also no such edge and the
strategy still suggests “delay” when hitting the invariant, then we report fail.

Because the (weakened) test purpose is proved to be satisfiable, the synthe-
sized (cooperative) winning strategy is of finite length and it guides us towards
the goal states, Algorithm 4.1 will always terminate. The complexity of this
recursive algorithm largely depends on the sizes of the strategy and the Act set.

Fig. 8 gives an example test case TA for the TIOGA in Fig. 4 and the
cooperative winning strategy in Fig. 7. There are two inconclusive nodes. The
node with invariant x == 0 is a conditional branching location.

5 Test Execution

Definition 6 (Test Execution). Let TIOTS(T ) = (T, t0, Actin, Actout,→t) be
the TIOTS of test case T , and assume the IMP may be modeled as another
TIOTS I = (I, i0, Actin, Actout,→i). The execution of I with T is modeled by
the synchronous parallel execution TIOTS(T )||I which is defined by the rules:

t
g1,α−→tt

′,i
g2,α−→ii

′

t||ig1∧g2,α−→ t′||i′
α∈Actin, t

α−→tt
′,i α−→ii

′

t||i α−→t′||i′ α∈Actout, t
d−→tt

′,i d−→ii
′

t||i d−→t′||i′
d∈R≥0

where t, t′∈ T , i, i′∈ I, and g1, g2∈ C(X).
A test run is a run of the product TIOTS(T )||I that leads to a state whose left

sub-state corresponds to a terminal node of T . Formally, σ ∈ Runs(TIOTS(T )||I)
is a test run if ∃i′ ∈ I.∃t′ ∈ T.((t0||i0 σ−→ t′||i′) ∩ (location(t′) = pass ∨
location(t′) = fail ∨ location(t′) = inconc)). In the pass case we say that I
passes test run σ. In the fail case we say that I fails σ. The inconc case indicates
neither passing nor failing. It simply means that we do not get cooperation and
are thus not assured of reaching the goal states.

Given I and T , if there is a failing test run of TIOTS(T )||I, then I fails T .
If every test run of TIOTS(T )||I is not failing, we say I passes T .

6 Soundness and Completeness

Let S = (L, l0, Act,X, E, Inv) be a TIOGA specification with Act = Actin ∪
Actout, TIOTS(S) be its corresponding TIOTS, I = (I, i0, Actin, Actout,→i) be
a TIOTS implementation, ϕ be a weakened test purpose such that S |= ϕ, and
Sf be the behavior of S that are constrained by strategy f , then we have:



Theorem 7 (Soundness): ∃f ∈ Strategy(S, ϕ).(I fails TestCase(S, f)) ⇒
I »»»tioco TIOTS(S).

Theorem 8 (Partial Completeness): ∃f1 ∈ Strategy(S, ϕ).(I »»»tioco Sf1) ⇒
∃f2∈Strategy(S, ϕ).(I fails TestCase(S, f2)).

7 Case Study

We consider a simple Leader Election Protocol (LEP) problem by Leslie Lam-
port, where we have one TIOGA for an arbitrary node (the “plant”), and two
TA for simulating all other nodes and a buffer with certain capacity (the “con-
troller”). The TIOGA has uncontrollable actions in the sense that in the plant
node a timeout ! event might occur after waiting for a certain period of time
without receiving “useful” messages, and an ignore! event might occur due to
loss of messages. More details can be found in a forthcoming technical report on
the authors’ homepages. We defined the following test purposes:

– TP1: control: A 〈〉 exists (i:BufferId) (inUse[i]==1)
– TP2: control: A 〈〉 (IUT.bufferInfo==1) and IUT.forward
– TP3: control: A 〈〉 forall (i:BufferId) (inUse[i]==1)

All these test purposes are checked to be false using UPPAAL-TIGA. How-
ever, all the weakened test purposes (prefixed with “E 〈〉”) are checked to be true.
We carried out the strategy generation experiments on an application server with
dual-core 2.4GHz CPU, 4096MB RAM and Suse Linux Enterprise Desktop. Ta-
ble 1 presents the performance results of CPU time overheads and the memory
consumptions, where / means “out of memory”. Each sub-column corresponds
to one parameter configuration, where n means that there are n nodes in the
protocol, and there is a message buffer of size n, and the maximum distance be-
tween any two nodes is limited to (n− 1). The table indicates that for some test
purposes, cooperative winning strategy generation for the LEP protocol with up
to 7 nodes takes less than 10 minutes and the memory consumption is not well
beyond our expectation considering the complexity of the problem. Since strat-
egy generation is the most computation intensive step in our test framework,
our testing method seems not to be only of theoretical value.

Table 1. Cooperative winning strategy generation for LEP with lossy channels.

Time (s) Memory (MB)
n=3 4 5 6 7 8 n=3 4 5 6 7 8

TP1 0.04 0.17 0.81 3.21 10.57 30.65 0.1 4.2 7.9 18.9 48.6 119.5
TP2 0.11 1.32 11.74 85.14 558.67 / 4.3 13.0 80.3 517.0 2958.9 /
TP3 3.22 75.56 / / / / 24.3 493.5 / / / /



8 Conclusions

We examine black-box conformance testing of uncontrollable timed systems us-
ing a cooperative game-based approach. We model the systems with Timed I/O
Game Automata and specify the test purposes with TCTL formulas. We gener-
ate cooperative winning strategies, derive test cases, and execute them on the
implementation. The test method is proved to be sound and complete w.r.t. the
test purpose. Preliminary experimental results indicate that it is a viable ap-
proach. This opens up the possibility of testing a broader type of properties on
uncontrollable TA models that are previously thought of as not testable.

Future work include: 1) more case studies for performance evaluation, test
effectiveness analysis and method scalability improvement; 2) generalizing state-
based strategy to history-based strategy; 3) implementing the test case genera-
tion and execution algorithm to build a fully automated strategy-based testing
environment; 4) strategy-based testing with partial observability.
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Appendix: Proof of Theorems in Section 6

The soundness property of the test method says that if there exists a failing test
run, then the system implementation does not conform to the system specifi-
cation. The partial completeness property of the test method says that if the
system implementation does not conform to the system specification with re-
spect to the specified weakened test purpose, then we can always find a failing
test run.

Let S = (L, l0, Act, X, E, Inv) be a TIOGA specification with Act = Actin ∪
Actout, TIOTS(S) be its corresponding TIOTS, I = (I, i0, Actin, Actout,→i) be
a TIOTS implementation, ϕ be a weakened test purpose such that S |= ϕ, and
Sf be the behavior of S that are constrained by strategy f , then we have:

Theorem 7 (Soundness): ∃f ∈ Strategy(S, ϕ).(I fails TestCase(S, f)) ⇒
I »»»tioco TIOTS(S).

Proof sketch: Let T = TestCase(S, f) and TIOTS(T ) = (T, t0, Actin, Actout,→t

). By (I fails T ) we know that ∃σ ∈ Runs(TIOTS(T )||I).∃i′ ∈ I.∃t′ ∈ T.(t0||i0 σ−→
t′||i′)∩(location(t′) = fail). From Algorithm 4.1 we know that there are two cases
of finishing with a fail verdict. The first case is that we observe an invalid output
w.r.t. S (lines 12-13 of Alg. 4.1). According to Definition 6 and Definition 1,
we conclude that I »»»tioco TIOTS(S). The second case is when we are hitting the
location invariant (lines 17-18). According to the forced semantics of controllable
and uncontrollable actions in this circumstance, there should be a forced output.
But unfortunately we have not observed it. Thus the conformance relation has
been violated. Therefore comes I »»»tioco TIOTS(S). ¤

Theorem 8 (Partial Completeness): ∃f1 ∈ Strategy(S, ϕ).(I »»»tioco Sf1) ⇒
∃f2∈Strategy(S, ϕ).(I fails TestCase(S, f2)).

Proof sketch: By (I»»»tioco Sf1) we know that there exists a timed trace σ such
that σ ∈ TTr(I) and σ /∈ TTr(Sf1) according to Definition 1. For simplicity, we
suppose σ ends with the first violation w.r.t. Sf1 . According to Algorithm 4.1
we know that this has two possible consequences. The first case is that σ has an
output action which is disallowed in TIOTS(S). The second case is that σ has
an observed quiescence when hitting a location invariant, but it is disallowed
in TIOTS(S). Therefore we can build another timed trace σ′ such that σ′ has
exactly the same prefix as σ, but σ′ ends without a violation w.r.t. TIOTS(S).
Therefore, we can generate some cooperative winning strategy f2 from S and
ϕ, and build a test case TIOTS from S and f2 such that σ′ is not a failing
run but σ is a failing run. According to Definition 6, we can conclude that
∃f2∈Strategy(S, ϕ).(I fails TestCase(S, f2)). ¤


