
Guided Controller Synthesis for Climate
Controller Using Uppaal Tiga

Jan J. Jessen1, Jacob I. Rasmussen2, Kim G. Larsen2, and Alexandre David2

1 Automation and Control, Aalborg University, Denmark
jjj@control.aau.dk

2 Department of Computer Science, Aalborg University, Denmark
illum@cs.aau.dk

Abstract. We present a complete tool chain for automatic controller
synthesis using Uppaal Tiga and Simulink. The tool chain is explored
using an industrial case study for climate control in a pig stable. The
problem is modeled as a game, and we use Uppaal Tiga to automatically
synthesize safe strategies that are transformed for input to Simulink,
which is used to run simulations on the controller and generate code
that can be executed in an actual pig stable provided by industrial part-
ner Skov A/S. The model allows for guiding the synthesis process and
generate different strategies that are compared through simulations.

1 Introduction

Inevitable parts in a traditional control design cycle are modelling, simulations
and synthesis. Modelling often results in non-linear continuous models needing
linearization and/or model order reduction in order to be applicable for control,
while simulation can implement both original and linearized models. For control
synthesis standard linear controllers are verified by design, but the control engi-
neer still needs to perform the step of translating a mathematical description of
the controller into an executable application that can be run on an embedded
platform. Additionally, in the setting of hybrid models controller synthesis itself
is a highly non-trivial task.

In this paper, we present a prototype for model-based framework for optimal
control using the recently developed controller synthesis tool Uppaal Tiga [3,2]
in combination with Simulink [10] and Real-Time Workshop [12] providing a
complete tool chain for modeling, synthesis, simulation and automatic generation
of production code (see Fig. 1). The framework requires that two models of the
control problem are provided: An abstract model in terms of a timed game and
a complete, dynamic model in terms of a (non-linear) hybrid system. Given
the abstract (timed game) model together with logically formulated control and
guiding objectives, Uppaal Tiga automatically synthesizes a strategy which
is directly compiled into an S-function1 representation of the controller. Now
1 S-function is a term used in Simulink for executable content that can be embedded

into Simulink components. S-functions support multiple languages such as C and
Matlab.

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, pp. 227–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 J.J. Jessen et al.

using Simulink together with the concrete (dynamic) model, simulation results
for additional quantitative aspects of the synthesized controller can be obtained.
Alternatively, given interface code for the specific actuators and sensors, Real-
Time Workshop allows for the generation of production code implementing the
synthesized controller. The glue used to tie Uppaal Tiga together with Simulink
has been hand-coded for the purpose of this paper. For an of the shelf tool chain,
this glue need to be implemented into Uppaal Tiga making S-functions an
output format.

UPPAAL

TIGA

Abstract
model

Control and
guiding obj.

Strategy
Parser Simulink

Nonlinear
hybrid model

Quantitative
measures

Simulink
results

Simulink
RTW Executable

Interface
code

S-function

Fig. 1. Illustration of tool chain for model based control

The framework is presented through an industrial case study carried out in
collaboration with the company Skov A/S specializing in climate control systems
used for modern intensive animal production. For such systems it is of extreme
importance that the climate control work properly, since a failure can result in
the death of entire batches of animals and in turn loss of revenue for the farmer.
In this context a properly functioning control system should additionally provide
a comfortable environment for the animals.

In [9,8], a dynamic model for a pig stable that is both nonlinear and hybrid and
a verified stable temperature controller has been presented. The control design
of said papers is unique and does not apply standard control design techniques.
We show in this paper that our framework allows for automatic generation of
the controller presented in [9,8], and moreover that our framework makes it
straight forward to obtain and implement extended controllers, e.g. by including
humidity control. For a thorough discussion of the control engineering issues
with controller synthesis for the climate controller, we refer to [9,8].

The model of the climate controller is constructed in an ad-hoc manner and
the paper does not provide methodology for abstracting non-linear hybrid mod-
els to timed automata models. The model serves two different purposes, namely,
to illustrate the tool chain for deriving production code from models and provide
the area of automatic controller synthesis of real-time systems with an indus-
trial scale case study. Furthermore, the constructed model does not include clock

Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 229

variables, hence, it does not need the features timed games. However, the cli-
mate problem needs a real-time controller and other models using clocks could
be constructed, and for that we reason present the work in terms of timed au-
tomata. Also, the advanced modelling features of Uppaal Tiga (e.g. functions
and selections) make it an attractive choice for modelling games, even if these
do not use clock variables.

In Section 2 we describe a dynamic, zone-based climate model for the evolution
of temperature in a pig stable. In Section 3 we briefly describe Uppaal Tiga

together with the notions of timed game, control objective and strategies. Section
4 is the main section giving a detailed description of how the climate controller is
modelled and synthesized with Uppaal Tiga. Numerical results are presented
in Section 5, and conclusions are given in Section 6.

2 Climate Model

.Zone 1 Zone 2 Zone N

Fig. 2. N zones

In this section, we introduce the dynamic climate
model describing the evolution of temperature in
a pig stable. The presented model is zone based,
a concept where the pig stable is divided into
distinct climatic zones, and where the zones in-
teract by exchanging air flow. The idea is illus-
trated in Fig. 2 where a stable is partitioned into N subareas, and where the
zones exchange air flow.

Though it would be relevant to model temperature, humidity, CO2 and am-
monia concentration we initially limit ourselves to modeling only temperature,
in order to illustrate the zone concept. It would though be easy to include
the disregarded climate parameters since the mixing dynamics are, roughly,
identical.

Assumption 1. Climatic interdependence between zones is assumed solely
through internal air flow.

Zone i − 1 Zone i Zone i + 1

Qin
i

Qfan
i

[Qi,i+1]+

[Qi,i+1]−

[Qi−1,i]+

[Qi−1,i]−

Fig. 3. Illustration of flows for zone i

With assumption 1 we thus neglect
radiation and diffusion etc. between
zones, claiming they are negligible
compared to the effect from having in-
ternal air flow. Besides internal air flow
a zone interact with the ambient en-
vironment by activating a ventilator
in an exhaust pipe and consequently
opening a screen to let fresh air into
the building. Air flowing from outside
into the ith zone is denoted Qin

i [m3/s],
from inside to outside Qfan

i [m3/s]. Air
flowing from zone i to i + 1 is denoted

230 J.J. Jessen et al.

Qi,i+1 [m3/s] (air flow is defined positive from a lower index to a higher index).
A stationary flow balance for each zone i is found:

Qi−1,i + Qin
i = Qi,i+1 + Qfan

i (1)

where by definition Q0,1 = QN,N+1 = 0.
The flow balance is illustrated in Fig. 3 using the following definitions: [x]+ �

max(0, x), [x]− � min(0, x). In accordance with [4,1] and taking into account
the flows leaving/entering the ith zone, the following model for temperature
evolution is easily obtained.

dTi

dt
Vi = T ambQin

i − TiQ
fan
i + [Qi−1,i]+Ti−1 − [Qi−1,i]−Ti

− [Qi,i+1]+Ti + [Qi,i+1]−Ti+1 +
ut

i + W t
i

ρaircair

(2)

where Vi [m3] is the zone volume, T amb [̊ C] is the ambient temperature, Qin
i ,

Qfan
i is the inflow and outflow respectively. cair [J/(kg̊ C)] is the specific heat

capacity of air, ρair [kg/m3] is the air density. ut
i [J/s] is the controlled heating

and W t
i [J/s] is heat production from the pigs. For the actuator signals maximum

values exists Qfan
i ∈ [0, Qfan,M

i], Qin
i ∈ [0, Qin,M

i], ut
i ∈ [0, ut,M

i]. The disturbance
is not known but bounded W t

i ∈ [W t,m
i , W t,M

i].
In [9] a temperature controller for the model in (2) is presented. The pre-

sented controller is a multi-zone controller, i.e., it consists of N individual (yet
identical) controllers. The controller is event-based, and only changes its control
action when certain boundaries are met or a neighboring zone changes its control
action. The controller in [9] is designed to solve a two player game theoretic prob-
lem following [7] at each time a state has changed or a change in coordinating
variables take place. Each controller maintains a set of coordinating variables δi

that holds information about the controllers willingness to exchange air flow with
the neighboring zones, and only if two neighboring zones agree to the exchange,
air will flow between the zones. The game theoretic view of the control problem
for an arbitrary zone enables the same generated controller to be implemented
in all zones of a N -zone stable. The correctness of this is explicitly proved in [9].

The control actions available to controller is the heating ut
i, opening of the

inlets Qin
i and turning on the ventilators Qin

i . The controller has two “modes”
heating up and cooling down, and an initial mode set to either one. We remark
specifically that opening of the inlet is not enough to force air into the zone. This
being a physical system air has to be removed either by operating the ventilator
or by having a neighboring zone extract air. The controller operation in zone i is
as follows: When heating up ventilation is closed and heating is turned on. If in
addition a neighbor zone has warmer air than in the current zone, the controller
will inform the neighboring zone’s controller that it would like to receive the
warmer air. Only if the two zones agree to exchange air will the controller in
zone i turn on its ventilation fan extracting warm air from one of the neighbor
zones. When cooling down, the heating is turned off, the inlets opened and

Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 231

Critical

Low

High

1<=x && x<=2

h1?
x=0

3<=x && x<=4

x=0

h1? x=0

Critical

Low

High

1<=y && y<=2

h2?
y=0

3<=y && y<=4

y=0

h2? y=0

z>=1
h1!

z=0

z>=1 h2! z=0T1 T2

C

Fig. 4. Two Tank Temperature Control Problem

the ventilation fan is turned on. The controller will in addition inform the two
neighbor zones, that it would like to “give away” air thus forcing more fresh air
into the zone.

3 Timed Games, Control Objectives and Strategies

Uppaal Tiga is a tool for solving control problems modeled as (networks of)
timed game automata [3]. As an example consider the control problem in Fig. 4,
where a central controller C is to maintain the temperature of two tanks, T1 and
T2 above some critical minimum level, say 5̊ C. Each tank is modelled as a timed
game automaton with location High indicating that the temperature in the tank
is between 80̊ C and 100̊ C. Similarly, the Low locations indicate a temperature
between 10̊ C and 15̊ C and the Critical locations that temperature is below
5̊ C. The controller C has the possibility for heating either tank thus lifting (or
maintaining) its temperature to the High level; the act of heating is modelled as
synchronizations on the channels h1 and h2. The guards z ≥ 1 on the clock z of
the controller enforces that heating actions of C are seperated by at least 1 time-
unit. The dashed edges in the two tanks represent uncontrollable transitions for
lowering the temperature (from High to Low and from Low to Critical) in a
tank in case no heating action of the controller has taken place for a certain time
period; e.g. the guard 3 ≤ x ∧ x ≤ 4 indicates that the temperature in T1 may
drop from High to Low at any moment between 3 and 4 time-units since the last
heating of the tank.

Control purposes are formulated as “control: P”, where P is a TCTL formula
specifying either a safety property, (A[]ϕ) or a liveness property (A<>ϕ). Given
a control purpose, “control: P”, the search engine of Uppaal Tiga will pro-
vide a strategy (if any such exists) for the controller under which the behaviour
of the model will satisfy P. Here a strategy is a function that in any given state
of the game informs the controller what to do either in terms of “performing a
controllable action” or to “delay”. In our tank example of Fig. 4 the control pur-
pose may be formulated as “control: A[] not(T1.Critical or T2.Critical)”.
Endeed there is a strategy guaranteeing the safety property involved (i.e., the
Critical temperature level is avoided in both tanks). In the case when the two

232 J.J. Jessen et al.

tanks are both having a Low temperature level the strategy provided by Uppaal

Tiga requests the controller to heat T2 whenever (2 < y∧1 < z∧y ≤ x)∨((2 <
x ∧ 1 < z) ∧ (y < 1 ∨ x < y)). In case (2 < y ∧ 1 < z ∧ x < 1) the strategy
suggest to heat T1. Interestingly, it may be shown (as discovered by Uppaal

Tiga), that for slower controllers (e.g. replacing the guards z ≥ 1 by z ≥ 2) no
strategy exists which will ensure our control purpose.

Uppaal Tiga is integrated in the Uppaal 4.0 framework permitting the use
of discrete (shared or global) variables over simple or structured types (arrays
and recods) including user-defined types. Functions can be declared using C-like
syntax and used in guards and update statements. Edges have an additional
select statement as a shorthand notation for all edges that satisfy the statement.

4 Modelling

In this section, we give a detailed description of the adhoc method in which the
climate controller has been modelled in Uppaal Tiga. We divide the description
into a model section and a property section with guiding. Note that some of the
Uppaal Tiga code snipplets could be given a mathematical description; we have
chosen the code in order to allow for the precise reconstrution of our method.

4.1 The Models

The compound model consists of three kinds of automata, the neighbor au-
tomaton, an auxilliary automaton, and controller automaton. Each of these are
described in turn in the following.

Neighbor Automaton. The neighbor model is an automaton with just uncon-
trollable transitions that can change the observable variables of the neighboring
zone. The template for the neighbor automaton is depicted in Fig. 5 and is in-
stantiated with a parameter id which can take the values 0 and 1 to indicate
the left and right neighbor.

state_changed!

temp[id] = !temp[id],
check_hotness_integrity()

c : choice_t
state_changed!
n[id] = c

Fig. 5. Neighbor Au-
tomaton

Each neighbor has a variable temp that discretizes
the temperature information of the neighbor to either
HOTTER or COLDER than the control zone. Furthermore,
there is a variable n that holds the values of the inter-
action variables of the neighbor. The variable n, which
can take any of the values WANT, HAVE and NEITHER
(encoded as the type choice t), is used to indicate
whether the neighbor wants air flow from the control
zone, wants to deliver air flow to the control zone, or
does not want to exchange air flow with the control
zone.

To switch the temperature of a neighboring zone, the environment can take
the uncontrollable transition at the top of Fig. 5. The call to the fucntion
check hotness integrity() on the transition is explained below. The bottom

Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 233

transition uses special Uppaal Tiga syntax for select statements. This is short-
hand notation for the three cases where c takes on any of the values of choice t,
i.e., the environment can set the control variables of the neighbor to any kind of
desired interaction. Whenever the environment changes an observable variable
it synchronizes over the channel state changed with the controller, to allow the
controller to change the control strategy. This way we keep a strictly alternat-
ing game where the controller reacts every time an observable variable changes
value.

temp[0] == temp[1]

state_changed!
hottest = !hottest

state_changed!
objective = !objective

Fig. 6. Auxiliary Au-
tomaton

Auxiliary Automaton. To manage the other observ-
able variables, we introduce an auxiliary automaton
that allows the environment to change these variables.
The auxiliary automaton is depicted in Fig. 6.

The final two observable variables that can change
are, first, the variable objective which determine
whether the control zone should HEATUP or COOLDOWN
(bottom transition of the automaton). The second vari-
able is a result of the discretization of the temperature
information. The control zone needs information about
which neighbor has hotter air. This is encoded using
the Boolean observable variable hottest where value 0 indicates the left neigh-
bor is hotter and vice versa for value 1. The environment can change the value of
hottest on the top transition only when either both zones are either colder or
hotter, otherwise the value can become inconsistent with the temperatures of the
neighbors. The function call check hotness integrity is used by the neighbor
automaton whenever the temperature changes to guarantee that hottest is left
in a consistent state.

Init

Decide

Decided
reset_variables()

c0 : choice_t, c1 : choice_t,
heat : intbool_t, in : intbool_t,
out : intbool_t
flow_balance(c0,c1,in,out)

c[0] = c0,
c[1] = c1,
heater = heat,
inlet = in,
outlet = out,
temp_derivative =
 compute_temperature(c0,c1,in,out,heat),
obj_val = obj_func(c0,c1,in,out,heat)

state_changed?

Fig. 7. Controller Automaton

Controller Automaton.
The controller automaton syn-
chronizes with the auxil-
iary automaton and neighbor
automata over the channel
state changed whenever an
observable variable changes
values. Upon synchronization,
the controller enters the com-
mitted state Decide and the
setting of the control variables
is determined on the transi-
tion exiting Decide. The controller automaton is depicted in Fig. 7

The controller automaton determines the value of five control variables: Two
variables for the interaction with the neighbors (c[0] and c[1]) and one vari-
able for each of the heater, inlet and outlet (the latter three are all Boolean
variables). The selection statement on the transition from Decide to Decided
guarantees that all possible settings are considered. The guard statement

234 J.J. Jessen et al.

flow balance guarantees that no inconsistent control state wrt. air flow is con-
sidered, i.e., whenever air is flowing out of a zone, air is flowing into the zone (see
Algorithm 1) and vice versa. After updating the control variables the combined
impact of the control variables and the observable variables on the temperature
of the control zone is computed using the function compute temperature. We
refer to obj func later, when we talk about guiding.

Upon entering the committed location Decided the transition back to Init is
taken immediately which resets all the control variables. This is merely a step to
minimize the state space since, as we shall see, the effect of the control decision
is only important in Decided.

Algorithm 1. Procedure to guarantee that the flow balance is satisfied.
proc flow balance(c0,c1,in,out) : bool

1: bool o = out || (n[0]==WANT && c0==HAVE) || (n[1]==WANT && c1==HAVE)
2: bool i = in || (n[0]==HAVE && c0==WANT) || (n[1]==HAVE && c1==WANT)
3: return o == i

Discretization of the Temperature Derivative. Since the model is dis-
cretized such that the controller does not know the exact temperature of the
neighboring zones, this needs to be reflected in the computed temperature
derivative.

Heater: 5
Inlet: -7
Hotter neighbor
- hottest: 2
- coldest: 1
Colder neighbor
- hottest: 1
- coldest: 2

We choose to let the different control parameters con-
tribute to the temperature derivative according to the ta-
ble to the right. The values for the airflows correspond to
opening the outlet fan and getting air only from the spe-
cific source. Given that the fan capacities are fixed, getting
air from multiple sources will share the capacity. E.g., get-
ting air from both (hotter) neighbors would yield a con-
tribution of 1 from the hottest and 0.5 from the coldest,
resulting in a total contribution of 1.5. Furthermore, having multiple sources of
outflow increases the inflow contribution proportionally, e.g., allowing the inlet
to give a total contribution of -21 by opening the outlet and providing air for
both neighbors.

Computing the Temperature Derivative. As we saw above, the fans have a
fixed capacity that might be shared among the different sources of outflow. Since
this can result in a non-integral contribution and Uppaal Tiga only handles
integers, we need to multiply these contributions with an apropriate factor to
guarantee integral values. Since a single source of outflow can be shared among
up to three sources of inflow, we choose a constant OUT CONTRIBUTION=6 to
denote the available contribution per outflow source as this can be integrally
shared among the potential inflow sources. This has the added effect that we
need to multiply the heater contribution by six as well, to keep the proportions.

The function for computing the temperature derivative is listed in Algo-
rithm 2. Lines 1 and 2 compute the contributors to air flow in and out of the

Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 235

zone. For outflow, this, in order, corresponds to 1) is the outlet open, 2) is air
flowing from the control zone to the left zone, and 3) similarly for the right zone.
The computation is analogous for air flowing into the control zone.

The value of amp computed in line 3 is the contribution for each inflow given
the total outflow. Now, the return statement computes the total effect of the
control decision by using the table above and the amplifier for each inflow con-
tribution. Note that the heat contribution is also amplified to keep the the pro-
portions defined above.

The final two negative parts of the contribution are used to indicate that giving
air away cools the zone. These are used as incentives to let the controller offer air
when it wants to cool. The reason is that when the controller is used in all zones
we can imagine the situation when one zone needs to cool and a neighbor want
the air to heat up. In the control situation when neither are interacting, one
of the zones need to intiate the cooperation, and this is accomplished with the
given incentives. Note that these values are negligible in the overall contribution.

Algorithm 2. Algorithm for computing the temperature derivative.
proc compute temperature(c0,c1,in,out,heat) : int

1: int outflow = out + (c0==HAVE && n[0]==WANT)+(c1==HAVE && n[1]==WANT)
2: int inflow = in + (c0==WANT && n[0]==HAVE)+(c1==WANT && n[1]==HAVE)
3: int amp = (outflow * OUT CONTRIBUTION) / inflow
4: return OUT CONTRIBUTION*5*heat

+ amp*(c0==WANT && n[0]==HAVE ? (temp[0]? (!hottest? 2:1) : (hottest? -2:-1)) : 0)
+ amp*(c1==WANT && n[1]==HAVE ? (temp[1]? (hottest? 2:1) : (!hottest? -2:-1)) : 0)
+ amp*(in ? -7 : 0)
- (c0==HAVE) - (c1==HAVE)

4.2 The Property

In order to synthesize the controller, we need to specify the property that the
resulting controller should synthesize. An immediate choice would be2:

φ ≡ control : A[] Controller.Decided imply (objective ? 1 : -1)*temp derivative > 0 (3)

In other words, invariantly whenever the controller enters Decided, the value
of temp derivative should be greater than zero when heating is the objective
and less than zero when the objective is cooling. However, this property would
be satisfied by the simple controller that never interacts with the neighbors and
turn on the heater when the objective is heating and opens the inlet and outlet
when the objective is cooling.

Guiding. With the property above we can determine whether we can satisfy
the main objective or not. Now, we define an objective function called obj func
that will guide the controller synthesis process while also satisfying the property

2 Recall that we switched the sign of the temperature derivative when the objective
is to cool down.

236 J.J. Jessen et al.

above3. Given an appropriate objective function, the following property can be
used to guide the controller synthesis process4:

φ ≡ control : A[] ZC.Decided imply forall (c0 : choice t) forall (c1 : choice t)

forall (in : intbool t) forall (out : intbool t) forall (heat : intbool t)

flow balance(c0,c1,in,out) imply obj val >= obj func(c0,c1,in,out,heat)

In plain words, the property states that it should hold invariantly that when-
ever the controller makes a decision and enters the location Decided, then for
all other possible controller choices that satisfy the flow balance, the computed
objective function is smaller or equal to the choice made. In short, the controller
always chooses a configuration of the control variables that maximizes obj func
among all valid choices.

The simplest objective function is to use compute temperature, but to com-
pensate for the sign depending of the objective as (3) above. This guiding proc-
cess will produce a controller that maximizes (minimizes) the temperature deriv-
ative for every control decision. An alternate strategy is to define the objective
function over some sort of energy consumption by, e.g., penelizing turning on
the heater or fan, thus, optimizing towards energy optimality.

4.3 Controlling Humidity

As mentioned in [9], the climate controller should, ideally, be extended with
the ability to control the humidity in the stable as well. However, the approach
outlined in [9] makes this extension a tedious strategy, since the increase in
oberservable variables creates exponentially more configurations.

Changing our model to accommodate for humidity as well, requires a slight
modification to the models along the lines of how the temperature was modelled.
Furthermore, the objective function needs to represent the effect of temperature
and humidity with a simple value. Note, that neither the controller automaton
nor the property changes, as the set of controllable variables remains unchanged.

To discretize the humidity readings of the neighboring zones, analogously to
the temperature representation, we introduce a Boolean humid variable for each
zone and a morehumid variable to determine which of the neighbors have air with
the highest humidity. Obviously, there are constraints on consistent variable
assignments for the three variables in the same way as for the temperature
variables.

To incorporate the variables in the model, we need an extra uncontrollable
transition in the neighbor automaton, that can change the value of the respective
humid variable. This is followed by a consistency check on the morehumid vari-
able. Moreover, we add two extra uncontrollable transitions to the auxiliary au-
tomaton, one to change the more humid variable, and one to change the objective
3 To satisfy both properties we use conjunction, but do not include the conjuction to

simplify properties.
4 Note we use guiding in the sense that the function determines which of a number of

valid controllers to choose, but the synthesis process itself is not guided in order to
find controllers.

Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 237

with respect to humidity which is encoded in the variable decrease humidity.
These are all the changes needed to the automata.

We incorporate humidity information in the objective function in a similar
fashion the temperature model with the exception that humidity only has an
upper limit, so the objective is either to decrease the humidity or ignore the
humidity. Thus, when decrease humidity has value false, the humidity con-
tributes nothing to the objective function. Otherwise, the contribution is given
as in Algorithm 3 where a postive value indicates a decrease in humidity. In the
algorithm, amp is computed as for the temperature contribution. The positive
contributions are from opening the inlet (contribution of 5) and getting less hu-
mid air (contribution of 2 for the least humid air and 1 for the most humid).
Receiving more humid air from a neighboring zones contributes negatively. Fi-
nally, we encourage a zone to interact, if a neighboring zone has less humid air,
even if the zone does not want to interact (first two parts of the sum).

Algorithm 3. Humidity contribution to the objective function
1: return (!humid[0] && c0 == WANT ? 1 : 0) + (!humid[1] && c1 == WANT ? 1 : 0)

+ amp*(c0==WANT && n[0]==HAVE ? (humid[0] ? (!morehumid?-2:-1):(morehumid?2:1)) :0)
+ amp*(c1==WANT && n[1]==HAVE ? (humid[1] ? (morehumid?-2:-1):(!morehumid?2:1)) :0)
+ amp*(5*in)

The objective function is constructed with a weight parameter between the
temperature derivative and the humidity parameter with changing the sign of
the temperature as above. The weighing can be altered to generate different
controllers, which later can be compared in some appropriate fashion as discussed
in Section 5.

5 Results

In this section, we present some numerical results where the controller generated
by Uppaal Tiga has been simulated in Simulink using realistic values for the
model (2).

The Tool Chain. According to Fig. 1, to generate production code for the
climate controller of the pig stable, we need to transform the output format
of Uppaal Tiga to input for Simulink. Simulink allows input of so-called S-
functions which are user provided C-code that can be used within the Simulink
model. We have build a script which takes Uppaal Tiga strategies as input
and delivers S-functions as output. The Simulink model with the S-function
can be used to either run simulations of the pig stable, or generate Comedi
compliant production code through Real-Time Workshop. The code generation
is realized through a Comedi library for Simulink [5]. Code generation with Real-
Time Workshop allows for a multitude of targets, thus, the specific target of this
application in unimportant.

238 J.J. Jessen et al.

Numerical Results. We have synthesized two types of controllers using the
models described above. One controlling only the temperature, and one control-
ling both temperature and humidity. In the first experiment, we synthesized a
controller for temperature only as explained in Section 4. Due to limited space,
we choose not to include the graphs for the experiments, as the synthesized con-
troller is identical to that of, [9,8]. As in [9,8], the controller behaves well under
simulation and keeps the zone temperatures within the given bounds.

�
�
�
�

��

��

�
�
�
�

��
�
�
�
�

Fan1
Fan2
Fan3
Heat1
Heat2
Heat3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

 0%

 20%

 40%

 60%

 80%

 100%

75
/2

5

50
/5

0

45
/5

5

40
/6

0

35
/6

5

30
/7

0

25
/7

5

15
/8

5

Fig. 8. Active time for heaters and fans for different controllers. The number (x/y)
indicate an objective function using x percent temerature contribution and y percent
humidity contribution.

In order to illustrate the guiding specification in Uppaal Tiga a number of
different controllers are simulated in Simulink. A weight is put on the objec-
tive function guiding towards temperature or humidity control. The simulation
scenario is as follows: The stable is partitioned into 3 zones, and the thermal
boundary is set to [18 20] and for humidity [9 10] for all three zones. The initial
conditions are set to T1 = 19, T2 = 18 and T3 = 17, H1 = H2 = H3 = 11. All the
conducted experiments stear the state to the defined boundaries in finite time,
but initially some states are steared away from the boundary. In order to quan-
tify and compare the different controllers the total time when the heat or fan are
on is recorded. The result is illustrated in Fig. 8. The results show, that the con-
trollers can be divided up into two catagories, one from 0% to 40% temperature
guided, and one from 45% to 100%. The controllers in the latter category use
less heat and fan capacity than the controllers in the former catagory, indicating
that the former are preferred controllers. However, Fig. 9 shows how the temper-
ature and humidity are controlled for controllers in both catagories. As it can be
seen, the controller with more heat and fan activation (25/75) reaches a stable
state faster than the controller with less activity of heaters and fans.5 Thus, the
5 Simulation results for all controllers can be found at the project website, [11].

Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 239

0 1000 2000 3000 4000
17

17.5

18

18.5

19

19.5

20

20.5

T
em

pe
ra

tu
re

0 1000 2000 3000 4000
9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

H
um

id
ity

Z

1

Z
2

Z
3

(a) 75/25
0 1000 2000 3000 4000

13

14

15

16

17

18

19

20

21

T
em

pe
ra

tu
re

0 1000 2000 3000 4000
8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

H
um

id
ity

Z

1

Z
2

Z
3

(b) 25/75

Fig. 9. Simulation results for temperature and humidity when guiding towards a) 75%
temperature and 25% humidity and b) vice versa

choice between the controllers is not immediately clear, but the quatifications
can be used by the control engineers to make an informed choice.

Note that we have not tested the code in the actual pig stable. However,
for the temperature controller we can rely on the results provided in [6], the
the generated controller is identical to that of [9,8]. These results show that
the controller does not have identical quantitative properties to the simulation,
though, the qualitative properties are identical. I.e. the experiments show that
the temperature oscillates as in the simulation, however, the temperature in
the real stable under/overshoots the limits. This is mainly caused by the fact
that the zones are not thermically isolated in the sense that air will interchange
between zones, even when the zones do not what to interchange air.

For the humidity controller we do not have any experimental data to rely on,
but this will be investigated in the future.

6 Conclusions and Future Work

In this paper, we have presented a complete tool chain for automatic con-
troller synthesis from timed game automata models to production code. For the
livestock production case study, the controller synthesis process has enabled,
through guiding, to synthesize an identical controller do that of [9,8]. The con-
troller in [9,8] was synthesized in a tedious manual way, which indicates the
importance of a simple automated process. Note that the notion of time was not
necessary in modelling our controller, however, we choose Uppaal Tiga because
the tool was available and one the only ones of it’s kind.

Furthermore, the model was easily extended to include humidity, which was
left as a matter to explore in [9,8], but never pursued due to the heavy time re-
quirement of the added exponential complexity. With an appropriately defined
weighted objective function, Uppaal Tiga was used to synthesize a controller

240 J.J. Jessen et al.

capable of regulating temperature as well as humidity in a matter of seconds. A
number of controllers were synthesized with variying weights between tempera-
ture and humidity, and all were able to reach stable temperature and humidity
conditions in Simulink simulations. Simulink was further used to track the heat
and fan activity for the different controllers, in order to allow for comparison of
different controllers. This can be a very effective strategy for differentiating con-
trollers and choosing an appropriate one among a number of controllers satisfying
the conditions. As future work, we want to continue conducting experiments in
the real life pig stable provided by Skov A/S in order to evaluate the different
controllers capacity of controlling temperature as well as humidity in a real life
setting.

References

1. Arvanitis, K.G., Soldatos, A.G., Daskalov, P.I., Pasgianos, G.D., Sigrimis, N.A.:
Nonlinear robust temperature-humidity control in livestock buidings. Submitted
to Biosystems Engineering (2003)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, D., Lime, K.G.: Uppaal
tiga: Time for playing games. In: proc. of Computer Aided Verification (CAV’07)
(to appear, 2007)

3. Uppaal Tiga Homepage (2006), http://www.cs.aau.dk/∼adavid/tiga
4. Janssens, K., Van Brecht, A., Zerihun Desta, T., Boonen, C., Berckmans, D.: Mod-

eling the internal dynamics of energy and mass transfer in an imperfectly mixed
ventilated airspace. Indoor Air 14, 146–153 (2004)

5. Jessen, J.J., Schiøler, H., Nielsen, J.F.D., Jensen, M.R.: Cots technologies for in-
tegrating development environment, remote monitoring and control of livestock
stable climate. In: Proceedings 2006 IEEE International Conference on Systems,
Man, and Cybernetics (2006)

6. Jessen, J.J.: Embedded Controller Design for Pig Stable Ventilation Systems. PhD
thesis, Automation and Control, Department of Electronic Systems, Aalborg Uni-
versity (2007)

7. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for
hybrid systems. Automatica 35, 349–370 (1999)

8. De Persis, C., Jessen, J.J., Izadi-Zamanabadi, R., Schioler, H.: A distributed control
algorithm for internal flow management in a multi-zone climate unit. International
Journal of Control. Accepted for publication (to appear)

9. De Persis, C., Jessen, J.J., Izadi-Zamanabadi, R., Schioler, H.: Internal flow man-
agement in a multi-zone climate control unit. In: Invited paper in the session Net-
worked Control Systems 2006 CCA/CACSD/ISIC (2006)

10. SIMULINK (2007), http://www.mathworks.com/products/simulink/
11. Project Web (January 2007), http://www.cs.aau.dk/∼illum/automatic control/
12. Real-Time Workshop (2007), http://www.mathworks.com/products/rtw/

http://www.cs.aau.dk/~adavid/tiga
http://www.mathworks.com/products/simulink/
http://www.cs.aau.dk/~illum/automatic_control/
http://www.mathworks.com/products/rtw/

	Guided Controller Synthesis for ClimateController Using Uppaal \Tiga
	Introduction
	Climate Model
	Timed Games, Control Objectives and Strategies
	Modelling
	The Models
	The Property
	Controlling Humidity

	Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

