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Abstract. In this paper we consider the problem of controller synthesis
for timed games under imperfect information. Novel to our approach is
the requirements to strategies: they should be based on a finite collec-
tion of observations and must be stuttering invariant in the sense that
repeated identical observations will not change the strategy. We provide a
constructive transformation to equivalent finite games with perfect infor-
mation, giving decidability as well as allowing for an efficient on-the-fly
forward algorithm. We report on application of an initial experimental
implementation.

1 Introduction

Timed automata introduced by Alur and Dill [2] is by now a well-established for-
malism for representing the behaviour of real-time systems. Since their definition
several contributions have been made towards the theoretical and algorithmic
characterization of this formalism. In particular, industrial mature tools sup-
porting model-checking for timed automata now exist [7, 6].

More recently the problem of controller synthesis for timed automata based
models have been considered: i.e. given a timed game automaton modelling the
possible moves of an environment as well as the possible moves of a control
program, the problem consists in synthesizing a strategy for the control program
in order that a given control objective is met no matter how the environment
behaves [15]. Controller synthesis and time-optimal controller synthesis for timed
games was shown decidable in [4] and [3]. First steps towards efficient synthesis
algorithms were taken in [1, 16]. In [9] a truly on-the-fly algorithm based on a
mixture of forward search and backwards propagation was proposed and later
used as the basis for an efficient implemention in the tool Uppaal Tiga [5].
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In all of the papers cited above it has been assumed that the controller has
perfect information about the plant: at any time, the controller knows precisely
in what state the environment is. In general however — e.g. due to limited
sensors — a controller will only have imperfect (or partial) information about
the state of the environment. In the discrete case it is well known how to handle
partial observability, however for the timed case it has been shown in [8] that the
controller synthesis problem under partial observability is in general undecidable.
Fixing the resources of the controller (i.e. a maximum number of clocks and
maximum allowed constants in guards) regains decidability [8], a result which
also follows from the quotient and model construction results of [12, 13].

In this paper we also deal with the problem of controller synthesis for timed
games under imperfect information following the approach of [10, 17]. That is,
the imperfect information is given in terms of (a finite number of possible) ob-

servations to be made on the system configurations, providing the sole basis for
the strategy of the controller. However, in contrast to [10, 17], which is essen-
tially turn-based in the untimed setting, we will here consider a more general
framework, where in each step the controller and environment are competing. In
particular, the strategy of the controller is supposed to be stuttering invariant,
i.e. the strategy will not be affected by a sequence of environment or time steps
unless changes in the observations occur.
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Fig. 1. Timed Game with Imperfect Information.

To illustrate the concepts of imperfect information and stuttering invariance
consider the timed game automaton in Figure 1 modelling a production system
for painting a box moving on a conveyor belt. The various locations indicate
the position of the box in the system: in Sensor a sensor is assumed to reveal
the presence of the box, in Sensed the box is moving along the belt towards the
painting area, in Paint the actual painting of the box takes place, in Piston the
box may be kick?’ed off the belt leading to Off; if the box is not kicked off it
ends in End. All phases are assumed to last between 8 and 10 seconds, except
for the phase Sensor, which is instantaneous. The uncontrollability of this timing
uncertainty is indicated by the dashed transitions between phases. The controller
should now issue a single kick?’command at the appropriate moment in order
to guarantee that the box will — regardless of the above timing uncertainy —
be kicked off the belt. However the controller has imperfect information of the
position of the box in the system. In particular, the controller cannot directly
observe whether the box is in the Sensed, Paint or in the Piston phase nor can
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the value of the clock x be observed. Still equipping the controller with its own
clock y –which it may reset and test (against a finite number of predicates) –
it might be possible to synthesize a control strategy despite having only partial
information: in fact it may be deduced that the box will definitely be in the
Piston area within 20-24 seconds after being sensed. In contrast, an increased
timing uncertainty where a phase may last between 6 and 10 seconds will make
a single-kick? strategy impossible.

The main contributions of this paper are: (i) we show how a variant of the
subset construction of [10, 17] allows us to transform a timed game H with
imperfect information into an equivalent game G(H) of perfect information;
(ii) we show that G(H) can be effectively and symbolically computed and this
implies that the control problem under imperfect information is decidable; this
allows us to apply the efficient on-the-fly forward algorithm from [9] and (iii) we
report on application of an initial experimental implementation of this algorithm
and a number of heuristics for minimizing the explored state-space as well as
the size of the finally synthesized strategy.

The detailed proofs can be found in the extended version available from the
authors web pages.

2 Timed Games and Observation-Based Strategies

In this section, we define the timed game structures, the notion of strategies
that we are interested in, and useful vocabulary for the rest of the paper. We
denote R≥0 the set of non-negative reals and R>0 = R≥0 \ {0} and AB the set
of mappings from B to A.

Timed game structures (TGS) will be defined using a timed automaton like
notation. The semantics of the notations will be defined by a two-player labeled
timed transition system (2-LTTS), and the games will be played on this 2-LTTS.

Definition 1 (2-LTSS). A 2-player labeled timed transition system (2-LTTS)
is a tuple (S, s0, Σ1, Σ2,→) where S is a (infinite) set of states, s0 is the initial
state, Σ1 and Σ2 are the two disjoint alphabets of actions for Player 1 and
Player 2 respectively, and →⊆ S ×Σ1 ∪Σ2 ∪R>0 × S is the transition relation.

Given a state s ∈ S, we define enable(s) as the set of σ ∈ Σ1 ∪ Σ2 ∪ R>0 such
that there exists s′ and (s, σ, s′) ∈→.

Let X be a finite set of real-valued variables called clocks. Let M be a natural
number. We note C(X, M) the set of constraints ϕ generated by the grammar:
ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ where k ∈ Z ∩ [0, M ], x, y ∈ X and ∼∈ {<,≤, =
, >,≥}. B(X, M) is the subset of C(X, M) generated by the following grammar:
ϕ ::= ⊤ | k1 ≤ x < k2 | ϕ ∧ ϕ where k, k1, k2 ∈ Z ∩ [0, M ], k1 < k2, and
x ∈ X , and ⊤ is the boolean constant true. In the sequel, we will restrict our
attention to bounded timed automata where clock values are all bounded by a
natural number M ; this does not reduce the expressive power of timed automata.
Given a natural number M , an M -valuation of the variables in X is a mapping
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X 7→ R≥0 ∩ [0, M ]. We also use the notation [X → [0, M ]] for valuations and 0
for the valuation that assigns 0 to each clock. For Y ⊆ X , we denote by v[Y ] the
valuation assigning 0 (resp. v(x)) for any x ∈ Y (resp. x ∈ X \ Y ). Let t ∈ R≥0,
v be an M -valuation for the set of clocks X , if for all x ∈ X , v(x) + t ≤ M

then v + t is the M -valuation defined by (v + t)(x) = v(x) + t for all x ∈ X . For
g ∈ C(X, M) and v ∈ (R≥0 ∩ [0, M ])X , we write v |= g if v satisfies g and [[g]]
denotes the set of valuations {v ∈ (R≥0 ∩ [0, M ])X | v |= g}. An M -zone Z is a
subset of (R≥0 ∩ [0, M ])X s.t. Z = [[g]] for some g ∈ C(X, M).

Definition 2 (Timed Game Structure). Let M be a natural number, an M -
timed game structure (M -TGS) is a tuple H = (L, ι, X, δ, Σ1, Σ2, inv,P) where:

– L is a finite set of locations,
– ι ∈ L is the initial location,
– X is a finite set of real-valued clocks,
– Σ1, Σ2 are two disjoint alphabets of actions, Σ1 is the set of actions of

Player 1 and Σ2 the set of actions of Player 2,
– δ ⊆ (L×B(X, M)×Σ1×2X ×L)∪(L×C(X, M)×Σ2×2X×L) is partitioned

into transitions1 of Player 1 and transitions of Player 2.
– inv : L → C(X, M) associates to each location its invariant.
– P is a finite set of pairs (K, ϕ) where K ⊆ L and ϕ ∈ B(X, M), called

observable predicates.

In the definition above, each observable predicate (K, ϕ) ∈ P is a predicate
over the state space of the TGS, i.e. the set L × [X → [0, M ]]. For l ∈ L and v

an M -valuation of the clocks in X , we write (l, v) |= (K, ϕ) iff l ∈ K and v |= ϕ.
Two pairs (l1, v1), (l2, v2) that satisfy the same observable predicates from P have
the same observation (they can not be distinguished by our controllers). So, an
observation is a function o : P → {0, 1}, or equivalently, a class of equivalent
states w.r.t P . We note O the set of functions [P → {0, 1}], it is called the set of
observations of the system. With each TGS H with set of observable predicates
P , we associate the function γ that maps observations to classes of equivalent
states, i.e. γ : O → 2L×[X→[0,M ]], and it is defined as follows:

γ(o) =







(l, v) |
∧

(K,ϕ) | o(K,ϕ)=1

(l, v) |= (K, ϕ) ∧
∧

(K,ϕ) | o(K,ϕ)=0

(l, v) 6|= (K, ϕ)







Note that the set of observations O defines a partition of the state space of
the M -TGS, i.e.

⋃

o∈O γ(o) = L × [X → [0, M ]], and for all o1, o2 ∈ O, if
o1 6= o2, then γ(o1) ∩ γ(o2) = ∅. To simplify notations, we use γ−1(l, v) instead
of γ−1({(l, v)}).

We associate with any M -TGS H a semantics in the form of a (infinite state)
2-LTTS. The state space of the 2-LTTS will be composed of elements of the form

1 Note that we impose that guards of Player 1’s transitions are left closed. This ensures
that, when a guard becomes true for an action owned by Player 1, there is always a
first instant where it becomes true.
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(l, v) where l is a location of the TGS and v is a valuation of the clocks. In order
to avoid deadlocks in the 2-LTTS, we require that our TGS are deadlock-free2 ,
that is, for every state (l, v) such that v |= inv(l), there exists σ ∈ Σ2 ∪ R>0,
such that either there is a transition (l, g, σ, Y, l′) ∈ δ such that v |= g and
v[Y ] |= inv(l′), or for all t′, 0 ≤ t′ ≤ σ, v + t′ |= inv(l).

Definition 3 (Semantics of a TGS). The semantics of an M -TGS H =
(L, ι, X, δ, Σ1, Σ2, inv,P) is a 2-LTTS SH = (S, s0, Σ1, Σ2,→) where:

– S = {(l, v) | l ∈ L ∧ v ∈ (R≥0 ∩ [0, M ])X ∧ v |= inv(l)};
– s0 = (ι,0);
– the transition relation is composed of

(i) discrete transitions. For all (l1, v1), (l2, v2) ∈ S, for all σ ∈ Σ1 ∪ Σ2,
((l1, v1), σ, (l2, v2)) ∈→ iff there exists a transition (ℓ, g, a, Y, ℓ′) ∈ δ such
that ℓ = l1, ℓ′ = l2, v1 |= g, and v2 = v1[Y ];

(ii) time transitions. For all (l1, v1), (l2, v2) ∈ S, for all t ∈ R>0, there is a
transition ((l1, v1), t, (l2, v2)) ∈→ iff l1 = l2, v2 = v1 + t, and for all t′,
0 ≤ t′ < t, (l1, v1 + t′) ∈ S and γ−1((l1, v1 + t′)) = γ−1((l1, v1)).

Remark 1. This semantics has the following important property: changes of ob-
servations can occur only during a discrete transition, or at the last point of
a time delay. This is consistent with our definition of observations using con-
straints in B(X, M): the form of the constraints implies that either for all t ≥ 0,

(l, v)
t
−→ (l, v+t), and γ−1((l, v+t)) = γ−1((l, v)), or there is a first instant t0 > 0

s.t. (l, v)
t0−→ (l, v + t0) and γ−1((l, v + t0)) 6= γ−1((l, v)), and for all 0 ≤ t′ < t0,

γ−1((l, v + t′)) = γ−1((l, v)).

The 2-LTTS of a TGS has no deadlock because a TGS is deadlock-free. This
also implies that any state of the 2-LTTS is the source of an infinite path. As a
TGS is bounded, these infinite paths contain infinitely many discrete steps and
in the sequel we will consider only these type of infinite paths.

Playing with Observation-Based Stuttering Invariant Strategies. In the
remainder of this section, we will define the rules of the timed games that we
want to consider. We start by an informal presentation and then turn to the
formalization.

Player 1 and Player 2 play on the underlying 2-LTTS of a TGS as follows.
Player 1 has to play according to observation based stuttering invariant strategies
(OBSI strategies for short). Initially and whenever the current observation of the
system state changes, Player 1 either proposes an action σ1 ∈ Σ1, or the special
action delay. When Player 1 proposes σ1, this intuitively means that he wants to
play the action σ1 whenever this action is enabled in the system. When Player 1
proposes delay, this means that he does not want to play discrete actions until
the next change of observation, he is simply waiting for the next observation.

2 And more precisely, either time can elapse or Player 2 can do a discrete action from
any state: thus Player 1 cannot block the game by refusing to take its actions.
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Thus, in the two cases, Player 1 sticks to his choice until the observation of the
system changes: in this sense he is playing with an observation-based stuttering
invariant strategy. Once Player 1 has committed to a choice, Player 2 decides of
the evolution of the system until the next observation but respects the following
rules:

1. if the choice of Player 1 is a discrete action σ1 ∈ Σ1 then Player 2 can choose
to play, as long as the observation does not change, either (i) a discrete
actions in Σ2 ∪{σ1} or (ii) let time elapse as long as σ1 is not enabled. This
entails that σ1 is urgent,

2. if the choice of Player 1 is the special action delay then Player 2 can choose
to play, as long as the observation does not change, any of its discrete actions
in Σ2 or let time pass,

3. the turn is back to Player 1 as soon as the next observation is reached.

Plays. In the following, we define plays of a game where choices of Player 1
are explicitly mentioned. A play in H is an infinite sequence of transitions in
SH , ρH = (l0, v0)c0σ0(l1, v1)c1σ1 . . . (ln, vn)cnσn . . . , such that for all i ≥ 0,

(li, vi)
σi−→ (li+1, vi+1) and

– either σi ∈ {ci} ∪ Σ2, or
– σi ∈ R

X
>0 and ∀0 ≤ t < σi, ci 6∈ enable(li, vi + t) (time elapses only when the

choice of Player 1 is not enabled).3

– if σi and σi+1 are in R
X
>0 then γ−1((li, vi)) 6= γ−1((li+1, vi+1)).

We write Play((l, v), H) for the set of plays in H that start at state (l, v). We
write Play(H) for the initial plays that start at the initial state of H , that is the
set Play((ι,0), H).

Prefixes, Strategies, and Outcomes. A prefix of H is a prefix of a play in
H that ends in a state of H . We note Pref((l, v), H) for the set of prefixes of
plays in H that starts in (l, v), i.e. plays in Play((l, v), H). We note Pref(H),
for prefixes of initial plays in H , i.e. prefixes of plays in Play(H). Let ρH =
(l0, v0)c0σ0 · · · (ln, vn)cnσn · · · be a play or a prefix of a play, ρH(n) denotes
the prefix up to (ln, sn). In the sequel, we measure the length of a prefix by
counting the number of states that appear in the prefix. For example, ρH(n)
has a length equal to n + 1. A strategy for Player 1 in H is a function λH :
Pref(H) → Σ1 ∪ {delay}. The outcome of a strategy λH in H is the set of plays
ρH = (l0, v0)c0σ0(l1, v1)c1σ1 . . . (ln, vn)cnσn . . . such that l0 = ι, v0 = 0 and for
all i ≥ 0, ci = λH(ρH(i)). We note OutcomeH(λH) this set of plays.

Consistent Plays, Choice Points and OBSI Strategies in H. We are
interested in strategies for Player 1 where the choice of action can only change if
the observation of the state of the system changes. Such a strategy is called an ob-
servation based stuttering invariant strategy as presented before. When Player 1

3 Remember that delay is never enabled and if Player 1 wants to let time elapse he
plays delay.
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plays such a strategy, the resulting plays have the property of being consistent.
This notion is defined as follows. A play ρH = (l0, v0)c0σ0 · · · (ln, vn)cnσn · · · is
consistent iff for all i ≥ 0: γ−1(ℓi+1, vi+1) = γ−1(ℓi, vi) =⇒ ci+1 = ci. We note
Playco(H) the set of consistent plays of H , and Prefco(H) the set of prefixes of
consistent plays of H . Let ρH = (l0, v0)c0σ0 · · · (ln−1, vn−1)cn−1σn−1(ln, vn) ∈
Prefco(H). ρH is a choice point if either n = 0, or n > 0 and γ−1(ln−1, vn−1) 6=
γ−1(ln, vn). Note that we have that ChoicePoint(H) ⊆ Prefco(H) ⊆ Pref(H) and
Playco(H) ⊆ Play(H).

Let ρH = (l0, v0)c0σ0 · · · (ln, vn)cnσn · · · be a consistent play in H . Let I =
{m | ρH(m) ∈ ChoicePoint(H)}. The stuttering free observation Obs(ρH) of ρH

is the sequence in (O.Σ1)
ω defined by:

– if I = {n0, n1, · · · , nk} is finite,

Obs(ρH) = γ−1((ln0
, vn0

))cn0
· · · γ−1((lnk

, vnk
))cnk

(γ−1((lnk
, vnk

))cnk
)ω

– if I = {n0, n1, · · · , nk, · · · } is infinite,

Obs(ρH) = γ−1((ln0
, vn0

))cn0
γ−1((ln1

, vn1
))cn1

· · ·γ−1((lnk
, vnk

))cnk
· · ·

We call it “stuttering free” as, for all i ∈ I, γ−1((lni
, vni

)) 6= γ−1((lni+1
, vni+1

))
except when I is finite, but in this case, only the last observation is repeated
infinitely. Let ρH ∈ ChoicePoint(H), let I = {n0, n1, · · · , nk} be the set of indices
ni such that ρH(ni) ∈ ChoicePoint(H). The (finite) observation of ρH , noted
Obs∗(ρH), is γ−1((ln0

, vn0
))cn0

· · · γ−1((lnk
, vnk

))cnk
γ−1((lnk

, vnk
))cnk

. We say
that a strategy λH is a stuttering free observation based (SFOB) strategy if the
following property holds: for all ρH

1 , ρH
2 ∈ Prefco(H), let n1 be the maximal

value such that ρH
1 (n1) ∈ ChoicePoint(H), let n2 be the maximal value such that

ρH
2 (n2) ∈ ChoicePoint(H), if Obs∗(ρH

1 (n1)) = Obs∗(ρH
2 (n2)) then λH(ρH

1 ) =
λH(ρH

2 ).

Winning Conditions and Winning Strategies. Let ρH ∈ Play(H) s.t.
Obs(ρH) = o0c0o1c1 . . . oncn . . . . The projection Obs(ρH) ↓ O over O of Obs(ρH)
is the sequence o0o1 . . . on . . . . A winning condition W is a stuttering closed4

subset of Oω . A strategy λH for Player 1 is winning in H for W , if and only if,
∀ρ ∈ OutcomeH(λH) · Obs(ρ) ↓ O ∈ W .

To conclude this section, we define the control problem OBS-CP we are
interested in: let H be a TGS with observations O, W be a stuttering closed
subset of Oω ,

is there a SFOB winning strategy in H for W? (OBS-CP)

In case there is such a strategy, we would like to synthesize one. The problem of
constructing a winning strategy is called the synthesis problem.

4 A language is stutter closed, if for any word w in the language, the word w′ obtained
from w by either adding a stuttering step (repeating a letter), or erasing a stuttering
step, is also in the language.
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3 Subset Construction for Timed Games

In this section, we show how to transform a timed game of imperfect informa-
tion into an equivalent game of perfect information. Let H = (L, ι, X, δ, Σ1, Σ2,

inv,P) be an M -TGS and let SH = (S, s0, Σ1, Σ2,→) be its semantics. In this
section we assume delay ∈ Σ1 but H has no transition labeled delay.

Useful functions. Let σ ∈ Σ1. We define the relation
σ
−→nobs by: (l, v)

σ
−→nobs

(l′, v′) if there is a prefix ρ = (ℓ0, v0)c0σ0(ℓ1, v1)c1σ1 · · · (lk, vk)ckσk(ℓk+1, vk+1)
in Pref((l, v), H) with (ℓ0, v0) = (l, v), (ℓk+1, vk+1) = (l′, v′), ∀0 ≤ i ≤ k, ci = σ

and γ−1((ℓi, vi)) = γ−1((ℓ0, v0)) and γ−1((ℓk+1, vk+1)) 6= γ−1((ℓ0, v0)). Notice
that because of the definition of time transitions in Definition 3, if σi ∈ R>0

and 0 ≤ i < k then γ−1((ℓi, vi)) = γ−1((ℓi+1, vi+1)) and if σi ∈ R>0 and i = k,
γ−1((ℓi, vi)) = γ−1((ℓi, vi + t)) for all 0 ≤ t < σi, γ−1((ℓi, vi)) 6= γ−1((ℓi, vi + t))
and (ℓi+1, vi+1) = (ℓi, vi +σi) (i.e. σi is the first instant at which the observation
changes). By the constraints imposed by B(X, M) this first instant always exists.
We define the function Nextσ(l, v) by:

Nextσ(l, v) = {(l′, v′) | (l, v)
σ
−→nobs (l′, v′)} (1)

This function computes the first next states after (l, v) which have an observation
different from γ−1((l, v)) when Player 1 continuously plays σ. Next is extended
to sets of states as usual.
We also define the function Sinkσ(·) : L × R

X
≥0 → L × R

X
≥0 for σ ∈ Σ1: (l′, v′) ∈

Sinkσ(l, v) iff there is an (infinite) play5 ρ = (ℓ0, v0)c0σ0(ℓ1, v1)c1σ1 · · · (lk, vk)
ckσk(ℓk+1, vk+1) · · · in SH such that: (ℓ0, v0) = (l, v), (ℓk+1, vk+1) = (l,′ v′),
∀0 ≤ i, ci = σ, and ∀0 ≤ i, γ−1(li, vi) = γ−1(l0, v0).

Non-Deterministic Game (of Perfect Information). The games of per-
fect information that we consider here are (untimed) non-deterministic games,
and they are defined as follows: in each state s Player 1 chooses an action σ and
Player 2 chooses the next state among the σ-successors of s.

Definition 4 (Non-Deterministic Game). We define a non-deterministic
game (NDG) to be a tuple G = (S, µ, Σ1, ∆,O, Γ ) where:

– S = S0 ∪ S1 is a set of states;
– µ ∈ S0 is the initial state of the game;
– Σ1 is a finite alphabet modeling choices for Player 1;
– ∆ ⊆ S0 × Σ1 × S is the transition relation;
– O is a finite set of observations;
– Γ : O → 2S \ ∅ maps an observation to the set of states it represents, we

assume Γ partitions S.

5 With an infinite number of discrete transitions because of the boundedness assump-
tion. If needed we can add the requirement that this path is non-zeno if we want to
rule out zeno-runs.
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Definition 5 (Plays in NDG). A play in G from s0 is either an infinite
sequence s0a0s1a1 . . . snan . . . such that for all i ≥ 0, si ∈ S0, ai ∈ Σ1,
and (si, ai, sn+1) ∈ ∆ or a finite sequence s0a0s1a1 . . . sn such that all i, 0 ≤
i < n, si ∈ S0, (si, ai, si+1) ∈ ∆, and sn ∈ S1. We note Play(s0, G) the
set of plays starting in s0 in G and let Play(G) = Play(µ, G). The observa-
tion of an infinite play ρG = s0a0s1a1 . . . snan . . . is defined by Obs(ρG) =
Γ−1(s0)a0Γ

−1(s1)a1 . . . Γ−1(sn)an . . . . If ρG = s0a0s1a1sn−1an−1 . . . snansn+1

is finite then Obs(ρG) = Γ−1(s0)a0Γ
−1(s1)a1 . . . Γ−1(sn)an(Γ−1(sn+1)an)ω.

A prefix in G is a finite sequence s0a0s1a1 . . . sn ending in sn ∈ S0, such that
for all i, 0 ≤ i < n, (si, ai, si+1) ∈ ∆. We let Pref(G) be the set of prefixes of
G. The observation of a prefix is Obs(ρG) = Γ−1(s0)a0Γ

−1(s1)a1 . . . anΓ−1(sn).
For any ρG ∈ Play(G), ρG(n) = s0a0 · · · sn is the prefix up to state sn and we
let |ρG| = n to be the length of ρG.

Remark 2. A prefix ends in an S0-state. Finite sequences ending in S1-states are
not prefixes but finite plays.

Strategies and Winning Conditions for NDG. A strategy in G is a func-
tion6 λG : Pref(G) → Σ1. The outcome, OutcomeG(λG), of a strategy λG is the
set of (finite or infinite) plays ρG = s0a0 · · · snan · · · s.t. s0 = µ, ∀i ≥ 0, ai =
λG(ρG(i)). Let ρG be a play of G. We let Obs(ρG) ↓ O be the projection of
Obs(ρG) on O. A winning condition W for G is a subset of Oω. A strategy λG

is winning for W in G iff ∀ρG ∈ OutcomeG(λG), Obs(ρG) ∈ W .

Remark 3. Strategies in NDG are based on the history of the game since the
beginning: in this sense, this is a perfect information game.

Knowledge Based Subset Construction.

Definition 6. Given a game H = (L, ι, X, δ, Σ1, Σ2, inv,O, γ), we construct a
NDG G(H) = (S, µ, Σ1, ∆,O, Γ ) as follows:

– let V = {W ∈ 2L×R
X
≥0 \ ∅ | γ−1(l, v) = γ−1(l′, v′) for all (l, v), (l′, v′) ∈ W},

– S = V × {0, 1}, and we note S0 the set V × {0} and S1 the set V × {1},
– µ = ({(ι,0)}, 0),
– ∆ ⊆ S ×Σ1×S is the smallest relation that satisfies: ((V1, i), σ, (V2, j)) ∈ ∆

if
• i = 0. A consequence is that if i = 1 (a state in S1) there are no outgoing

transitions.
• j = 0 and V2 = Nextσ(V1)∩o for some o ∈ O such that Nextσ(V1)∩o 6= ∅,

or
• j = 1 if Sinkσ(s) 6= ∅ for some s ∈ V1 and V2 = ∪s∈V1

Sinkσ(s),
– Γ−1 : S → O, and Γ−1((W, i)) = γ−1(v) for v ∈ W . Note that this is

well-defined as W is a set of states of H that all share the same observation.

6 Notice that S1-states have no outgoing transitions and we do not need to define a
strategy for these states.
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Notice that the game G(H) is non-deterministic as there may be many tran-
sitions labeled by σ and leaving a state s to many different states with different
observations. G(H) is total for S0 states: ∀V ∈ S0, ∀σ ∈ Σ1, σ ∈ Enabled(V ),
because either there is an infinite path from some s ∈ V with the same obser-
vation or there is an infinite path with a new observation (remember that time
can elapse or Player 2 can do a discrete action from any state in H). Although
non-deterministic G(H) enjoys a weaker notion of determinism formalized by
the following proposition:

Proposition 1. Let (V, i) be a state of G(H), σ ∈ Σ1 and o ∈ O. There is at
most one (V ′, j) with V ′ ⊆ γ(o) s.t. ((V, i), σ, (V ′, j)) ∈ ∆.

Note also that if ((V, 0), σ, (V ′, 0)) ∈ ∆ then Γ−1((V, 0)) 6= Γ−1((V ′, 0)). We can
relate the consistent plays in H and plays in G. For that, we define the function
Abs : Playco(H) → Play(G) as follows.

Definition 7 (Abs for Plays of H). Let ρH = (l0, v0)c0σ0(l1, v1) . . . (lm, vm)
cmσm . . . be in Playco(H). Let I = {j ∈ N | ρH(j) ∈ ChoicePoint(H)}. Then
Abs(ρH) is defined by:

– if I is a finite set, let I = {j0, j1, · · · , jn}. Define Abs(ρH) = s0a0s1a1 . . . sn

ansn+1 by induction as follows:
1. s0 = ({(l0, v0)}, 0), a0 = cj0 (and j0 = 0),
2. and for all i, 0 < i ≤ n, if si−1 = (V, 0) then let V ′ = Nextai−1

(V ) ∩
γ−1(vji

), si = (V ′, 0) and ai = cji
.

3. As ρH has a finite number of choice points, it must be the case that ∀k ≥
jn, γ−1((lk, vk)) = γ−1((ljn

, vjn
)); moreover, because ρH is consistent,

∀k ≥ jn, ck = cjn
. If sn = (V, 0) we let V ′ = ∪v∈V Sinkcjn

(v). V ′ must
be non empty and we define sn+1 = (V ′, 1).

– if I is an infinite set, let I = {j0, j1, · · · , jn, · · · }. We define Abs(ρH) =
s0a0s1a1 . . . snansn+1 · · · by induction as follows:
1. s0 = ({(l0, v0)}, 0), a0 = cj0 (and j0 = 0),
2. and for all i ≥ 1, if si−1 = (V, 0) then let V ′ = Nextai−1

(V ) ∩ γ−1(vji
),

si = (V ′, 0) and ai = cji
.

Definition 8 (Abs for consistent prefixes). Let ρH = (l0, v0) . . . (ln−1, vn−1)
cn−1σn−1(ln, vn) ∈ Prefco(H) and, I = {j0, j1, · · · , jm} be the set of choice
points of ρH . Then Abs(ρH) = s0a0 . . . sm−1am−1sm with:

– s0 = ({(l0, v0)}, 0),
– and for all i, 0 < i ≤ m, if si−1 = (Vi−1, 0) then si = (Vi, 0) where Vi =

Nextai−1
(Vi−1) ∩ oi,

– ∀0 ≤ i < m, ai = cji
.

It can be checked that Abs(ρH) is well-defined for consistent plays as well for
prefixes. The following theorem states the correctness of our construction:

Theorem 1. Let Φ be a stuttering closed subset of Oω. Player 1 has a winning
strategy in G(H) for Φ iff Player 1 has a stuttering free observation based winning
strategy in H for Φ.
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4 Symbolic Algorithms

In this section, we prove that the game G(H) is a finite game and design an
efficient symbolic algorithm for reachability and safety objectives.

Given a set of states S represented as a finite union of zones, and an action c ∈
Σ1 we can compute the sets

⋃

s∈S Nextc(s) and
⋃

s∈S Sinkc(s) as finite unions of
zones. Since the clocks are bounded in our M -TGS, only a finite number of zones
are computed during the computation of those operators. As a consequence, the
game G(H) is finite.

To implement efficiently the computations, we use Difference Bound Matri-
ces (DBMs), which allow efficient realisation of most set operations (inclusion,
interesection, future, reset. . . ) [11, 14].

Since G(H) is finite, we can apply standard control algorithms to compute the
set of winning states. In particular, for reachability or safety objectives, we can
use the efficient on-the-fly forward algorithm of [9] that has been implemented
in Uppaal-Tiga [5].

The algorithm for finite games given in [9] can easily be tailored to solve
NDGs of type G = (S, s0, Σ1, ∆,O, Γ ) with reachability objective Goal s.t.
Goal ∈ O. Then, to obtain an algorithm for games of imperfect information,
we replace the transition relation of G(H) in this algorithm with the definition
(see Definition 6) of the transition relation of G(H) using the Next and Sink

operators. This way we obtain the algorithm OTFPOR for TGS which is given
Figure 2.

An important feature added to the algorithm is the propagation of losing
state-sets, that is state-sets for which the reachability objective can be directly
concluded not to be achievable. For reachability games, a state-set W may de-
clared to be losing provided it is not among the Goal sets and is a deadlock.
Safety games are dual to reachability games in the sense that if the algorithm
concludes that the initial state is not losing it is possible to extract a strategy
to avoid losing states.

5 Example and Experiments

In this section we report on an application of a prototype implementation of the
OTFPOR algorithm. Similar to the Box Painting Production System (BPPS)
from the Introduction, we want to control a system consisting of a moving belt
and an ejection piston at the end of the belt. However, a complicating feature
compared with BPPS is that the system can receive both light and heavy boxes.
When receiving a light box, its speed is high and the box takes between 4 to
6 seconds to reach the zone where it can be Eject?’ed with a piston. When
receiving a heavy box, the speed of the belt is slower and the box takes between
9 and 11 seconds to reach the zone where it can be Eject?’ed by the piston. The
controller should command the piston so that the order to Eject? a box is given
only when the box is in the right region. The system is modeled by the timed
game automaton of Figure 3. The initial location of the automaton is l0. The
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Initialization:
Passed← {{s0}};
Waiting ← {({s0}, α, W ′) |α ∈ Σ1, o ∈ O, W ′ = Nextα({s0}) ∩ o ∧W ′ 6= ∅};
Win[{s0}]← ({s0} ⊆ γ(Goal) ? 1 : 0);
Losing[{s0}]← ({s0} 6⊆ γ(Goal) ∧ (Waiting = ∅ ∨ ∀α ∈ Σ1, Sinkα(s0) 6= ∅) ? 1 : 0);
Depend[{s0}]← ∅;

Main:
while ((Waiting 6= ∅) ∧Win[{s0}] 6= 1 ∧ Losing[{s0}] 6= 1)) do

e = (W, α, W ′)← pop(Waiting);
if s′ 6∈ Passed then

Passed← Passed∪ {W ′};
Depend[W ′]← {(W, α, W ′)};
Win[W ′]← (W ′ ⊆ γ(Goal) ? 1 : 0);
Losing[W ′]← (W ′ 6⊆ γ(Goal) ∧ Sinkα(W ′) 6= ∅ ? 1 : 0);
if (Losing[W ′] 6= 1) then (* if losing it is a deadlock state *)

NewTrans← {(W ′, α, W ′′) |α ∈ Σ, o ∈ O, W ′ = Nextα(W ) ∩ o ∧W ′ 6= ∅};
if NewTrans = ∅ ∧Win[W ′] = 0 then Losing[W ′]← 1;

if (Win[W ′] ∨ Losing[W ′]) then Waiting ←Waiting ∪ {e};
Waiting ←Waiting ∪NewTrans;

else (* reevaluate *)
Win∗ ←

W

c∈Enabled(W )

V

W
c−→W ′′

Win[W ′′] ;

if Win∗ then
Waiting ←Waiting ∪Depend[W ]; Win[W ]← 1;

Losing∗ ←
V

c∈Enabled(W )

W

W
c−→W ′′

Losing[W ′′] ;

if Losing∗ then
Waiting ←Waiting ∪Depend[W ]; Losing[W ]← 1;

if (Win[W ′] = 0 ∧ Losing[W ′] = 0) then Depend[W ′]← Depend[W ′] ∪ {e};
endif

endwhile

Fig. 2. OTFPOR: On-The-Fly Algorithm for Partially Observable Reachability

system receives boxes when it is in location l0, if it receives a heavy box then it
branches to l1, if it receives a light box then it branches to l4. The only event
that is shared with the controller is the Eject? event. This event should be issued
when the control of the automaton is in l3 or l6 (which has the effect of ejecting
the box at the end of the belt), in all other locations, if this event is received
then the control of the automaton evolves to location l7 (the bad location that
we want to avoid); those transitions are not depicted in the figure. The control
objective is to avoid entering location l7.

To control the system, the controller can use a clock y that it can reset
at any moment. The controller can also issue the order Eject! or propose to
play delay, which allows for the time to elapse. The controller has an imperfect
information about the state of the system and the value of the clock y. The
controller gets information throughout the following observations: E: the control
of the automaton is in location l0, l2, l3, l5, or l6; H: the control of the automaton
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l0 E

l1

x ≤ 0

H

l2

x ≤ 10

E

l3

E

l4

x ≤ 0

L

l5

x ≤ 5

E

l6

E

l7 B

x := 0

x := 0

x ≥ 9

x ≥ 4

x ≥ 11

x ≥ 6

Eject?

Eject?

Fig. 3. Timed Game for Sorting Bricks. Edges to l7 with action Eject? are omitted.

is in location l1; L: the control of the automaton is in location l4; B: the control of
the automaton is in location l7; 0 ≤ y < M : the value of clock y is in the interval
[0, M [, M being a parameter. The observations E, H, L, and B are mutually
exclusive and cover all the states of the automaton but they can be combined
with the observation 0 ≤ y < M on the clock but also with its complement
y ≥ M . So formally, the set of observations that the controller can receive at any
time is O = {(E, 0 ≤ y < M), (E, y ≥ M), (H, 0 ≤ y < M), (H, y ≥ M), (L, 0 ≤
y < M), (L, y ≥ M), (B, 0 ≤ y < M), (B, y ≥ M)}. The set of actions that the
controller can choose from is Σc = {Resety, Eject!, delay}.

We modelled this example in our prototype and checked for controllability
of the safety property A�¬B. Controllability as well as the synthesized strategy
heavily depend on the choice of the parameter M , i.e. the granularity at which
the clock y may be set and tested. Table 1 gives the experimental results for
M ∈ {1, 0.5, 0.25, 0.2}7. It turns out that the system is not controllabe for M = 1:
a granularity of 1 is simply too coarse to determine (up to that granularity)
with certainty when, say, a light box will be in l6 and should be Eject?’ed. The
differences between the guards and invariants in l5, l6 and l7 are simply too small.
As can be seen from Table 1 the finer granularities yield controllability.

We report on the number of explored state-sets (state-set) and the number of
state-sets that are part of the strategy (strat). To get an impression of the com-
plexity of the problem of controller synthesis under partial observability we note
that the the model in Figure 3 has 115 reachable symbolic states when viewed
as a regular timed automaton. Table 1 reports on experiments exploiting an
additional inclusion checking option in various ways: (notfi) without on-the-fly
inclusion checking, and (otfi) with on-the-fly inclusion checking. In addition, we
apply the post-processing step of inclusion checking (+post) on the strategy and
a filtering of the strategy (+filter) on top to output only the reachable state-sets
under the identified strategy. The results show that on-the-fly inclusion checking
gives a substantial reduction in the number of explored state-sets – and is hence

7 Fractional values of M are dealt with by multiplying all constants in the timed game
automaton with 1

M
.
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notfi otfi
state-set strat +post +filter state-set strat +post +filter

[0, 0.2[ 110953 36169 1244 70 52615 16372 841 176
[0, 0.25[ 72829 23750 1014 60 35050 11016 697 146
[0, 0.5[ 20527 6706 561 41 10586 3460 407 88
[0, 1[ 2284 - - - 1651 - - -

Table 1. Number of state-sets and size of strategy obtained for different heuristics for
observations 0 ≤ y < M of the clock y with M ∈ {1, 0.5, 0.25, 0.2}. The case M = 1 is
not controllable.

substantially faster. Both (notfi) and (otfi) shows that post processing and fil-
tering reduces the size of the control strategy with a factor of approximately 100.
It can also be seen that the size of the final strategy grows when granularity is
refined; this is to be expected as the strategies synthesized can be seen to involve
counting modulo the given granularity. More suprising is the observation that
the final strategies in (notfi+post+filter) are uniformly smaller than the final
strategies in (otfi): not performing on-the-fly inclusion checking explores more
state-sets, thus having the potential for a better reduction overall.

6 Conclusions and Future Works

During the last five years a number of very promissing algorithmic techniques
has been introduced for controller synthesis in general and controller synthesis
for timed systems in particular. The contribution of this paper to the decid-
ability and algorithmic support for timed controller synthesis under imperfect
information is an important new step within this line of research. Future re-
search includes more experimental investigation as well as search for additional
techniques for minimizing the size of the produced strategies (e.g. using mini-
mization wrt. (bi)simulation or alternating simulation). For safety objectives, we
need methods to insure that the synthesized strategies do not obtain their ob-
jective simply by introducing zeno behaviour. Finally, a rewrite of the prototype
as extension of Uppaal-Tiga is planned.
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