Uppaal-Tiga: Timed Games for Everyone

Gerd Behrmann', Agnes Cougnard!, Alexandre David!, Emmanuel Fleury?,
Kim G. Larsen!, Didier Lime?

1 CISS, Aalborg University, Aalborg, Denmark
{behrmann, acougnar,adavid,kgl}@cs.aau.dk

2 LaBRI, Bordeaux-1 University, CNRS (UMR. 5800), Talence, France
fleury@labri.fr

3 IRCCyN, Ecole Centrale de Nantes, CNRS (UMR 6597), Nantes, France

Didier.Lime@irccyn.ec-nantes.fr

Abstract. In 2005 we proposed the first efficient on-the-fly algorithm for
solving games based on timed game automata with respect to reachabil-
ity and safety properties. Since then we have completely re-implemented
the first prototype and made dramatic improvements both in terms of
performance (several orders of magnitude) and the input language (com-
plete support of all the language features of UPPAAL). In addition, the
tool supports the new feature of strategy generation with different com-
pactness levels. In this paper we present this new version of UPPAAL-
TIGA.

1 Introduction

UpPAAL-TIGA! is a tool for solving games based
on timed game automata. It is implementing the
on-the-fly algorithm presented in [CDF*05]. The
new version is faster by several orders of magni-
tude (more than 1000 times faster on large ex-
amples) and consumes much less memory (100
times less on large examples) than the first proto-
type presented at CONCUR’05. These dramatic
improvements come from a different internal ar-
chitecture of the tool and improvements on the
DBM library supporting subtractions, partitions,
federations, intersections, specific operations for
timed games (e.g. predt), and the essential opera- Fig.1. Timed game au-
tion of merging several difference bound matrices tomaton example.

(DBMs) into one.

In addition, the full input language of UPPAAL-4.0]BDH'06]? is now sup-

ported, which gives the user access to C-like syntax to declare functions, custom

! http://www.cs.aau.dk/~adavid/tiga/
2 See hitp://www.uppaal.com.

types, and other control statements (loops etc). The input language is given by
a network of timed game automata [MPS95] (TGA).

Let us consider the example of the TGA A shown in Fig. 1 consisting of a
timed automaton with one clock z and two types of edges: controllable (¢;) and
uncontrollable (u;). The reachability game consists in finding a strategy for a
controller, i.e. when to take the controllable transitions that will guarantee that
the system, regardless of when and if the opponent chooses to take uncontrollable
transitions, will eventually end up in the location Goal.

State: (A.11)
While you are in (A.x<1), wait.
When you are in (A.x==1), take transition A.11->A.12 { x <= 1, tau, 1 }

State: (A.12)
While you are in (1<=A.x && A.x<2) || (A.x<1), wait.
When you are in (2<=A.x), take transition A.12->A.Goal { x >= 2, tau, 1 }

State: (A.13)
When you are in (A.x<=1), take transition A.13->A.14 { 1, tau, 1 }

State: (A.14)
When you are in (A.x==1), take transition A.14->A.12 { x <= 1, tau, 1 }
While you are in (A.x<1), wait.

Fig. 2. Synthesized strategy of the example of Fig. 1.

Winning (or losing) conditions of the game are specified by TCTL formulas
in the tool. In this example, we play a reachability game and the corresponding
formula control: A<> A.Goal is satisfied. The tool gives the strategy (obtained
with option -t0) shown in Fig. 2. The tool supports both reachability and safety
games. If there is no winning strategy, the tool will give a counter strategy for
the opponent (environment) to make the controller lose.

The new features of UPPAAL-TIGA since version 0.7 are:

— Better performance.

— Definition of winning/losing conditions as TCTL formulas.

— Support for both reachability and safety games.

— Support for the full input language of UPPAAL-4.0 (except for priorities that
are incompatible).

— Output of strategies.

— Different compactness levels for the strategies (can output the strategy as a
BDD/CDD).

— Ability to play against UPPAAL-TIGA with the command line verifier.

2 Strategy Synthesis

A strategy is a function f : L x Rgo — Act. U {\} that constantly gives infor-
mation as to what the controller should do during the course of the game. In a
given situation, the strategy could suggest the controller to either “do a partic-
ular controllable action” or “do nothing at this point in time (\)”. A strategy

is said to be a winning strategy if the controller supervised by the strategy al-
ways win the game whatever actions are chosen by the environment. If there
is no such winning strategy, there exists a counter-strategy to either make the
controller lose (reach a state marked as losing) or just prevent it to win.

2.1 Query Extensions

Winning conditions are specified through extensions of the UPPAAL query lan-
guage. Given a timed game automaton A, a set of goal states (win) and/or a
set of bad states (Lose), both defined by classical UPPAAL state formulas, four
types of winning conditions can be issued. For all of them, the game is to find a
controllable strategy f such that A supervised by f ensures that:

— control: A<> win (must reach win)

— control: A[not(lose) U win] (must reach win and must avoid lose)
— control: A[not(lose) W win] (should reach win and must avoid lose)
— control: A[] not(lose) (must avoid lose)

By default, UPPAAL-TIGA first check whether there is or not a winning strat-
egy for the timed game given a winning condition. Note that it is always better
to start asking for existence because the process of strategy extraction is quite
demanding.

2.2 Strategy Extraction

The command line tool verifytga in the UPPAAL-TIGA package can output
a strategy for each given winning condition when used with the -t0 option. If
no such strategy exists, a counter-strategy for the environment is given. Two
additional options are available to control compactness: -cO makes sure that
states with a given discrete part are unique and -c1 prints the strategy as a
BDD/CDD representation.

2.3 Game Simulation

The -p option of verifytga is the interactive mode where users can play against
the strategy synthesized by UPPAAL-TIGA. Users may choose transitions to fire
or to delay when it is their turns to play. For example, choices can be: t2 (take
transition ¢3) or w4.3 (wait for 4.3 time units).

3 Experiments And Conclusion

We compare the new verifier against the old prototype (old) against the current
new version (new). The example is the production cell of [LL95,MW98]. Time
constraints are defined to make the model controllable (c) or uncontrollable (u)
with different numbers of plates (3, ¢6 ...). Table 1 shows time consumption
is given in seconds (s) and memory usage in megabytes (M). The old version

Model c3 <} cl2 u3 ub ul2

Oold 0.1s| 1M | 12s |63M| - - || 0.2s | 3M |235s|273M| - -

New {|0.05s|3.5M|0.05s(3.5M|0.14s|55M||0.02s|3.5M|0.04s| 3.5M |0.12s|55M
Table 1. Experimental results on the production cell.

cannot handle the models with 12 plates, which is shown by “-”. The new version
is obviously far better.

The new version of UPPAAL-TIGA is becoming mature and is fully oper-
ational with the GUI of UPPAAL and the only missing feature of the tool is
the ability to play strategies in the simulator, which we are currently work-
ing on. An interesting remark that we cannot develop in this short abstract is
that back-propagating only winning or losing information is more efficient than
back-propagating both as first thought in [CDFT05].

References

[BDH'06] Gerd Behrmann, Alexandre David, John Hékansson, Martijn Hendriks,
Kim G. Larssen, Paul Pettersson, and Wang Yi. UPPAAL 4.0. In Third
International Conference on the Quantitative Evaluation of Systems, pages
125-126. IEEE Computer Society, 2006.

[CDF*05] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient On-
the-fly Algorithms for the Analysis of Timed Games. In Proc. of 16" Int.
Conf. on Concurrency Theory (CONCUR’05), volume 3653 of LNCS, pages
66-80. Springer, 2005.

[LL95] C. Lewerentz and T. Lindner. Production Cell: A Comparative Study in
Formal Specification and Verification. In Methods, Languages & Tools for
Construction of Correct Software, volume 1009 of LNCS, pages 388-416.
Springer, 1995.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the Synthesis of Discrete Controllers
for Timed Systems. In Proc. 12" Symp. on Theoretical Aspects of Computer
Science (STACS’95), volume 900, pages 229-242. Springer, 1995.

[MW98] H. Melcher and K. Winkelmann. Controller Synthesis for the “Production
Cell” Case Study. In Proc. of 2" Work. on Formal Methods in Software
Practice, pages 24-36. ACM Press, 1998.

