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Abstract. In this paper we describe an extension of timed automata
with priorities, and efficient algorithms to compute subtraction on DBMs
(difference bounded matrices), needed in symbolic model-checking of
timed automata with priorities. The subtraction is one of the few op-
erations on DBMs that result in a non-convex set needing sets of DBMs
for representation. Our subtraction algorithms are efficient in the sense
that the number of generated DBMs is significantly reduced compared
to a naive algorithm. The overhead in time is compensated by the gain
from reducing the number of resulting DBMs since this number affects
the performance of symbolic model-checking. The uses of the DBM sub-
traction operation extend beyond timed automata with priorities. It is
also useful for allowing guards on transitions with urgent actions, dead-
lock checking, and timed games.

1 Introduction

Since the introduction of timed automata [2] in 1990, the theory has proven its
capability of specifying and analysing timed systems in many case studies, e.g.,
[4, 23]. To support such studies, tools as Kronos [7], Uppaal [18], and RED [24]
have been developed to offer means for modelling, simulation, model-checking,
and also testing, of real-time systems specified as timed automata.

In the implementation of real-time systems, the concept of priorities is often
used as a way to structure and control the usage of shared resources. Priorities
are often associated with processes (or tasks) to control their usage of shared
resources such as CPU or shared memory areas. As a consequence, program-
ming languages such as Ada [3, 12], and scheduling policies used in real-time
operating system, such as rate-monotonic scheduling [9], are often based on a
notion of priorities on tasks. In lower levels, closer to the hardware, priorities are
often associated with interrupts to hardware devices and access to e.g., shared
communication buses.

Priorities have been studied in process algebras, e.g., [11, 8], and can be mod-
elled using timed automata [12, 14]. However, it can be cumbersome and error-
prone to do so. Consider the simple example shown in Figure 1 and assume that
the location l can be reached with any time assignment satisfying the constraint
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Fig. 1. A timed automaton with priorities on actions.
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Fig. 2. Encoding of the priorities in Fig. 1.

x ≤ 4 ∧ y ≤ 4. Further assume that the edge labelled with a has priority over
the edge labelled b. We see that l1 can be reached with any time assignment
satisfying the constraint x ≤ 2 ∧ y ≤ 2. The location l2 is reachable under the
constraint (y ≥ 1 ∧ x ≤ 4 ∧ y ≤ 4) ∧ ¬(x ≤ 2 ∧ y ≤ 2), which is a non-convex
set of clock valuations and thus not representable as a conjunction of simple
constraints. This fact will make (symbolic) state-space exploration potentially
costly, since the set of clock valuations reachable in one step over a low priority
transition, such as transitions derived from the b-edge, generally will have to be
represented by a set of convex constraint systems. In Figure 2 we show a timed
automaton in which the priorities of the automaton in Figure 1 have been en-
coded. Note that the b-edge has been split to two edges to encode the disjunctive
constraints on the clock valuations reaching l2.

Model-checking tools for timed automata typically uses DBMs (difference
bound matrices) [13, 22] to represent convex constraints on clock variables. How-
ever, as illustrated above, analysis of timed automata with priorities will require
the model-checking engine to efficiently handle disjunctive constraints. As a sec-
ond contribution of this paper, we present a variety of techniques for performing
subtractions on DBMs. That is, how to compute D−D′ defined as D∧¬D′, for
two DBMs D and D′. Guided by the goal to minimise the set of DBMs resulting
from subtraction, and to keep them disjoint, we give a heuristic algorithm with
good performance. To back up this statement, we present experimental evidence
from applying a version of the Uppaal tool extended with priorities, on a set
of examples. We note that DBM subtraction is already needed for backward
model-checking of full TCTL or scheduler synthesis [23], controller synthesis [10],
and to support urgent guards.

The rest of this paper is organised as follow: Timed automata with priori-
ties are described in Section 3, and the required DBM subtraction operation in
Section 4. In Section 5 we present subtraction algorithms that reduce the set



of resulting DBMs. We show with experiments in Section 6 that our algorithm
improves DBM subtractions significantly.

Related work: Priorities in process algebras are described in [11], where pri-
orities on actions are defined in two levels. A process algebra of communicating
shared processes is described in [8], where priorities are described as real num-
bers on events and timed actions. Preservation of congruence is a major concern
in these papers.

In [6] priorities are introduced for live systems (time-lock and deadlock free
with no indefinite waiting), with the purpose to preserve liveness in the compo-
sition of such systems. In our work we have focused on introducing priorities for
existing timed automata models, and developing efficient algorithms for DBM
subtraction.

In [16] a notion of priorities for timed automata based on total orderings and
an algorithm for computing DBM subtractions have been proposed. In this pa-
per, we introduce a more general notion of priorities for timed automata where
the priority ordering is allowed to be partial, and allowing the priority ordering
to be defined both on the level of synchronisation actions as well as the individ-
ual automata. We believe that both these two suggestions will be useful when
modelling real-time systems with priorities. The subtraction of [16] is claimed
to be optimal, i.e., it generates the fewest possible number of DBMs as a result.
However, the ordering of constraining operations needed for subtraction is not
mentioned. We argue in this paper that ordering is important and optimality
of subtraction w.r.t. reachability is more difficult than just having the minimal
number of DBMs from subtractions.

2 Preliminaries

2.1 Clock Constraints

Model-checking of timed automata involves exploring a state-space of symbolic
states, where each symbolic state represents a set of clock valuations. For a set
C of n clocks, a clock valuation is a map v : C 7→ R≥0. We denote by B(C) the
set of conjunctions of atomic constraints in the form xi ∼ m or xi − xj ∼ m,
where m is a natural number, xi and xj are clock valuations of clocks i and
j, and ∼∈ {<,≤, =,≥, >}. Although it is possible to represent sets of clock
valuations as regions [2], using zones is much more efficient in practice [5]. A
zone corresponds to the set of clock valuations that satisfies a conjunction of
constraints in B(C). A zone is convex by definition, and we represent it as a
difference bound matrix (DBM).

2.2 Difference Bound Matrices

A DBM is a conjunction D =
∧

1≤i,j≤n(xi − xj ∼ bij) for ∼∈ {<,≤}, written
as D =

∧
dij . We use dij (or eij) to denote the constraints of a DBM D (or E).



The bound of a constraint dij is denoted |dij |. We define a complement operation
over ∼ so that ≤̄ =< and <̄ =≤.

A DBM is canonical if it is closed under entailment, e.g. by Floyd’s shortest
path algorithm [15]. We consider all DBMs to be canonical.

Definition 1 (Operations on constraints) For constraints dij and eij :

– dij ≤ eij ⇔ dij ⇒ eij

– dij < eij ⇔ dij 6= eij ∧ dij ≤ eij

– ¬dij = ¬(xi − xj ∼ bij) = xj − xi∼̄ − bij . Note that ¬dij is a new d′ji

comparable with other constraints eji.

– dik + dkj = (xi − xk ∼ bik) + (xk − xj ∼′ bkj) = xi − xj ∼′′ bik + bkj where
∼′′=< if ∼=< or ∼′=<, otherwise ∼′′=≤.

– dik − djk = dik + ¬djk

We write v |= g to denote that a constraint g ∈ B(C) is satisfied by a clock
valuation v. The notation v ⊕ d represents a valuation where all clocks have
advanced by the real valued delay d from their value in v. For a set of clocks r
we denote by [r 7→ 0]v the valuation that maps clocks in r to zero, and agrees
with v for all other clocks. We write D = {v | v |= xi − xj ∼ bij} for the set of
clock valuations that satisfy the constraints of D.

Definition 2 (Operations on zones) For a zone D and a clock constraint g:

– conjunction: D ∧ g = {v | v ∈ D, v |= g},
– delay: D↑ = {v ⊕ t | v ∈ D, t ∈ R≥0},
– reset: r(D) = {[r 7→ 0]v | v ∈ D},
– free: free(D, r) = {[r 7→ t]v | v ∈ D, t ∈ R≥0}, and

– negation: ¬D = {v | v 6∈ D}.

Subtraction Given two DBMs D and E, we want to subtract E from D. The
resulting set S is defined as the set satisfying the constraints of D and ¬E. The
set is not necessarily a zone. The result S = D ∧¬E, denoted D −E, is written
as:

S = D ∧ ¬(
∧

1≤i,j≤n

eij) =
∨

1≤i,j≤n

(D ∧ ¬eij), (De Morgan law),

which is a union of D constrained by each of the negated constraints of E. This
gives us a straight-forward basic algorithm to compute subtractions. Figure 3
illustrates this basic algorithm with two clocks. The result S = D − E is rep-
resented by the union of the six smaller zones on the right in the figure. The
number of zones in S is bounded by n2, and creating each of these zones is O(n2),
so the complexity of the operation is O(n4) (in both time and space), with n
being the number of clocks (we assume this every time we discuss complexity).
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Fig. 3. Basic subtraction algorithm. The result of D − E is the union of all the six
zones on the right.

3 Timed Automata with Priorities

We denote by Act a set of actions, including the internal action τ and synchro-

nising actions a. A synchronising action a has a complement ā ∈ Act such that
¯̄a = a. A timed automaton Ai = 〈N i, li0, E

i, Ii〉 is a finite state automaton with
a set N i of locations li, a set Ei of edges, and an initial location li

0
. The func-

tion Ii : N i 7→ B(C) maps to each location an invariant condition. An edge of

automata Ai from location li to li
′
is denoted li

g,a,r
−→ li

′
. The edges are labelled

with clock guards g ∈ B(C), actions a ∈ Act, and a set of clocks r ⊆ C.
We define a network of timed automata as the parallel composition of timed

automata A1| · · · |An communicating on a set of actions Act, and extend these
with priority orders on actions or automata. A priority order on actions is a
partial order ≺a. We write a ≺a a′ to denote that a′ has higher priority than a.
Similarly for automata we write Ai ≺A Aj to denote that an automaton Aj has
higher priority than Ai.

3.1 Semantics

A state of a network of timed automata is a pair 〈l, v〉, where l is a vector of
locations li for each automaton, and v is a clock valuation. The initial state
〈l0, v0〉 puts all automata in their initial locations li0, and maps all clocks to
zero.

The invariant I(l) is defined as the conjunction of terms Ii(li) for each au-

tomaton Ai. An update of the location for automata Ai is denoted by l[li
′
/li] as

the location vector originating from l where li is replaced by li
′
. For a transition

t we denote by gt the conjunction of the guards on the edges participating in
that transition. Similarly we denote by rt the union of clock sets r on the edges,
and by lt the location vector of the state generated by t.



Using a priority order ≺ on transitions, a transition can block another if it
has a higher priority. From a state 〈l, v〉 a transition t is blocked according to
the predicate block(t) = ∃t′.t ≺ t′ ∧ v |= gt′ ∧ [rt′ 7→ 0]v |= I(lt

′

).
The transitions between states can be either delay transitions, internal tran-

sitions, or synchronising transitions. The following rules define all possible tran-
sitions t:

– Delay transition: 〈l, v〉
d

−→ 〈l, v ⊕ d〉 if v ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d.

– Internal transition: 〈l, v〉
a

−→ 〈l[li
′
/li], v′〉 if there is an edge li

g,a,r
−→ li

′
with

a local action a such that v′ = [r 7→ 0]v, v |= g, v′ |= Ii(li
′
), and ¬block(t).

– Synchronising transition: 〈l, v〉
a

−→ 〈l[li
′
/li, lj

′
/lj], v′〉 if there are two edges

li
gi,a,ri

−→ li
′
and lj

gj ,ā,rj

−→ lj
′
such that i 6= j, v′ = [ri 7→ 0, rj 7→ 0]v, v |= gi,

v |= gj , v′ |= Ii(li
′
), v′ |= Ij(lj

′
), and ¬block(t).

With these semantics, a delay transitions can never be blocked, and no tran-
sition can be blocked by a delay transition. In Section 3.3 we show how a priority
order ≺ over internal and synchronising transitions can be derived from the or-
ders ≺a or ≺A.

3.2 Symbolic Semantics

We use zones to define a symbolic, finite semantics for networks of timed au-
tomata with priorities. A symbolic state is a pair 〈l, D〉 with a location vector l
and a zone D. A symbolic transition is denoted 〈l, D〉 =⇒ 〈l′, D̂′〉, where D̂′ is a
disjunction of a set of zones and 〈l′, D̂′〉 are all symbolic states 〈l′, D′〉 such that
D′ ∈ D̂′. The set of zones that block a transition t are describe by the predicate
Block(t) =

∨
t≺t′ free(I(lt

′

), rt′) ∧ gt′ . The rules for symbolic transitions t are:

– Symbolic delay transition: 〈l, D〉
δ

=⇒ 〈l, D↑ ∧ I(l)〉.
– Symbolic internal transition: 〈l, D〉

a
=⇒ 〈l[li

′
/li], D̂′〉 if there is an edge

li
g,a,r
−→ li

′
with a local action a, and D̂′ = r(D ∧ g − Block(t)) ∧ Ii(li

′
).

– Symbolic synchronising transition: 〈l, D〉
a

=⇒ 〈l[li
′
/li, lj

′
/lj], D̂′〉 if there are

two edges li
gi,a,ri

−→ li
′
and lj

gj ,ā,rj

−→ lj
′
such that i 6= j, and:

D̂′ = (ri ∪ rj)(D ∧ gi ∧ gj − Block(t)) ∧ Ii(li
′
) ∧ Ij(lj

′
).

Theorem 1 (Correctness of Symbolic Semantics) Assume location vec-
tors l0, lf , clock assignments u0, uf , and a set of zones D̂f . Let {u0} denote
the clock constraint with a single solution u0.

– (Soundness) whenever 〈l0, {u0}〉 =⇒∗ 〈lf , D̂f〉 then 〈l0, u0〉 −→
∗ 〈lf , uf 〉 for

all uf ∈ D̂f .

– (Completeness) whenever 〈l0, u0〉 −→
∗ 〈lf , uf〉 then 〈l0, {u0}〉 =⇒∗ 〈lf , D̂f 〉

for some D̂f such that uf ∈ D̂f .

Proof: By induction on the length of transition sequences. Using the zone oper-
ations of Definition 2 it can be shown that block(t) and Block(t) characterizes
the same sets of clock valuations. ⊓⊔



3.3 Priorities in UPPAAL

The priority order ≺ over transitions can be derived from the priority orders ≺a

on actions and ≺A on automata. We describe here the order used in the Uppaal

tool [18]. For transitions t and t′ with actions a and a′ we derive a priority order
from ≺a by defining t ≺ t′ as a ≺a a′.

Deriving a priority order on transitions from ≺A is less straightforward, as
two automata with different priorities may be involved in a synchronising tran-
sition. For two transitions t and t′, where t is a synchronisation between Ai and
Aj such that ¬(Aj≺AAi), and t′ is a synchronisation between Ai′ and Aj′ such
that ¬(Aj′≺AAi′), we define t ≺ t′ to hold when:

(Aj ≺A Aj′ ) ∨ ((Ai ≺A Ai′) ∧ ¬(Aj ≺A Aj′ ) ∧ ¬(Aj ≻A Aj′ ))

Intuitively the (weakly) higher priority processes Aj and Aj′ are compared first.
If they are related they define the relation between t and t′, otherwise the relation
is defined by the relation between Ai and Ai′ .

In a model with priorities on both actions and automata, priorities are re-
solved by comparing priorities on actions first. Only if they are the same, the
priority order on automata is used.

4 DBM Subtraction

4.1 Improved Subtraction

The first observation from the basic algorithm given in Section 2.2 is that some
splits may be avoided by taking into account only the constraints that are not
redundant in the DBM. It is possible to compute the set of minimal constraints
of a DBM [19] in O(n3) (the set being unique w.r.t. a given clock ordering). As
this minimal set is semantically equivalent to the original set E, we use this set
Em instead: D − E = D − Em. In the experiments this algorithm is the base
for comparing with our other improvements since it obviously reduces splitting.
Figure 4 shows the reduced subtraction by using the minimal set of constraints.
We show it is worth spending this extra time because it is more important to
reduce the number of DBMs in the result. The global complexity is still O(n4).

4.2 Disjoint Subtraction

The improved algorithm gives D − E as a union of DBMs that overlap each
other, which means there are redundant points. These points will duplicate later
operations needlessly, so a second improvement is to ensure that the result is
a union of disjoint DBMs. The downside of it is that inclusion checking may
become worse for later generated DBMs. The problem exists even without sub-
traction and it is not obvious to conclude if we are improving or not on this
point. The ordering of the splits affects the result but it is still guaranteed to be
disjoint. The complexity is still O(n4).
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Fig. 4. Subtraction using the minimal set of constraints.

D

E

(a)

D

E

(b)

Fig. 5. Subtraction with disjoint result with two orderings (a) and (b) for splitting.
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Fig. 6. Particular cases to consider to simplify subtractions: (1) ignore eij and (2)
D − E = D.

Disjoint Subtraction Algorithm. We compute the subtraction D − E with the
minimal set of constraints Em ⊆ E as follows:

1. Compute Em.

2. S = false, R = D

3. ∀eij ∈ Em, i 6= j :

4. S = S ∨ (R ∧ ¬eij)

5. R = R ∧ eij .

6. Return S.

R is the remainder of the subtraction and serves to compute consecutive splits.
The ordering of the splits has an impact on the resulting number of DBMs as
shown in Figure 5. The resulting DBMs are disjoint and the result is correct in
both cases but in (a) we have 4 splits and a remainder that we will discard and
in (b) we have 3 splits and no remainder (the last case discards the remainder
trivially and is not a real split).

Lemma 1 (Soundness and completeness of disjoint subtraction) The
algorithm still computes the same subtraction D−E and S is a union of disjoint
DBMs: ∀s1, s2 ∈ S. s1 6= s2 ⇒ s1 ∩ s2 = ∅.

4.3 Simple Improvements

There are two obvious cases illustrated in Figure 6 that we can detect before
starting to compute D − E:

1. The negated constraint ¬eij reduces D to an empty zone, which corresponds
to a disjunct with false: we ignore the constraint eij .

2. The negated constraint ¬eij has no effect on D, which means that E ∧D =
false because DBMs are convex, therefor we stop and the result is D. We
ignore the whole subtraction.



5 Reducing DBM Subtractions

Reducing subtractions means to reduce the number of splits of the operation
but it is not obvious to define what an optimal split is. For a subtraction D−E,
there may be different combinations that give the same minimal number of splits
but the resulting DBMs will be used in further computations and the different
combinations will give varying future splits. The problem of computing the min-
imal split is interesting but it is not obvious if it is possible to do it without
worsening the original complexity O(n4) of the subtraction. In this section we
propose a heuristic that tackles both problems: It tries to choose a good ordering
to reduce the number of splits overall.

5.1 Efficient Heuristic

The idea is to use a good ordering of the constraints of E to compute the
splits such that the first splits will cut the original DBM D into as large as
possible DBMs to cancel the upcoming splits as soon as possible (when there is
nothing left to do). We use the values |eij | − |dij | to order the constraints eij ,
taking the smallest values first. This measures on one dimension how much the
corresponding facet of E is “inside” D. The important trick of the algorithm is
to always take the constraint with the smallest value after every split because
the DBM changes after every split. Complexity-wise, this is equivalent to sorting
in O(n4) (n2 constraints) instead of O(n2logn2) but it gives better results and it
makes more sense since at every iteration the previous values lose their meaning.

Algorithm. The algorithm splits D by choosing the current best eij as having
the smallest HE,R(i, j) = |eij | − |rij |.

1. If ∃i, j. i 6= j, dij ≤ ¬eji then return D.
2. Compute the minimal set of constraints Em.
3. Initialise R = D and S = false.
4. While R 6= false do
5. Choose eij ∈ Em, i 6= j with min(HE,R(i, j)).
6. if rij ≤ ¬eji return S ∨ R
7. else if eij ≥ rij skip
8. else S = S ∨ (R ∧ ¬eij)
9. R = R ∧ eij .

10. Return S.

Step 1 corresponds to case 2 in the preliminaries. It may seem redundant with
step 6 but it is to avoid computing the minimal set of constraints in step 2.

Lemma 2 (Soundness of heuristic subtraction) The algorithm computes
the subtraction D − E correctly.

Proof: The algorithm is equivalent to the disjoint subtraction in Section 4.2
except for the ordering of the constraints and two improvements to detect the
trivial cases mentioned in Section 4.3. ⊓⊔



5.2 Expensive Heuristic

The idea is to ignore (in addition to the previous heuristic) facets of E that
do not intersect D. A facet of E corresponding to a constraint eij (of the form
xi − xj ∼ bij) is the hyper-plane xi − xj = bij bounded by the other constraints
of E. The intuition is to use the convexity of our DBMs and the fact D − E =
D − (D ∩ E): If D ∩ E 6= ∅ and a facet of E is not in D ∩ E, i.e., it does not
intersect D, then we can ignore it.

In practice, there are different cases to consider: If the constraints are strict
or not and different configurations of the intersections on the corner. In addition,
the exact detection of the intersection is O(n3) and it is not obvious for us if
this idea is compatible with the minimal set of constraints, which is, the simple
idea poses problems in practice.

To simplify, we define a new heuristic function HE,R that returns ∞ if Ē ∧
(xi − xj = bij)∩D = ∅ or the previous value |eij − rij | otherwise. The condition
means that we make the constraints of E non strict (Ē) and we constrain it
to be a facet that we use for testing intersection. The intersection detection is
partial and is based on case 2 of Section 4.3. The new heuristic function is:

function H ′
E,R(i, j):

1. ∀k. k 6= i, k 6= j :
2. if |eij − ekj − rik| ≥ 0 or |eij − eik − rkj | ≥ 0
3. then return +∞
4. return |eij | − |rij |
end

We use two tricks: First we tighten eji with ¬eij to compute the facet as a
DBM. A specialisation of Floyd’s shortest path [15] can do this in O(n2) [22].
The second trick is that we do not need all constraints but only the eki and ejk,
which is what the expression in the condition is doing. If the function returns
∞ then there is not intersection with the facet corresponding to the constraint
eij , otherwise we do not know and we use the former heuristic value.

The function has complexity O(n) which is worse than before, but it may
reduce splitting further, which we investigate. The global complexity is unfortu-
nately O(n5). We can get the detection out of the loop and get back to O(n4)
but this is more complex than it seems in practice and the point is to see if it is
worth the effort.

6 Experiments

We experiment1 first with the impact of priorities in our model-checker. In prac-
tice, moderate splitting occurs so we focus on subtractions separately to answer
the question of what happens on applications that cause much more splitting.

1 All experiments are carried on a dual-Xeon 2.8GHz with 4GB of RAM running Linux
2.6.9.
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Fig. 7. A process Pi in Fischer’s mutual exclusion protocol.

Original Priority Encoded
N (s) (Mb) (s) (Mb) (s) (Mb)

5 0.85 6.9 0.21 6.6 0.21 6.6
6 17.90 10.2 3.02 6.8 3.46 7.0
7 780.60 40.6 131.57 9.1 144.90 9.8

Table 1. Measurements when model-checking N processes of the Fischer protocol.

6.1 Experimenting with Priorities

We describe an experiment where we compare and evaluate models using priori-
ties and models where priorities are manually encoded using guards and possibly
extra edges. For every edge of the original automaton, the encoding is done by
restricting the existing guards by removing all parts overlapping with higher
priority transitions.

Experiment 1 We introduce priorities on actions in a model of the Fischer
protocol [17] for mutual exclusion (Figure 7). The action ai of the model is used
to introduce priorities so that ai ≺ aj when i < j, and ai ≺ τ for all processes
P1 · · ·PN . Since we give τ -actions the highest priority all N processes will enter
location Bi, in contrast to the original model where at most N are in location Bi

simultaneously. Also, the same process P1 will always enter the critical section
because it will be the last process to reach location Ci. The Encoded model is
created by adding guards to edges from Bi to Ci that evaluate to false when a
higher priority transition τ or aj ≻ ai is enabled.

Table 1 shows measurements of model-checking various models of the Fischer
protocol, to verify that there are no deadlocks and that mutual exclusion holds.
The column N is the number of processes, Original are the time and memory
requirements for model-checking the original model without priorities, Priority

are the corresponding numbers for the model with priorities, and Encoded are
the numbers for a model encoding the same behaviour as the model with prior-
ities. The results for the Priority and Encoded models are comparable, and the
overhead of the priority extension is small at worst. This is encouraging since
tool support for priorities makes modelling easier.



Algorithms tgame12 tgame12 jobshop jobshop jobshop jobshop
reduce reduce reduce

strategy strategy

basic 343314 283334 55514 91849 45970 73018
124s 10.9s 9.9s 10.8s 3.0s 3.6s
319M 39.6M 35.2M 38.8M 18.7M 22.6M

reorder 351615 291627 54996 89763 47073 73730
165s 10.9s 12.3s 13.4s 3.0s 3.5s
320M 39.7M 31.9M 35.6M 18.7M 22.6M

disjoint 396053 356322 39776 64195 31592 51531
120s 12.0s 11.7s 12.8s 3.2s 3.7s
320M 40.6M 37.1M 40.8M 18.6M 22.6M

efficient 323097 275991 24105 47705 20360 37854
121s 10.7s 5.3s 6.8s 2.2s 2.5s

319M 39.7M 45.1M 48.6M 18.5M 22.0M

expensive 320668 272788 23905 45428 20248 37653

121s 11.0s 7.5s 8.9s 2.1s 2.6s
319M 39.7M 45.4M 48.8M 18.5M 22.0M

Table 2. Results of the timed game experiments (tgame) with 12 plates with and with-
out expensiveReduce (reduce), and the jobshop experiments (jobshop) with or without
strategy, with or without expensiveReduce.

6.2 Experimenting with DBM Subtractions

Experiment 2 We have implemented a timed game reachability engine whose
purpose is to find winning strategies [10] and we made a variant of it to solve
jobhsop scheduling problems states as games. The timed game test example
(“tgame”) is the production cell [20, 21] with 12 plates. The jobshop example
(“jobshop”) is modelled from [1] where we find a schedule for 4 jobs using 6
resources. We run variants of the prototype where we store (+strategy) and
we do not store the strategy. In addition, for both experiments the main loop
can reduce (+reduce) or not federations based on an inclusion checking using
subtractions. Table 2 shows the results of these experiments. We give the total
number of split operations (first number) as in the previous experiments with
time (in seconds) and memory consumption (in megabytes).

Comparing “basic” and “reorder” shows that it is not easy to find a good
ordering. Results from “disjoint” show as we claimed that reducing the size of the
symbolic states may actually interfere with inclusion checking. The “expensive”
heuristic gives a marginal gain considering its cost. The “efficient” heuristic is
the best choice. The reduction of federations gives significant gains both in time
and memory, which means it is possible to contain the splits to some extent.
Still this reduction operation needs a good subtraction. Indeed, experiment 2
shows how bad it may go. Concerning memory consumption it is difficult to
draw conclusions. The behaviour of the “efficient” implementation may seem an
anomaly but it is explained by the fact that the prototype is using sharing of



DBMs between states. The effect here is that DBMs are less shared since we
know we have fewer of them.

These experiments confirm that our heuristic has an overhead but it is com-
pensated by the reduction in splits, in particular for our “efficient” heuristic.
We speculate that our priority implementation will behave reasonably well with
models that generate more splitting thanks to our subtraction algorithm. Fur-
thermore, we have implemented different reduction algorithms to merge DBMs
based on subtraction. Our implementation scales well with good merging al-
gorithms thanks to efficient subtractions. However, this is out of scope of this
paper.

7 Conclusion

We have shown that our priority extension is useful for modelling and can also be
used to reduce the search state-space. Furthermore, its overhead in our model-
checker is reasonable. We have also shown that it is worth the extra effort for
a DBM subtraction algorithm to produce fewer zones and to avoid redundancy
by making the zones disjoint. The priority extension opens the door to more
compact models and the support for subtraction allows us to add support for
wanted features in Uppaal such as urgent transitions with clock guards. In
addition, we are improving on reduction techniques to make our model-checker
more robust against splitting of DBMs.
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