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Abstract. In this paper we present different algorithms to reduce the
number of DBMs in federations by merging them. Federations are unions
of DBMs and are used to represent non-convex zones. Inclusion checking
between DBMs is a limited technique to reduce the size of federations and
how to choose some DBMs to merge them into a larger one is a combi-
natorial problem. We present a number of simple but efficient techniques
to avoid searching the combinations while still being able to merge any
number of DBMs.

1 Introduction

DBMs (difference bound matrices) [7, 6] are efficient data structure to represent
clock constraints in timed automata [1]. However, some operations require split-
ting, e.g. substraction or some extrapolation algorithms [2] because DBMs can
not represent non-convex zones. Such unions of DBMs, called federations, are
subject to further operations to compute successor states in reachability algo-
rithms and they may be split again. Keeping control of the size of a federation
(its number of DBMs) is therefor vital. Removing included DBMs is a limited
technique with respect to splitting. Our algorithms are able to merge adjacent
DBMs.

The new DBM library of the model-checker Uppaal
1 supports federations

and all the operations usually carried out on DBMs. In addition it supports
substractions and our merging algorithms. There are other representations of
zones that can deal with non-convex zones, such as CDDs [5] or CRDs [8]. In
this paper we are concerned about how to deal with DBMs as best as we can since
DBMs are already used in our model-checker. Depending on the representation
chosen, an operation may be more or less efficient, we do not address this issue.

2 Notations.

DBMs are used to represent symbolically sets of clock valuations in timed au-
tomata. The representation is given as a matrix of constraints xi − xj ∼ bij

where ∼∈ {<,≤}, 1 ≤ i, j ≤ n, xi and xj are clock valuations of the clocks i and
j, and bij are the bounds of the constraints. A zone corresponds to the set of
clock valuations that satisfy the constraints of a given DBM. Zones are convex
by definition of DBMs.

1 http://www.uppaal.com



Definition 1 (Comparison of constraints) For cij and zij constraints we
define:

– cij ≤ zij ⇔ cij ⇒ zij

– cij < zij ⇔ cij 6= zij ∧ cij ≤ zij

– −cij = −(xi − xj ∼ bij) = xj − xi∼̄ − bij , where ≤̄ =< and <̄ =≤. Note
that −cij is a new c′ji comparable with other constraints zji.

– (xi − xj < bij)
+ = (xi − xj ≤ bij)

+ = (xi − xj ≤ bij).

A DBM is canonical if its constraints have been tightened by Floyd’s shortest
path algorithm [4]. We consider that DBMs are always canonical. We always use
cij , respectively zij , to denote the constraints of the DBM C, respectively Z. A
union of DBMs (federation) represents the set of clock valuations that satisfy
the constraints of any such DBM.

3 The Combinatorial Problem

The basic idea in merging a union Z of k DBMS Zi is to compute a cheap superset
of the union with the convex hull CZ of Z (we have Z ⊆ CZ by definition) and
to check if CZ ⊆ Z. The inclusion is computed by checking if CZ − Z = ∅. If
the inclusion holds then the convex hull is equal to the union of the DBMs Zi

and we can replace Z by CZ . The whole problem for a given federation is to find
such a subset Z to merge its DBMs. If the original federation has n DBMs, there
are

(

n

k

)

ways to try to merge them for a given k. Trying all k gives a total of 2n

combinations. Every attempt is expensive, which makes this procedure infeasible
in practice.

4 Our Heuristics

We present different heuristics to avoid the combinatorial problem of choosing
DBMs. We test only n2 combinations with greedy criteria to gather two or more
DBMs to be merged.

2-Merge We check all DBMs by pairs and if two DBMs A and B satisfy the
necessary (but not sufficient) criteria:

1. ∃i, j. aij = bij ∧ aji = bji.

2. ∀i, j. ¬(−a+

ij ≥ b+

ji ∨ −a+

ji ≥ bij+).

We attempt the merge with the convex hull as explained in Section 3. The
criteria check for compatible opposite constraints and if the relaxed DBMs do
not intersect. This cheap test allows us to try only on DBMs that have a good
chance to be merged. It is very cheap to add inclusion checking in the same
algorithm to eliminate included DBMs on-the-fly.



n-Merge This is a relaxed version of the 2-merge algorithm where the first condi-
tion is ∃i, j. aij = bij ∨ aji = bji, in which case we gather B in a federation FB of
DBMs to be merged with A. In addition, we add any DBM that is included in the
convex hull of A and FB denoted ConvexHull(A, FB). This is to “fill the holes” if
possible. Then we check if R = ConvexHull(A, FB)−(A∪FB) is empty, in which
case the merge is successful. Otherwise we check if ConvexHull(A, FB)−R gives
a shorter federation than A and FB , in which case we can recompute the feder-
ation with fewer DBMs. If this still fails, we apply a stronger inclusion checking
to the DBMs of FB (based on subtraction) since we have the information that
they are related. This algorithm performs well in practice and is able to merge
sets of n DBMs while avoiding any combinatorial problem.

Partitioned n-Merge This is a refinement of the n−merge algorithm: We detect
partitions inside the original federation (disjoint sets of relaxed DBMs) and we
apply the n − merge algorithm followed by a strong inclusion check (based on
subtraction) on them.

5 Conclusion

The algorithms we propose have been implemented in our DBM library (dis-
tributed under the GPL license). We developed these algorithms originally for a
prototype to solve timed games [3] because the federations exploded. Our heuris-
tics have kept the size of the federations in control and have proven to be very
useful in practice.
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