
Efficient On-the-fly Algorithms for the Analysis

of Timed Games

Franck Cassez1, Alexandre David2, Emmanuel Fleury2, Kim G. Larsen2,
Didier Lime2

1 IRCCyN, UMR 6597, CNRS, France
Franck.Cassez@irccyn.ec-nantes.fr

2 Computer Science Department
CISS (Center for Embedded Software Systems),

Aalborg University, Denmark
{adavid,fleury,kgl,didier}@cs.aau.dk

Abstract. In this paper, we propose a first efficient on-the-fly algorithm
for solving games based on timed game automata with respect to reach-
ability and safety properties1.
The algorithm we propose is a symbolic extension of the on-the-fly al-
gorithm suggested by Liu & Smolka [15] for linear-time model-checking
of finite-state systems. Being on-the-fly, the symbolic algorithm may ter-
minate long before having explored the entire state-space. Also the in-
dividual steps of the algorithm are carried out efficiently by the use of
so-called zones as the underlying data structure.
Various optimizations of the basic symbolic algorithm are proposed as
well as methods for obtaining time-optimal winning strategies (for reach-
ability games). Extensive evaluation of an experimental implementation
of the algorithm yields very encouraging performance results.

1 Introduction

On-the-fly algorithms offer the benefit of settling properties of individual system
states (e.g. an initial state) in a local fashion and without necessarily having to
generate or examine the entire state-space of the given model. For finite-state
(untimed) systems the search for optimal (linear) on-the-fly or local algorithms
has been a very active research topic since the end of the 80’s [12, 4, 15] and is
one of the most important techniques applied in finite-state model-checkers using
enumerative or explicit state-space representation, as is the case with SPIN [10],
which performs on-the-fly model-checking of LTL properties.

Also for timed systems, on-the-fly algorithms have been absolutely crucial
to the success of model-checking tools such as Kronos [8] and Uppaal [13] in
their analysis of timed automata based models [2]. Both reachability, safety as
well as general liveness properties of such timed models may be decided using

1 Though timed games for long have been known to be decidable there has until now
been a lack of efficient and truly on-the-fly algorithms for their analysis.

on-the-fly algorithms exploring the reachable state-space in a (symbolic) forward
manner with the possibility of early termination. More recently, timed automata
technology has been successfully applied to optimal scheduling problems with
guiding and pruning heuristics being added to yield on-the-fly algorithms which
quickly lead to near-optimal (time- or cost-wise) schedules [5, 3, 11, 18].

We consider timed game automata and how to

ℓ1

ℓ2

ℓ3

ℓ4

Goal

ℓ5

x ≤ 1;c1

x > 1;u1

x < 1
u2

x := 0
x ≥ 2;c2

x < 1
u3

c3

x ≤ 1;c4

Fig. 1. A Timed Game Automaton

decide the existence of a winning strategy w.r.t.
reachability or safety. As an example, consider
the timed game automaton A of Fig. 1 consist-
ing of a timed automaton with one clock x and
two types of edges: controllable (ci) and uncon-
trollable (ui). The reachability game consists in
finding a strategy for a controller, i.e. when to
take the controllable transitions that will guaran-
tee that the system, regardless of when and if the
opponent chooses to take uncontrollable transi-
tions, will eventually end up in the location Goal.
Obviously, for all initial states of the form (ℓ1, x)

with x ≤ 1 there is such a winning strategy2.

Though such timed game automata for long have been known to be decid-
able [16, 6, 9] there is still a lack of efficient and truly on-the-fly algorithms for
their analysis. Most of the suggested algorithms are based on backwards fix-point
computations of the set of winning states [16, 6, 9]. In contrast, the on-the-fly al-
gorithms used for model-checking timed automata models (w.r.t. reachability)
makes a forward symbolic state-space exploration resulting in the so-called sim-

ulation graph. However, the simulation graph is by itself too abstract to be
used as the basis for an on-the-fly algorithm for computing winning strategies.
Fig. 2 (a) gives the simulation graph of the timed game automata of Fig. 1,
which incorrectly classifies the initial state as being uncontrollable when viewed
as a finite-state game.

As a remedy to this problem, the authors of [20, 1] propose a partially on-
the-fly method for solving reachability games for a timed game automaton A.
However, this method involves an extremely expensive preprocessing step in
which the quotient graph of the dense time transition system SA w.r.t. time-
abstracted bisimulation3 needs to be built. Once obtained this quotient graph
may be used with any on-the-fly game-solving algorithm for untimed (finite-
state) systems. As an illustration, Fig. 2 (b) gives the time abstracted quotient
graph for the timed game automaton of Fig. 1. It should be easy for the reader
to see that the initial state will now (correctly) be classified as controllable.

2 A winning strategy would consist in taking c1 immediately in all states (ℓ1, x) with
x ≤ 1; taking c2 immediately in all states (ℓ2, x) with x ≥ 2; taking c3 immediately
in all state (ℓ3, x) and delaying in all states (ℓ4, x) with x < 1 until the value of x is
1 at which point the edge c4 is taken.

3 A time-abstracted bisimulation is a binary relation on states preserving discrete
states and abstracted delay-transitions.

2

ℓ1, x ≥ 0

ℓ2, x ≥ 0

ℓ3, x ≥ 0

ℓ4, x ≥ 0

Goal, x ≥ 2

Bad, x ≥ 1
c1

u1

u2

c2

u3

c3

c4

(a) Simulation Graph

1, x < 1 ℓ1, x = 1 ℓ1, x > 1

ℓ2, x < 1 ℓ2, x = 1 ℓ2, x > 1

ℓ3, x < 1 ℓ3, x = 1 ℓ3, x > 1

ℓ4, x < 1 ℓ4, x = 1 ℓ4, x > 1

Goal, x ≥ 2

ℓ5, x > 1

λ λ
u1

c1 c1

λ λ

λ, c2

u3

λ λ

c3 c3

λ λ

u2

c4 c4

(b) Time-abstracted Quotient Graph

Fig. 2. Simulation and time-abstracted quotient graph of Fig. 1 (λ is for time elapsing)

In this paper, we propose an efficient, truly on-the-fly algorithm for the com-
putation of winning states for timed game automata. Our algorithm is a sym-
bolic extension of the on-the-fly algorithm suggested by Liu & Smolka [15] for
linear-time model-checking of finite-state systems. Being on-the-fly, the symbolic
algorithm may terminate before having explored the entire state-space, i.e. as
soon as a winning strategy has been identified. Also the individual steps of the al-
gorithm are carried out efficiently by the use of so-called zones as the underlying
data structure.

The rest of the paper is organized as follows. Section 2 provides definitions
and preliminaries about timed game automata and classic backwards algorithm
for solving them. Section 3 presents our instantiation of the general on-the-fly
algorithm of Liu & Smolka [15] to untimed reachability games. Then, in Section
4, we present our symbolic extension of this algorithm, providing a first forward,
zone-based and fully on-the-fly algorithm for solving timed reachability games.
Section 5 discusses few optimizations of the basic algorithm and how to apply
the algorithm to determine time-optimal winning strategies. Section 6 presents
experimental evaluation of an efficient implementation of the algorithm to deter-
mine (time-optimal) winning strategies. The performance results obtained are
very encouraging. Finally, Section 7 presents conclusion and future work and all
proofs can be found in the Appendix .

2 Backward Algorithms for Solving Timed Games

Timed Game Automata [16] (TGA) were introduced for control problems on
timed systems. This section recalls basic results of controller synthesis for TGA.

3

Let X be a finite set of real-valued variables called clocks. We note C(X) the
set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ

where k ∈ Z, x, y ∈ X and ∼∈ {<,≤, =, >,≥}. B(X) is the subset of C(X) that
uses only rectangular constraints of the form x ∼ k. A valuation of the variables
in X is a mapping X 7→ R≥0 (thus RX

≥0). We write ~0 for the valuation that
assigns 0 to each clock. For Y ⊆ X , we denote by v[Y] the valuation assigning
0 (resp. v(x)) for any x ∈ Y (resp. x ∈ X \ Y). We denote v + δ for δ ∈ R≥0

the valuation s.t. for all x ∈ X , (v + δ)(x) = v(x) + δ. For g ∈ C(X) and
v ∈ RX

≥0, we write v |= g if v satisfies g and [[g]] denotes the set of valuations

{v ∈ RX
≥0 | v |= g}. A zone Z is a subset of RX

≥0 s.t. [[g]]= Z for some g ∈ C(X).

2.1 Timed Game Automata & Simulation Graph

Definition 1 (Timed Automaton [2]). A Timed Automaton (TA) is a tuple
A = (L, ℓ0, Act, X, E, Inv) where L is a finite set of locations, ℓ0 ∈ L is the
initial location, Act is the set of actions, X is a finite set of real-valued clocks,
E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions, Inv : L → B(X)
associates to each location its invariant.

A state of a TA is a pair (ℓ, v) ∈ L × RX
≥0 that consists of a discrete part

and a valuation of the clocks. From a state (ℓ, v) ∈ L × RX
≥0 s.t. v |= Inv(ℓ),

a TA can either let time progress or do a discrete transition and reach a new
state. This is defined by the transition relation −→ built as follows: for a ∈ Act,

(ℓ, v)
a

−−→ (ℓ′, v′) if there exists a transition ℓ
g,a,Y

−−−−−→ ℓ′ in E s.t. v |= g, v′ = v[Y]

and v′ |= Inv(ℓ′); for δ ≥ 0, (ℓ, v)
δ

−−→ (ℓ, v′) if v′ = v+δ and v, v′ ∈[[Inv(ℓ)]]. Thus
the semantics of a TA is the labeled transition system SA = (Q, q0,−→) where
Q = L × RX

≥0, q0 = (ℓ0,~0) and the set of labels is Act ∪ R≥0. A run of a timed
automaton A is a sequence of alternating time and discrete transitions in SA.
We use Runs((ℓ, v), A) for the set of runs that start in (ℓ, v). We write Runs(A)
for Runs((ℓ0,~0), A). If ρ is a finite run we denote last(ρ) the last state of the run
and Duration(ρ) the total elapsed time all along the run.

The analysis of TA is based on the exploration of a finite graph, the simulation
graph, where the nodes are symbolic states ; a symbolic state is a pair (ℓ, Z) where
ℓ ∈ L and Z is a zone of RX

≥0. Let X ⊆ Q and a∈Act we define the a-successor of

X by Posta(X) = {(ℓ′, v′) | ∃(ℓ, v) ∈ X, (ℓ, v)
a

−−→ (ℓ′, v′)} and the a-predecessor

Preda(X) = {(ℓ, v) | ∃(ℓ′, v′) ∈ X, (ℓ, v)
a

−−→ (ℓ′, v′)}. The timed successors and
predecessors of X are respectively defined by Xր = {(ℓ, v + d) | (ℓ, v) ∈ X∩
[[Inv(ℓ)]], (ℓ, v + d) ∈[[Inv(ℓ)]], d ∈ R≥0} and Xւ = {(ℓ, v − d) | (ℓ, v) ∈ X, d ∈

R≥0}. Let → be the relation defined on symbolic states by: (ℓ, Z)
a

−−→ (ℓ′, Z ′) if
(ℓ, g, a, Y, ℓ′) ∈ E and Z ′ = ((Z∩ [[g]])[Y])ր. The simulation graph SG(A) of A

is defined as the transition system (Z(Q), S0,→), where Z(Q) is the set of zones
of Q, S0 = (({ℓ0,~0}ր)∩ [[Inv(ℓ0)]] and → defined as above.

Definition 2 (Timed Game Automaton [16]). A Timed Game Automa-
ton (TGA) G is a timed automaton with its set of actions Act partitioned into
controllable (Actc) and uncontrollable (Actu) actions.

4

2.2 Safety and Reachability Games

Given a TGA G and a set of states K ⊆ L×RX
≥0 the reachability control problem

consists in finding a strategy f s.t. G supervised by f enforces K. The safety
control problem is the dual asking for the strategy to constantly avoid K. By
“a reachability game (G, K)” (resp. safety) we refer to the reachability (resp.
safety) control problem for G and K.

Let (G, K) be a reachability (resp. safety) game. A finite or infinite (ruling
out runs with an infinite number of consecutive time transitions of duration 0)

run ρ = (ℓ0, v0)
e0−→ (ℓ1, v1)

e1−→ · · ·
en−→ (ℓn+1, vn+1) · · · in Runs(G) is winning if

there is some k ≥ 0 s.t. (ℓk, vk) ∈ K (resp. for all k ≥ 0 s.t. (ℓk, vk) ∈ K). The
set of winning runs in G from (ℓ, v) is denoted WinRuns((ℓ, v), G).

For reachability games we assume w.l.o.g. that the goal is a particular location
Goal. For safety games the goal is a set a locations to avoid.

The formal definition of the control problems is based on the definitions of
strategies and outcomes. A strategy [16] is a function that during the course
of the game constantly gives information as to what the controller should do
in order to win the game. In a given situation, the strategy could suggest the
controller to either i) “do a particular controllable action” or ii) “do nothing at
this point in time, just wait” which will be denoted by the special symbol λ.

Definition 3 (Strategy). Let G = (L, ℓ0, Act, X, E, Inv) be a TGA. A strategy
f over G is a partial function from Runs(G) to Actc ∪ {λ} s.t. for every finite

run ρ, if f(ρ) ∈ Actc then last(ρ)
f(ρ)
−−−→SG

(ℓ′, v′) for some (ℓ′, v′).

We denote Strat(G) the set of strategies over G. A strategy f is state-based
whenever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-
based strategies are also called memoryless strategies in game theory [9, 19].

The restricted behavior of a TGA G controlled with some strategy f is defined
by the notion of outcome [9].

Definition 4 (Outcome). Let G = (L, ℓ0, Act, X, E, Inv) be a TGA and f a
strategy over G. The outcome Outcome(q, f) of f from q in SG is the subset of
Runs(q, G) defined inductively by:

– q ∈ Outcome(q, f),

– if ρ ∈ Outcome(q, f) then ρ′ = ρ
e

−−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q, G)
and one of the following three conditions hold:
1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e, ∃q′′ ∈ Q s.t. last(ρ)
e′

−−→ q′′∧f(ρ
e′

−−→ q′′) = λ.
– for an infinite run ρ, ρ ∈ Outcome(q, f) if all the finite prefixes of ρ are in

Outcome(q, f).

We assume that uncontrollable actions can only spoil the game and the con-
troller has to do some controllable action to win [6, 16, 11]. In other words, an
uncontrollable action cannot be forced to happen in G. Thus, a run may end in

5

a state where only uncontrollable actions can be taken. Moreover we focus on
reachability games and assume K = {Goal}×RX

≥0. A maximal run ρ is either an
infinite run (supposing no infinite sequence of delay transitions of duration 0) or

a finite run ρ that satisfies either i) last(ρ) ∈ K or ii) if ρ
a

−−→ then a ∈ Actu (i.e.
the only possible next discrete actions from last(ρ), if any, are uncontrollable
actions).
A strategy f is winning from q if all maximal runs in Outcome(q, f) are in
WinRuns(q, G). A state q in a TGA G is winning if there exists a winning strat-
egy f from q in G. We denote by W(G) the set of winning states in G and
WinStrat(q, G) the set of winning strategies from q over G.

2.3 Backwards Algorithms for Solving Timed Games

Let G = (L, ℓ0, Act, X, E, Inv) be a TGA. For reachability games, the computa-
tion of the winning states is based on the definition of a controllable predecessor
operator [9, 16]. The controllable and uncontrollable discrete predecessors of X

are defined by cPred(X) =
⋃

c∈Actc
Predc(X) and uPred(X) =

⋃

u∈Actu
Predu(X).

A notion of safe timed predecessors of a set X w.r.t. a set Y is also needed. Intu-
itively a state q is in Predt(X, Y) if from q we can reach q′ ∈ X by time elapsing
and along the path from q to q′ we avoid Y . Formally this is defined by:

Predt(X, Y)={q∈Q | ∃δ ∈ R≥0 s.t. q
δ
−→ q′, q′ ∈ X and Post[0,δ](q) ⊆ Y } (1)

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t

−−→ q′} and Y = Q \ Y . The
controllable predecessors operator π is defined as follows4:

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)

(2)

Let (G, K) be a reachability game, if S is a finite union of symbolic states, then
π(S) is again a finite union of symbolic states. Moreover the iterative process
given by W 0 = K and Wn+1 = π(Wn) will converge after finitely many steps
for TGA [16] and the least fixed point obtained is W ∗. It is also proved in [16]
that W ∗ = W(G). Note also that W ∗ is the maximal set of winning states of G

i.e. a state is winning iff it is in W ∗. Thus there is a winning strategy in G iff
(ℓ0,~0) ∈ W ∗. Altogether this gives a symbolic algorithm for solving reachability
games. Extracting strategies can be done using the winning set of states W ∗.
For safety games (G, K), it suffices to swap the roles of the players leading to
a game G and solve a reachability game (G, K). If the winning set of states for
(G, K) is W then the winning set of states of (G, K) is W .

3 On-the-fly Algorithm for Untimed Games

For finite-state systems, on-the-fly model-checking algorithms has been an ac-
tive and successful research area since the end of the 80’s, with the algorithm

4 Note that π is defined here such that uncontrollable actions cannot be used to win.

6

proposed by Liu & Smolka [15] being particularly elegant (and optimal). We
present here our instantiation of this algorithm to untimed reachability games.

We consider untimed games as a restricted class of timed games with only
finitely many states Q and with only discrete actions, i.e. the set of labels is
Act. Hence (memoryless) strategies simplifies to a choice of controllable action
given the current state, i.e. f : Q −→ Actc. For (untimed) reachability games we
assume a designated set Goal of goal-states and the purpose of the analysis is
to decide the existence of a strategy f where all runs contains at least one state
from Goal.

Now, our instantiation OTFUR of the local algorithm by Liu & Smolka
to untimed reachability games is given in Fig. 3. This algorithm is based on
a waiting-list, Waiting ⊆ E of edges waiting to be explored together with a
passed-list Passed ⊆ Q containing the states that have been encountered so far.
Information about the current winning status of a state is given by a function
Win : Passed → {0, 1}, where Win[q] is initialized to 0 and later potentially
upgraded to 1 when the winning status of successors to q change from 0 to 1.
To activate the reevaluation of the winning status of states, each state q has
an associated set of edges Depend[q] depending on it: at any stage Depend[q]
contains all edges (q′, α, q) that was encountered at a moment when Win[q] =
0 and where the winning status of the source state q′ must be scheduled for
reevaluation at the movement Win[q] = 1 becomes true. We refer to [15] for
the formal proof of correctness of this algorithm summarized by the following
theorem:

Theorem 1 ([15]). Upon termination of running the algorithm OTFUR on a
given untimed game G the following holds:

1. If q ∈ Passed and Win[q] = 1 then q ∈ W(G);
2. If Waiting = ∅ and Win[q] = 0 then q 6∈ W(G).

In fact, the first property is an invariant of the while-statement holding
after each iteration. Also, the algorithm is optimal in that it has linear time
complexity in the size of the underlying untimed game: it is easy to see that
each edge e = (q, α, q′) will be added to Waiting at most twice, the first time
q is encountered (and added to Passed) and the second time when Win[q′]
changes winning status from 0 to 15.

4 On-the-fly Algorithm for Timed Games

Now let us turn our attention to the timed case and present our symbolic exten-
sion of the algorithm of Liu & Smolka providing a zone-based forward and on-
the-fly algorithm for solving timed reachability games. The algorithm, SOTFTR,

5 To obtain an algorithm running in linear time in the size of G (i.e. |Q| + |E|) it is
important that the reevaluation of the winning status of a state q does not directly
involve (repeated and expensive) evaluation of the large boolean expression for Win∗.
In a practice, this may be avoided by adding a boolean bq and a counter cq recording
the existence of a winning, controllable successor of q, and the number of winning,
uncontrollable successor of q.

7

Initialization:
Passed← {q0};

Waiting ← {(q0, α, q′) |α ∈ Act q
α
−→ q′};

Win[q0]← (q0 ∈ Goal ? 1 : 0);
Depend[q0]← ∅;

Main:
while ((Waiting 6= ∅) ∧Win[q0] 6= 1)) do

e = (q, α, q′)← pop(Waiting);
if q′ 6∈ Passed then

Passed← Passed ∪ {q′};
Depend[q′]← {(q, α, q′)};
Win[q′]← (q′ ∈ Goal ? 1 : 0);

Waiting ← Waiting ∪ {(q′, α, q′′) | q′
α
−→ q′′};

if Win[q′] then Waiting ←Waiting ∪ {e};
else (* reevaluate *)

Win∗ ←
V

q
u−→u

Win[u] ∧
W

q
c−→w

Win[w];

if Win∗ then
Waiting ←Waiting ∪Depend[q]; Win[q]← 1;

if Win[q′] = 0 then Depend[q′]← Depend[q′] ∪ {e};
endif

endwhile

Fig. 3. OTFUR: On-The-Fly Algorithm for Untimed Reachability Games

is given in Fig. 4 and may be viewed as an interleaved combination of forward

computation of the simulation graph of the timed game automaton together with
back-propagation of information of winning states. As in the untimed case the
algorithm is based on a waiting-list, Waiting, of edges in the simulation-graph
to be explored, and a passed-list, Passed, containing all the symbolic states of
the simulation-graph encountered so far by the algorithm.

The crucial point of our symbolic extension is that the winning status Win[q]
of an individual state q is replaced by a set Win[S] ⊆ S identifying the subset of
the symbolic state S which is currently known to be winning. The set Depend[S]
indicates the set of edges (or predecessors of S) which must be reevaluated
(i.e. added to Waiting) when new information about Win[S] is obtained (i.e.
when Win[S] (Win∗). Whenever an edge e = (S, α, S′) is considered with
S′ ∈ Passed, the edge e is added to the dependency set of S′ in order that
possible future information about additional winning states within S′ may also
be back-propagated to S. In Table 1, we illustrate the forward exploration and
backwards propagation steps of the algorithm.

The correctness of the symbolic on-the-fly algorithm SOTFTR is given by
the following lemma and theorem, the rigorous proofs of which can be found in
the appendix.

8

Initialization:

Passed← {S0} where S0 = {(ℓ0,~0)}
ր;

Waiting ← {(S0, α, S′) |S′ = Postα(S0)
ր};

Win[S0]← S0 ∩ ({Goal} × RX
≥0);

Depend[S0]← ∅;

Main:
while ((Waiting 6= ∅) ∧ (s0 6∈Win[S0])) do

e = (S, α, S′)← pop(Waiting);
if S′ 6∈ Passed then

Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S′ ∩ ({Goal} × RX

≥0);

Waiting ←Waiting ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
if Win[S′] 6= ∅ then Waiting ←Waiting ∪ {e};

else (* reevaluate *)a

Win∗ ← Predt(Win[S]∪
S

S
c−→T

Predc(Win[T]),S
S

u−→T
Predu(T \Win[T])) ∩ S;

if (Win[S] (Win∗) then
Waiting ←Waiting ∪Depend[S]; Win[S]←Win∗;

Depend[S′]← Depend[S′] ∪ {e};
endif

endwhile

a When T 6∈ Passed,Win[T] = ∅

Fig. 4. SOTFTR: Symbolic On-The-Fly Algorithm for Timed Reachability Games

Lemma 1. The while-loop of algorithm SOTFTR has the following invariance
properties when running on a timed game automaton G:

1. For any S ∈ Passed if S
α
−→ S′ then either (S, α, S′) ∈ Waiting or S′ ∈

Passed and (S, α, S′) ∈ Depend[S′]
2. If q ∈ Win[S] for some S ∈ Passed then q ∈ W(G)
3. If q ∈ S \ Win[S] for some S ∈ Passed then either

– e ∈ Waiting for some e = (S, α, S′) with S′ ∈ Passed,
or

– q 6∈ Predt

[

Win[S] ∪
⋃

S
c−→T

Predc(Win[T]),
⋃

S
u−→T

Predu(T \ Win[T])
]

.

Theorem 2. Upon termination of running the algorithm SOTFTR on a given
timed game automaton G the following holds:

1. If q ∈ Win[S] for some S ∈ Passed then q ∈ W(G);
2. If Waiting = ∅, q ∈ S \ Win[S] for some S ∈ Passed then q 6∈ W(G).

Termination of the algorithm SOTFTR is guaranteed by the finiteness of
symbolic states6 and the fact that each edge (S, α, T) will be present in the

6 Strictly speaking, this requires that we either transforms the given TGA into an
equivalent one in which all location-invariants insist on an upper bound on all clocks
or, alternatively, that we apply standard extrapolation w.r.t. maximal constant oc-
curring in the TGA (which is correct up to time-abstracted bisimulation).

9

Steps Waiting Passed Depend Win

S S′

0 - - (S0, u1, S1), (S0, u2, S2), (S0, c1, S3) S0 - (S0, ∅)

1 S0 S3

(S0, u1, S1), (S0, u2, S2)
+ (S3, c1, S4), (S3, u3, S2)

S3 S3 7→ (S0, c1, S3) (S3, ∅)

2 S3 S4

(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S3, c2, S4)

S4 S4 7→ (S3, c2, S4) (S4, S4)

3 S3 S4

(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S0, c1, S3)

- - (S3, x ≥ 1)

4 S0 S3 (S0, u1, S1), (S0, u2, S2), (S3, u3, S2) S4 S3 7→ (S0, c1, S3) (S0, x = 1)

5 S3 S2

(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

S2 S2 7→ (S3, u3, S2) (S2, ∅)

6 S2 S5

(S0, u1, S1), (S0, u2, S2)
+ (S5, c4, S3)

S5 S5 7→ (S2, c3, S2) (S5, ∅)

7 S5 S3

(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

- S3 7→
(S2, c3, S2)
(S5, c4, S3)

(S5, x ≤ 1)

8 S2 S5

(S0, u1, S1), (S0, u2, S2)
+ (S3, u3, S2)

- S5 7→ (S2, c3, S2) (S2, x ≤ 1)

9 S3 S2

(S0, u1, S1), (S0, u2, S2)
+ (S0, c1, S3), (S5, c4, S3)

- - (S3, S3)

10 S0 S2 (S0, u1, S1), (S0, c1, S3), (S5, c4, S3) - S2 7→
(S3, u3, S2)
(S0, u2, S2)

(S0, x ≤ 1)

11 S5 S3 (S0, u1, S1), (S0, c1, S3) - - -
12 S0 S3 (S0, u1, S1) - - -
13 S0 S1 ∅ S1 S1 7→ (S0, u1, S1) (S1, ∅)

At step n, (S, α, S′) is the transition popped at step n + 1;
At step n, +(S, α, S′) the transition added to Waiting at step n;
Symbolic States: S0 = (ℓ1, x ≥ 0),S1 = (ℓ5, x > 1), S2 = (ℓ3, x ≥ 0), S3 = (ℓ2, x ≥ 0),
S4 = (Goal, x ≥ 2), S5 = (ℓ4, x ≥ 0)

Table 1. Running SOTFTG

Waiting-list at most 1 + |T | times, where |T | is the number of regions of T :
(S, α, T) will be in Waiting the first time that S is encountered and subse-
quently each time the value of Win[T] increases. Now, any given region may be
contained in several symbolic states of the simulation graph (due to overlap).
Thus the SOTFTR algorithm is not linear in the region-graph and hence not
theoretically optimal, as an algorithm with linear worst-case time-complexity
could be obtained by applying the untimed algorithm directly to the region-
graph. However, this is only a theoretical result and, as we shall see, the use of
zones yields very encouraging performance results in practice, as is the case for
reachability analysis of timed automata.

5 Implementation, Optimizations and Extensions

5.1 Implementation of the Predt Operator with Zones

In order to be efficient, the algorithm SOTFTR manipulates zones. However,
while a forward step always gives a single zone as a result, the Predt operator
does not. So, given a symbolic state S, Win[S] is, in general, an union of zones
(and so is S \ Win[S]). As a consequence, we now give two results, which allow
us to handle unions of zones (Theorem 3) and to define the computation of Predt

in terms of basic operations on zones (Theorem 4).

10

Theorem 3. The following distribution law holds:

Predt(
⋃

i

Gi,
⋃

j

Bj) =
⋃

i

⋂

j

Predt(Gi, B) (3)

Theorem 4. If B is a convex set, then the Predt operator defined in equation (1)
can be expressed as:

Predt(G, B) = (Gւ \ Bւ) ∪ ((G ∩ Bւ) \ B)ւ (4)

5.2 Optimizations

Zone Inclusion. When we explore forward the automaton, we check if any
newly generated symbolic state S′ belongs to the passed list: S′ ∈ Passed. As
an optimization we may instead use the classical inclusion check: ∃S′′ ∈ Passed

s.t. S′ ⊆ S′′, in which case, S′ is discarded and we update the dependency graph
as well. Indeed, new information learned from the successors of S′′ can be new
information on S′ but not necessarily. This introduces an overhead in the sense
that we may back-propagate information for nothing.

On the other hand, back-propagating only the relevant information would be
unnecessarily complex and would void most of the memory gain introduced by
the use of inclusion. In practice, the reduction of the number of forward steps
obtained by the inclusion check pays off for large systems and is a little overhead
otherwise, as shown in our experiments.

Losing states. In the case of reachability games we can sometimes decide at an
early stage that a state q is losing (i.e. q 6∈ W(SG)), either because it is given
as a part of the model in the same way as goal states, or because it is deadlock
state, which is not in the set of goal states.

The detection of such losing states has a two-fold benefit. First, we can stop
the forward exploration on these states, since we know that we have lost (in the
case of a user-defined non-deadlock losing state). Second, we can back-propagate
these losing states in the same way as we do for winning states and stop the
algorithm if we have the initial state s0 ∈ Lose[S0], where Lose[S] is the subset
of the symbolic state S currently known to be losing. In some cases, this can
bring a big benefit, illustrated by Fig. 1, if the guard x < 1 is changed to true
in the edge from ℓ1 to ℓ5.

Pruning. In the basic algorithm early termination takes place when the initial
state is known to be winning (i.e. s0 ∈ Win[S0]). However, we may extend
this principle to other parts of the algorithm. In particular, we can add the
condition that whenever an edge e = (S, α, S′) is selected and it turns out
that Win[S] = S then we may safely skip the rest of the while loop as we
know that no further knowledge on the winning states of S can be gained. In
doing so, we prune unnecessary continued forward exploration and/or expensive
reevaluation. When we back-propagate losing states as described previously, the
condition naturally extends to Win[S] ∪ Lose[S] = S.

11

5.3 Time Optimal Strategy Synthesis

Time-optimality for reachability games consists in computing the best (optimal)
time the controller can guarantee to reach the Goal location: if t∗ is the optimal-
time, the controller has a strategy that guarantees to reach location Goal within
t∗ time units whatever the opponent is doing, and moreover, the controller has
no strategy to guarantee this for any t < t∗.

First consider the following problem: decide whetherz
5

3

x0 1
Fig. 5. Winning subset
of the initial zone of
the TGA of Fig. 1 with
clock z added.

the controller has a strategy to reach location Goal

within B time units. To solve this problem, we just
add a fresh clock z to the TGA G and the invari-
ant Inv(ℓ) ≡ z ≤ B for all locations ℓ with z being
unconstrained in the initial state. Then we compute
the set of winning states of this game and check that
(ℓ0,~0, z = 0) is actually a winning state. If not, try with
some B′ > B. Otherwise we know that the controller
can guarantee to reach Goal within B time units . . . but
in addition we have the optimal-time to reach Goal

7.
Indeed, when computing the winning set of states W ∗

on the TGA G augmented with the z clock (being ini-
tially unconstrained), we have the maximal set of winning states. This means
that we obtain some (ℓ0, Z0) ∈ W ∗ and (ℓ0,~0, z = 0) ∈ (ℓ0, Z0). But Z0∩{(ℓ0,~0)}
gives us for free the optimal-time to reach Goal. Assume I = Z0 ∩{(ℓ0,~0)}, then
0 ∈ I and the upper bound of I is less than B. This means that starting in (ℓ0,~0)
with z ∈ I the controller can guarantee to reach Goal within B time units. And
as W ∗ is the maximal set of winning states, starting with z 6∈ I cannot guar-
antee this any more. Assume I = [0, b]. The optimal-time is then t∗ = B − b.
If it turns out that I is right open [0, b[, we even know more: that this optimal
time t∗ cannot be achieved by any strategy, but we can reach Goal in a time
arbitrarily close to t∗. On the example of Fig. 1, if we choose B = 5 we obtain
a closed interval I = [0, 3] giving the optimal time t∗ = 2 to reach Goal (Fig. 5).
Moreover we know that there is a strategy that guarantees this optimal.

6 Experiments

Several versions of the described timed game reachability algorithm have been
implemented: with or without inclusion checking between zones, with or with-
out back-propagation of the losing states, and with or without pruning. To
benchmark the implementations we used the Production Cell [14, 17] case study
(Fig. 6). Unprocessed plates arrive on a feeding belt, are taken by a robot to a
press, are processed, and are taken away to a departure belt. The robot has two
arms (A and B) to take and release the plates and its actions are controllable,
except for the time needed to rotate. The arrival of the plates and the press are
uncontrollable.

We run experiments on a dual-Xeon 2.8GHz equipped with 3GB of RAM
running Linux 2.4.21. Table 2 shows the obtained results. The tests are done

7 To get an optimum, the condition of the while-loop must be Waiting 6= ∅ alone in
the algorithm, disabling early termination.

12

with varying number of plates from 2 to 7, and with controllable (win) and
uncontrollable (lose) configurations. The models contain from 4 to 10 clocks.

The inclusion checking of zones

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

AVAILABLE

PRESS

MIN_ROT..MAX_ROT

Arriving unprocessed plates

Leaving processed plates

MIN_INI..MAX_INI

ARRIVING

B

A

Fig. 6. The production cell

is shown to be an important op-
timization. Furthermore, activat-
ing pruning, which really exploits
that the algorithm is on-the-fly,
is useful in practice: the algorithm
really terminates earlier. The re-
sults for time optimal reachabil-
ity confirm that the algorithm is
exploring the whole state-space
and is comparable to exploring
without pruning. We stress in the
tables the best result obtained
for every configuration: it turns
out that propagating back the losing states has a significant overhead that pays
off for large systems, i.e. it is clearly better from 6 plates.

Plates Basic Basic +inc Basic +inc Basic+lose +inc Basic+lose +inc
+pruning +pruning +topt

time mem time mem time mem time mem time mem
win 0.0s 1M 0.0s 1M 0.0s 1M 0.0s 1M 0.04s 1M2
lose 0.0s 1M 0.0s 1M 0.0s 1M 0.0s 1M n/a n/a
win 0.5s 19M 0.0s 1M 0.0s 1M 0.1s 1M 0.27s 4M3
lose 1.1s 45M 0.1s 1M 0.0s 1M 0.2s 3M n/a n/a
win 33.9s 1395M 0.2s 8M 0.1s 6M 0.4s 5M 1.88s 13M4
lose - - 0.5s 11M 0.4s 10M 0.9s 9M n/a n/a
win - - 3.0s 31M 1.5s 22M 2.0s 16M 13.35s 59M5
lose - - 11.1s 61M 5.9s 46M 7.0s 41M n/a n/a
win - - 89.1s 179M 38.9s 121M 12.0s 63M 220.3s 369M6
lose - - 699s 480M 317s 346M 135.1s 273M n/a n/a
win - - 3256s 1183M 1181s 786M 124s 319M 6188s 2457M7
lose - - - - 16791s 2981M 4075s 2090M n/a n/a

Table 2. Results for the different implementations: basic algorithm, then with inclusion
checking (inc), pruning (pruning), back propagation of losing states (lose) and time
optimal strategy generation (topt, only for “win”, and pruning has little effect). Time
(user process) is given in seconds (s) rounded to 0.1s and memory in megabytes (M).
’-’ denotes a failed run (not enough memory). Results in bold font are the best ones.

The state-space grows exponentially with respect to the number of plates but
the algorithm keeps up linearly with it, which is shown on Fig. 7 that depicts
pre + post8. These results show that the algorithm based on zones behaves well
despite the fact that zones are (in theory) worse than regions.

8 pre + post represents the number of iterations of the algorithm and is therefore an
abstraction in both time and space of the implementation.

13

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 3 4 5 6 7

Ite
ra

tio
ns

Plates

Scalability

Bad, winning
Good, winning

Bad, losing
Good, losing

Fig. 7. Scalability of the algorithm. The scale is logarithmic.

7 Conclusion and Future Work

In this paper we have introduced what we believe is the first completely on-the-
fly algorithm for solving timed games. For its efficient implementation we have
used zones as the main datastructure, and we have applied decisive optimiza-
tions to take full advantage of the on-the-fly nature of our algorithm and its
zone representation. Experiments have shown that an implementation based on
zones is feasible and with encouraging performances w.r.t. the complexity of the
problem. Finally, we have exhibited how to obtain the time optimal strategies
with minor additions to our algorithm (essentially book-keeping).

We are working on an improved version of the implementation to distribute
it and use the Uppaal GUI augmented with (un)controllable transitions. We are
investigating more aggressive abstractions for the underlying simulation graph
computed by our algorithm and efficient guiding of the search, in particular for
optimal strategies. Our algorithm is well suited for distributed implementation
by its use of unordered waiting-list and there are plans to pursue this directions as
has been done for Uppaal [7]. We are also investigating how to extract strategies
and represent them compactly with CDDs (Clock Decision Diagrams).

Acknowledgments. The authors want to thank Patricia Bouyer and Gerd
Behrmann for inspiring discussions on the topic of timed games.

References

1. K. Altisen and S. Tripakis. Tools for controller synthesis of timed systems. In
Proc. 2nd Work. on Real-Time Tools (RT-TOOLS’02), 2002. Proc. published as
Technical Report 2002-025, Uppsala University, Sweden.

14

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, S. La Torre, and G. J. Pappas. Optimal Paths in Weighted Timed
Automata. In Proc. of 4th Work. Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 49–62. Springer, 2001.

4. Henrik R. Andersen. Model Checking and Boolean Graphs. Theoretical Computer
Science, 126(1):3–30, 1994.

5. E. Asarin and O. Maler. As Soon as Possible: Time Optimal Control for Timed Au-
tomata. In Proc. 2nd Work. Hybrid Systems: Computation & Control (HSCC’99),
volume 1569 of LNCS, pages 19–30. Springer, 1999.

6. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller Synthesis for Timed
Automata. In Proc. IFAC Symp. on System Structure & Control, pages 469–474.
Elsevier Science, 1998.

7. Gerd Behrmann. Distributed reachability analysis in timed automata. Journal of
Software Tools for Technology Transfer (STTT), 7(1):19–30, 2005.

8. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
Model-Checking Tool for Real-Time Systems. In Proc. 10th Conf. on Computer
Aided Verification (CAV’98), volume 1427 of LNCS, pages 546–550. Springer, 1998.

9. L. De Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic Algorithms for Infinite-
State Games. In Proc. 12th Conf. on Concurrency Theory (CONCUR’01), volume
2154 of LNCS, pages 536–550. Springer, 2001.

10. Gerard J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
11. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-Reachability and Control

for Acyclic Weighted Timed Automata. In Proc. 2nd IFIP Conf. on Theoretical
Computer Science (TCS 2002), volume 223, pages 485–497. Kluwer, 2002.

12. K. G. Larsen. Efficient Local Correctness Checking. In Proc. of Conf. of Computer
Assisted Verification (CAV’92), volume 663 of LNCS, pages 30–43. Springer, 1992.

13. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Journal of Software
Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

14. C. Lewerentz and T. Lindner. Production Cell: A Comparative Study in Formal
Specification and Verification. In Methods, Languages & Tools for Construction of
Correct Software, volume 1009 of LNCS, pages 388–416. Springer, 1995.

15. X. Liu and S. Smolka. Simple Linear-Time Algorithm for Minimal Fixed Points. In
Proc. 26th Conf. on Automata, Languages and Programming (ICALP’98), volume
1443 of LNCS, pages 53–66. Springer, 1998.

16. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In Proc. 12th Symp. on Theoretical Aspects of Computer Science
(STACS’95), volume 900, pages 229–242. Springer, 1995.

17. H. Melcher and K. Winkelmann. Controller Synthesis for the “Production Cell”
Case Study. In Proc. of 2nd Work. on Formal Methods in Software Practice, pages
24–36. ACM Press, 1998.

18. J. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In Proc. 10th Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’04), volume 2988 of LNCS, pages
220–235. Springer, 2004.

19. W. Thomas. On the Synthesis of Strategies in Infinite Games. In Proc. 12th Symp.
on Theoretical Aspects of Computer Science (STACS’95), volume 900, pages 1–13.
Springer, 1995. Invited talk.

20. S. Tripakis and K. Altisen. On-the-Fly Controller Synthesis for Discrete and Timed
Systems. In Proc. of World Congress on Formal Methods (FM’99), volume 1708
of LNCS, pages 233–252. Springer, 1999.

15

