Minimal DBM Substraction

Alexandre David!, Johan Hakansson?, Kim G. Larsen', and Paul Pettersson?
! Department of Computer Science, Aalborg University, Denmark
{adavid,kgl}@cs.auc.dk.
2 Department of Information Technology, Uppsala University, Sweden
{johnh,paupet}@it.uu.se.

Abstract. In this paper we present an algorithm to compute DBM sub-
stractions with a guaranteed minimal number of splits and disjoint DBMs
to avoid any redundance. The substraction is one of the few operations
that result in a non-convex zone, and thus, requires splitting. It is of
prime importance to reduce the number of generated DBMs in an explo-
ration loop, e.g., for reachability, because the result is propagated and
serves to compute further successors later.

1 Introduction

DBMs (difference bound matrices) [6,4] are efficient data structure to repre-
sent clock constraints in timed automata [1]. However, some operations require
splitting, e.g. substraction or some extrapolation algorithms [2] because DBMs
can not represent non-convex zones. The resulting DBMs of a splitting are parts
of successor states that will be used to compute further successors. Reducing
splitting means to reduce the state explosion.

The new DBM library of the model-checker UPPAAL! supports substractions
and federations of DBMs to represent non-convex zones. There are other repre-
sentations of zones that can deal with non-convex zones, such as CDDs [3] or
CRDs [7]. In this paper we are concerned about how to solve the substraction
for the DBMs when the DBMs are already used in a model-checker. Depending
on the operation, a given representation may be more or less efficient, we do not
address this issue.

2 DBM Substraction

Given two DBMs A and S, we want to substract S from A. The resulting zone
Z can be defined as the zone satisfying the constraints of A and —S. Intuitively,
a point p € =S iff =(p € 5). Computing the result Z = A A =S is done by
constraining A with the negated constraints of S. Figure 1 illustrates the basic
substraction algorithm in two dimensions, i.e., with two clocks. In the worst case,
for a DBM of dimension n, there are n? splits where each split costs a copy. The
algorithm complexity is O(n*).

! http://www.uppaal.com



d
o
)

Fig. 1. Basic substraction algorithm.

3 Reducing Splitting

The first observation from the basic algorithm is that some splits may be avoided
by taking into account only the edges that belong to the minimal graph [5] of
the DBM. A DBM can be seen as a directed graph between clocks with the
constraints on the edges. Figure 2 shows the reduced substraction by using only
these constraints. The complexity for computing the minimal graph is O(n?) but
it is worth doing since it is more important to reduce the result.

V]
2

Fig. 2. Substraction using the constraints part of the minimal graph.

4 Substraction with Minimal Split

To further reduce the number of splits, let us consider the following four cases
that arise on the constraints belonging to the minimal graph of the DBM to
substract:

1. The (negated) constraint reduces A to an empty zone: we ignore it.

2. The (negated) constraint has no effect on A: because A is convex, this means
that the DBM S to substract is outside of A so we stop and the result is A.

3. The (negated) constraint is on a facet of S that does not intersect A: we
ignore it.

4. Otherwise we compute a split.



The third case is the contribution of our algorithm: the decision procedure is
linear in the number of clocks and can rule out constraints that do not affect
the result. The main argument for ruling out these constraints comes from the
convexity of A and S: if a facet of S does not intersect A, then it has no effect
on the substraction. We argue that this algorithm is sound and complete. As a
remark, the first case is redundant with the third case but it is a simple test
used to rule out simple cases. The complexity of the additional test is O(n) per
constraint, which is, O(n?) in total: we do not make the substraction worse.

Fig. 3. Substraction with minimal splitting.

5 Minimal Substraction

Having the minimal number of DBMs as the result from a substraction may
not be enough: if the successor states are going to be arguments for further
substractions then there should be no overlapping between them otherwise future
substractions will be redundant. The bad thing could be that future generated
DBMs may not be simply comparable with respect to inclusion checking, which
means, that even if some of them are redundant, they will be kept. We propose
a simple procedure to reduce the size of the resulting DBMs to make them
disjoint. The ordering of the splitting procedure affects the result but it is still
guaranteed to be minimal and disjoint. This procedure costs a copy per split.
The complexity is O(n?) in total. The substraction is still in O(n?).

Fig. 4. Substraction with minimal splitting and disjoint result.



6 Conclusion

The algorithm we propose has been implemented and tested with other functions
of the DBM library that use substraction as a sub-function. The library has an
extensive set of tests that can be used as benchmarks. It turns out that it is
more important to have a reduced result rather than a cheap and redundant
one. The reason comes from the propagation of the result in the exploration
loop of the model-checker, e.g., for reachability, or in the tests we made on the
propagation of partial results: the resulting DBMs are used later to compute
further successors and substractions.

References

1. Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Proc.
of Int. Colloguium on Algorithms, Languages, and Programming, volume 443 of
LNCS, pages 322—-335, 1990.

2. Johan Bengtsson. Clocks, DBMs and States in Timed Systems. PhD thesis, Uppsala
University, 2002.

3. Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock difference
diagrams. Nordic Journal of Computing, 6(3):271-298, 1999.

4. Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-checking for real-time sys-
tems. In Proc. of Fundamentals of Computation Theory, number 965 in Lecture
Notes in Computer Science, pages 62—-88, August 1995.

5. Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient verification
of real-time systems: Compact data structures and state-space reduction. In Proc.
of the 18th IEEE Real-Time Systems Symposium, pages 14-24. IEEE Computer
Society Press, December 1997.

6. Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits. PhD thesis,
Stanford University, 1993.

7. Farn Wang. RED: Model-checker for timed automata with clock-restriction di-
agram. In Paul Pettersson and Sergio Yovine, editors, Workshop on Real-Time
Tools, Aalborg University Denmark, number 2001-014 in Technical Report. Uppsala
University, 2001.



