
Hierarchical Modeling and Analysis of
Timed Systems

Alexandre David

A Dissertation submitted
for the Degree of Doctor of Philosophy
Department of Information Technology

Uppsala University

November 2003

IT Technical report series 2003-050 ISSN 1404-3203

Dissertation for the Degree of Doctor of Philosophy in Computer Science with
specialization in Real Time Systems presented at Uppsala University in 2003.

Abstract

David, A. 2003: Hierarchical Modeling and Analysis of Timed Systems.
IT Technical report series 2003-050 178 pp. Uppsala. ISSN 1404-3203.

Uppaal is a tool for model-checking real-time systems developed jointly by Uppsala
University and Aalborg University. It has been applied successfully in case studies
ranging from communication protocols to multimedia applications. The tool is
designed to verify systems that can be modeled as networks of timed automata.
But it lacks support for systems with hierarchical structures, which makes the
construction of large models difficult. In this thesis we improve the efficiency of
Uppaal with new data structures and extend its modeling language and its engine
to support hierarchical constructs.

To investigate the limits of Uppaal, we model and analyze an industrial field-
bus communication protocol. To our knowledge, this case study is the largest
application Uppaal has been confronted to and we managed to verify the mod-
els. However, the hierarchical structure of the protocol is encoded as a network of
automata without hierarchy, which artificially complicates the model. It turns out
that we need to improve performance and enrich the modeling language.

To attack the performance bottlenecks, we unify the two central structures of
the Uppaal engine, the passed and waiting lists, and improve memory management
to take advantage of data sharing between states. We present experimental results
that demonstrate improvements by a factor 2 in time consumption and a factor 5
in memory consumption.

We enhance the modeling capabilities of Uppaal by extending its input lan-
guage with hierarchical constructs to structure the models. We have developed a
verification engine that supports modeling of hierarchical systems without penalty
in performance. To further benefit from the structures of models, we present an
approximation technique that utilizes hierarchy in verification.

Finally, we propose a new architecture to integrate the different verification
techniques into a common framework. It is designed as a pipeline built with com-
ponents that are changed to fit particular experimental configurations and to add
new features. The new engine of Uppaal is based on this architecture. We believe
that the architecture is applicable to other verification tools.

c© Alexandre David 2003

ISSN 1404-3203

Printed in Sweden by Nina Tryckeri HB, Uppsala 2003.

Distributor: Department of Information Technology, Uppsala University, Box 337,

S-751 05 Uppsala, Sweden.

i

ii

Acknowledgments

First of all I thank my supervisor Wang Yi. Without his guiding and support
this thesis would never have been completed. I thank all current and former
members of the Uppaal team in Uppsala who are Tobias Amnell, Johan
Bengtson, Elena Fersman, John H̊akansson, Annika Karlsson, Pavel Krc̀ál,
Fredrik Larsson, Leonid Mokrushin, and Paul Pettersson for being such a
stimulating group. I thank Gerd Behrmann and Kim Larsen, members of
the Uppaal team in Aalborg, for the fruitful collaboration we had. I thank
Pedro R. D’Argenio for his precious help in the beginning of the case study
project, as well as Ulf Hammar and Thomas Lindström who devoted their
time to explain the protocol and the code. I am grateful to Parosh Abdullah,
Bengt Johnsson, Martin Leucker, and Sergei Vorobyov who took the time
to review my thesis. I thank all the people from the department for their
kindness. Finally, I thank my family for their support and encouragements
during these years spent in Sweden.

This work has been mainly supported by the Swedish Foundation for
Strategic Research (SSF) via ARTES and partially by the Swedish Board
for Technical Development (NUTEK).

iii

This thesis is based on the following published papers. Parts of these papers
are included in the chapters of the thesis.

- Alexandre David and Wang Yi. Modeling and Analysis of a Commer-
cial Field Bus Protocol. In Proceedings, 12th Euromicro Conference on
Real-Time Systems, 2000. IEEE Computer Society. Pages 165–172.

I participated in the project, developed the models, and wrote the paper.

- Alexandre David, M. Oliver Möller, and Wang Yi. Formal Verifica-
tion of UML Statecharts with Real-Time Extensions. In Proceedings,
Fundamental Approaches to Software Engineering, 5th International
Conference, FASE 2002. LNCS number 2306. Pages 218–232.

I participated in the discussions and wrote the sections on syntax and
semantics.

- Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim Guld-
strand Larsen, Paul Pettersson, and Wang Yi. Uppaal Implemen-
tation Secretes. In Proceedings, Formal Techniques in Real-Time and
Fault-Tolerant Systems, 7th International Symposium, FTRTFT 2002.
LNCS number 2469. Pages 3–22.

I wrote the sections on the passed and waiting list unification and im-
plemented the structure.

- Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, and Wang
Yi. A Tool Architecture for the Next Generation of Uppaal. In Pro-
ceedings, 10th Anniversary Colloquium, Formal Methods at the Cross
Roads: From Panacea to Foundational Support, 2003.

I wrote the sections on the PW-List and the storage and implemented
these structures.

- Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, and Wang
Yi. Unification & Sharing in Timed Automata Verification. In Pro-
ceedings, SPIN 2003. LNCS number 2648. Pages 225–229.

I made the experiments and I participated in the discussions and the
writing of the paper.

- Alexandre David, M. Oliver Möller, and Wang Yi. Verification of UML
Statecharts with Real-Time Extensions. Technical report, Uppsala
University. Number 2003-009. Revised and augmented version of the
FASE paper.

I participated in the discussions and wrote the sections on syntax and
semantics.

iv

Contents

1 Introduction 1

1.1 The Theme of the Thesis . 3

1.1.1 Industrial Case Study 3

1.1.2 Hierarchical Modeling and Analysis 4

1.1.3 Performance Issues in Verification 6

1.1.4 Tool Architecture . 7

1.2 A Brief Introduction to Uppaal 7

1.2.1 Timed Automata . 8

1.2.2 Extended Timed Automata 10

1.2.3 The Engine . 13

1.2.4 The Query Language 14

1.3 Contributions . 15

2 An Industrial Case Study Using Uppaal 17

2.1 The Protocol . 18

2.1.1 Overview . 18

2.1.2 Field Interface: The Transport Layer 18

2.1.3 Bus Coupler: The Data Link Layer 22

2.2 The Modeling Process . 27

2.2.1 Modeling the Bus Coupler 29

2.2.2 Modeling the FI . 38

2.2.3 Related Work . 42

2.3 The Verification Process . 43

2.3.1 The Classes of Properties 44

2.3.2 The Bus Coupler . 45

2.3.3 The Field Interface . 50

2.4 Conclusion . 53

v

3 Improvements on the Current Uppaal 55

3.1 Reachability Algorithm . 55

3.1.1 PW-List . 56

3.1.2 Sharing . 60

3.2 Implementation . 63

3.2.1 The PW-List Structure 63

3.2.2 The Storage Structure 64

3.3 Experimental Results . 67

3.4 Related Techniques . 68

3.5 Conclusion . 72

4 Hierarchical Timed Automata 73

4.1 Introduction . 74

4.1.1 Statecharts . 74

4.1.2 UML Statecharts . 77

4.1.3 HTA . 79

4.2 Syntax . 82

4.2.1 Data Components . 83

4.2.2 Structural Components 84

4.2.3 Constraints for Well-Formed HTA 85

4.3 Operational Semantics . 88

4.4 Pacemaker Example . 95

4.5 Simplified HTA . 98

4.5.1 Simplified HTA Syntax 99

4.5.2 Simplified HTA Semantics 99

4.5.3 Expressiveness . 101

4.6 Case Study Revisited . 102

4.7 Conclusion . 104

5 A Verification Engine for Hierarchical Timed Models 105

5.1 Representation and Computation of States 106

5.1.1 Data Structures for Representing States 107

5.1.2 Computation of States for the Simplified HTA 110

5.1.3 Experimental Results 112

5.2 An Abstraction Technique for HTA 114

5.2.1 Background . 114

5.2.2 Abstracting Away from Hierarchy 116

5.2.3 Spurious Traces . 128

5.2.4 Implementation . 128

5.3 Conclusion . 135

vi

6 A New Tool Architecture 137
6.1 A Pipeline Architecture for Uppaal 138

6.1.1 Implementation . 138
6.1.2 Typed Data Flow . 141
6.1.3 Parser Library . 143

6.2 Extensions . 143
6.2.1 Plugin . 143
6.2.2 Hierarchy . 143
6.2.3 New Algorithms . 144

6.3 Conclusion . 144

7 Conclusions 147

8 Appendix 151
8.1 Automata Figures of the Case Study 151
8.2 Grammar of Hierarchical Timed Automata 156

References 161

vii

viii

Chapter 1

Introduction

This thesis elaborates on improvements of a technique called model-checking
to verify software and hardware. It is known that software is not error-free
and the term “bug” is used for errors. Upon the release of Windows 2000
there were about 64000 known bugs but the software was released and it
proved to work at the cost of occasional crashes and frequent updates to
fix these bugs. For this kind of software such factors as time-to-market and
usability are often more important than safety and correctness. There are
other kinds of software concerned with control of safety critical systems such
as the brake system in cars or navigation systems in planes. For such cases
it is definitely not acceptable that the system has occasional crashes or does
not behave as expected. The correctness of these systems is defined not
only in terms of functionality but timeliness, i.e., the correct output must
be produced when it is required. These systems are called real-time systems.

There are several techniques to check if a real-time system works as in-
tended, or more formally, meets its specifications. Testing is used to simulate
usage conditions and to check for correct outputs. This method makes use of
test scenarios and test cases. The goal is to cover as much behavior as pos-
sible with a limited set of cases. Another method is to systematically check
that the system satisfies a set of properties. This is the verification method
using theorem proving or model-checking techniques. Theorem proving re-
quires interactivity in the sense that theorem prover needs to be guided to
prove properties. In the model-checking technique one models the system in
a given language, gives it properties, and asks the model-checker to verify
them. It is a fully automatic technique in the sense that no interaction is
required once the model and the properties have been given. Figure 1.1
illustrates how model-checkers work. Given a model and a set of properties,

1

the model-checker checks them and may answer yes or no possibly with a
trace explaining why the model satisfies the properties or not.

model−checker

yes + examplemodel

properties no + counter−example

Figure 1.1: Model-checking principle.

The problem with model-checking comes from the cost of the verification.
For most applications, the memory and time requirements in the verification
process are exponential in the size of the model, that is, the verification
suffers from the combinatorial explosion in the statespace. This is known
as the state explosion problem. Fortunately, embedded real-time systems
usually have limited amount of software. The limited complexity and the
importance of correctness for embedded real-time systems make them good
candidates for formal verification.

Several formalisms have been used to model real-time systems such as
automata [HU01, ACD90, ACH92, AD90, HNSY92], process algebra [Yi91,
Cer92, CGL93, HLY92], or timed Petri nets [Zub80, Zub85, RP85, BD91,
Abd01, AN01]. One of the most successful approaches is the theory of
timed automata of Alur and Dill [AD94]. Timed automata are an extension
of the classical finite state automata with clock variables to model timing
aspects. This model is further extended with integer variables (extended
timed automata) and implemented in the tool Uppaal [LPY97]. It has
been successfully applied to a number of case studies [HSLL97, LP97, DY00,
LPY01] and it is appropriate for systems that can be modeled as networks of
communicating processes. Improvements to the model-checker engine and
faster computers allow us to handle larger and larger models. However,
the input language lacks support to deal with larger models. Hierarchical
variants of state machines such as Statecharts [Har87] are appropriate for
large systems. These variants are appropriate for untimed systems and timed
variants such as real-time UML [Dou99] have limited capabilities to model
timed behaviors. The problems we are tackling are how to extend the well-
known timed automata with hierarchy to obtain a rich timed language with
hierarchical structures and how to improve efficiency of the model-checker
Uppaal.

In the following we present the theme of this thesis followed by a brief
introduction to the Uppaal tool. Finally, we detail the contributions of this

2

thesis and how the thesis is organized.

1.1 The Theme of the Thesis

The quick pace of computer hardware development (Moore’s law) makes
model-checkers run faster. However, improvements of the algorithms and
the modeling language are more important: using a quick-sort algorithm to
sort large sets on any ordinary computer is far better than using a bubble-
sort algorithm on the top-of-the-line computer. The model-checker Uppaal
has improved considerably from its first version in 1995 to its current ver-
sion 3.4. These improvements, along with new hardware, allow us to handle
increasingly larger models but the language lacks structure to deal with
such models. This thesis aims at improving the modeling and analysis ca-
pabilities of the model-checker Uppaal. The introduction of hierarchy in
the modeling language gives structured models and allows the use of an ab-
straction technique exploiting the hierarchy. Furthermore, we improve the
performance and the architecture of the current engine.

1.1.1 Industrial Case Study

In recent years, various industrial case studies in model-checking have been
reported. They are aiming at evaluating the industrial applicability and
usefulness of existing verification techniques and tools. SDL [BHS91] has
been applied mainly in telecommunication case studies [WC99, HM99] and
has proven to be appropriate for these applications. Feature interaction in
telecommunication systems [dB99, HS00] is also used to show how formal
methods fare in practice. Safety critical applications, such as information
display systems for air-traffic, are also in need of formal verification [Hal96].
Industrial case studies where Uppaal is involved are reported in, e.g.,
[HSLL97, LP97, DKRT97, BFK+98, HLS99, KLPW99, HLP00, LPY01].
We use these case studies to evaluate new algorithms for the tool.

The case study we present in this thesis, reported initially in [DY00],
started with the idea to spread formal methods in a company and to eval-
uate the usefulness of our tool in a real-world situation. The company’s
interest in this project was to improve the development process, reduce the
maintenance costs, and to improve the quality of the product with the help
of formal methods. As for us, we aimed at evaluating what our tool needed
in terms of graphical capabilities and verification. It became clear that the
modeling language needed more structure and also the early models showed
the weaknesses of the tool in its memory management. In this thesis we

3

propose hierarchical extensions and better data structures to improve on
these two aspects.

This case study is the largest one reported so far where the Uppaal tool
has been applied. We model and verify different layers of a communication
protocol in different steps. The study found no critical error in the sense
that the protocol worked as intended and it turned out that it could be
improved to avoid unnecessary retransmissions. We also suggested better
message feedback from the lower layer to improve the implementation. The
tool proves itself capable to handle this model despite its complexity and
the hierarchical model gives better results.

1.1.2 Hierarchical Modeling and Analysis

The limits of the (flat) timed automata language become clear when you
use the Uppaal tool on large systems. One has to scroll the window up
and down in the GUI to manage 20 or more processes placed in parallel in
a moderate size application. It is difficult to manage this for a modeler and
information concerning the structure is lost for the model-checker. Hierar-
chical state machines have been used to address both these issues. They
give more structure and allow us to keep the original design of the systems
in the models. Statecharts [Har87] have been proposed for this purpose and
they are appropriate in conjunction with object-oriented modeling [HG97]
for untimed systems. They are extensions of finite-state automata where
the locations contain nested automata communicating via events.

To be more concrete we give a small TV set example and explain the
basics of hierarchical modeling. In a statechart the locations are either basic
locations that are not further refined, or superlocation that contain nested
automata. The type of a superlocation may be XOR or AND. A XOR
location has exactly one sublocation active at a time, whereas an AND
location always has all of its sublocations active. Figure 1.2 shows a simple
TV set example taken from [LMS97].

The system starts in the state (TV.OFF.STANBY). Depending on the
events received, it can switch to the state (TV.ON.IMAGE.SHOW, TV.ON.
SOUND.ON) or the state (TV.OFF.DISCONNECTED). The TV and the
OFF automata are XOR superlocations where only one location is active
at a time. The ON automaton is an AND location where all its sublo-
cations (IMAGE and SOUND) are active if ON is active. In the state
(ON.IMAGE.SHOW, ON.SOUND.ON), it is possible to switch videotext or
mute the sound independently. It is also possible to switch off the TV set
or disconnect it.

4

SHOW ON

MUTE

STANDBY

DISCONNECTED

IMAGE SOUND

ON
TV

text mute sound

off

on

out

out in

OFF

VIDEOTEXT

text

Figure 1.2: TV set statechart example.

Statecharts are in general models for event-driven systems, that is, tran-
sitions are driven by external (or internal) events. In the timed automata
approach, we have channel synchronizations that are similar to events. The
hierarchical approach allows us, as seen in the TV set example, to describe
the model in a compact and structured manner. This is also a benefit for
model-checkers that can organize their data to save time and memory. Fur-
thermore, when the same automaton is used to describe several sublocations,
it is possible to reuse previous exploration information [BLA+99, AMY02].

For the type of systems we model in Uppaal, we need similar con-
structs in the language as in statecharts and also constructs to deal with
time. We have not found these two features together in other formalisms
that meet our needs. Modeling languages for timed systems in general have
poor support for structuring of models and those with hierarchy have lim-
ited support for modeling of time. Therefore, our goal is to extend the
timed automata language to include hierarchical constructs, thus having a
language featuring strong timing modeling capabilities and hierarchy. There
are other attempts where time is introduced to a hierarchical model: a pro-
file for schedulability, performance, and time [IIC+02] has been proposed
to extend the UML [BJR97]. The OMEGA project1 aims at developing a
methodology in UML for embedded and real-time systems based on formal
techniques. In this context they define a real-time profile [GO03] and a
kernel language for UML [DJVP03]. Most of the problems when dealing
with UML lie in reducing it to a manageable subset to give well-defined
semantics, and extending it with custom features. In our case time, we add
hierarchy to the well-defined timed automata instead.

1http://www-omega.imag.fr

5

1.1.3 Performance Issues in Verification

As the quick-sort versus bubble-sort example shows, algorithms are vital
keys to efficiency. It turns out that the hierarchical extension we need gives
a compact model, which is good for modeling but introduces challenges for
model-checking: we have to handle models that are more compact but we
have to keep at least the same efficiency. This means we need to improve
model-checkers to handle larger systems. Dealing with more interesting
problems often implies facing greater complexity. In the years of develop-
ment of the Uppaal tool we have improved considerably the algorithms
and the used data structures. In this thesis we propose further refinements.
These improvements were initially aimed at a Uppaal engine for analyzing
hierarchical models. It turns out that they are applicable for the current
Uppaal engine or any model-checker for timed systems.

The primary bottleneck of modern computers is the memory system.
The CPUs are gaining power at an incredible pace (Moore’s law) but
the memory speed lags behind. Memory gets faster and cheaper but the
gap behind CPUs is still growing. From this simple fact we looked into
the model-checker to improve the memory footprint. It turns out that
much of the used data can be shared. This was discovered by instru-
menting Uppaal. A special shared storage structure is proposed to take
advantage of this. In addition we simplify the reachability algorithm by
unifying its two main structures, the waiting and the passed lists. This
improves speed and memory consumptions. There are many other algo-
rithms to improve model-checkers. Compression [Hol97], selective state stor-
ing [LLPY97], and deallocation optimization [LPY00] are some of the exist-
ing memory optimizations. There has been progress on the symbolic repre-
sentation of states [Dil89, YPD94, BLP+99] and associated reduction tech-
niques [Yov97, LLPY97]. Partial order [ABH+97, Pag96, Pel96, BJLY98]
and symmetry reduction [ES97, ID96] are common techniques to reduce the
statespace exploration.

When dealing with complex problems, e.g., EXPSPACE-complete for the
hierarchical model, nothing can prevent the so-called statespace explosion.
Theoretically the problem is intractable, no matter which algorithm or ma-
chine is used. In such cases where verification is not possible, approximation
techniques are used. For this purpose we propose an abstraction based on
the hierarchical model. This abstraction is used to cut down parts of the mo-
dels by keeping some records of them. Other approximation techniques may
under-approximate the statespace by using hashing [Hol91, WL93, DU95]
or over-approximate it by using convex-hulls [LBB+01].

6

1.1.4 Tool Architecture

To obtain a reasonably efficient and robust tool, we have to follow a good
software engineering approach to develop and maintain this software. Af-
ter all, we write software that is used to check other software so we have
to be careful about ours in the first place. There are other tools adapted
for particular formalisms: Kronos [Yov97] and RED [Wan01] for timed au-
tomata, HyTech [HHWT97, AHH96] for hybrid systems, Murphi [DDHY92]
and Spin [Hol97] for untimed systems. These tools follow their own de-
signs but there are few publications on the architecture and design of these
tools. When the source code is available, e.g., for Spin, it is possible to
read but in practice it is hard to extract the architecture and design of such
optimized code. The same holds for the algorithms: publications in the
area are rich in algorithm descriptions, theoretical results, and experimen-
tal results [TAKB96, TY01, CCK+02, CGL94, CVWY92, CK97, ABH+97,
DGKK98, Val90, Pel93, DU95, LNAB+98, BFH+01] but there is little in-
formation on how these techniques fit together into a common efficient ar-
chitecture. We propose a flexible tool architecture that answers the needs of
(i) easy configuration for experiments, (ii) maintainability with its pipeline
made of separate components, and (iii) efficiency.

During the development of Uppaal, we realized that the monolithic
kernel of the engine is difficult to maintain and combinations of certain
features are hindered due to the lack of flexibility. The new architecture
is modular and is well adapted to model-checkers in general. We detail
the different components (filters) of this architecture and we show how this
allows us to improve performance, in particular to reduce the number of
copies of data.

1.2 A Brief Introduction to Uppaal

Uppaal is a tool suite for validation and symbolic model-checking of real-
time systems based on timed automata. It consists of a graphical user
interface (GUI) and a stand-alone model-checker. The tool is appropriate
for systems that can be modeled as a network of communicating processes.
Communication is modeled with shared variables or channel synchroniza-
tion. Clock variables are used to model time delays and integer variables
to manipulate data. In the following we give the background on timed au-
tomata in Uppaal followed by a brief introduction to Uppaal.

7

1.2.1 Timed Automata

A timed automaton is a finite-state machine extended with clock variables
used to measure delays. It uses a dense-time model where a clock variable
can evaluate to a real number. All the clocks progress synchronously. We
put several such timed automata in parallel to obtain a network of automata.
Every automaton may fire an edge separately. The state of the system is
then described by the different locations active in the automata. We prefer
to call them locations instead of states to make the difference from the state
of the system.

Two automata may synchronize using channels. When two synchroniza-
tion actions match on enabled edges (e.g., c! and c?) both edges are taken in
the same transition leading to a new state where the locations in these two
automata may be updated. The model is further extended with bounded
integer variables that are part of the state. These variables are used as in
programming languages: they are read, written, and are subject to common
arithmetic operations.

Figure 1.3(a) shows an example timed automaton modeling a simple
lamp. The lamp has three locations: off, low, and high. If the user presses
a button, i.e., synchronizes with press?, then the lamp is turned on. If
the user presses the button again, the lamp is turned off. However, if the
user is fast and quickly presses the button twice, the lamp is turned on and
becomes bright. The user model is shown in Figure 1.3(b). The user may
be slow or fast, which is modeled by the locations slow and fast. The clock
variable x checks for time delays. The clock constraint x >= 5 is used to
force at least a delay of 5 time units from the slow location. The invariant
x < 5 is used to force progress so that the location fast may stay active no
more than 5 time units. The user decides non-deterministically to be fast
or slow. If she is fast then she becomes blinded by the bright lamp.

We give now the basic definitions of the syntax and semantics for timed
automata. We use the following notations: let C be a set of clocks, B(C) the
set of conjunctions over simple conditions of the form x ./ c or x − y ./ c,
where x, y ∈ C and ./∈ {<,≤,=,≥, >}. A timed automaton is a graph
annotated with conditions and resets of non-negative real valued clocks in
the form x := 0.

Definition 1 (Timed Automaton (TA)) A timed automaton over a set
of clocks C is a tuple (L, l0, E, I), where L is a set of locations, l0 ∈ L is the
initial location, E ⊆ L× (B(C)×2C)×L is a set of edges between locations
with guards and clocks to be reset, and I : L→ B(C) assigns invariants to

8

idle

blinded

slow

press!

press!
press!/x:=0

fast(x<5)

press!/x:=0
x>=5, press!

User
clock x;

off low bright
y<5, press?

y>=5, press?
press?

press?/y:=0

Lamp
clock y;

(a) Lamp model.

(b) User model.

Figure 1.3: Timed automata example.

locations. �

In Uppaal, invariants are restricted conditions of the form x ./ c for
./∈ {<,≤}. To keep the notation simple at this stage we omit this detail.

We define now the semantics of timed automata. A clock valuation is
a function u : C → R≥0 from the set of clocks to the non-negative reals.
Let RC be the set of all clock valuations. Let u0(x) = 0 for all x ∈ C. We
will abuse the notation by considering guards and invariants as sets of clock
valuations, writing u ∈ I(l) to mean that u satisfies I(l).

Definition 2 (Semantics) The semantics of a timed automaton
(L, l0, E, I) over C is defined as a transition system 〈S, s0,→〉, where
S ⊆ L × RC is the set of states, s0 = (l0, u0) is the initial state, and
→⊆ S × S is the transition relation such that:

• (l, u)→ (l, u+ d) if u ∈ I(l) and u+ d ∈ I(l), and

• (l, u)→ (l′, u′) if there exists e = (l, g, r, l′) ∈ E s.t. g(u),
u′ = [r 7→ 0]u, and u′ ∈ I(l),

where for d ∈ R≥0, u+ d maps each clock x in C to the value u(x) + d, and
[r 7→ 0]u denotes the clock valuation which maps each clock in r to 0 and
agrees with u over C \ r. �

9

The semantics of timed automata results in an uncountable transition
system. It is a well known fact that there exists an exact finite state ab-
straction based on convex polyhedra in RC called zones [Pet99, LPY95] (a
zone can be represented by a conjunction in B(C)). This abstraction leads
to the following symbolic semantics.

Definition 3 (Symbolic Semantics) Let Z0 = I(l0) ∧ ∧x,y∈C x = y =
0 be the initial zone. The symbolic semantics of a timed automaton
(L, l0, E, I) over C is defined as a transition system 〈S, ∫0,⇒〉 called the
symbolic reachability graph, where S ⊆ L × B(C) is the set of symbolic
states, ∫0 = (l0, Z0) is the initial state, ⇒ is the transition relation and is
defined by the following rules:

• (l, Z)
δ⇒ (l, norm(M, (Z ∧ I(l))↑ ∧ I(l))), and

• (l, Z)
e⇒ (l′, r(g ∧ Z ∧ I(l)) ∧ I(l′)) if e = (l, g, r, l′) ∈ E,

where Z↑ = {u + d | u ∈ Z ∧ d ∈ R≥0} (the future operation), and
r(Z) = {[r 7→ 0]u | u ∈ Z} (the reset operation). The function
norm : N × B(C) → B(C) normalizes the clock constraints with respect
to the maximum constant M of the timed automaton. �

The relation
δ⇒ represents the delay transitions and

e⇒ the edge transi-
tions. The classical representation of a zone is the Difference Bound Matrix
(DBM) [Rok93, WT94]. The normalization problem and the algorithms to
solve it are treated in [Ben02].

1.2.2 Extended Timed Automata

The Uppaal modeling language extends timed automata with the following
additional features:

• Broadcast channels: a broadcast channel synchronizes with as many
edges as possible. In other words, an edge with c!, c being a broadcast
channel, will synchronize with all possible edges with c?, possibly none
if there is no such enabled edge.

• Urgent channels: a channel may be declared as urgent, in which case
delays may not occur if a synchronization transition on that channel
is enabled.

• Urgent locations: a location may be tagged as urgent, in which case
delays may not occur when this location is active, i.e., present in the
state.

10

• Committed locations: a location may be declared as committed, in
which case it must be left immediately. This means that states having
these locations active must take transitions to leave these locations
without delay.

• Arrays of variables: this is a standard feature of programming lan-
guages.

• Arrays of channels: the channel synchronizations may be controlled
by an integer expression. This feature enhances the compactness of
models.

• Arrays of clocks: clock constraints and resets may be parameterized
by integer expressions. This gives more flexibility to clock expressions.

As timed automata are extended with integer variables and synchro-
nization channels, we add the following notations: let V be a set of integer
variables and Ch a set of channels. Let G(V,C) denote the set of conjunc-
tions over boolean expressions of variables V and simple conditions of B(C)
as defined previously. Let A(V) be the set of assignments over V , and S(Ch)
the set of channel synchronizations c? or c! where c ∈ Ch and τ the internal
action. In the following we omit urgency, committed locations, and broad-
cast communication for the sake of simplicity. These features extend the
definitions we give in a natural way.

Definition 4 (Extended Timed Automata (XTA)) An extended
timed automaton over C, V , and Ch is a tuple (L,L0, E, I), where
L is a set of locations, L0 ⊆ L is the set of initial locations,
E ⊆ L × (S(Ch) × G(V,C) × A(V) × 2C) × L is the set of edges be-
tween locations with synchronizations S(Ch), guards G(V,C) over variables

and clocks, assignments A(V), and clocks to be reset. We use l
cgar−−−→ l′ to

denote such an edge. I : L→ B(C) assigns invariants to locations. �

We abuse the notation for I with I({li}) = ∧iI(li) for some subset of
locations {li}. The synchronization on an edge may be empty in which case
we note (l, g, a, r, l′) ∈ E. A variable valuation is a function v : V → Z from
the set of variables to the set of integers. Let ZV be the set of all variable
valuations and v0(i) = 0 for all i ∈ V . We abuse the notation by considering
a(v) the updated valuation after an assignment a ∈ A(V). We write l̄[l′i/li]
to denote the vector where the ith element li of l̄ is replaced by l′i.

11

Definition 5 (Semantics for XTA) The semantics of an extended timed
automaton (L,L0, E, I) over C, V , and Ch is defined as a transition system
〈S, s0,→〉, where S = 2L × RC × ZV is the set of states, s0 = (l̄0, u0, v0) is
the initial state, and →⊆ S × S is the transition relation defined by:

• (l̄, u, v)→ (l̄, u+ d, v) if u ∈ I(s) and u+ d ∈ I(s).

• (l̄, u, v)→ (l̄[l′i/li], u
′, v′) if there exists li

τgar−−−→ l′i s.t. g(u),
u′ = [r 7→ 0]u and u′ ∈ I(s), v′ = a(v).

• (l̄, u, v)→ (l̄[l′j/lj , l
′
i/li], u

′, v′) if there exist li
c?giairi−−−−−→ l′i and

lj
c!gjajrj−−−−−→ l′j s.t. gi(u) ∧ gj(u), u′ = [ri 7→ 0, rj 7→ 0]u and u′ ∈ I(s),

v′ = ai ◦ aj(v). �

We omit conditions on S that define location vectors of 2L as valid, that
is, the locations may not belong to the same automaton. We aim at staying
simple in the definitions at this stage. In the following, we refer extended
timed automata as timed automata (TA).

As an example of an extended timed automaton, we give the model of
the well-known Fischer’s protocol. It is a mutual exclusion protocol for n
processes that ensures that the location CS (critical section) is active only
in one process at a time. Figure 1.4 shows one template automaton of the
model. The actual automaton is made of the collection of the automata
P (1), P (2), P (3) for three modeled processes.

idle

waitingCS

requesting
[id==0]/x:=0

(x<=K)

[id==0]/x:=0 [true]/x:=0,id:=PID

[x>K,id==PID]

P(PID):

clock x;
int id;

[true]/x:=0,id:=0

Figure 1.4: Template automaton of the Fischer’s protocol.

Guards are written as [expr], assignments and resets as x := value, and
invariants as (condition). K is a constant that represents the delay to wait,

12

the same for all processes. PID is the process identity constant, different for
every process.

1.2.3 The Engine

The overall structure of Uppaal is shown in Figure 1.5. There are two ways
to use Uppaal: one can use the graphical user interface (GUI) or the com-
mand line program verifyta. The GUI is a client program communicating
with the server via the network. Having a client-server architecture allows us
to run the server on a powerful station/server and use it remotely. The server
and verifyta share the same engine written in C++. The GUI is written in
Java and the engine is compiled for Sun/Solaris and x86/Linux/Windows.

server
(C++)

GUI
(java)

verifyta
(C++, command line)

input
(.xta, .xml, .ta)

Figure 1.5: The Uppaal tool.

The model-checking engine uses a number of optimization algorithms to
get better time or memory performance. The mostly used algorithms are:

• Active clock reduction [Yov97] that detects locations where certain
clocks are irrelevant.

• Bitstate hashing and hash-compaction [Hol98] that are under-
approximation algorithms.

• Convex-hull approximation [Bal96] that is an over-approximation al-
gorithm.

• Guiding [LBB+01] to speed up reachability.

13

• Minimal graph reduction [LLPY97] to reduce memory usage of zones.

1.2.4 The Query Language

The Uppaal model-checker is able to verify if properties hold for a given
extended timed automaton. These properties are defined in a subset of
TCTL (timed computation tree logic).

A[] ϕ

A<> ϕ

E<> ϕ

E[] ϕ

Figure 1.6: Basic CTL formulae.

A query is of the form:

• A[] φ “always globally φ”,

• E <> φ “exists eventually φ”,

• A <> φ “always eventually φ”,

14

• E[] φ “exists globally φ”, or

• A[](φ→ A <> ψ) “φ always leads to ψ”,

where φ and ψ are boolean expressions over locations, variables, and clocks.
These queries are defined on paths: A applies for all paths and E for one
existing path. [] queries all states along paths and <> queries one state
along paths. Figure 1.6 shows traces of states and paths for which CTL
formulae hold. The filled states are those for which a given φ holds. Bold
edges are used to show the paths the formulae evaluate on. The time part
(TCTL) comes from the clock constraints used in φ (and ψ).

The formulae A[] φ and E <> φ are reachability properties and are
symmetric: A[] φ = ¬E <> ¬φ. The A[] φ properties are also called safety
properties because they check for a formula to hold for all the states. If such
a property is not satisfied then E <> ¬φ characterizes counter-example
paths.

The formulae A <> φ and E[] φ are liveness properties and are symmet-
ric as well: A <> φ = ¬E[] ¬φ. These properties involve a loop detection
algorithm because E[] φ holds for an infinite trace where every state satisfies
φ. As the (symbolic) statespace is finite, we are looking for loops.

1.3 Contributions

The main contributions of this thesis include (1) an industrial case study,
(2) a number of improvements to the current Uppaal model-checker, (3) a
theory of hierarchical timed automata, and (4) a new tool architecture for
the next generation of Uppaal.

Case Study. The case study is the result of a joint project with industry
based on a real-life product. To investigate the limits of Uppaal, we model
and analyze an industrial fieldbus communication protocol. This case study
is the largest application Uppaal has been successfully confronted to. To
handle a complex system, we model it in several steps. As a result a number
of improvements are proposed for the product.

Improvements to Uppaal. To attack the performance bottlenecks, we
propose improvements of (i) the reachability algorithm with help of a unified
passed and waiting list called the PW-List, and (ii) the memory management
using a shared storage structure. These structures give significant gains in
memory and speed.

15

Hierarchical Timed Automata. We have designed a language for des-
cription of hierarchical models: Hierarchical Timed Automata (HTA). Fur-
thermore, we have developed a verification engine that supports modeling
of hierarchical systems without penalty in performance. The semantics ad-
dresses the complex issues caused by the constructs to deal with both time
and hierarchy. We propose an abstraction model built upon the hierarchical
model that approximates nested operations on integer variables and clock
variables. We define new operations on zones to handle time.

Tool Architecture. We propose a new architecture to integrate the dif-
ferent verification techniques into a common framework. It is designed as a
pipeline built with components that are changed to fit particular experimen-
tal configurations and to add new features. The new engine of Uppaal is
based on this architecture. We believe that the architecture is applicable to
other verification tools. It is important to develop theories and algorithms
for model-checking but the implementation, often left without detail, is as
important. This architecture is modular, flexible, and suitable for the PW-
List/storage structures we developed.

Outline. This thesis focuses on practical issues of model-checking. We
start with Chapter 2 that gives a practical start point with a case study.
This case study shows the limits of Uppaal and the need for hierarchical
modeling. We propose improvements to Uppaal in Chapter 3 to tackle
the performance issue. In Chapter 4, we give the hierarchical timed au-
tomata model with its syntax and semantics to address the modeling issue.
As an application, we adapt the model of the bus coupler protocol in the
case study to our hierarchical language. In Chapter 5 we present details
on the implementation of the hierarchical model, and in particular the ab-
straction technique. To evaluate the technique we reuse the case study.
Finally, Chapter 6 gives the architecture of our tool and shows how different
implementation techniques fit together.

16

Chapter 2

An Industrial Case Study
Using Uppaal

In this chapter we report on an application of the Uppaal tool to model
and debug a commercial fieldbus communication protocol. To our knowl-
edge, this case study was the largest one reported so far where the Uppaal
tool had been applied. This protocol is developed and implemented for
safety-critical application, e.g., process control. During its life-cycle this
protocol has encountered spurious time-outs and retransmissions. Due to
the complexity it has been time and resource consuming to troubleshoot
these behaviors.

The company’s interest in this project is to improve the development
process, reduce the maintenance costs, and to improve the quality of the
product with the help of formal methods. The goal of the project is not to
verify the correctness of the protocol in any sense of completeness, which is
basically impossible due to the size and complexity of the system, but to
localize the sources of potential imperfect behaviors. The first goal of the
analysis is to find bugs and the second goal is to push the limits of Uppaal
and investigate to which extent it is applicable in an industrial context.

We extract the models from the source code of the protocol. The whole
protocol involves more than 27000 lines of code and we focused our efforts on
5541 lines of Modula-21 that represent the core of the protocol together with
a document of 151 pages for the specification of the protocol. The properties
and observer automata are derived from the protocol specification. We study
the protocol in two parts to tackle its size and complexity. The larger models
are built incrementally on top of simplified models studied separately.

1figures obtained with wc.

17

2.1 The Protocol

2.1.1 Overview

The protocol is a fieldbus communication protocol. Fieldbus is a generic
term that refers to digital, bi-directional, serial-bus, communication net-
works used to link field devices, such as controllers, actuators, and sensors.
Figure 2.1 illustrates this concept. In our case, we call these devices “sta-
tions” and the protocol is designed for 80 communicating stations.

A station acting as a “master” may initiate a dialog with up to 79 other
stations acting as “slaves” in this dialog. The master requests information
from a slave that only responds to it, thus the names master and slave. In
fact the dialog is established between applications on stations. Each station
may have several applications running, acting as masters or slaves.

The protocol has two main layers that are the field interface (FI) to access
the protocol from the application, and the bus coupler layer to access the
bus from the FI layer. These layers correspond respectively to the transport
and data link layers in the OSI protocol standard [Tan96]. In this particular
implementation, the protocol is divided in four layers shown in Figure 2.2.
The field interface (FI) covers the service data transfer protocol (SDP) and
partly the message transfer protocol (MTP). The bus coupler covers mainly
the MTP and partly the packet transport protocol (PTP). The lowest layer
corresponds to the physical layer and is depicted as “Bus” in the figure. The
part of the PTP layer not covered by the bus coupler is taken into account
in the study only for its capacity to store packets, i.e., to generate delays.

A typical scenario is as follows: a client application uses the master part
of the FI to send requests to another station where a server application
will respond through the slave part of the FI. Figure 2.3 shows an overview
with four stations over a bus. Each of them has the described layers: the
application, the FI, the bus coupler and the bus queue.

The different layers communicate with a specific protocol. We are inter-
ested in the bus coupler and in the FI protocols. The bus coupler protocol is
the communication between the FI layer and the bus coupler layer. The FI
protocol is the communication between the two FI entities on two stations.
The low-level protocols for the communication with the bus and between
the two bus coupler entities are not studied.

2.1.2 Field Interface: The Transport Layer

This interface provides the services depicted in Figure 2.2 to the application
running on the station. From the master point of view, the services are

18

Local area network: production control

Factory bus: control system

Device bus:
controllers, devices

Fieldbus: field instrumentation

Figure 2.1: Factory communication networks.

Bus coupler

OSI layers

Data link

Transport Field interface

Implementation
confirm respond

Slave application

requestRespond

send sendConfirm

Master application

Bus

Service Data Transfer

Message Transfer Protocol

Packet Transport Protocol

SDP
MTP
PTP

SDP
MTP
PTP

Figure 2.2: Protocol layers.

slave

master

master

slave

master

slave

slave

master

Station 1

Station 2 Station 4

Station 3

FI
Bus

Coupler
Bus
Queue

Low Level Protocol
Bus Coupler Protocol
FI Protocol
Service Call: API

Applications Bus

Figure 2.3: An overview of the protocol.

19

of two types: the sendConfirm/requestResponse and the sendMessage. The
first one waits for an answer coming from the slave. The answer may be
simple for a confirm of type yes/no, or more complex for a full response.
The slave part has the corresponding services to answer when necessary.
Message passing through the protocol, depicted in Figure 2.3, is as follows:

1. The master sends a message to the field interface.

2. The field interface (master side) decomposes the message into packets
and sends them to the bus coupler.

3. The bus coupler (master side) sends the packets to the next bus coupler
via the bus.

4. The next bus coupler (slave side) sends the packets to the field inter-
face.

5. The field interface (slave side) receives the packets, rebuilds the mes-
sage and sends it to the application that is waiting on a signal.

In addition, an acknowledgment mechanism ensures at every interface that
messages are transmitted correctly.

Figure 2.4 shows the tasks involved in the field interface and the layer
organization. The left hand side of the figure depicts a master station com-
municating with a slave station (right hand side). In a client/server scheme
the master acts as the client and the slave as the server. The flow of con-
trol of the client application goes to the functions of the field interface API.
Other tasks are involved, but not at this level. The same applies for the
server.

port 1
port 2
port 3
port 4

port 4
port 3
port 2
port 1

Client Server

Bus CouplersFI FIApplication Application

SDP MTP PTP PTP MTP SDP

B
u

s

get answer

send message

SlaveDispatcher

requestResponse
sendConfirm
sendMessage

MasterReceiver

get message

send answer

confirm
respond

PacketTimeoutSupervisor PacketTimeoutSupervisor

Figure 2.4: Tasks of the FI with respect to the layers. Real tasks are repre-
sented as circles, functions as rectangles.

20

The protocol reserves four ports for the communication. Ports 1 and
2 are reserved for the master part and ports 3 and 4 for the slave parts.
The communications port 1 to port 4 and port 3 to port 2 are identical and
concern the bus coupler and lower layers. A bus coupler task is associated
to each of these ports. The ports are used for communication between the
bus coupler entities over the bus.

The field interface has three main parts, both for the master and the
slave:

• The application programming interface (API). For the master, it is the
different send functions sendMessage, requestResponse, sendConfirm,
and the receive function call that will block until an answer arrives or
a time-out occurs. For the slave it is the equivalent receive function
call and the sendMessage function that sends a confirm or a response2.

• The packet time-out supervisor that monitors time-outs. The master
and the slave are monitored. This is a task that wakes up periodically
to decrement and check a time-out counter. When a time-out occurs,
the global state variable of the master or the slave can be changed. A
time-out may be (re)set by another task, which is viewed as a normal
time-out by the supervisor.

• The receiver task, that is, MasterReceiver for the master and SlaveDis-
patcher for the slave. This task runs separately, listening to the bus
coupler, assembling messages. When a message is ready, it puts it
into a queue and signals a semaphore. As we are not interested in the
message itself, only the semaphore is modeled. The different “receive”
functions wait for this semaphore.

The master and the slave have a state machine each that describes how
they should behave. These correspond to the specification of the behaviors
of the master and the slave. The slave has three states and the master
five. These states are global states that can be modified by different tasks.
Priority and mutual exclusion are used to keep consistency and the study
focuses on these global states.

In addition to the control tasks corresponding to the protocol, both the
master and the slave have a monitoring process that accepts all transitions
between these states. The monitoring process checks valid transitions and

2The difference between these two is minor. The confirm is used for an answer of type
yes/no and the response for more detailed information. The other technical differences
are out of scope for this study.

21

detects bad ones. This is a way to check that the implementation follows
the specification.

The FI Protocol. The field interface protocol concerns communication
between two applications, i.e., one master and one slave. It is an alternat-
ing bit protocol at the message level and a sliding window protocol at the
packet level. The window varies depending on the success of transmissions.
Packets have a sequence number to detect losses when reconstructing mes-
sages. A transparent bit marks the packets for the receiver to send back
an acknowledgment or not: the first and the last packets of a window need
acknowledgment and the others do not. The packets that do not require
acknowledgement are called transparent. Transmission errors are detected
at the end of the window. In this case the whole slide is retransmitted and
the window size is reduced by one to adapt to transmission errors.

The modeling of the protocol concerns the tasks described in Figure 2.4
that implement the send/receive of this sliding window protocol. Figures 2.5
and 2.6 show the state machines described in the documentation. They
specify the protocol at a high level, i.e., retransmissions and sliding windows
are not mentioned. The master is used this way: it is normally in the
dormant state and it goes to the awaiting first packet state when a request
is transmitted and it waits for the first packet of the answer. It goes to the
state receiving while receiving the answer and then back to dormant. The
slave has to answer requests from the master, so it waits in the state idle
(I) or idle after error (IAE) depending on previous errors. If a multiple-
packet message is received it goes to the active (A) state to receive the whole
message and when the last one comes in the slave goes to the state wait for
receive task (WFR) to wait for the answer from the master. The answer is
processed in the state answer outstanding (AO) to know if an error occurred
or not.

2.1.3 Bus Coupler: The Data Link Layer

The bus coupler is the layer below the field interface. The tasks of the bus
coupler run on a different board than the tasks of the FI. The operating
systems are different as well. The design is motivated by the fact that this
protocol is implemented on different hardwares and the lower-level layers
can therefore be changed. This is for flexibility purposes.

The bus coupler corresponds to the data link layer in the ISO standard.
It communicates with the FI via an interface implemented as a shared buffer.
Each bus coupler entity serves a port that is used by the field interface. The

22

Dormant Receiving

AwaitingFirstPacket

msg complete or timeout

setup master
receptionsingle

packet msg
received or
timeout

multi packet
msg received

Wrong sequence
bit. Discard msg
and wait for next.

Valid packet received

Figure 2.5: Master protocol state machine specification.

First packet
of multi
packet msg
with init
bit

Init bit in single
packet msg or
timeout

Discard packets
without init bits

Single packet
msg with init
bit

SendMsg or
buffer too small

Answer is 0 byte
or last packet sent

Init bit in multi
packet msg. Start
new msg

First packet of
multi packet msg

Single packet
msg received

Message type
other than
sendMsg

AO

IAE

WFR

I

A

Unexp. packet received

msg complete

Figure 2.6: Slave protocol state machine specification.

23

different FI entities communicate with each other though their ports, via
the bus coupler that makes the link. These ports are used in the following
way:

• A request from the master is sent to port 1.

• This request is received by the slave from port 4.

• A response is from the slave is sent to port 3.

• This response is received by the master from port 2.

Ports 1 and 2 are dedicated to the master and ports 3 and 4 to the slave.
The ports are used to define the two communication channels port 1→ port
3 and port 4 → port 2. They are identical from the bus coupler point of
view. This means that the tasks serving ports 1, respectively port 4, are
identical to those serving port 3, respectively port 2. The bus coupler model
takes into account only one of these symmetrical communications, that is
master sends via port 1 to slave receiving via port 4.

sends to Bus

acknowledgment to FI

listens to FI

sends to FI

acknowledgment to Bus

listens to Bus
Sending tasks serving ports 1 and 3 Receiving tasks serving ports 2 and 4

Request from master and Ack from slave
Answer from slave and Ack from master

Station 1

ports

master
2

4
3slave

1
Station 2

ports

slave

master

4
3

1
2

Figure 2.7: Bus coupler communication scheme with the different tasks.

Figure 2.7 illustrates this communication scheme and the tasks that we
are focusing on. Figure 2.4 shows the same communication, though from
the FI point of view. The tasks serving the ports 1 and 4 are symmetrical
in the sense that they perform identical tasks, only the receiver and sender
are switched.

24

The task serving port 1 listens to the FI. When it gets a packet, it
forwards it to the bus and acknowledges the FI to notify that the packet
was sent. Note the role of the transparent bit at this stage: if the packet
is transparent, the acknowledgment will be positive (ACK). If the packet
is not transparent the bus coupler has to wait for a real acknowledgment
from the other side. Depending on the answer it will acknowledge the FI
positively (ACK) or negatively (NACK).

The task serving port 4 listens to the bus. When it gets a packet, it
forwards it to the FI and waits for an acknowledgment from the FI. If the
packet is transparent, the acknowledgment is always positive. It is similar
to the other task.

Communication between the FI and the bus coupler entities at a port is
achieved via a buffer. This buffer is separated into fields writable by only one
side, but readable by the other one. The synchronization is based on these
bits and a signal mechanism that uses interrupts through the two operating
systems. The different bits used for synchronization are:

• Mailbox reserved to access the buffer.

• Data read to notify that data has been read.

• Data written to notify that data has been written.

• Data lost to return positive or negative acknowledgment.

From the FI, these bits have in practice slightly different names, which is
unfortunate. We will only consider the bus coupler view. In addition to these
bits, a data field for the useful information is used. The FI side is referred
as cpu because it is the application side at a high level. The bus coupler is
referred as dev because it is the device side with low level communication
with the bus. In practice the FI requests an interrupt to the OS. The OS
notifies the other board, which generates an interrupt to the other OS. The
interrupt is handled by an interrupt handler that signals a semaphore. The
concerned task is waiting on that semaphore. The model considers only the
semaphore.

Figure 2.8 illustrates the configuration of the buffer interface.

The BC Protocol. The bus coupler protocol has two main parts: the
communication with the FI through the buffer interface and the communi-
cation with the other bus coupler. The communication between bus couplers
involves a minimum control of packets with management of re-sending pa-
ckets and associated acknowledgments. The layer below is used via a simple

25

mailbox
reserved

data read

data written

data lost

packet

mailbox
reserved

data read

data written

data lost

packet

BC side (device)

Buffer

Bus Coupler

write

read

read

write

FI

FI side (CPU)

Figure 2.8: The configuration of the interface between the bus coupler and
the FI.

API with send and receive primitives. This part of the protocol is known to
be robust so we will not treat it in this study. Figure 2.9 shows the protocol
we are interested in, namely the communication with the FI. Note that when
waiting for a bit, a time-out value is specified and a time-out result can be
returned, leading to a reset and another try.

The implementation of the protocol uses signals to notify the reading side
when a bit has been written. The mechanism with interrupts and signals is
specific to this implementation and uses semaphores on both sides (different
boards with their own OS each) and the modeling stresses this feature.

cpu.mailbox:=1

wait(dev.mailbox==0) reset all bits to 0

write packet

wait(cpu.datawritten==1)cpu.datawritten:=1

dev.mailbox:=1

read packet

set dev.datalost (0:nack or 1:ack)

dev.dataread:=1wait(dev.dataread==1)

read dev.datalost

wait(cpu.datawritten==0)

FI Bus Coupler

enabled

condition

send it and gets acknowledgment

reset all bits to 0

Figure 2.9: Communication protocol from the FI to the bus coupler.

26

2.2 The Modeling Process

We adopt a top-down approach first to find and understand the relevant
components of the system and then a bottom-up approach with progressive
abstractions that allows us to build up several abstract models for verifica-
tion. At the beginning of the project it was not planned to model the bus
coupler but it turned out that this was necessary because of its timed be-
havior. This motivates the following steps we take in the modeling process
as illustrated in Figure 2.10:

1. Model the bus coupler, based on the source code. This gives the
detailed bus coupler model.

2. Simplify the bus coupler model with classical abstraction techniques.

3. Model the FI master and slave sides separately, based on the source
code.

4. Derive tests for the master and the slave, combine bus coupler abstrac-
tion, master/slave test and the slave/master models.

5. Validate results on the two partial models with the help of the complete
master and slave model which contains the bus coupler abstraction.

Step 1 is to construct a detailed model based on the source code of the
bus coupler, which is presented in Section 2.2.1. This model is called the
“detailed bus coupler model”. Step 2 is to derive an abstract model pre-
sented in Section 2.2.1 using abstraction techniques such as hiding and the
abstraction features of Uppaal. Step 3 is to construct detailed models of the
master and the slave separately, based on the source code, in Section 2.2.2.
Step 4 is to derive test automaton that simulates outputs of these compo-
nents (input is ignored). The generated messages follow the logic of the
protocol and can send negative acknowledgments randomly. These test au-
tomata are used against the partial master and slave models. Step 5 is to
validate properties that are not satisfied, that is, the counter examples found
in the partial models are validated for the detailed model in Section 2.2.2.

Figure 2.11 shows with respect to the overview of Figure 2.3 what is
modeled in the two steps of the study. First the bus coupler is modeled
(transparent ellipses) with abstractions of lower and upper layers. Second
the FI is modeled with abstraction of the previously studied bus coupler and
an abstraction of the application using the FI.

27

slavemaster

1 4

Couplers Couplers

B
us

2 3
Configuration

FIFI

1

2

3

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���

���
���
���

FI master model

5

4

���
���
���

���
���
���

abstraction
FI slave

�
�
�

�
�
�

FI master
abstraction

	
	
	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

FI master sub model FI slave sub model

1 4

Coupler Coupler

ack

FI FI

abstractionabstraction

packet

Bus Coupler implementation model

FI FICouplers

Bus Coupler abstraction

FI slave model

FI master+slave

Figure 2.10: Modeling framework.

28

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

 � � � � � � �
 � � � � � � �
 � � � � � � �
 � � � � � � �
 � � � � � � �
 � � � � � � �
 � � � � � � �

!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"

#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#
#�#�#�#�#�#�#�#

$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$

%�%�%�%�%
%�%�%�%�%
%�%�%�%�%
%�%�%�%�%
%�%�%�%�%
%�%�%�%�%
%�%�%�%�%

&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&

'�'�'�'
'�'�'�'
'�'�'�'
'�'�'�'
'�'�'�'
'�'�'�'
'�'�'�'

(�(�(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(�(�(

)�)�)�)�)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)�)�)�)�)
)�)�)�)�)�)�)�)�)�)�)�)�)

slave

master master

slave

master

slaveslave

master

FI Model

Bus Coupler Model

Figure 2.11: The two-steps modeling.

2.2.1 Modeling the Bus Coupler

Detailed Model of the Bus Coupler

This model is the detailed model from which the whole bus coupler study is
carried out. It is close to the code and it is possible to map the model to the
code. It is of great interest for the industrial partner that traces obtained
from the verifier can be mapped to an execution trace of the real code
for debugging purposes. To validate a trace is to validate the associated
execution trace in the implementation. The engineers validate the traces
using the source code or real execution cases.

The Uppaal model of this part of the implementation consists of 14
automata, 4 clocks and 32 integer variables modeling 2 processes sending,
2 processes receiving, 4 semaphores and 6 functions. We consider here one
master application on one station communicating with one slave application
on another station. The structure of the model follows the description given
in Figure 2.7. The structure of the model is given in Figure 2.12. Circles
denote processes and rectangles functions. The functions are modeled as
processes in Uppaal due to size consideration but they behave like functions.

The data content of the packets is irrelevant to the correct behavior
of the protocol since it is a layered protocol. The data carried by a layer
has no meaning for this layer. There is however an exception, namely the
transparent bit. This information bit is checked at the field interface and at

29

semaphore

semaphore

listens to Bus

acknowledgment to Bus

Coupler
core

semaphore

semaphore

automaton synchronisation

sends to Bus

acknowledgment to FI

listens to FI

Tasks serving port 1

Coupler
core

send ack

send packet

signal

wait

wait

signal

wait

signal

wait

signal

Tasks serving port 4

sends to FI

sends to coupler
master

slave receives
from coupler

Figure 2.12: Static structures of the implementation model. Tasks are rep-
resented as circles and functions/semaphores as rectangles.

30

the bus coupler layers, even though it is encapsulated as data for the bus
coupler packets. This is due to the handling of transparent packets that
do not require acknowledgments. In the model, this bit is the data of the
packets. It may have the value −1 to mark corrupted data that should not
be read, or 0/1 as valid values.

The stations have several applications, slaves or masters. They all use the
same bus coupler layer serving the ports 1-4. A mutual exclusion mechanism
is used to gain access to the bus coupler at the field interface level. This is not
modeled here. At the bus coupler layer, the incoming packets have a random
sequence of 0, 1 or −1 since accesses may come from several applications in
different states. This is modeled by non-deterministic choices.

The same idea is used in the receiver part where the upper layer may
accept or reject a packet, which is positive or negative acknowledgment.
These acknowledgments are non-deterministic since the FI is abstracted.
Note that −1 is not a value part of the protocol but used for verification
purposes.

The model consists of two bus couplers, one on the master side and one
on the slave side. They are connected in practice via a lower layer to the bus.
The communication protocol has another low-level that is partly modeled.
The bus is modeled as a lossy channel preserving the ordering of data pa-
ckets. There is a bus queue on each side of the bus, between the bus coupler
and the actual bus. The queue only introduces delay when a message is to
be sent. The delay varies if the queue is full or not, which depends on the
accesses done by several applications and the traffic. This is therefore ran-
dom in the model. The model for sending to the bus is a non-deterministic
sending within a time window. Time-out may occur. Transmission delays
are neglected with respect to the time-out values controlling the protocol.

Modeling Techniques

In addition to the Uppaal modeling mechanisms, such as committed loca-
tions, we apply a statespace bounding technique and an abstraction tech-
nique on the detailed model to study different variations and to derive a
simpler model without implementation details.

Modeling Mechanisms in Uppaal. In the modeling process, the mo-
dels are refined by various modeling mechanisms implemented in Uppaal
including:

• Committed states: the state must be left immediately with no delay.
Interleaving is allowed only between the committed states. Atomicity

31

in a sequence of states may be achieved, thus reducing the statespace.
The main goal of committed states is to reduce explicitly interleaving.

• Urgent states: time is not allowed to progress in such a state, but
all interleavings are allowed. It is useful to model race condition and
non-determinism.

• Urgent transitions: they should be taken whenever the guards become
true. It is useful to model progress.

• Shared variables: they are set and read atomically3 by processes run-
ning concurrently, thus suppressing the need for explicit mutual exclu-
sion on them.

The goal of this low level abstraction is to control the level of non-
determinism of the model.

Error Pruning. We study the detailed model in four different variants.
The variations express different levels of assumptions on the program. The
idea of the study is to use an error pruning technique, which is to detect
an error but to stop exploration of the statespace from the detected error
state. The idea is to use those error states to bound the statespace by
causing a deadlock. It is important to notice that the deadlock in this case
is part of the model only, not the protocol, and is used only for studying the
protocol. We call this state of states the error border. The interpretation
of the verification is as follows: if such a state is reached then the property
is partially verified for a system that does not contain the “error” states.
However, we know that an error occurs; so we make another model with
less pruning. Thus we have different refinement levels of the model with
different levels of assumptions with associated partial results. This is useful
to track bugs. The different variations are:

1. Semaphore counters limited to 1, pruning error space.

2. Semaphore counters limited to 2, pruning error space.

3. Semaphore counters limited to 3, full space.

4. Semaphore counters limited to 3, checks added to correct the model.

3on one transition

32

The limitation on the counter is still kept to bound statespace generation.
In the modeling process it was proved at a stage that one semaphore behaved
badly, i.e., its counter grew beyond 3. It turned out that the model was not
accurate enough and did not filter the synchronization properly. The model
was refined and this behavior disappeared. The limit of 3 comes from these
experiments where the goal was to include the case where one semaphore
is at 3 and the others at 2. The corrected version is a modification of the
original model, to patch the implementation. The models are constructed
so that the following inclusions between the statespaces hold:

space1 ⊆ space2 ⊆ space3

space1\EB ⊆ space2\EB ⊆ space4 ⊆ space3,

where spacei\EB denotes spacei excluding the error border EB. The experi-
ments in Section 2.3.2 are consistent with these inclusions. These statespaces
are comparable because spacei ⊆ spacej comes from the fact that model j
is a relaxed version of model i. The error border is meant to detect some
states and it cuts the statespace from these states. Removing these detec-
tion states and allowing further exploration gives the natural inclusions with
spacei\EB .

The corrections of model 4 concern checking bits when a signal is re-
ceived. This is actually done in the function receive from the bus coupler
side, but not on the FI side.

More formally, the error pruning technique used allows us to partition
the statespace. Considering one semaphore, the values taken into account
in the model form 3 classes: [0][1][2 . . .∞]. The model actually takes the
semaphore into account up to 3. This is enough since the values of the
variables and the clock regions are the same if there is a loop that makes
the counter grow.

Hiding. To debug the protocol logic, we simplify the detailed model
(which is based on the source code) using abstraction techniques and the
modeling mechanisms listed above, in particular, the notions of committed
and urgent states. The derivation of the abstract models takes away specific
parts related to implementation which are the signal implementation and the
way to wait on the bits, that is the interrupt handling and the semaphore
management to signal a write or to ensure mutual exclusion. The imple-
mentation uses the sequence interruption → OS → port → interruption
→ OS → interrupthandler → semaphore. The abstraction allows a direct
write/wait/read synchronization mechanism without semaphore, with the

33

help of urgent synchronizations. The abstraction is independent from the
implementation in the sense that this synchronization may be implemented
in a different way. Therefore, we hide all the semaphores and the corre-
sponding variables. In addition to this we hide intermediate variables, i.e.,
result variables. This has the effect to collapse states and reduce the number
of processes. Table 2.1 compares the detailed bus coupler and the abstract
version.

Full Abstract

Variables 32 15
Clocks 4 4
Processes 16 4
Locations4 5.8e11 11520

Table 2.1: Comparison of detailed/abstract models.

Atomicity and Delays. We use different variants of the detailed bus
coupler model to study the behavior. The variations of the model are in two
dimensions: breaking atomicity of transitions and allowing delay in reading
bits. We obtain 5 models:

Model 1 is the simplest model where some transitions are considered to be
atomic to study their consequences.

Model 2 relaxes model 1, by removing the atomicity of the transitions per-
forming data-reading.

Model 3 relaxes model 2 by allowing delays when a bit is set to the expected
value.

Model 4 also relaxes model 2 but by converting committed states related to
data reading and writing to urgent states.

Model 5 relaxes model 4 by allowing delays as in model 3.

The models that are not relaxed do not allow delay when waiting on a bit
to be set or reset. This is achieved in Uppaal by an urgent synchronization
that is always enabled, but in order to take the transition, the guard (the bit
the component is waiting for) must be true. When relaxing the models, i.e.,

4product of locations

34

enabling delay, this synchronization is removed, allowing time to progress
even if the guard is true. This models eager or lazy synchronization.

Atomicity in a sequence of transitions is modeled by Uppaal committed
locations. Locations that do not consume time but still do not have atomic
transitions are marked urgent.

The models are derived so that the following inclusions hold:
space1 ⊆ space2 ⊆ space4⊆ ⊆

space3 ⊆ space5

. The idea is to derive models 3 and 5 to

stress delays and models 4 and 5 to stress race conditions. These inclusions
hold by construction of the automata, which is, spacei ⊆ spacej because
model j relaxes model i by adding delays, or allowing interleavings (commit
to urgent) without disabling the previous transitions. The basic model is the
same, the set of variables is the same but there are more reachable states.
The verification results are consistent with these inclusions.

Refining the Models. Refinement of the models is the opposite of ab-
straction. It gives more details and adds accuracy to the models. It is a
trade-off since abstraction is needed to reduce state explosion and refine-
ment is needed for accuracy of the model. In the study both were used side
by side and refinement concerning the semaphore mechanism was used when
a trace was not judged valid by the engineers.

Abstract Models of the Bus Coupler

The Uppaal templates for the model 5 are given in Figures 8.1, 8.2, 8.3,
and 8.4 (Appendix 8.1). The template automata for the other variants are
similar and differ with respect to the described variations.

These automata are close to the protocol description given in Figure 2.9.
We recognize the master waiting for devmbr==0 and devdataR==1 with pos-
sible time-outs, corresponding to wait(dev.mailbox==0) and
wait(dev.dataread==1) on the figure. The random transparent bit of the
packets, as explained previously, is modeled by non-deterministic transitions.
States marked with u are urgent and those marked with c are committed.

The master bus coupler is the counter part of the master. It for-
wards data to the slave bus coupler and waits for an acknowledgment (non-
transparent packets). Time-outs are possible here as well. The slave counter-
part receives packets from the master bus coupler and it can choose to send
back acknowledgments (positive or negative) or not at all. The slave re-
ceives from the bus coupler, it acknowledges positively or negatively. The

35

waiting is similar to the first coupler: wait for devdataW==1 and then for
devdataW==0.

We now investigate the relations between the different models.

Reduction. We are interested in properties at an abstract level from
which we can infer conclusions on the concrete model. The idea is as fol-
lows: the concrete model is a particular implementation of a protocol, the
reduced model is the protocol itself where particular implementation de-
tails have been abstracted away. We use the term reduction that is more
appropriate for our purposes.

The inference rule that we are looking for is:

R(M) |= φ
,

M |= φ

where M is the original model, R(M) the reduced one, φ a formula of the
form ∃ � p.

The point is to know if the protocol is correct without considering the
implementation, but if something wrong is found then it is wrong in the
implementation. This is a debugging process and our approach allows us to
localize errors isolated from the implementation.

The reduction relation used here is the simulation: R / M the reduced
model R can be simulated by the concrete model M , with respect to ob-
servable actions. The inference rule comes from this. The definition is:

Definition 6 (Simulation) P / Q if for all actions α ∈ Action whenever

P
α−→ P ′, then for some Q′, Q α̂−→ Q′ and P ′ / Q′. �

We have to define now the reduction relation Rr that R has to satisfy.

Reduction Relation. We want to establish a relation allowing us to re-
move a component and hide non observable variables. The hiding part of
the problem is a standard hiding operation. It includes collapsing states
when transitions between them are not observable with respect to a set of
hidden variables. Removing a component is more difficult and in our case
is restricted.

The scheme to remove a process is as follows: we have three processes in
a model M such that P1 communicates with P3 via P2. P2 is the implemen-
tation of the communication. The static relation Rr that P1|P2|P3 satisfies
is such that:

36

τ1

τ2

s1?

s2!

τ

ττ
τ

a==go

a!=go s2?

timeout

a==go

a==go

a!=go fail

okτ

τ

1

2

τ a:=go s1!

(a) (b) (c)

Figure 2.13: Complex automaton patterns.

timeout

a==go ok

fail

a:=go

(a) (b)

Figure 2.14: Reduced automaton patterns

• P1 implements the behavior shown in Figure 2.13(a) where τ is an
internal transition to prepare the communication, typically a reset ;
a := go sets the shared control variable a to the expected value go
that P3 is waiting for ; s! is hand shaking synchronization.

• P2 implements the behavior shown in Figure 2.13(b) where τ1 can
be related to τ in P1 to prepare communication, and τ2 can be a
reset asked by P3. The τ transitions are internal actions that ensure
P3 notified =⇒ P1 sent. s1? synchronizes with P1 and s2! with P3.

• P3 implements the behavior shown in Figure 2.13(c) where τ1 is ini-
tialization, typically clock reset, τ2 post synchronization or cleaning
actions with P2.

These constraints are abstract and automata that simulate these satisfy Rr
as well and they will clearly yield the expected property as well.

The reduced system is then P ′1 with the reduced sub part Figure 2.14(a)
and P ′3 with the reduced sub part 2.14(b). The transition labelled a == go
is urgent iff s1. . . s2 is urgent. This reduction is in fact a busy waiting
with time-out although the implementation is not. This is equivalent to the
behavior of the protocol.

The result is then

37

Rr(P1, P2, P3) R(P1)|R(P2)|R(P3) |= φ
,

M |= φ

with φ of the form ∃ � p. We notice that R(P2) is empty.

Generalization. The generalized property becomes:

R(M) / M R(M) |= ∃ � p
,

M |= ∃ � p
which is straightforward but the point is to have the most relevant R as
possible to keep interesting properties and our Rr allows us to reduce M
to that interesting model which keeps the logic of the protocol. Other R′r
should verify R′ ; M . Such a relation is used for the FI models.

Relations between the Models. We have two basic models with vari-
ations in each. We note Ii the implementation models and Ri the reduced
ones. As stated in Section 2.2.1:

I1\EB ⊆ I2\EB ⊆ I4 ⊆ I3

in term of space and from Section 2.2.1 we have

R1 ⊆ R2 ⊆ R4⊆ ⊆

R3 ⊆ R5.

The relations are R1 / R2 / I1 / I2 / I3. I4 is not present because it does
not contain the error states.

2.2.2 Modeling the FI

The field interface model follows the protocol description given in Figure 2.4.
The master side has a sender process implementing the sliding window with
the transparent packet protocol. A receiver process listens to incoming pa-
ckets and rebuilds messages that are responses from the slave. A time-out
supervisor process takes care of the master time-outs. A status process mon-
itors the state transition for verification purposes. The master part has 3
main running processes and one monitor process. The slave part is similar
to the master part and has a sender, a receiver (called dispatcher) and a
time-out supervisor as main processes. A state process monitors the state
transitions here as well. In addition to these 8 main processes, 2 semaphores

38

for synchronization, 1 semaphore for mutual exclusion, and one forwarder
process are used.

The model implements only the service request response since it is the
most complete and it contains the others. The sending parts of the model
as well as the receiving parts (though the forwarder) contain an abstrac-
tion of the bus coupler depicted in Figure 2.15. The model components are

send

sending
t<=1000

waitingAck
t<=2000

TO

acked nacked

t:=0

transp==0
t:=0

t==1000

t==2000

transp==1

Figure 2.15: Bus coupler abstraction used.

depicted in Figure 2.16. The figure shows the communication between the
components. As one guesses, the model is suitable to be cut into one mas-
ter side and one slave side with a test in the place of the forwarder. The
semaphores and the mutex are not depicted in the figure.

Detailed Models of the FI Master

This model is verified with the components from the master side and the
slave test. The sender automata are adapted at the bus coupler level because
no real receiver is modeled. It is important to notice that these changes are
minor and consist in removing the channel synchronizations on the sending
transitions. The test slave is depicted in Figure 8.6 (Appendix 8.1). This test
models the strict minimum of a slave station. It reacts to acknowledgments
from the master, generates messages (replies) with correct sequence. This
test automaton is derived from the slave sending function.

The master is monitored with the state monitor process depicted in
Figure 8.5 (Appendix 8.1). This monitor has the three central states corre-
sponding to the protocol states. Valid transitions are drawn directly between

39

Timeout supervisorTimeout supervisor

Forwarder

Bus coupler

FI sender

DispatcherBus coupler

FI sender

Receiver

State monitor State monitor

Master Slave

receive requestsend request

respond

signal

receive respond send respond

Figure 2.16: FI model overview.

these states as described in the protocol. All the other undefined transitions
are present as well, though they go through an error state (committed5 in
Uppaal) to detect that the transition is taken. The specification of the mas-
ter protocol state machine is given in Figure 2.5. We recognize the three
central states. The labels are the original ones.

The implementation has a state variable per application. This state
variable is shared between all the components of the master that run con-
currently. It is important to keep the integrity of this variable by a controlled
access, which is done via mutual exclusion and means of preemptive schedul-
ing. Reading or changing this variable is done directly by variable manip-
ulation. The model defers to the state monitor when changing it. When
setting the variable to a specific value, a channel synchronization for this
specific value is used. The state monitor takes the transition corresponding
to this assignment, does the assignment, and depending on defined condi-
tions in the protocol, it will take a legal or an illegal transition. The monitor
states have the particularity that the disjunction of all outgoing transitions
is always true to avoid artificial deadlocks. Reading is immediate and is

5that is left immediately, but detectable for verification

40

always legal.

Detailed Models of the FI Slave

The slave model is similar to the master model. It has a master test process
generating messages as the slave test, though this one may change the init
bit. The master test is depicted in Figure 8.7 (Appendix 8.1). This test
automaton is derived from the master sending function. The slave is mon-
itored as the master by a state monitor process that works as the master’s
one. This monitor is depicted in Figure 8.8. The specification of the slave
protocol state machine is given in Figure 2.6. These states correspond to
the five central states in the monitor automaton.

Validation of the FI Models

The master and the slave models were verified against a test automaton.
These models satisfy the simulation relation with the complete model, with
respect to the observable events of the master, respectively slave part:

Mmaster / Mcomplete: the model with the master part is simulated by
the complete model.
Mslave / Mcomplete: the model with the slave part is simulated by the
complete model.

This holds with respect of the visible events in the master, respectively the
slave. The events concerning actual sending of messages are hidden, though
not the acknowledgments. This holds because of the way the tests were
constructed. These tests are able to produce all the outputs of the hidden
component. However, we are interested in the observation equivalence rela-
tion. Unfortunately, the models are not equivalent since the tests are less
constrained than the complete models. The point is to validate the models
so that their behavior is not too general with respect to the detailed mo-
dels. Experimentally, we rechecked the properties that were violated in the
test models, i.e., those that gave counter-examples, to validate the counter-
example in the detailed model. This is to ensure that the test behavior does
not deviate from the real behavior.

We now strengthen the simulation relation [Mil89] towards the observa-
tion equivalence relation with respect to a set of properties, which is, for a
subset of real behaviors the observation equivalence relation holds.

Definition 7 (φ-Observation equivalence) P ≈φ Q if

41

(1) P |= φ and Q |= φ,

(2) ∀α ∈ Act :

(i) whenever P
α−→ P ′ such that P ′ |= φ, then for some Q′, Q α̂−→ Q′

and P ′ ≈φ Q′ and Q′ |= φ,

(ii) whenever Q
α−→ Q′ such that Q′ |= φ, then for some P ′, P α̂−→ P ′

and Q′ ≈φ P ′ and P ′ |= φ. �

In our case we have:

Mmaster ≈φ1 Mcomplete

Mslave ≈φ2 Mcomplete,

which is confirmed by experimental results: formally, φ characterizes the
subset of behaviors of the two models and on these two subsets are equiva-
lent. In practice we have a set of properties verified or violated by both the
abstract and the complete models. So experimentally, one could think that
the models are equivalent, but by construction the abstract model is not
limited in the generation of messages and can generate sequences that the
complete model would not generate. Here, φ characterizes the valid traces
of the abstract model and is not given explicitly. By executing the models
and respecting these sequences, the models are equivalent with respect to
these sequences.

Figure 2.17 shows the differences between trace equivalence, simulation
and φ equivalence: X and Y are trace equivalent, they generate the same
traces. X can simulate Y but Y can not simulate X: if Y takes the branch
A-B-D, X has still the choice of E and C. The sub-tree verifying some φ are
equivalent.

2.2.3 Related Work

Levi [Lev01] presents an abstraction technique for µ-calculus model-
checking. The idea is to obtain an approximate semantics by substituting
the domain of computation and its basic operations with an abstract simpler
domain and corresponding operations. Fundamentals on Galois connections,
the main abstraction formalization, are presented. In our work we consider
a reduced set of variables (obtained from hiding).

Alur et al. [TAKB96] tackle the problem of proving that a refined descrip-
tion is a correct implementation of an abstract one. State homomorphism
is used as a way of specifying correspondence between two modules. This is

42

A

B

C DE

A

C D

BB

E

Q P

=
φ

=
trace

−>
simulate

satisfy φ

Figure 2.17: Trace equivalence, simulation and φ-equivalence.

implemented in the verifier COSPAN. In our case Uppaal does not provide
such capabilities and checking that a given automaton is the abstraction
of another one reduces to checking time trace inclusion, which is undecid-
able in the general case for undeterministic timed automata [AD94]. We
check however that the same properties (modulo renaming to appropriate
domains) hold. Also we construct abstract models from the more detailed
ones, which is opposite to refinement.

Tripakis and Yovine [TY01] present a method to verity dense-time sys-
tems modeled as timed automata with untimed verification techniques. Ex-
act time delays are abstracted away and this abstraction is formalized under
the concept of timed-abstracting bisimulation. In our example time is im-
portant and trying to abstract time requires to basically cross-product the
automata with a zone transition automaton, which is done on-the-fly by the
model-checker. Chapter 5 gives more details on abstraction. We focus more
on practical issues here.

2.3 The Verification Process

In this section we present the correctness properties checked and their re-
sults. They are either reachability properties of the form ∃3 φ or invariants
of the form ∀� φ. The predicate φ is defined over states, variables, and
time.

43

2.3.1 The Classes of Properties

Finding the properties to check is a problem in itself. Furthermore, the
completeness of a verification depends on the completeness of the set of
properties we check. This is the limitation of our verification as we have
to define these properties. For the bus coupler models, 82 properties for
the detailed models (and 35 for the reduced models) are checked. These
properties are classified into 4 classes:

• 6 correctness properties for both the detailed and the reduced models
related to the logics of the protocol

• 25 functional properties for the detailed models and 5 for the reduced
ones, related to the synchronization of the components. Violating
these properties could induce bad/wrong behavior. The properties
of the implementation models are classified as follows: 8 related to
the implemented semaphores, 10 to detection of possibly bad states
belonging to the error border and 7 related to precedence between
states. The abstract models properties were based only on precedence.

• 19 behavior properties for the detailed models and 5 for the reduced
ones, which are intuitively believed to hold with respect to the proto-
col. This is expected behavior which has only performance impact.

• 32 validation properties for the detailed models and 19 for the reduced
ones, related to the model itself. The protocol works in practice and
the model must work the same. A more complex model requires more
validation hence the difference in the number of properties.

Concerning the field interface, 98 properties are checked. The classifica-
tion is different: we have correctness properties and validation properties.
There is no equivalent of the functional and behavior properties as defined
for the bus coupler. However, the field interface has different priority tasks
that are modeled. We check that this modeling is correct as well as the
consistency between the state monitors and the state of the system:

• 32 correctness properties based on the state monitors.

• 50 simple validation properties related to the model itself to check that
it works. These properties reflect the model of the implementation.

• 16 consistency properties related to the decoration of the model, i.e.,
parts of the models that are not originally part of the implementation.

44

This checks that the priority model holds, as well as the consistency
of the state monitors.

We do not intend to present all the properties but rather the impor-
tant ones. Verification was conducted on a Sun Ultra-SPARC-II 400MHz
equipped with 4GB of physical memory. Uppaal version is 3.0.396. Op-
tions were reuse statespace, breadth-first search, active clock reduction and
no trace generation to save memory7.

2.3.2 The Bus Coupler

Detailed Models

The resources consumed to verify the properties are given in Table 2.2.
These figures show the size of the complete statespace because the properties
need complete search. They are consistent with the inclusions space1\EB ⊆
space2\EB ⊆ space4 ⊆ space3 that were given in Section 2.2.1. Figure 2.18
illustrates the space inclusions.

Model Size Verification

1 129 MB 12:31 min
2 136 MB 14:41 min
3 149 MB 14:40 min
4 140 MB 11:11 min

Table 2.2: Resources used for verification.

The correctness properties are:

1: A[] FIToCoupler 1P1.written imply fiTrans1!=-1

2: A[] (CouplerFromFI 1P1.done and resultC11==0) imply

bcTrans11!=-1

3: A[] CouplerToBus 1P1.sent1 imply bcTrans11!=-1

4: A[] CouplerFromBus 2P4.received imply bcTrans24!=-1

5: A[] CouplerToFI 2P4.step2w0 imply bcTrans24!=-1

6: A[] FIFromCoupler 2P4.dataTaken imply fiTrans2!=-1

where A[] stands for ∀�. They concern the transparent bit (data modeled)
which should not be written/read when not valid (-1) by the FI (fiTrans)
and the Bus Coupler (bcTrans). The full state model 3 does not satisfy
property 6. More models used to violate more properties here but that was

6distributed on the web
7exact options given to verifyta are: -CDSTaqs

45

++*+*

,+,+,+,

Proposed correction: 140MB

Full state space, model 3: 149MB

Avoided "errors"

Model 2: 136MB
Model 1: 129MB

Figure 2.18: Overview of the statespaces and inclusions.

due to the granularity of the models themselves. Furthermore, the trace of
property 6 exploits an approximation of the model and is not judged valid
by the engineers. Although the model fails to show a real error here, it shows
that the components may reach a state where they are unsynchronized.

4 of the properties concerning semaphores are:

43: A[] not SemFItoCoupler24.signalNotTaken

44: A[] not SemCouplertoFI24.signalNotTaken

45: A[] not SemFItoCoupler11.signalNotTaken

46: A[] not SemCouplertoFI11.signalNotTaken

They mean that whenever a signal is sent, the previous one should have been
accepted otherwise “it has not been taken”. If there is a wait on that signal,
it will not make much sense since the semaphore stores previous signals.
These properties are not verified for model 1 but hold for models 2, 3, and
4. The counters may reach 2 but not 3, as pointed out in Section 2.2.1.

An interesting functional property (because of its result) is:

57: A[] not FIToCoupler 1P1.OKwhenMBR

It states that the FI side should not be in a success state after the first
synchronization step if the mailbox receive flag is on (it should be off). This
property is not satisfied by all the models. The interesting point here is
that it is acknowledged by the engineers but it is not considered important
because in this precise case, the communication concerns acknowledgment
and not data. This is to be documented in the implementation. Other
functional properties are similar to this one.

2 precedence properties addressing synchronization are:

46

75: A[] not (FIToCoupler 1P1.testOK and (CouplerFromFI 1P1.step1w0

or CouplerFromFI 1P1.step2))

76: A[] not (CouplerToFI 2P4.endWait2 and (FIFromCoupler 2P4.waited

or FIFromCoupler 2P4.wait0))

Only model 3 does not satisfy 76. Property 75 checks that one part should
not be at the end of sending a packet with success while the other side still
waits for acknowledgment. Property 76 checks that one part should not be
sending an acknowledgment while the other part is going to begin to send a
packet.

4 behavior properties are:

10: A[] not (FIToCoupler 1P1.done and resultV1!=0 and bcTrans11==1)

16: A[] not (Coupler 1P1.sentTO and bcTrans11==1)

33: A[] not (Coupler 2P4.acking and saveTrans24==1)

78: A[] (FIToCoupler 1P1.testOK and fiTrans1==1) imply

devdatalost11==0

Property 10 states that sending a transparent packet should never fail and
this is false for all models. Property 16 states that timeout should not occur
on transparent packet which is true for all models. Property 33 states that
acknowledgment is not sent after transparent packets which is true. Property
78 states that the coupler “lies” properly to the FI when a transparent packet
is sent, which is true for all models.

Validity properties are simple reachability properties to check that the
model does what it should do. One of these is: packets are transmitted
successfully.

2: E<> FIFromCoupler_2P4.done and resultV2==0

In conclusion, the protocol is subject to desynchronization, though it is
not fatal. The origin comes from race conditions when reading from and
writing to the buffer.

Abstract Models

The resources consumed to verify the properties are given in Table 2.3. They
are consistent with the inclusions

space1 ⊆ space2 ⊆ space4 ⊆ space5

space2 ⊆ space3 ⊆ space5

47

Model Size Time

1 3.8 MB 8 sec
2 4.1 MB 9 sec
4 5.0 MB 10 sec
3 11 MB 32 sec
5 14 MB 37 sec

Table 2.3: Resources used for verification.

referred in Section 2.2.1. 35 properties are verified.

Due to the way we construct the models, we believe that space2 =
space3 ∩ space4 though we did not prove it. Experiments confirm this by
exhibiting this common behavior with a number of properties. These differ-
ent models are interesting when properties are verified in one model (case
for space1) but not in others (space2, thus space3 and space4). This is used
to pinpoint behavior differences and see what the protocol is sensitive to.

The correctness properties are:

1: A[] master.waitDataR imply fitrans1!=-1

2: A[] coupler1P1.sending imply bctrans11!=-1

3: A[] coupler2P4.gotMsg imply store24!=-1

4: A[] slave.read imply fitrans2!=-1

5: A[] master.OK imply devdatalost11!=-1

6: A[] coupler2P4.readnottrans imply cpudatalost24!=-1

These are of the same type as the implementation properties. They state
that wrong data should not be read because they are received too early or
too late. We add here the explicit test on the acknowledgment answer from
the coupler or the FI-slave with dev/cpudatalost. This is present in the
implementation as well.

Properties 1 and 5 are satisfied by all the models. Properties 2 and 3 are
satisfied only when no delay is allowed, which is the case for the models 1,
2 and 4. When delay is allowed, a timeout may occur concurrently leading
to an unwanted change that leads to a race condition. To interpret this as
realistic or not, the hardware and runtime environment have to be taken into
consideration. In our context of non-preemptive multitasking on the Bus
Coupler side, this situation is possible if the coupler blocks while sending.

Property 4 is satisfied only for the first model. This property is sensitive
to race condition. Property 6 is satisfied only for the 3 first models. Models
4 and 5 introduce new interleavings and a race condition is enabled by
changing commit states to urgent states.

48

The functional properties are:

31: A[] not (coupler2P4.readnottrans and slave.read)

32: A[] not (coupler2P4.readtrans and slave.read)

33: A[] not (master.OK and coupler1P1.sending)

34: A[] not (coupler2P4.sending and cpumbr24==1 and slave.read)

35: A[] not (master.waitMBR and devmbr11==1 and coupler1P1.sending

and ck11==0)

They concern desynchronization, when a component is one cycle late on the
other. Properties 31 and 32 state that the coupler should not be in a state
ready to read the acknowledgment from the slave while this one has not
written it and is about to do it: models 4 and 5 violate these properties.
This result is similar to property 6.

Property 33 states that the master should not have read the acknowl-
edgment from the coupler when this one has not written it yet. Model 5
does not satisfy this one, which means that this property is related to delay
and race condition.

Property 34 states that the coupler should not be in a state waiting for
the mailbox being available in order to write data while the slave has read
data and not reserved yet the mailbox. This is satisfied by all the models.

Property 35 states that the coupler should not be in a state when it has
just reserved the mailbox and read data from the master though this one is
waiting for the mailbox to be freed in order to write data. Models 3 and 5
do not satisfy this one. This property is sensitive to delays.

The behavior properties are:

26: A[] not (master.timedout2 and fitrans1==1)

27: A[] not (coupler1P1.waitanswer and bctrans11==1)

28: A[] not (coupler1P1.acking and ck11>0 and bctrans11==1)

29: A[] not (slave.timedout2 and fitrans2==1)

30: A[] not (coupler2P4.timedout2 and bctrans24==1)

These properties are related to the nature of the packets: if they are trans-
parent, timeout should not occur. This is an expected behavior, but not a
critical property. Properties 26 and 30 are not satisfied, which comes from
a possible delay from the bus queue. The acknowledgment is sent to the
master after having sent a message on the bus. If the queue is full and
introduces delay, the transparent packet is delayed.

Property 27 is satisfied, which is straightforward with respect to the
automaton. Property 28 is not satisfied by models 3 and 5, which comes
directly from the possible delays while reading bits. Property 29 is satisfied.

49

The conclusion on the abstract model is that the protocol is imple-
mentable since the first model is valid. However, the implementation has to
avoid some possible race conditions as well as some delays in order to work.

The bus coupler part does not show any major flaw. As it is a rather
low level implementation, the models are sensitive to the underlying mo-
deling assumptions. However, the models proved to be useful with their
identified limits. The consequence is a series of improvement requests on
the implementation, i.e., the product will be improved as a result of the
study.

2.3.3 The Field Interface

The resources consumed to verify the properties are given in Table 2.4.

Model Size Verification

Master, all properties 817M 1h 32 min 4 sec
Slave, all properties 1.46G 7h 34 min 22 sec
Complete, without satisfied safety properties 2.42G 6h 1 min
Complete, all properties, bit state hashing 5.3M 2h 12 min

Table 2.4: Resources used for the verification.

The method used was to validate the complete model with the simulator,
check the master sub-model (against a slave test) with the master properties,
similarly for the slave, and check the complete model with the validation
properties and the violated safety properties. Furthermore, the complete
model is checked with the full set of properties, but with bit state hashing.

Master Model

The validation properties are of two kinds: reachability properties to check
the functionality of the models. 2 of them are:

2: E<> Master Send.sendOK

4: E<> Master Send.NackTO

They check for the success of a sending and a time-out. These check the
master. The other type is for the slave test process, there is only one, to
check that a complete message is sent:

31: E<> Slave.send and Slave.size==0

50

All these properties are satisfied.

The consistency properties are of type A[] φ to check priority handling
(one property) in the model and the consistency of the state monitor (3
properties, one for each state):

10: A[] (Master Send.idle or Master Send.sending1 or

Master Send.waiting1 or Master Send.waitReceive or

Master Send.sendingx or Master Send.waitingx) imply MP4==0

20: A[] ((Master Status.D or Master StatusDbadR) imply

(MStatus==Dormant)) and ((MStatus==Dormant) imply Master Status.D or

Master Status.DbadR))

All these properties are satisfied.

The safety properties of the state monitors check for bad transitions. In
Uppaal, it is not possible to check for a transition. The trick is to use a
committed state just for the detection. There are 9 of these. Two of them
are:

14: A[] not Master Status.RbadAFP

18: A[] not Master Status.DbadR

These two properties are not satisfied. We show that unknown transitions
may occur. Some of them were acknowledged by the engineers and they are
investigating them.

Slave Model

The model-checking of the slave model is similar to the master model. The
validation properties are of two kinds, reachability and safety. Two reacha-
bility properties are:

2: E<> Slave Send.sent1

3: E<> Slave Send.NackTO

They check for sending successfully one packet and getting one time-out.
One property to test The master:

56: E<> Master.send and Master.size==0

These reachability properties are satisfied. There are 5 safety properties
concerning the state monitor (one for each state) that check for consistency
of the model. One of them is:

51

44: A[] ((Slave Status.AO or Slave Status.AObadAO or

Slave Status.AObadWFR or Slave Status.AObadA) imply

((SStatus==AnswOuts)) and ((SStatus==AnswOuts) imply

(Slave Status.AO or Slave Status.AObadAO or Slave Status.AObadWFR or

Slave Status.AObadA))

The consistency property concerning the priority is:

9: A[] (Slave Send.respond or Slave Send.send0 or

Slave Send.sending1 of Slave Send.waiting1 or Slave Send.idle or

Slave send.waitingMutex or Slave Send.toI or Slave Send.sendingx or

Slave Send.waitingx) imply SP4==0

All these properties are satisfied.

There are 26 safety properties concerning the state monitor. Two of
them are:

18: A[] not Slave Status.IAEbadI

26: A[] not Slave Status.AbadI

These two properties are not satisfied.

For the slave model we show here as well that undocumented transitions
may occur. Some of them were acknowledged and are under investigation.

Complete Model

The bit state hashing experiment on the complete model proved to be un-
successful. It is an over-approximation method where positive results are
not reliable, whereas negative results are. Unfortunately, the verification
gave too many false positive answers.

The full verification of the properties was successful. We succeeded in
proving that properties violated on the partial models were still violated
on the detailed model. The detailed model satisfied also all the simple
validation properties. For our model and our set of properties the relation
given in Section 2.2.2 holds.

The conclusion for the FI part is that we identified unknown behaviors
on both the slave and the master parts. The models are accurate enough
to reproduce real code execution. Engineers are analyzing these traces to
improve the code.

52

2.4 Conclusion

This study is regarded as a success from the academic and the industrial
point of view. For the academic side, we succeeded in modeling and an-
alyzing a real product, not a toy example, and we suggested a number of
improvements to the code and the documentation. For the industrial side,
they were pleased to use formal methods, in particular the graphical inter-
face of Uppaal was intuitive.

The modeling method was to divide the protocol by its layers and to mo-
del them separately. We applied abstraction techniques to model the parts
of the higher layer using the lower layer. The modeling process showed the
limits of the input language of Uppaal, demonstrating the lack of support
for structured models. In particular, some parts of the models were used
as sub-components. Furthermore, we pushed the limits of the verification
engine, making this case study a suitable benchmark for new algorithms due
to its size, timing behavior, and real-life nature.

53

54

Chapter 3

Improvements on the
Current Uppaal

Model-checking suffers from the so-called state explosion problem, which is,
in the worst case the needs of resources for verification grow exponentially
with the model to verify. For timed systems, the problem is more serious.
It is known that the model-checking problem for timed systems is PSPACE-
complete [ACD90, ACD93]. The case study of Chapter 2 illustrates the need
for resources, in particular for memory.

When it comes to implementation, one has to consider that the memory
system of modern computers is the main bottleneck. While the speed of
processors increases at a fast pace, the speed of the memory system lags
far behind. Although model-checkers benefit from faster computers, their
performance is seriously impaired by the memory system because of the
large statespace that needs to be explored, and thus stored in memory.

In this chapter we propose two improvements to the current implemen-
tation of Uppaal. The first is the unification of the two main structures
used in the reachability algorithm: the passed and the waiting lists. This
unification reduces by half the number of zone inclusion checks. The second
concerns memory management where we eliminate all duplicate data by us-
ing sharing. We present our implementation with experimental results and
conclude with a survey on other techniques related to Uppaal.

3.1 Reachability Algorithm

In this section we propose two techniques to improve the reachability algo-
rithm implemented in Uppaal. The first is the unification of the two main

55

structures in the algorithm, namely the waiting and the passed list, to the
PW-List structure. The second technique is the use of sharing.

3.1.1 PW-List

The Passed and Waiting Lists

The reachability algorithm used in Uppaal is shown in Figure 3.1. The
states we are considering are symbolic states of the form (l, Z) where l is
the location vector and Z a zone [Ben02]. For simplicity we omit the data
variables.

waiting = {(l0, Z0 ∧ I(l0))}
passed = ∅
while waiting 6= ∅ do

(l, Z) = select state from waiting
waiting = waiting \ {(l, Z)}
if testProperty(l, Z) then return true
if ∀(l, Y) ∈ passed : Z 6⊆ Y then
passed = passed ∪ {(l, Z)}
∀(l′, Z ′) : (l, Z)→ (l′, Z ′) do

if ∀(l′, Y ′) ∈ waiting : Z ′ 6⊆ Y ′ then
waiting = waiting ∪ {(l′, Z ′)}

endif
done

endif
done
return false

Figure 3.1: The reachability algorithm for timed automaton. The function
testProperty evaluates the state property that is being checked for satisfia-
bility. The while loop is referred to as the exploration loop.

The reachability algorithm uses two structures, namely the passed list
and the waiting list. The passed list records all the explored states and the
waiting list keeps track of the states to be explored. The waiting list is ini-
tialized with the initial state, where I(l0) represents its invariant constraint.
The algorithm is a loop where a state (l, Z) is selected from the waiting list,
its successor states computed and inserted in the waiting list. The succes-
sors are computed only if the state was not visited before, i.e., present in
the passed list. The purpose of the passed list is to ensure termination and

56

to avoid exploring a given state twice.

Implementation of the Passed and Waiting Lists

One crucial performance optimization is the state inclusion checking. When
adding a new state to a set of states, we check that the new state is not
included in the states of the set. Furthermore, the states that are included
in the new state are removed. The inclusion checking is computed between
zones of states with the same discrete part (location vector and data vari-
ables). A simple implementation would implement a hash table [CLRS01]
only for the passed list to access the state quickly and then perform an inclu-
sion check. The waiting list does not need the check in principle. However,
this solution leads to an unnecessary large waiting list. This implementation
is refined in Uppaal where the waiting list is also equipped with a hash ta-
ble and inclusion check, which keeps the waiting list small. This solution is
still not satisfactory because the separated structures contain unnecessary
states. There may be states in the waiting list that are included in the
passed list, which is a waste of resources since these states will be removed.
Conversely, there may be states in the passed list that are included in the
waiting list. Such states are guaranteed to be removed later, which also
wastes memory. Furthermore, there are two inclusion checks per generated
state.

The unified PW-List structure allows the removal of the redundant states
and eliminates one inclusion check per state. All states in this structure are
considered explored, though some of them are not yet explored. These
waiting states will be explored if they are not replaced by larger states. The
benefit of this is to have one check for all states, which allows to get rid of
redundant states and detect state inclusion earlier.

Comparison with Discrete States

The passed/waiting list unification has been applied to Petri Nets [CN97] for
the purpose of distributed model-checking and it concerned discrete states
only. Figure 3.2 illustrates a unified structure for discrete states. When
exploring the states with a breadth first search order (a), the states are
put in a linear list with a moving pointer that marks the waiting states at
the end of the list. When generating a new state, we need to test if it is
present or not in the list and if it is not, we just put it at the end of the
list. When a state is explored, the pointer is moved to the next state to
be explored. We skip the details of the hash table necessary to find states

57

quickly. The simplicity for the discrete case comes from the fact that once a
state is put in the list, it will not be removed. Symbolic states do not have
this linear property: states in the passed or the waiting part of the list may
be removed and we have to compute an inclusion check instead of a simple
equality check. Furthermore, the search order is changed because states are
replaced. A unified structure for symbolic states has to take into account
these constraints.

1

2

3

7

8

6

5

4

9

10

11

12

15

16

14

13

(a) Breadth first exploration tree.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

passed states

waiting states

(b) Unified discrete passed/waiting list.

Figure 3.2: Unification of passed and waiting lists for discrete states.

Unification of the Passed and Waiting Lists

We use for the unified structure the notation (P,W). P denotes the list of all
states that are considered as passed andW marks a subset of these as waiting
states. A PW-List is described as a pair (P,W) ∈ 2S×2S , where S is the set
of symbolic states, W ⊆ P , and the two functions put : 2S×2S×S → 2S×2S

and get : 2S × 2S → 2S × 2S × S, such that:

• get(P,W) = (P,W \ {(l, Z)}, (l, Z)) for some (l, Z) ∈W .

• put(P,W, (l, Z)) =

58

{
(P \ I,W ∪ {(l, Z)}) if ∀(l, Y) ∈ P : Z 6⊆ Y
(P,W) otherwise,

where I = {(l, Y) ∈ P
∣∣Y ⊂ Z}.

The get function removes states from W and leaves them in P . The put
function removes the states of P that are included in the new state (the set
I) and add this new state to W . Removing states from P implicitly removes
them from W too because W ⊆ P . Similarly, states added to W are also
added to P .

Figure 3.3 illustrates the idea behind the PW-List structure. All states
〈s1〉 . . . 〈s5〉 of the statespace are considered passed (in P) and some of them
are marked waiting. From the structure point of view, getting a state from
W corresponds to clearing the w flag. From a set point of view, this corres-
ponds to shrinking the sub-set W. This structure allows us to simplify the
reachability algorithm to the one in Figure 3.4.

<s1> <s2>

<s4>

<s3> <s5>

P

W

(b)(a)

<s1>
<s2>
<s3>
<s4>
<s5>

w

w

States Waiting flag

w

Figure 3.3: PW-List viewed as a structure or a set. Getting 〈s3〉 from W
results in clearing the flag w (a) or shrinking the set W (b).

The simplification comes from the observation that the states obtained
from the get function are guaranteed not to have been previously explored.
There is no need for zone inclusion checking in this step because the put
function ensures that states of W are not included in other states of P . Fur-
thermore, it is possible, as we show in Section 3.2 to represent the PW-List
as one unique structure. There is no duplicate state and only one hash table
lookup is needed. We also note that it was possible previously to have states

59

(P,W) = {(l0, Z0 ∧ I(l0)), (l0, Z0 ∧ I(l0))}
while W 6= ∅ do

(P,W, (l, Z)) = get(P, W)
if testProperty(l, Z) then return true
∀(l′, Z ′) : (l, Z)→ (l′, Z ′) do

(P,W) = put(P,W, (l′, Z ′)) done
done
return false

Figure 3.4: Reachability algorithm using the unified PW-List.

in the waiting list though they were also in the passed list. This behavior
is suppressed now because states marked as waiting are considered passed
when inclusion checking is used. This allows us to remove states in the wai-
ting or passed list earlier than in the previous case. It is specially important
for the states of the passed list since further inclusions will consider the la-
test states only, whereas the old algorithm considers inclusion checking with
states in the passed list that can be outdated by other states in the waiting
list.

From an implementation point of view, the PW-List is a buffer that
has the property to automatically eliminate states that are subsets of added
states, or to eliminate the added states if they are subsets themselves. There
is a need for a queue to keep track of the waiting states but this is straight-
forward and no copy is necessary. This structure, considered as a buffer, fits
naturally into the pipeline architecture of Chapter 6.

3.1.2 Sharing

Data sharing is a technique used to reduce memory usage by sharing common
sub-structures. It is the basis of BDDs efficiency [Bry86]. In this section we
apply this technique to our model-checker. We first conduct experiments to
evaluate data redundancy in Uppaal. These results show that most of the
data can be shared. Therefore, we implement two levels of data sharing to
eliminate data redundancy.

Evaluating Sharing

When computing successor states during the statespace exploration it is
often the case that some part of the state will be preserved. For extended
timed automata (XTA) a state is noted as (l̄, u, v) as defined in Section 1.2.2

60

of the introduction. A successor computation will do for example:

(l̄, u, v) → (l̄1, u, v)
→ (l̄2, u2, v)
→ (l̄, u, v3)
→ (l̄4, u, v4).

We observe that sub-parts of the original state are often preserved in the
successor states. This also holds for the hierarchical timed automata of
Chapter 4. If we consider the structure representing the statespace, i.e., the
PW-List, it contains unique states (l̄, u, v) but these states can share their
sub-components.

We first investigate how much data can be shared by instrumenting Up-
paal. State information is printed out when states are stored after the in-
clusion check and it is analyzed by a Perl script. Table 3.1 shows the amount
of unique data found in the states. States are of the form (l̄, u, v) and the
table shows how much of all the l̄, u, and v data parts are unique among
all the states. The models are: (1) Engine, a gear box controller [LPY01],
(2) Audio, an audio/video protocol [HSLL97], (3) Dacapo, a TDMA proto-
col start-up mechanism [LP97], (4) Fischer4, the Fischer’s mutual exclusion
protocol [AL92, KLL+96] for 4 processes, and (5) BC, an early version of the
bus coupler model of Chapter 2 that generates more states than the version
used for verification in the case study.

Model Unique locations Unique variables Unique DBMs

Engine 71.7% 21.6% 8.6%
Audio 52.7% 25.2% 17.2%
Dacapo 4.3% 26.4% 12.7%
Fischer4 9.9% 0.6% 64.4%
BC 7.2% 8.7% 1.3%

Table 3.1: Results from instrumented Uppaal: smaller figures correspond
to more copies.

It appears that most of the stored data is redundant for all the exam-
ples. The engine example has states that depend heavily on the location
combinations, which explains the 71.7%. For the Dacapo example, 4.3%
of unique locations means that all location vectors are copied 23 times in
average. The Fischer example is known to behave particularly badly with
respect to timing constraints, which explains its odd results for the DBMs.
In all the cases, data can be shared to gain in memory consumption. This

61

is an important result that shows the potential of sharing for Uppaal. The
implementation of a shared structure in Section 3.2.2 confirms this result.

Figure 3.5 illustrates sharing of data between 4 states. A state needs
5 + 5 + 9 memory units so representing 4 states requires 76 memory units.
With sharing we need 50 memory units. We do not take into account the
overhead needed for the implementation because the example is too small
to gain anything in practice.

Z1

L1 L2 V1 V2

Z2

L1

L2

L2

L2

V1

V1

V1

V2

Z1

Z1

Z2

Z2

Figure 3.5: Example for sharing data between states.

Although these results show a high amount of redundant data, they tell
us nothing about the overhead in time and memory that is taken by an im-
plementation exploiting this property. We can expect a performance hit due
to extra computation and gains due to the reduced memory consumption.
To emphasize the potential gains of such an implementation, we note that
all the numbers in the table would be replaced by 100%.

Exploiting Sharing

We define two levels of data sharing to eliminate data redundancy and ex-
ploit the sharing property. The first level is on the location, variable, and
zone data: any given location vector, variable vector, or DBM is uniquely
stored. The second level is by grouping the discrete parts of a state to

62

optimize the inclusion check. Let us consider how the inclusion check is
defined:

(D,S) ⊆ (D′, S′)⇔ D = D′ ∧ S ⊆ S′,
where D is the discrete part of the state, i.e., (l̄, u) or (ρ, µ, θ) for respec-
tively XTA or HTA, and S the symbolic part of the state, i.e., v or ν for
respectively XTA or HTA. From this definition and its use in the reachabil-
ity algorithm, it is natural to consider a more compact symbolic state that
shares the discrete part D: 〈D, {S1, . . . , Sn}〉. This representation of a state
as a discrete part and a list of zones (or zone union) allows us to save both
memory and time. Memory is saved from the fact that only one discrete
representative needs to be stored. Time is saved because only one D = D′

positive test is necessary.

The zone union used in our state representation is a simple list of zones.
This union can be implemented as a list as defined here, or it can be more
elaborate and use the CDD [BLP+99] representation that can be used effi-
ciently for analysis. Section 3.2 details the implementation of these different
sharing levels and shows how well they perform. They save 80% of the mem-
ory consumption and 60% of the time needed for verification (in combination
with the PW-List).

3.2 Implementation

The PW-List is the major data structure used in the reachability algorithm
as described in Section 3.1.1. The PW-List stores explored and to be ex-
plored states. It is built on top of a storage structure that stores low level
data such as the location vectors, the variable vectors, and the DBMs. The
PW-List represents states as 〈D, {S1, . . . , Sn}〉, with one discrete part D
associated to several symbolic parts S1, . . . , Sn. The storage implements
sharing and ensure the uniqueness of the stored data.

3.2.1 The PW-List Structure

The implementation is depicted in Figure 3.6. When sending a state to the
PW-List, a hash value is computed on the discrete part of the state, i.e.,
the location vector and the variable vector. This hash value is used in a
discrete state look-up hash table to obtain a discrete state. We use a doubly
linked list to manage hash collisions and to remove states that are not kept
once they are explored, typically the committed states. The discrete state
has keys to access the data itself via the storage structure. The purpose is

63

waiting queue

reference to state entry

reference to zone

ha
sh

 ta
bl

e

double linked (collision) list

discrete part (keys)

zone union (list of keys)

Figure 3.6: PW-List implementation.

to store in any format we wish without affecting the PW-List. Attached
to the discrete state is a list of zones, or zone union. The list contains
keys to the right data, as the discrete part. If such a state is found with a
matching discrete part then the zone inclusion check is performed between
the new zone and the zone union. Zones in the list may be removed or the
new zone may be declared included. If the state is accepted, i.e., its zone
is not included, then a reference is added to the waiting queue whose order
depends on the chosen algorithm (depth-first search, breadth-first search, or
other searches).

When getting a state from the PW-List, a reference is popped from
the waiting queue. The reference is checked to be still valid because it could
expire if its corresponding zone is deleted (because of a zone inclusion check).
Then this reference is used as the internal global state reference, as described
in the pipeline architecture in Section 6.1.2. The reference is used to copy
the discrete part or the symbolic part of the state on demand.

This structure implements the PW-List as it is defined: the double linked
list stores all passed and waiting states in the same way and the waiting
queue refers to waiting states among them. The put operation corresponds
to adding a state to the structure and checking for zone inclusion. The get
operation consists in popping a state reference from the waiting queue. It
happens that states removed from the hash table are referred in the waiting
queue. These states are discarded later when their references are popped
from the queue. We do not go into this technical detail.

3.2.2 The Storage Structure

The storage structure implements the management of simple data with a
minimum of high level operations such as equality testing, copy, and inclu-

64

sion checking for zones. We need to store such data and these operations
are dependent on the representation chosen by a particular implementa-
tion. This storage abstracts from different possible implementations, thus
allowing us to share, compress, or minimize data with different algorithms
without affecting the rest of the code. Figure 3.7 shows the interface of the
storage structure. Locations and variables are represented by vectors and
the zones by DBMs (difference bound matrix).

key
key

{vector or DBM}

{vector or DBM}

{DBM, key}
subset|superset|equal|none

save

load

inclusion

allocate

allocatorstorage

free

Figure 3.7: Storage interface.

The structure is based on keys like for a database: data is sent to the
storage that returns a key used later to retrieve back the data. This mech-
anism is used to abstract from the actual internal representation. A state
is then represented as a tuple of such keys. Furthermore, to test for state
inclusion, we need to test for equality of the discrete part and inclusion of
the symbolic part. Using a copy from a key to perform these operations is
inefficient and this is the reason why the storage has these capabilities in the
interface: the comparisons are made with internal representations optimally
for particular implementations.

The storage itself is built on top of a specialized data allocator. This
allocator has the ability to allocate memory in large chunks and is optimized
to deliver many small memory blocks of few different sizes. This means that
the memory allocation has little overhead and is efficient for allocating and
deallocating memory blocks of the same size. This is justified by the nature
of the data we are storing: there are few types of vectors but their numbers
are huge.

The purpose of the storage structure is to be independent from parti-
cular choices of data representations. The PW-List can use keys to access
these data. We give details on two specific implementations, namely us-
ing simple copy and using data sharing. Other particular algorithms aimed
at reducing memory footprint such as compression or minimal constraint
representation [LLPY97] are in integration stage with the code.

65

Copy Implementation

To evaluate the impact of sharing, we implement a simple copy version of the
storage. This allows us to isolate the effects of the PW-List. This implemen-
tation simply copies data from states, that is, location vector, variables, and
DBMs. The memory is managed by our custom allocator. This is similar to
the default implementation of Uppaal.

Sharing Implementation

The sharing implementation uses a hash table to store unique location vec-
tors, variable vectors, and DBMs. Reference counters are used to know when
data may be deallocated. The hash table represents a significant overhead
and if we add up the overhead from the key reference then the structure may
pay off only if there is a substantial amount of shared data. The overhead
has two sources: (i) the hash table itself that grows dynamically depending
on its filling rate, starting at 1M entries, and (ii) the extra memory needed
for the linked lists.

A particular choice is made concerning the deletion of stored data: we
deallocate only the DBMs. Due to the high expected sharing for the vari-
ables it is unlikely that the states that do not need to be stored, e.g., the
committed states, will be the only states to use a given variable combina-
tion. Concerning the locations, it is likely that the ones that should be
deleted will be reused. Since deallocating location and variable vectors is
rarely necessary, we never deallocate them. We save the reference counter
and we use a singly linked list instead of a doubly linked list. Concerning
the DBMs, the inclusion checking often discards DBMs so it is necessary to
be able to deallocate them.

The storage structure described in this way may further be extended
to incorporate other optimizations. These may be integer compression or
minimal graph reduction [LLPY97] for zones. This sharing is different from
the state compression used in Spin [Hol97]. In Spin a global state descriptor
represents a state and it holds a descriptor for the variables, followed by
descriptors for every processes and channels. The user may choose the num-
ber of bits for these descriptors, which naturally limits the range of these
descriptors. Our representation holds one descriptor (or reference) for the
locations, one for the variables, and one for the zones. The variable sharing
is the only similarity. Locations and variables are treated equally as data
vectors and are shared as such. It is important to notice that compression is
orthogonal and compatible with this representation. Our approach is similar

66

to the one in [CK97] for hierarhical colored Petri nets.

3.3 Experimental Results

We use the following examples in the experiments: (1) Audio, Engine, Fis-
cher4, Dacapo, and BC are the same as mentioned in Section 3.1.2; (2)
Fischer6 is the Fischer’s protocol with 6 processes, (3) Cups is a combina-
torial problem where water is poured from cups to cups until a given goal
is reached [DBL02], (4) Master and Slave are the FI master and slave mo-
dels (the earlier version), and (5) Plant is a production plant with three
batches [HLP00].

We conduct the experiments on the development version 3.3.24 of Up-
paal on an Ultra SparcII 400MHz equipped with 4GB of memory. This
version incorporates the pipeline presented in Chapter 6 and is already twice
as fast than the 3.2.x official versions due to memory optimizations such as
the reduced number of copies of Section 6.1.2. We compare results with and
without the described PW-List implementation.

Model No PW-List PW-List - copy PW-List - shared

Audio 0.5s/2M 0.5s/2M 0.5s/2M
Engine 0.5s/3M 0.5s/4M 0.5s/5M
Fischer4 0.5s/3.1M 0.5s/3.8M 0.5s/5M
Dacapo 3s/7M 3s/5M 3s/5M
Cups 43s/116M 37s/107M 36s/26M
Fischer6 110s/43M 65s/29M 63s/24M
BC 428s/681M 359s/641M 345s/165M
Master 306s/616M 277s/558M 267s/153M
Slave 440s/735M 377s/645M 359s/151M
Plant >4G 9207s/2771M 8513s/1084M

Table 3.2: PW-List experimental results.

Table 3.2 shows the time in seconds (s) and the memory used in mega
bytes (M) to verify the property A[] true (to generate the whole states-
pace), except for Cups where the reachability property E<> (cups[2] ==4

and y <= 30) is verified. Time consumptions less than 0.5s are reported
as 0.5s in the table. The result >4G means that the verifier ran out of
memory. We choose the options -Ca to use DBM representation with active
clock reduction. As Uppaal does not support DBMs of dynamic size, our
implementation is limited here. The PW-List is designed for dynamic data

67

and will give better results in this case if DBMs of dynamic size are used
for zones. For the large examples we used the flag -H273819,273819 (no
PW-List) to increase manually the sizes of the hash tables for the passed
and the waiting lists. The default sizes give verification times twice longer.

Our implementation consumes up to 80% less memory and if we take
into account the factor 2 in speed and the gain in these experiments then
it needs 60% less time. The memory gain is expected due to the sharing
property of the data. The speed gain comes from only having a single hash
table and from the zone union structure: the discrete test is done only once
and then inclusion is done for the zone union. The results of the simple
copy support these points. The plant example has 9 clocks and 28 integer
variables and the simple copy implementation shows the gains attainable
when the discrete part of the state is important. The implementation using
shared data should be slower because of the overhead of hash computation
and equality checking. However, the memory footprint is smaller and in
recent computers the computation power is cheap, whereas memory is ex-
pensive in terms of resources, so the gain coming from memory exceeds the
computation overhead.

The small examples are here to show the overhead of these structures.
They also have low data sharing as shown in Table 3.1 and they represent
the worst case. Even in the Fischer4 example where the overhead is not
compensated the amount of memory used is low and does not matter. The
results scale well with the size of the models, in particular the property
of shared data holds well. Fischer has unexpected time/memory results
compared to Cups, but Fischer is a benchmark for the clock constraints and
operations on them are the most expensive in the reachability algorithm.

3.4 Related Techniques

Apart from general algorithms [Ski98, CLRS01], special algorithms and
tricks have been developed specially for model-checking. The most recent
overview on the optimizations implemented in the tool Uppaal is found in
[BBD+02]. The tool uses general techniques for memory management and it
has techniques specially developed to handle the symbolic time representa-
tion. These techniques are orthogonal to the techniques we have presented
in this chapter and can be combined with them.

Memory Management. In [SD98] a scheme to store the generated
statespace on disk is proposed. Instead of keeping all data in main memory,

68

data is sent to disk. This allows the model-checker Murphi to manage larger
statespaces. The point is to make the disk accesses in a sequential manner to
reduce the huge disk access overhead. The cost in time is of the magnitude
of 15%. We are planing to implement such a feature for Uppaal but the
main difference in the technique comes from the symbolic representation:
Murphi handles discrete states and Uppaal symbolic states for which zone
inclusion checks are needed.

State compression [Hol97] is a technique to reduce the memory foot-
print of states. Data values are stored using as few bits as possible. The
new storage structure proposed in this chapter can implement this feature.
Experimental code shows no performance loss due to the reduced amount
of memory used. Another method to reduce memory consumption is to
avoid storing states: Larsen et al. [LLPY97] propose to store only states
that contain loop-entry locations. This is implemented in Uppaal. Lars-
son et al. [LPY00] propose a memory deallocation optimization. It appears
that deallocating memory in the reverse order of its allocation improves
performance, and in particular when swapping is involved. This is also im-
plemented in Uppaal.

An optimization of timed automata models [HL02] can be performed to
avoid the fragmentation of the symbolic statespace. The proposed adjust-
ment of the model is exact in the sense that it does not alter reachability
properties. The fragmentation of the symbolic statespace occurs when many
zones are generated and cannot be compared, i.e., the inclusion checking con-
cludes the zones are just different. However, these zones often overlap and
it is possible to reduce this. This optimization is currently done by the user
and it may be implemented as a model optimizer.

Symbolic Model-Checking. Symbolic model checking for timed systems
makes use of clock constraints represented by zones [Dil89, Hen94, AHH96,
ACH+95, YPD94]. In practice these zones are often represented by the
DBM structure (difference bound matrix). Rokicki [Rok93] presents the
DBM coding and algorithms used to implement clock constraint operations.
The implementation of zone manipulations in Uppaal is based on these
algorithms. Another zone representation is the CDD [LPWY99, BLP+99]
(clock difference diagram) whose idea is borrowed from the BDD [Bry86]
(binary decision diagram). CDDs are mainly used in Uppaal for the dead-
lock checker because it can handle non-convex zones that result from sub-
stractions. Larsen et al. [LLPY97] present a technique to reduce the clock
constraint representation. Clock constraints can be seen as a graph and this

69

technique reduces the graph to a minimal one. This technique is imple-
mented in Uppaal.

Wong [WT94] describes model-checking techniques using DBM and
OBDD (ordered BDD). The OBDD is used to represent sets of states
(without time) and the DBM to represent clock constraints. In such tech-
niques [BCM+92] the automata are encoded as propositional formulae ma-
nipulated as BDDs. Bounded model checking [BCCZ99] is a technique where
model-checking is applied for bounded traces of some length decided in ad-
vance. Research efforts in symbolic representation go in the direction of fully
symbolic representations. Seshia and Bryant [SB03] have recently presented
an unbounded, fully symbolic model-checking technique for timed automata.
A technique is said to be fully symbolic when it has a single symbolic rep-
resentation that handles both the finite and the infinite components of the
statespace. Bounded techniques unfold the transition relation d times and
are limited to check for paths of length d, whereas unbounded techniques
guarantee the correctness for any length. Wang [Wan03] has implemented
in the tool RED a fully symbolic representation based on CRD (clock re-
striction diagram) to represent zones and BDD (binary difference diagram)
to represent discrete data.

Yovine [Yov97] presents two clock reduction algorithms: the active clock
reduction and the equal clock reduction. The technique of the active clock
reduction consists in detecting on a model which clock values actually matter
in which locations and then to keep only these clocks in the exploration for
these locations. The equal clock reduction technique is to detect which
clocks have the same value and to keep only one of them. The active clock
reduction is implemented in Uppaal and the equal clock reduction is given
for free by the graph reduction algorithm used to store zones.

In [LNAB+98] a backward and compositional model-checking technique
using ROBDD (reduced ordered BDD) is presented. The analysis is for
untimed systems and it has the particularity to check for determinism. Up-
paal dropped support for backward reachability from version 2 because the
added features of the language made it very difficult to handle. One of the
weaknesses of Uppaal is that it can not do compositional verifications.

Partial Order. Alur et al. [ABH+97] present basic and general partial
order theory and practice. The idea behind partial order reduction is to
avoid to explore parts of the statespace that lead eventually to the same
states as by using other paths. These states are equivalent with respect to
an ordering relation and one needs to explore only one representant of these

70

equivalent classes. In other words, the exact ordering of events often does
not affect the properties examined or the “future” of the system. Usual
methods [God90, Val90, Pel93] take advantage of this. A survey [CGMP99]
presents basic principles and implementations of partial order reduction.
The problem of partial order reduction is more difficult for timed systems.
An attempt was done by Bengtsson et al. [BJLY98] to implement it for
Uppaal. The method makes use of a local time semantics and it applies
for TCTL reachability analysis over timed automata. These results are
extended in [Min99] to LTL model-checking. It is difficult to implement this
technique efficiently in Uppaal and the current implementation still needs
work.

Godefroid [God95] presents the theory, algorithms, and practice of par-
tial order. It does not apply for timed system though and the module
is implemented for SPIN [Hol91]. Pagani [Pag96] defines a partial order
based on [God95] adapted to timed graph. In particular an algorithm for
deadlock detection is presented. The technique is improved in [DGKK98].
Peled [Pel96] introduces the ample set technique as an algorithm for partial
order reduction. The linear and branching time logics are treated. Chou
and Peled [CP99] formally verify the correctness of a partial order reduction
technique. Whereas it is common to define and apply a reduction algorithm,
this paper focuses on the correctness of the reduction.

Symmetry Reduction. The symmetry reduction technique [HJJJ84,
ES97] applies for systems having identical components. These components
may have their role interchanged so that the verification does not need to
explore all the possible combinations. Symmetry reduction can be seen as a
special form of partial order. Dill and Ip [ID96] present symmetry reduction
in the tool Murphi [DDHY92]. Equivalent classes are used to represent sym-
metric states and a bisimulation is shown between these equivalence classes.
An implementation in Uppaal to support symmetry reduction is currently
in progress.

Approximation Methods. For systems that are too large for exact
model-checking, under and over-approximation techniques can be used. The
supertrace under-approximation technique [Hol91] is based on hashing: every
state is represented as one bit in a large hash table. Its effectiveness is ana-
lyzed in [Hol98]. A similar technique called hash-compaction [WL93, DU95]
stores hash values of states instead of the states themselves. As an over-
approximation technique the convex-hull [Bal96] of time zones uses convex

71

unions of zones from the symbolic states. Uppaal supports the bit-state
hashing, hash-compaction, and convex-hull approximations.

Guiding. The reachability algorithm can be accelerated if the search may
guided towards a goal state. Behrmann et al. [BFH+01] present a minimal
cost for uniformly priced timed automata. Via special decoration the search
is greatly improved to find feasible “recipes” in a steel plant case study. The
results are extended for linearly priced automata in [LBB+01]. Guiding is
supported by a special “guided” Uppaal version.

3.5 Conclusion

We have proposed two improvements for the reachability analysis of Up-
paal: (1) the PW-List unifies the basic structures passed and waiting lists,
which saves time and memory by eliminating states earlier and reducing
the number of state inclusion checks; and (2) the implementation of sharing
that eliminates all redundant stored data. These techniques reduce memory
consumption by 80% and time consumption by 60%. We have shown that
these results hold for models of different sizes and that they tend to improve
for larger models. Finally, this implementation fits well in the more general
pipeline architecture presented in Chapter 6.

72

Chapter 4

Hierarchical Timed
Automata

The case study in Chapter 2 shows the limits of flat networks of timed au-
tomata. For the modeler it becomes difficult to manage large number of
components and for the model-checker structural information is lost. Hier-
archical state machines have been used to deal with these issues. They are
usually called statecharts and many variants have been developed from the
statecharts of the tool STATEMATE [Har87] to the ones of UML [BJR97].

Our goal is to extend the TA language to include hierarchical constructs.
The hierarchical timed automata (HTA) we define can be used to encode
other statecharts formalisms naturally due to similar structures. The TA
language has a well-understood semantics and it has been used over the
past years successfully within the tools Uppaal [HSLL97, LP97, DKRT97,
BFK+98, HLS99, KLPW99, IKL+00, HLP00, LPY01] and Kronos [DOY94,
DY98, TY98, NY01]. The TA language fits well for addressing real-time
problems and the statecharts for complex concurrency problems. As the
different statecharts have little support for real-time we extend TA to HTA
and support it in our tool.

In this chapter we give an overview on the statecharts formalisms (Sec-
tion 4.1) and define the syntax (Section 4.2) and the semantics (Section 4.3)
of HTA. We simplify this general formalism (Section 4.5) and revisit the
case study model with the HTA language (Section 4.6).

73

4.1 Introduction

Statecharts were proposed as a modeling language in [HP85] for reactive
systems. Since then many variants on the semantics have been proposed.
Model-based development has become dominant and makes heavy use of
statecharts to describe behaviors. Attempts to agree on a standard modeling
language has lead to the rise of UML. We discuss the different variants of
statecharts, the UML statecharts, and places where our HTA variant fits.

4.1.1 Statecharts

Let us recall the statecharts formalism. It consists of a collection of finite
automata with locations and edges. Automata may be nested inside a given
location. These locations may be AND-locations, where all the subloca-
tions are disjoint automata, or XOR-locations, where the automaton may
be a connected graph. We use here “location” (for vertex) and “edge” to
describe the syntax in graph-theoretical term. People usually use “state”
and “transition” but this leads to confusion when semantics is described.
We keep “state” for the semantics. When the system is in a state where
an AND-location is active, then all its sublocations are active. When it is
an XOR-location, only one sublocation is active. When a location is left,
all its sublocations are left too. AND-locations are used to model concur-
rency. A traditional network of concurrent automata is equivalent to one
AND-location with these automata as sublocations. Edges have conditional
expression and/or triggers. Events may trigger a transition where edges
matching the trigger are taken. Edges may generate other events.

From this short and intentionally imprecise description, the reader may
imagine several variants on how to queue events, how/when to dispatch
them, which edges to choose, etc. Harel [HN96] defined the semantics for
the tool STATEMATE. Other people define their own semantics when they
develop their statecharts tools. Beeck [vdB94] makes a comparative study
on the different statecharts flavors. He classifies them using 19 different
semantics criteria. We recall briefly these criteria to classify our HTA model
and refer to Beeck’s paper for details:

1. Perfect synchrony hypothesis: this term was defined by the develop-
ers of Esterel [BG92]. The system reacts immediately to inputs and
generates outputs at the same time. Computation time is negligible.

2. Self-triggering, causality: self-triggering means a transition is taken
without being caused by an external event, which is, two edges may

74

trigger themselves with: (i) receive a/send b, (ii) receive b/send a.
Intuitively, causality is not respected in this example.

3. Negated trigger event: to avoid non-determinism where one of two
edges may be chosen, the non occurrence of a given event is used.
From a location A, having t1 : a and t2 : b outgoing edges triggered
respectively by a and b is non-deterministic. t1 : a ∧ ¬b makes it
deterministic.

4. Effect of a transition execution is contradictory to its cause: this de-
scribes contradiction between a trigger and its action, e.g., receive
¬e/sends e on an edge. It is related to causality.

5. Inter-level edges: these are edges that cross the border of a location,
thus connecting different automata at different levels.

6. Location reference: this is to test if a location is active in the current
system state.

7. Compositional semantics, self-termination: in Beeck’s terms, “a se-
mantics of a language L is compositional if the semantics of a com-
pound component of L is only defined by the semantics of its subcom-
ponents, i.e., that no access to the internal syntactical structure of
subcomponent is allowed”. Maraninchi [Mar89] addresses the causality
issue and restricts the language Argos with no inter-level edges. State
reference and history mechanism are obstacles too. Self-termination is
used to remove inter-level transitions to allow for an active composite
location to be exited via a “send event to itself”, which is an edge is
triggered from a location from a nested edge in that location.

8. Operational versus denotational semantics: denotational style is used
to have compositionality but it is purely mathematical and more dif-
ficult to use than the operational one. Operational semantics is based
on computational models.

9. Instantaneous state: such a state may be simultaneously entered and
exited. This is generally forbidden [HPSS87]. This may occur in the
situation where an incoming edge to a location generates e and an
outgoing edge from the same location is triggered by e.

10. Durability of events: most often events are instantaneous. They occur
at a given instant and exist only at this instant of time. One has to

75

define then which edges have to be taken, i.e., all possible edges or just
one.

11. Parallel execution of edges: edges in parallel automata are taken in
the same transition. This is generally the case, in particular in the
tool Rhapsody (www.ilogix.com).

12. Edge refinement: an edge may be refined in a sequence of edges. The
problem is to decide if the sequence of edges is to be taken in one
transition or several ones.

13. Multiple entered or exited instantaneous state: if instantaneous states
are allowed it may be possible to take an infinite number of edges in
a transition.

14. Infinite sequence of edge executions at an instant of time: one can for-
bid to go though the same location twice as a solution to the “infinite
number of edges taken in one transition” problem.

15. Determinism: apart from Argos [Mar92], statecharts allow for non-
deterministic constructions.

16. Priorities for transition execution: priority between transitions reduces
non-determinism. [PS91] gives a higher priority to edges at a higher
hierarchical level, so a transition involving such an edge at a higher
level will be preferred to another involving an edge at a lower level if
both are enabled. The level is based on where the source location is.

17. Preemptive versus non-preemptive interrupt: this refers to the case of
an edge whose source is a composite location with a nested automa-
ton. It is similar to the priority problem, though the edges here have
different triggers and some events or edges may be preemptive.

18. Distinguishing internal from external events: internal events are gener-
ated on edges and a transition may involve several so-called micro-steps
with several edges taken consecutively. The problem is to sense or not
external events during such a transition, also called macro-step.

19. Time specification, timeout event, timed transition: progress of time is
modeled on states since transitions are taken in no time in all variants.
The question is how to model time and timing mechanisms such as
timeout events or timing conditions.

76

To this list we can add the optional use of history, a special memory
location that remembers the last active location. Beeck classifies 21 different
variants with these criteria.

We complete the classification with additional references. Huizing et
al. [HGdR88] model statecharts in an abstract way and gives them a de-
notational semantics. Uselton [US94] characterizes the statecharts step se-
mantics of Pnueli and Shavel [PS91] and shows that the step semantics is
not compositional; in addition a new semantics with a richer structure is de-
fined and is compositional. Damm et al. [DJHP98] give a reference semantics
for a verification tool to verify temporal properties of models using the tool
STATEMATE. Levi [Lev97a, Lev97b] proposes a compositional proof system
for the verification of a discrete timed process language TSP with minimal
and maximal delays associated to actions. Mikk, Lakhnech et al. [MLPS97]
formalize the rigorous (but informal) description of Harel [HN96]. They
extend automata as an intermediate format to facilitate the linking of new
tools to the STATEMATE environment [LMS97]. In particular inter-level
transitions are reformulated to be handled as ordinary transitions (edges
to be accurate). They also propose in [MLSH98] two frameworks to im-
plement statecharts in Promela (SPIN language [Hol97]) that lead to par-
allel or sequential code. Huizing [Hui91] gives a complicated semantics of
statecharts with inter-level edges. Other semantics of reactive system mo-
dels are discussed. Beeck, Luettgen, and Cleaveland [LvdBC99] propose a
process-algebraic semantics of Harel’s statecharts that involves a new pro-
cess algebra called Statecharts Process Language (SPL). Pnueli [KP92] gives
a structured operational semantics for statecharts without inter-level edges
or location reference.

4.1.2 UML Statecharts

UML (Unified Modeling Language) is a standard graphical language born
from the effort to unify different modeling languages and their methods
such as OMT [RBL+95, BC95]. The Fusion method [CAB+94] was another
attempt to take the best parts from different methods and to combine them,
but it did not succeed as UML. In short, UML [OMG01, BJR97, BJR99]
is a collection of standardized diagrams to describe a system from different
views. The different views are:

• The structural view with class diagrams.

• The behavioral view with statecharts, sequence, activity, and collabo-
ration diagrams.

77

• The environment view with deployment diagrams.

• The implementation view with component diagrams.

• The user view with use case diagrams.

UML has gained support in industry and has received much criticism
from the academics for its lack of precise semantics. The UML annual
conference exists with affiliated workshop on its different aspects. We will
focus on the statecharts part only. The UML statecharts has its own flavor
and has the particularity of not being precise. Much effort has been put
in giving semantics to UML. The issue of the semantics in UML is so well-
known that there is a “frequently asked questions” on it semantics [KER99].
We give here a short overview of the effort:

Porres [Por01] proposes a design method using UML models. He treats
the use cases and statecharts analysis. He gives semantics to the statecharts
and translate them to Promela with his vUML tool [LP99b]. The state-
charts is formalized in terms of operational semantics in [LP99a]. Latella
et al. [LMM99a] propose another operational semantics of a subset of UML
with its translation to Promela. In [LMM99b] they set the basis to model-
check UML statecharts. They map the statecharts to an intermediate format
of extended hierarchical automata and they define an operational semantics
for these. In its follow-up [GLM02] they give a formal semantics to a subset
of the UML statecharts with extension to branching time logic. They prove
the correctness of their semantics with respect to major UML semantics re-
quirements and they use their model in the JACK verification environment.
Kwon [Kwo00] treats the problem of model-checking UML statecharts with
SMV1. The hierarchical structure is not respected and there are problems
with inter-level edges.

[FELR98] is the launch paper of the precise UML project (pUML 2). It
presents an approach to develop a precise semantics for the UML. It presents
also a good discussion of the strengths and weaknesses of Object Oriented
methods. It is continued in [EFLR98]. The response to the OMG RFP
(request for proposal) on action semantics [AILKC+00] gives semantics for
actions and describe how they fit into state machines. It does not give
semantics for state machines. The OMEGA project3 aims at developing a
methodology in UML for embedded and real-time systems based on formal
techniques. In this context, Damm et al. [DJVP03] define a kernel language

1http://www-2.cs.cmu.edu/modelcheck/smv.html
2http://www.cs.york.ac.uk/puml
3http://www-omega.imag.fr

78

for UML and they give formal semantics for it. They use inter-level edges
in the statecharts and provide a flattening procedure. Furthermore, Graf et
al. [GOO] attack the modeling of time in UML and they show that the use of
timed events provides the right level of abstraction for reasoning about timed
computations. The semantics is based on timed automata with urgency. In
this project the modeling of time is an extension of a well-defined kernel
language.

Bruel and France [BF98] present the benefits of integrating Fusion mode-
ling techniques and Z formal specification notation. The technique is called
FuZed and the final result is not UML anymore. Evans and Lano [LE99]
propose a rigorous development method for UML, which is illustrated us-
ing a small traffic lights problem. The interesting point there is that the
three steps of this process can be verified in principle. These steps are: (i)
enhancement transformations, (ii) reductive transformation, and (iii) refine-
ment transformations. Beeck [vdB01] gives a syntax and semantics definition
for the UML statecharts, in particular for the entry/exit actions and the his-
tory mechanism. Action semantics is not treated and event dispatching is
treated partially.

Most of the existing work is a mapping of UML statecharts to a known
formalism. Furthermore, these mappings are always subsets of the full UML
statecharts. This shows the limit of desirable features that the industry
needs, as well as the complex process of giving a clear semantics to an
unprecise description.

To give more flexibility to the UML, a standard extension mechanism
called profile is developed. Cook [Coo00] presents an overview on UML and
its extension mechanisms. Atkinson and Kühne [AK00] discuss model level
inheritance and instance-of relationship between meta models.

We were involved in the process of defining a profile appropriate for
verification within the context of the AIT-WOODDES project4. This profile
makes it possible to define timing constraints and to use our tool Uppaal to
check them. It is based on another profile: UML profile for Schedulability,
Performance, and Time Specification [IIC+02]5.

4.1.3 HTA

Our formalism is an extension of Uppaal timed automata (TA) to hierar-
chical timed automata. Whereas standard formalisms use event queues for

4http://wooddes.intranet.gr
5We had access to earlier draft versions. We refer here to the final official version.

79

communication, we use channel communication. Event queues can be mod-
eled within our formalism. There are many variants of statecharts and our
goal is not to define yet another variant. Our goal is to extend the language
used by our tool Uppaal to accommodate useful features of statecharts.
As a consequence, the obtained formalism resembles other statecharts, in
particular UML, and it makes it appropriate as a target language for veri-
fication. As we mentioned previously, most of the semantics work for UML
statecharts consists in defining a mapping to a target language. The choices
in the UML flavors define that mapping. Our HTA is a good candidate
for such a target language. Use of specialized UML profiles facilitate such
mappings.

Furthermore, statecharts variants are not comparable and are cus-
tomized for a particular language, tool, or purpose. There is no satisfac-
tory formalism for our needs, that is, a hierarchical variant based on timed
automata with features as urgency and history. Finally, to make the task
of adopting an existing formalism even more difficult, statecharts tend to
be used as an extension to programming languages with C++ [Str97] em-
bedded in the statecharts. This is a serious obstacle to be considered. We
characterize the HTA defined in this chapter with respect to Beeck’s list of
criteria:

1. Perfect synchrony hypothesis: in our formalism time is modeled with
clocks. Action transitions do not affect time, so we respect the syn-
chrony hypothesis.

2. Self-triggering, causality: there is no self-triggering and causality is
respected.

3. Negated trigger event: we use channels instead of events. As we have
no event queue, the nearest notion is to test for impossibility to syn-
chronize on some channels. We do not support this.

4. Effect of a transition execution is contradictory to its cause: we cannot
“send” and “receive” on a given edge, so this does not apply.

5. Inter-level edges: we forbid these edges.

6. Location reference: although it is not in the syntax, nothing forbids
to have this as a boolean expression. Such expressions are valued on
a given state so variables or locations could in principle be read.

7. Compositional semantics, self-termination: our formalism is not com-
positional and we would have to restrict and eliminate useful features

80

such as side-effect on shared variables and global clock access to have
compositional semantics. Self-termination is allowed in the simplified
HTA we propose.

8. Operational versus denotational semantics: we give an operational
semantics since it is more natural to implement it.

9. Instantaneous state: we do not support simultaneous entry and exits
of a given location. However, it is possible to enter and exit locations
without time delays. The closest notion of instantaneous state in Up-
paal is the committed state. We will not elaborate on this feature.

10. Durability of events: since we are using channel synchronizations, the
communication is instantaneous.

11. Parallel execution of edges: this is not the case for us. The only way
to take in parallel several edges is to use a synchronization on them.
There is an extension of the language we do not discuss here that
is appropriate for this: broadcast channel synchronization. However,
as actions take no time, a sequence of actions can correspond to a
“parallelization” of concurrent processes. We support concurrency but
not at the edge level.

12. Edge refinement: edges can be broken into several edges that connect
committed locations. Several transitions are still needed but these
edges will have priority. We only mention this feature of the language.

13. Multiple entered or exited instantaneous state: instantaneous states
are not allowed.

14. Infinite sequence of transition executions at an instant of time: the
“instant of time” here is associated to the taking of a transition. In
that sense it is not possible for us. Time is modeled by clocks and it is
possible to take an infinite number of transitions in finite time. This
behavior is referred as zeno [AL92].

15. Determinism: our formalism is non-deterministic.

16. Priorities for transition execution: the only priority mechanism we
have is with committed locations. This is a special feature of Uppaal.
We skip these in the general syntax and semantics and we do not
define priorities. We stress that urgency is related to time delays and
is different from priority between action transitions.

81

17. Preemptive versus non-preemptive interrupt: edges from composite
locations are defined but they do not have priorities. Channels do not
have priorities either.

18. Distinguishing internal from external events: we do not distinguish
them, we have only channels and there is no sequence of consecutive
edges taken in a transition, i.e., no micro and macro steps.

19. Time specification, timeout event, timed transition: progress of time
is modeled on states. In a given system state time may progress and
the clocks are used to measure time. Invariants are used on locations
and timing constraints on edges.

Beeck does not include the support of the history mechanism in his list.
History may not be necessary supported by all variants of statecharts. We
provide a history mechanism.

We propose HTA as an improvement over TA for both the user and the
verification engine. The properties of HTA defined in a subset of TCTL are
decidable, which is shown by the translation from HTA to TA [DM01].

Composition. In terms of hierarchical structures, the semantics of a lan-
guage is compositional if the semantics of a compound component is only
defined by the semantics of its sub-components, i.e., that no access to the
internal syntactical structure of sub-components is allowed [vdB94]. In prac-
tice the interest is to be able to deduce properties of a composed model
from already verified properties of its sub-components. Argos [Mar92] is an
example where hierarchy is defined in a compositional way. However, inter-
level edges, state references, and the history mechanism are obstacles to the
definition of a compositional statecharts semantics. Our HTA is therefore
not compositional. Our purpose here is to define a useful language. As
a refinement of the language, one could restrict these features that break
composition. It is not our purpose here.

4.2 Syntax

We describe the syntax in graph-theoretical terms with “locations” (for ver-
tices) and “edges”. Composite locations that have nested locations are called
superlocations. We use the terms “state” and “transition” in the semantics
to refer to the state of the system and transitions between such states. In

82

the literature state and transition are used for both syntax and semantics
and may lead to confusion.

We introduce the data components of HTA that are used in guards,
synchronizations, resets, and assignment expressions. Data accesses respect
the scope in which they are declared. We give the HTA structure and
constraints describing a well-formed HTA.

4.2.1 Data Components

Integer Variables. Let Var be a finite set of integer variables. Var(S) ⊆
Var is the set of integer variables local to a superlocation S. We abuse the
notation using Var on sets: Var({u, v}) = Var(u) ∪Var(v).

Clocks. Let Clocks be a finite set of real clock variables. The set
Clocks(S) ⊆ Clocks denotes the clocks local to a superlocation S.

Channels. Let Chan a finite set of synchronization channels. Chan(S) ⊆
Chan is the set of channels that are local to a superlocation S, i.e., there
cannot be synchronization on a channel c ∈ Chan(S) between one transition
inside S and one outside S.

Synchronizations. Chan stands for a finite set of channel synchroniza-
tions, called Sync. For c ∈ Chan, c?, c! ∈ Sync.

Guards and Invariants. A data constraint is a boolean expression of
the form E ./ E, where E is an arithmetic expression over Var and ./∈
{<,>,=,≤,≥}. A clock constraint is an expression of the form x ./ n or
x− y ./ n, where x, y ∈ Clocks and n ∈ Z with ./∈ {<,>,=,≤,≥}. A clock
constraint x ./ n is downward closed if ./∈ {<,=,≤}. A guard is a finite
conjunction over data constraints and clock constraints. An invariant is a
finite conjunction over downward closed clock constraints. Guard is the set
of guards and Invariant is the set of invariants. Both contain additionally
the constants true and false.

Assignments. A clock reset is of the form x := 0, where x ∈ Clocks. A
data assignment is of the form v := E, where v ∈ Var and E an arithmetic
expression over Var. Reset is the set of clock resets and data assignments.

83

History. If a superlocation is of type history, it is possible to declare some
of its integer and clock variables as part of the history. Such variables
are accessible only in the scope they are declared but are treated in the
semantics as global variables, i.e., as belonging to the root superlocation.
We will not mention history for variables in the following since we consider
it as a syntactic convention.

4.2.2 Structural Components

We give now the formal definition of our HTA.

Definition 8 (Hierarchical Timed Automaton (HTA)) A hierarchi-
cal timed automaton is a tuple 〈S,S0, η, type,Var,Clocks,Chan, Inv, T 〉
where:

• S is a finite set of locations.

• S0 ⊆ S is a set of initial locations.

• η : S → 2S maps S to all possible sublocations of S. The mapping η is
required to give rise to a tree structure where a special superlocation
root ∈ S is the root. We abuse the notation by using η on sets of
locations, e.g., η({l1, l2}) = η(l1) ∪ η(l2).

• type : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY} is the
type function for locations. Superlocations are of type AND or XOR.

• Var,Clocks,Chan are sets of variables, clocks, and channels. They give
rise to Guard, Reset, Sync, and Invariant, as described in Section 4.2.1.

• Inv : S → Invariant maps every locations S to an invariant expression,
possibly to the constant true.

• T ⊆ S × (Guard × Sync × Reset × {true, false}) × S is the set of
edges. An edge connects two locations S and S ′, has a guard g, an
assignment r (including clock resets), and a boolean urgency flag u. S
is called the source and S ′ is called the target of the edge. We use the
notation S

g,s,r,u−−−−→ S′ for this and omit g, s, r, u, when they are absent
(or false, in the case of u). �

Figure 4.1 shows an example of the syntax: 4.1(a) depicts a statechart
graphically and 4.1(b) shows its tree representation. We note that B is an
AND superlocation. The initial locations for every superlocation are marked
with a small arrow.

84

A

B C

D

F

E H

G

K

I J L M

(a) Statecharts. (b) Syntax tree.

T1

A

F I

G JE

D

B

L MK HC
T2

T3

Figure 4.1: Example of the syntax.

Notational Conventions. We use the predicate notation TYPE(S) for
TY PE ∈ {AND, XOR, BASIC, ENTRY, EXIT, HISTORY}, S ∈ S. For
example, AND(S) is true, exactly if type(S) = AND. The type HISTORY
is a special case of an entry. We use HENTRY(S) to capture simple entry
or history entry, i.e., HENTRY(S) stands for ENTRY(S) ∨HISTORY(S).

We define the parent function:

η−1(S) =

{
b, where S ∈ η(b) if S 6= root
⊥ otherwise.

We extend η−1 to operate on sets of locations, i.e., for S ′ ⊆ S: η−1(S ′) =
{η−1(S)

∣∣S ∈ S ′}. Furthermore, we use η∗(S) to denote the set of all nested
locations of a superlocation S, including S. η−∗(S) is the set of all ancestors
of S, including S.

We introduce η̃ to refer to the sublocations that are proper locations:

η̃(S) = {b ∈ η(S)
∣∣BASIC(b) ∨XOR(b) ∨AND(b)}.

We use Var∗(S) to denote the variables in the scope of superlocation S:
Var∗(S) =

⋃
b∈η−∗(S) Var(S). Clocks∗(S) and Chan∗(S) are defined analo-

gously.

4.2.3 Constraints for Well-Formed HTA

We give a set of constraints to ensure consistency of an HTA, grouped as the
syntactic categories locations, initial locations, variables, entries, and edges.

85

Location Constraints. We require a number of properties on locations:

1. The function η gives a proper tree rooted at root with S = η∗(root).

2. Only superlocations contain other locations:
AND(S) ∨XOR(S) ⇔ η(S) 6= ∅.

3. Sublocations of AND superlocations are not basic:
AND(S) ∧ b ∈ η(S) ⇒ ¬BASIC(b).

4. No invariants on pseudo-locations:
HENTRY(S) ∨ EXIT(S) ⇒ Inv(S) = true.

5. For every superlocation S, at most one exit can be declared to be the
default exit . If the default exit is present then it is reachable from
every location in S.

Initial Location Constraints. S0 is the set of initial locations and cor-
responds to the initial location tree. We have root ∈ S0 and for every S ∈ S0

the following holds:

1. BASIC(S) ∨ XOR(S) ∨ AND(S): S is a proper locations.

2. S = root ∨ η−1(S) ∈ S0: the location tree is respected.

3. XOR(S) ⇒ |η(S) ∩ S0| = 1: there is one initial location per XOR
superlocation.

4. AND(S) ⇒ η(S)∩S0 = η̃(S): all sublocations of AND superlocations
are initial locations.

Variable Constraints. We forbid conflict in assignments in synchronizing
edges (1) and impose scope (2):

1. The following implication holds:

S1
g,c!,r,u−−−−→ S2, S

′
1
g′,c?,r′,u′−−−−−−→ S ′2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅,

where vars(r) is the set of integer variables involved in r. We require
an analogous constraint to hold for the pseudo-edges originating in the
entry of an AND superlocation.

2. For S1
g,s,r,u−−−−→ S2 ∈ T , the guard g and reset r are de-

fined over Var∗(η−1(S1)) ∪ Clocks∗(η−1(S1)) and s is defined over
Chan∗(η−1(S1)).

86

Entry Constraints.

1. Let e ∈ S, HENTRY(e). If XOR(η−1(S)), then T contains exactly
one transition e

r−→ S′. If AND(η−1(S)), then T contains exactly one
transition e

r−→ ei for every proper sublocation Bi ∈ η̃(η−1(S)), and
ei ∈ η(Bi).

2. In case of HISTORY(e), outgoing transitions declare the default his-
tory locations.

3. At most one entry of a superlocation can be declared to be the default
entry . If a superlocation S has a history entry, then every sublocation
B of S has to provide a history entry or a default entry.

Edge Constraints.

1. Edges have to respect the structure given in η and cannot cross levels
in the hierarchy, except one level to entries or exits that make the
interface of superlocations. The set of legal edges is given in Table 4.2.
Note that edges cannot lead directly from entries to exits. The internal
edges are the ones defined inside a superlocation: from a location to a
location, from a location to an exit or from an entry to a location. The
constraint expresses that the parent location must be the same. The
entering edge is from a location to an entry and the fork edge is from an
entry to an entry. The exiting and join edges are symmetric to entering
and fork. The changing edge is from the exit of a superlocation to
the entry of another superlocation. The constraint states that both
superlocation must have a common parent.

2. Edges S
g,s,r,u−−−−→ S′ with HENTRY(S) or EXIT(S ′) are called pseudo-

edges. They are restricted in the sense that they cannot carry syn-
chronizations or urgency flags, and only either guards or assignments.
For HENTRY(S), only pseudo-edges of the form S

r−→ S′ are allowed.

For EXIT(S′), only pseudo-edges of the form S
g−→ S′ are allowed. For

EXIT(S) ∧ EXIT(S ′), this is further restricted to be of the form
S −→ S′ (with true as the guard).

3. The syntax does not support directly edges to a composite state such
as XOR or AND state. As a notation an edge having a superloca-
tion as target corresponds to its default entry. The default entry is
connected to the initial location of a given superlocation. For edges

87

having superlocations as source, this is the same as having the source
being a default exit connected to all internal locations.

Entering
transitions

transitions

Exiting
transitions

Changing
transitions

Internal
Comment S S′ Constraint

BASIC BASIC

Internal BASIC EXIT η−1(S) = η−1(S′)
HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY
η−1(S) = η−2(S′)

Exiting EXIT BASIC(S)
and join EXIT EXIT

η−2(S) = η−1(S′)

Changing EXIT HENTRY η−2(S) = η−2(S′)

Figure 4.2: Legal edges S
g,s,r,u−−−−→ S′.

4.3 Operational Semantics

We define now the operational semantics of the HTA formalism. Legal
steps between states of a HTA define a set of traces. A state captures a
snapshot of the system, i.e., the active locations, the integer variable values,
the clock values, and the history of some superlocations. States are of the
form (ρ, µ, ν, θ), where:

ρ : S → 2S gives the active locations. ρ can be understood as a partial,
dynamic version of η that maps every superlocation S to the set of
active sublocation. If a superlocation S is not active, ρ(S) = ∅. We
define Active(S) = S ∈ ρ∗(root), where ρ∗(S) is the set of all active
sublocations of S including S. We note that for S 6= root: Active(S)⇔
S ∈ ρ(η−1(S)), where η−1(S) is the parent location of S.

µ : Var → Z maps integer variables to their values. If ¬Active(S) then
for v ∈ Var(S), µ(v) is undefined, which is denoted µ(v) = ⊥.

ν : Clocks → IR≥0 maps clock variables to their values. If ¬Active(S)
then for c ∈ Clocks(S), ν(c) is undefined, which is denoted ν(c) = ⊥.

θ : S → S represent the history. As stated previously, history is treated
only for locations. The case for variables is only a syntactic conven-
tion. θ(S) returns the last visited sublocation of S or an entry of the
sublocation in the case where the sublocation is not basic.

88

We call a state where all S in ρ∗(root) are of type BASIC, XOR, or AND
a proper state. Figure 4.3 shows an example of the semantics, in particular
the manipulation of the location tree ρ. From the initial state 4.3(a), we
fire a transition involving the edge T1 from the superlocation B to the su-
perlocation C. The tree is cut from B and grafted from C to obtain 4.3(b).
From there we fire a transition involving the edge T2, which cuts the tree
from K and activates the leaf H. We note that the semantical location tree
is a subtree of the syntactical location tree.

History. We capture the existence of a history entry with the predicate
HasHistory(S) = ∃b ∈ η(S). HISTORY(b). If HasHistory(S) holds, the
term HEntry(S) denotes the unique history entry of S. If HasHistory(S)
does not holds, the term HEntry(S) denotes the default entry of S. If S is
basic HEntry(S) = S. If none of the above is the case, then HEntry(S) is
undefined. Initially, ∀S ∈ S.HasHistory(S)⇒ θ(S) = HEntry.

Reached Locations by Forks. In order to describe the set of locations
reached by following a fork, we define the function Targetsθ : 2S → 2S

relative to θ.

Targetsθ(L) = L ∪⋃S∈L {b
∣∣ b ∈ θ(η−1(S)) ∧ HISTORY(S)}∪

{b
∣∣S r−→ b ∧ ENTRY(S)}.

If the argument is a singleton, we use the notation Targetsθ(S) for
Targetsθ({S}). Targets∗θ is the reflexive transitive closure of Targetsθ.

State Transformation. Taking an edge t : S
g,s,r,u−−−−→ S′ entails in general

(1) executing a join to exit S, (2) taking the edge t itself, and (3) executing
a fork at S′. If S (respectively S ′) is a basic location, part 1. (respectively
3.) is trivial. Together, 1–3 define a transition. We represent a transition
formally by a transformation function Tt, which depends on a particular edge
t. The three parts are described as follows. We use l = η−1(S) if EXIT(S),
l = S otherwise, and l′ = η−1(S′) if ENTRY(S′), l′ = S′ otherwise. This is
due to the fact that only proper locations are in the tree ρ.

1. Join: (ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 = ρ[∀b ∈ ρ∗(l) \ {l}. b 7→ ∅].
µ is updated to µ1 = µ[∀v ∈ Var(ρ∗(l)). v 7→ ⊥].
ν is updated to ν1 = ν[∀c ∈ Clocks(ρ∗(l)). c 7→ ⊥].

89

B C

D

F

E H

G

K

I J L M

B C

D

F

E H

G

K

I J L M

B C

D

F

E H

G

K

I J L M

A

B

D

F

E

G

A

C

K

L

A

C

H

T1

A

F I

G JE

D

B

L MK HC
T2

T1

A

F I

G JE

D

B

L MK HC
T2

T1

A

F I

G JE

D

B

L MK HC
T2

(a) Initial state: statecharts and tree view.

(b) State after taking transition T1.

(c) State after taking transition T2.

T3

T3

T3

T1

T2

Figure 4.3: Example of the semantics.

90

Let H = {h ∈ ρ∗(l)
∣∣HasHistory(h)}, if H 6= ∅ then θ1 = θ[∀h ∈

H. h 7→ HEntry(ρ(h))], otherwise θ1 = θ.

2. Edge part: (ρ1, µ1, ν1, θ1) is transformed to
(ρ2, µ2, ν2, θ2) = (ρ1[S′/S], r(µ1), r(ν1), θ1). r(µ1) denotes the up-
dated values of the integers after the assignments and r(ν1) the up-
dated clock evaluation after the resets.

3. Fork: (ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the
control to all proper locations reached by the fork, i.e., those in
Targets∗θ2(S′). We note that ρ2(b) = ∅ for all b ∈ η∗(S′) \ {S′} due to
the join.
We compute ρ3 as follows:

ρ3 = ρ2

Forall b ∈ Targets∗θ2(S′)

If ENTRY(b)

Then ρ3(η−2(b)) = ρ3(η−2(b)) ∪ {η−1(b)}
Else ρ3(η−1(b)) = {b}.

We derive µ3 from µ2 by first initializing all local variables of the su-
perlocations B in Targets∗θ2(S′), i.e., ∀v ∈ Var(HSUB) : µ3(v) = 0.
Then all variable assignments and clock-resets along the pseudo-edges
belonging to this fork are executed to update µ3 and ν3. The history
does not change: θ3 = θ2.

Note that parts 1 and 3 correspond to the identity if S and S ′ are basic
locations.

Definition 9 (State transformation) We define the state transforma-

tion Tt for an edge t = S
g,s,r,u−−−−→ S′ as the result of the join, edge, and

fork transformations:

Tt(ρ, µ, ν, θ) = (ρ3, µ3, ν3, θ3).

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 (respec-
tively, ν3) of the transformed state for the edge t.

Starting Points for Joins. A superlocation S can only be exited, if all
its parallel sublocations can synchronize on this exit. For an exit e ∈ η(S) we
recursively define the family of sets of exits PreExitSets(e). Each element E
of PreExitSets(e) is itself a set of exits. If the guards of the edges to all exits

91

in E are true, then all sublocations can synchronize. We use the notation
η+(l) = η∗(l) \ {l}.

PreExitSets(e) =

⋃
b1,...,bk

�
1≤i≤k

PreExitSets(bi), where

k = |η̃(η−1(e))|, {b1, . . . , bk} ⊆ η+(η−1(e)),
∀i.EXIT(bi) ∧ bi −→ e ∈ T
η−1({b1, . . . , bk}) = η̃(e)

if
EXIT(e)∧
AND(η−1(e)),

⋃
m∈η(η−1(e))

PreExitSets(m), where m
g,r−−→ e ∈ T

∪ {{e}}

 if

EXIT(e)∧
XOR(η−1(e)),

{ {} } if BASIC(e).

Here, the operator � : (22S)× (22S)→ 22S is a product over families of sets,
i.e., it maps ({A1, . . . , Aa}, {B1, . . . , Bb}) to {A1∪B1, A1∪B2, . . . , Aa∪Bb}
and is extended to operate on an arbitrary finite number of arguments in
the obvious way.

Rule Predicates. To give the rules, we need to define predicates that
evaluate conditions on the dynamic tree ρ. We introduce the set of active
leaves (in the tree described by ρ), which are the innermost active locations
in a superlocation S:

Leaves(ρ, S) = {b ∈ ρ∗(S)
∣∣ ρ(b) = ∅}.

The predicate expressing that all the sublocations of a location S can syn-
chronize on a join is:

JoinEnabled(ρ, µ, ν, S) =BASIC(S) ∨
∃E ∈ PreExitSets(S). ∀b ∈ Leaves(ρ, S).

∃b′ ∈ E. b g−→ b′ ∧ g(µ, ν).

Note that JoinEnabled is trivially true for a basic location S. For the invari-
ants of a location we use the function Invν : S → {true, false} that returns
the invariant of a given location with respect to a clock evaluation ν. We
use the predicate Inv(ρ, ν) to express, that for control locations ρ and clock
valuation ν all invariants are satisfied.

Inv(ρ, ν) =
∧

b∈ρ∗(root)

Invν(b).

92

For all legal states, the invariants of all active locations have to evaluate to
true. We use the predicate EdgeEnabled over edges t = S

g,s,r,u−−−−→ S′, that
evaluate to true, if t is enabled.

EdgeEnabled(t, ρ, µ, ν) =
g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, S) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(S′).

Since urgency has precedence over delay, we have to capture the global
situation, where some urgent edge is enabled. We do this via the predicate
UrgentEnabled over a state.

UrgentEnabled(ρ, µ, ν) = ∃t. EdgeEnabled(t, ρ, µ, ν) ∧ u

∨ ∃t′1, t2. (u1 ∨ u2)

∧ EdgeEnabled(t1, ρ, µ, ν)

∧ EdgeEnabled(t2, ρ, µ, ν),

where t = S
g,r,u−−−→ S′, t1 = S1

g1,c!,r1,u1−−−−−−→ S1, and t2 = S2
g2,c?,r2,u2−−−−−−→ S ′2.

Rules. We give now the action rule. It is not possible to break it in join,
action, and fork because the join can be taken only if the action is enabled
and the action is taken only if the invariants still hold after the fork.

EdgeEnabled(t, ρ, µ, ν)
action.

(ρ, µ, ν, θ)
t−→ Tt(ρ, µ, ν, θ)

This rule applies for action transitions involving basic locations as well
as superlocations. In the latter case, this includes the appropriate joins
and/or fork operations.

The delay transition rule is:

∀d′ ≤ d : Inv(ρ, ν + d′) ¬UrgentEnabled(ρ, µ, ν + d′)
delay,

(ρ, µ, ν, θ)
d−→ (ρ, µ, ν + d, θ)

where ν + d stands for the current clock assignment plus the delay d ∈ IR≥0

for all the clocks. Time elapses in a state only when all invariants are
satisfied and there is no urgent edge enabled. We omit for simplifica-
tion the case where we have a pair of urgent synchronized edges enabled.

93

If an edge with c! is enabled we consider that another with c? is enabled too.

The last transition rule reflects the situation, where two edges synchronize
via a channel c:

EdgeEnabled(t1, ρ, µ, ν) S1 6∈ η∗(S2)
EdgeEnabled(t2, ρ, µ, ν) S2 6∈ η∗(S1)

sync,

(ρ, µ, ν, θ)
t1,t2−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

where t1 = S1
g1,c!,r1,u1−−−−−−→ S ′1 and t2 = S2

g2,c?,r2,u2−−−−−−→ S ′2.

We choose the order first t1, then t2 here. This could be inverted, since
the constraints for well-formed HTA ensure that the assignments cannot
conflict with each other. The side conditions S1 6∈ η∗(S2) and S2 6∈ η∗(S1)
prevent synchronization between a superlocation and its own descendants.
For example, in Figure 4.4 The a? edge exiting SUB cannot synchronize
with the a! edge in P.

a!

P

SUB

Q

a?a?

MAIN

Figure 4.4: The a? edge exiting SUB cannot synchronize with a! in P.

If no action transition is enabled or becomes enabled when time
progresses, we have an action deadlock state, which is typically a bad
situation. If in addition an invariant prevents time to elapse, this is a time
stopping deadlock. Usually this is an error in the model, since it does not
correspond to any real world behavior.

We define a set of timed traces for an HTA that captures its behavior.
We explicitly exclude sequences that are zeno or not maximally extended.

94

Definition 10 (Timed Trace Semantics for HTA)
Let M = 〈S,S0, η, type,Var,Clocks,Chan, Inv, T 〉 be a hierarchical timed
automaton. A timed trace of M is a sequence of states {(ρ, µ, ν, θ)}K =
(ρ, µ, ν, θ)0, (ρ, µ, ν, θ)1, . . . of length K ∈ IN ∪ {∞} if

(i) It starts at the initial configuration, i.e, for (ρ, µ, ν, θ)0:
ρ describes S0, µ and ν map the integer (respectively, clock) variables
to 0.

(ii) Every step from (ρ, µ, ν, θ)k to (ρ, µ, ν, θ)k+1 is derived from the rules
action, delay, and sync.

(iii) Maximally extended finite sequences:
if K <∞, then for (ρ, µ, ν, θ)K no further step is enabled.

(iv) Non-zeno:
if K =∞ and {(ρ, µ, ν, θ)}K contains only a finitely many k such that
(ρk, µk) 6= (ρk+1, µk+1), then eventually every clock value exceeds
every bound (∀x ∈ Clocks ∀c ∈ IN ∃k. νk(x) > c).

The set of timed traces, denoted by Tr(M), is the timed trace semantics for
M . �

4.4 Pacemaker Example

We give an example illustrating the use of HTA. It is the cardiac pace-
maker case study of [DMY02]. This case study was modeled using the HTA
language and was then translated into flat automata. We present it as an
example and we do not treat its flattening. We will use this model for
the experiments in Chapter 5. This model is motivated by the often-used
corresponding UML design example [Dou99]. The hierarchical model is a
parallel composition of three XOR superlocations: the human heart (Fig-
ure 4.5), the cardiac pacemaker (Figure 4.6), and a programmer setting up
the pacemaker (Figure 4.7).

Heart Model. The human heartbeat is a complex sequence of chamber
contractions where two atrial and two ventricular chambers collaborate to
establish blood circulation. We use a simplified model of a human heart that
may require pacing. We consider only two chambers, namely the (left) atrial
and ventricular ones. A healthy heart contracts these in a steady rhythm.
We mimic this by the time delays DELAY AFTER V and DELAY AFTER A and

95

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Figure 4.5: Model of a human heart.

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToIdle?
ToInhibited?

Inhibited

RefractDone!

t==RefTime

ToOff?ToOn?

inAVI

ToTriggered?

Triggered

t:=0

V_Sense?

inIdle

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?
Off

On

Self Inhibited

Idle

Self Triggered

Figure 4.6: Model of the pacemaker. Labels on some edges are missing for
simplicity.

96

Modeswitch Delay

x<=DELAY_AFTER_MODESWITCH

commandedOff!

commandedOn!

wasSwitchedOff:=1
toIdle!

toAVI!

toVVT!

toVVI!

x:=0

x:=0

x:=0

x:=0

x:=0

x==DELAY_AFTER_MODESWITCH

wasSwitchedOff:=1 x:=0

Programmer

Figure 4.7: Model of the programmer.

the local clock t. In our example we only monitor the ventricular chamber.
The part after entry V synchronizes on VSense, in case that anybody is
listening (indicated by listening == 1).

After the contraction of the ventricular chamber, our heart model may
non-deterministically stop beating on its own. If it does so for too long, the
critical state FLATLINE is reached.

The pacemaker can send an impulse either to the atrial or ventricular
chamber, i.e., synchronize on the channels APace or VPace. The particular
heart chamber then is scheduled for contraction in the next moment, regard-
less on when these signals occur. This is modeled by using the default exit
and re-entering at one of the leftmost locations.

Since in our example we only monitor the ventricular chamber, this one
synchronizes on VSense, in case that anybody is listening (indicated by
listening == 1). After the contraction of the ventricular chamber, our
model may non-deterministically stop beating on its own. If it does so for
too long, the critical state FLATLINE is reached. A pacemaker can send
a signal either to the atrial or ventricular chamber, i.e., synchronize on
channels APace or VPace. The particular heart chamber then is scheduled
for contraction in the next moment, no matter when these signals occur.
This is modeled by using the default exit and re-entering at one of the
leftmost locations.

Pacemaker Model. The main component of the pacemaker is a XOR
superlocation with the two sublocations Off and On. If the pacemaker is on,
it can be in the different modes Idle, AAI, AAT, VVI, VVT, and AVI. The
first letter indicates, to which chamber of the heart an electrical pacing pulse
is sent (articular or ventricular). The second letter indicates, which chamber

97

of the heart is monitored (articular or ventricular). In the Self Inhibited (I)
modes, a naturally occurring heartbeat blocks a pulse from being sent. In
the Self Triggered (T) modes, a pacing pulse will always occur, triggered
either by a timeout or by the heart contraction itself.

For simplicity we restrict to the operation modes Idle, VVT, VVI, and
AVI. Of particular interest is the AVI mode, which is described as an AND
superlocation with two parallel sublocations. In our example only the ven-
tricular chamber is observed, but a pace signal may be sent to to the ven-
tricular or atrial chamber.

Programmer Model. A medical person—here called the programmer—
is responsible for switching the pacemaker on/off and for selecting the op-
eration mode. This the programmer does via the signals commandedOn!,
commandedOff!, toIdle!, toVVI!, toVVT!, and toAVI!. We do not make
assumptions, on how or in which order she issues the signals. However, we
require a time delay of at least DELAY_AFTER_MODESWITCH after each sig-
nal. If one of the signals commandedOff! or toIdle! was issued this is
recorded in the binary variable wasSwitchedOff. Note that we equipped
the pacemaker with default exits, thus it can always synchronize with these
signals.

The programmer is modeled by a XOR superstate with two locations.
In the initial location, Modeswitch, any signal can be issued while entering
the second location. The second location is left after exactly DELAY_AFTER_-
MODESWITCH time units.

4.5 Simplified HTA

The proposed HTA provides features similar to other statecharts formalisms
such as entries and exits. Although inter-level edges are forbidden, they
are in fact translated via entries and exits. The purpose of this is to be
able to interchange superlocations that have compatible entries and exits.
However, the semantics is rather complicated due mainly to the fork and
join mechanisms. This is generally the case when dealing with forks and
joins, even worse with inter-level edges.

From a model point of view it is useful to be able to have entries and exits
since we forbid inter-level edges. We show in this section that these entries
and exits are in fact not necessary. We simplify the syntax and semantics,
and then we give the minor syntax additions that provide the power of fork
and join.

98

4.5.1 Simplified HTA Syntax

Data Components

We use the same definitions as in 4.2.1.

Structural Components

We simplify the structural components by removing the entries and exits.
History serves to mark a location as special. We redefine the HTA as:

Definition 11 (Hierarchical Timed Automaton(2)) A hierarchical
timed automaton is a tuple 〈S,S0, η, type,Var,Clocks,Chan, Inv, T 〉 as
defined before except for the type function type : S → {AND,XOR,BASIC,
HISTORY} is the type function for locations. Entries and exits are not
used.

We reuse notations and constraints for well-formed HTA, though without
the entries and exits since there is no pseudo-location anymore. The edge
constraints are simplified to: an edge may be defined between two locations
only if these locations belong to the same superlocation of type XOR, i.e.,
S

g,s,r,u−−−−→ S′ if η−1(S) = η−1(S′) and XOR(η−1(S)).

Contrary to the previous constraints, edges defined between superloca-
tions are legal and are not translated to anything but part of the syntax.
The grammar of the language is given in Appendix 8.2 where we give the
syntax for the HTA language and the query language.

4.5.2 Simplified HTA Semantics

We redefine the semantics of our simplified HTA without entries and exits.
States are of the form (ρ, µ, ν, θ) with the same definitions.

History. History is handled in the same way as before although there is no
entry. Default entry is equivalent to initial location of a given superlocation
so we substitute default entry to initial location.

Initial locations. Instead of Targets we define the set of target initial
locations:

Initθ(L) = L ∪
⋃⋃⋃

S∈L

{b
∣∣ b ∈ θ(η−1(S)) ∧ HISTORY(S)}∪

{b
∣∣ b ∈ S ∧ AND(S)}∪

{b
∣∣ b ∈ S ∧ b ∈ S0 ∧ XOR(S)}.

99

If the argument is a singleton, we use the notation Initθ(S) for Initθ({S}).
Init∗θ is the reflexive transitive closure of Initθ. We notice that XOR locations
have only one initial location. In the following we will need Init∗θ with the
history locations removed:

HInitθ(L) = Init∗θ(L) \ {b
∣∣ b ∈ Init∗θ(L) ∧ HISTORY(b)}.

State Transformation. As there is no entry and exit anymore, the terms
join and fork do not apply as in classical statecharts. ρ describes a tree, so
we use the terms cut and graft.

Taking an edge t : S
g,s,r,u−−−−→ S′ entails (1) cutting the tree from the

source S, (2) taking the edge t, and (3) grafting the tree from the target
S′. If S is a basic location then there is no cut. Similarly if S ′ is a basic
location then there is no grafting. It is important to notice that the cut step
does not involve any edge, thus data values are not modified. We define the
transformation with these three steps. We reuse previous definitions where
we substitute EXIT(S) and ENTRY(S ′) by false.

1. Cut: it is identical to the previous join definition.

2. Edge part: it is identical to the previous edge part definition.

3. Graft:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by resolving history and
moving the control to initial sublocations, i.e., locations in HInitθ(S

′):
ρ3 = ρ2 with the updates ρ3(η−1(b)) = {b} for all b ∈ HInitθ(S

′).

State Transformation. We redefine the state transformation Tt for an
edge t : S

g,s,r,u−−−−→ S′ using the new ρ3, µ3, ν3, and θ3. It is as before:
Tt(ρ, µ, ν, θ) = (ρ3, µ3, ν3, θ3).

Remarks. There are two ways to use history with the new syntax: either
we use an edge from any location or the initial location of a superlocation
is marked as history. In both cases the graft will resolve history. As history
is updated when exiting a given superlocation, this is well-defined. Also, we
notice that states obtained after the graft do not contain history locations.

Furthermore, we wish to use self-termination of superlocations. If we
recall the edge part of the state transformation, we substitute there the
source with the destination. However, in the case of self-termination, the
source is cut from the cut step. This is not a problem and the substitution
is not done because the source is no longer in ρ.

100

Rule Predicates. We need to define fewer and simpler predicates
now. We reuse the same Inv(ρ, ν) definition for invariant. We simplify
EdgeEnabled to

EdgeEnabled(t, ρ, µ, ν) = g(µ, ν) ∧ Inv(ρTt , νTt).

UrgentEnabled has the same definition with the new EdgeEnabled.

Rules. The action and delay rules are the same with the updated predi-
cates. We simplify the sync rule to allow for self-termination:

EdgeEnabled(t1, ρ, µ, ν)
EdgeEnabled(t2, ρ, µ, ν) S1 6= S2

sync,

(ρ, µ, ν, θ)
t1,t2−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

where t1 = S1
g1,c!,r1,u1−−−−−−→ S ′1 and t2 = S2

g2,c?,r2,u2−−−−−−→ S ′2. We keep S1 6= S2

otherwise the target locations conflict. The self-termination is well-defined
because the conflict in changing locations is automatically resolved by the
cut step. We notice that the user has to rename channels if she wants to
use constructions like in Figure 4.4. In this updated semantics we do not
have to take care of the PreExitSets as before and we simplify or do not use
previous predicates.

4.5.3 Expressiveness

Now we provide ways to code the previous forks and joins. Forks via entries
are replaced by a choice from initial locations. The choice is coded by
“entry” variables that are just normal variables. To obtain the atomicity
of forks, committed locations can be used. They add a level of priority on
which edges may be chosen to take transitions and forbid delays.

Concerning joins, we can decorate the locations with “location func-
tions”, similarly to methods in object oriented languages. Such functions
are accessible from outgoing edges only and are used normally in guards.
These functions define internal conditions that may range from variable to
internal locations and include other nested location functions. This does
not affect the semantics or the syntax. It is important to notice that such
function are side-effect free. What we do here is to move the complexity of
the previous rules to calculate joins to a flexible function encoding in the
automaton.

101

It is now more natural to refine existing locations or to change automata
nested in locations. Figure 4.8 shows how to translate some conventional
statecharts constructs with inter-level edges to the simplified HTA model.
This example shows the basics for default entry, selective entry, synchronized
join, preemptive join, and default join. We use the (c) notation to refer
to a committed state. We have to define the location functions for the
superlocations M, A, and B. Notice that changing any superlocation and
giving the appropriate functions does not change the rest of the automaton.
Refinement is intuitive and the model is appropriate for abstraction since
the user may provide approximate functions for incomplete superlocations.

t1

t2
t3

t4

t5

A:ready()=at b
B:ready()=at d

M:sync()=A.ready() and B.ready()

t1

t2
t3

t4

t5

M

A

B

a b

c d

a
b

c d
B

A

M

M.sync()

interrupt?

in:=1

in:=0

in==0

in==1

c

interrupt!

Figure 4.8: Example of translating statecharts to the simplified HTA.

In the following HTA will refer to the simplified HTA model only.

4.6 Case Study Revisited

In this section we adapt the model of the case study presented in Chap-
ter 2 to the HTA model. The FI part of the case study is not appropriate
for hierarchical modeling. The automata have reasonable size, have a flat
straightforward structure, and adding hierarchy is artificial and does not
give anything. The bus coupler part is appropriate for the HTA.

Figure 2.12 shows the different parts involved in the model. The tasks
serving the ports 1 and 4 are updated by moving the automata used as func-
tions inside locations of these tasks. Figure 4.9 details the transformation
of the model. The c is the Uppaal committed location notation. Loca-
tions marked with double circles are initial locations for a given automaton
(Uppaal notation). We use self-termination to control when the superloca-
tion should be left. The call synchronization is removed since the nested
automaton is automatically activated upon entry of the superlocation. We

102

note that the target location of a self-terminating synchronization does not
matter for the nested location because the target is never entered.

automaton edges

return!

return?

incoming edges outgoing edgesincoming edges outgoing edges

idle
call?

return!

automaton edges

c
call! return?

function automaton

task automaton task automaton

nested automaton

Figure 4.9: Model transformations from flat to HTA.

Consequently, the obtained model has 6 nested automata. In addition
to the simplification due to hierarchy, we have suppressed intermediate loca-
tions to connect directly superlocations with each other. These are obvious
optimizations that are given by the HTA model and the two models can be
compared fairly. We have to rewrite properties to accommodate the renam-
ing of the locations that are now nested. The verification is conducted with
the prototype described in Section 5.1. We use the CVS internal version
3.3.36 and a branch from that version that implements our HTA. This ver-
sion has other improvements that we describe in Chapter 3. Verification is
run on the same Sun Ultra-II 400MHz as previously. We obtain the same
results for the properties, as expected. Results of the statespace genera-
tion are given in Table 5.1 in Section 5.1.3. The HTA models outperforms
the TA model by 14% in memory at no speed cost. The direct support of
the hierarchical model allows the engine to get rid of intermediate states
that were artificial for the flat model. Furthermore, when the model has
more structure, as for the pacemaker, then the advantage of the transitions
involving edges from superlocations shows up as a speed improvement.

This case study shows the benefits of our HTA language: it is more
natural to use as a modeling language and it improves model-checking per-
formance.

103

4.7 Conclusion

We defined a timed statecharts based on timed automata. This hierarchi-
cal timed automaton (HTA) is given a formal syntax and semantics. This
formalism is then simplified to keep the essential hierarchical feature while
removing the entries and exits that clutter both the syntax and semantics.
Finally, it is shown that this language is useful from the modeling point of
view. It allows for a more natural description for the case study. From the
verification point of view, a prototype (not yet optimized) achieves better
performance.

104

Chapter 5

A Verification Engine for
Hierarchical Timed Models

Finite state machines are a widely used model in computer science. Seve-
ral extensions have been proposed to enhance the expressive power and to
describe more complex system more efficiently. Such extensions include ad-
dition of concurrency (communicating finite state machines), variables (ex-
tended finite state machines), time (timed automata), and hierarchy (hier-
archical state machines). Improving expressiveness and model succinctness
comes to the cost of computational complexity [Pap95] for the verification
problem and the addition of hierarchy is the source of theoretical exponential
blow-ups.

Alur and Yannakakis [AY98] show that for flat Kripke structures, de-
ciding reachability between two states is in NLOGSPACE. For hierarchical
structures, the reachability problem becomes PTIME-complete and the LTL
and CTL model-checking problems are PSPACE-complete. Adding only hi-
erarchy gives an exponential blow-up in time. For time, Alur, Courcoubetis,
and Dill [ACD90, ACD93] show that the model-checking problem for de-
termining the truth of a TCTL formula with respect to a timed graph is
PSPACE-complete. Yannakakis [Yan00] shows that model-checking hierar-
chical state machines with arbitrary level of concurrency at any depth is
EXPSPACE-complete. Furthermore, the model is exponentially succinct in
term of expressiveness with respect to the size of the model: there is an ex-
ponential blow-up from finite state machines to hierarchical state machines,
and from there a double exponential blow-up to concurrent hierarchical state
machines.

Our HTA model suffers both from the complexities due to hierarchy and

105

time. This makes the implementation of a verification engine for hierarchi-
cal timed models a challenge. In this chapter we address implementation
issues to verify hierarchical systems. We first discuss the representation and
computation of states adopted for Uppaal. Then we present an abstraction
technique using hierarchical information to approximate verification. The
abstraction is defined to preserve safety properties: if such a property holds
for the abstract model, then it holds for the concrete model.

5.1 Representation and Computation of States

In this section we discuss different approaches to implement the hierarchical
structures that represent states and in particular the one we choose in Up-
paal. The main problems in implementing hierarchy are (i) the dependency
of the variables and clocks on the location vector, and (ii) the transitions
between superlocations.

Variables are defined within the scope of superlocations. Changing su-
perlocations may involve removing some variables from the state and adding
new ones. This holds for the integer variables and the real clock variables.
The set of variables is dynamically changing depending on the location vec-
tor in this respect. Furthermore, operations defined on edges refer to vari-
ables. Such references are implemented as indices but as the set of variables
changes, these references are dynamic and must be computed on-the-fly.

Transitions may involve fork and join edges. They result in manipulating
the tree structure of the locations, as described in the semantics of Chapter 4.
We have referred locations as “location vector”, which is the representation
used in our implementation. The tree is encoded in this vector. The tree
manipulation may occur at different levels, from a node or a leaf. The
operations are the “cut” and “graft”, if we see the location representation
as a tree, which is the same as “join” and “fork” in the statecharts naming
conventions.

An implementation handling only flat models does not need to consider
these problems. It is then a challenge to keep the same level of efficiency
for a hierarchical implementation compared to a non-hierarchical one. In
particular for Uppaal, we have to maintain backward compatibility with the
current TA language at almost no cost otherwise the new implementation
will have a limited interest.

106

5.1.1 Data Structures for Representing States

We present different approaches to implement the data structures represen-
ting states, i.e., the locations, the variables, and the clocks.

Locations

As we are working on a tree representation and we want to save memory, it
is natural to try to work on the smallest possible structure. With this idea,
we have implemented a representation that saves only the leaves of the tree,
i.e., only the basic locations at the lowest nested level. This implementation
follows the semantics of the HTA with entries and exits. In particular,
the set of locations to be exited, see Section 4.3, is difficult to compute in
practice. During exploration, the view that the model-checker has on the
data structure is local, which is we “see” one basic location at a time with
one edge at a time, and this is the root of the problem because joins are not
local.

Figure 5.1 shows how the location tree is updated: the example is based
on the statecharts 5.1(a) with the corresponding syntax description 5.1(b).
From the initial state graphically depicted with thick locations in 5.1(a), the
tree 5.1(c) is updated to 5.1(d). This transition corresponds to the default
exit of the location B and it is taken at a high level in the tree. Working on
the leaves implies that we have to propagate the information up and down
the tree to compute the exit of B and the entry of C. A case of a transition
between leaves (L to M) updates 5.1(d) to 5.1(e). Finally, 5.1(f) is obtained
from a join at an intermediate level in the tree (K) to a leaf (H).

Let us consider an implementation based on leaves: the internal repre-
sentation is a multi-graph with locations (or vertices) connected by multi-
edges. The locations correspond to the leaves in the tree. Resolving a fork
is straightforward since it is enough to follow all the edges iteratively. Resol-
ving a join efficiently needs more work. The basic principle when computing
transitions is to try all outgoing edges from all active locations. The pro-
blem with the joins comes from the fact that some edges must be taken
only once and they require other locations to be active. We implemented a
stamp algorithm to handle the joins: every join computation is associated
with a stamp to validate the edges participating in the join. When there are
precisely n edges enabled with the same stamp for a join of size n (defined
thereafter) then the join can be taken. The stamp is important to avoid
to use edges more than one time: as edges may have several sources and
all sources are examined, they may be used several times. The algorithm

107

B C

D

F

E H

G

K

I J L M

B C

D

F

E H

G

K

I J L M

B C

D

F

E H

G

K

I J L M

B C

D

F

E H

G

K

I J L M

A

B C

D

F

E H

G

K

I J L M

A

B

D

F

E

G

A

C

H

(b) Syntax tree.

T1

A

F I

G JE

D

B

L MK HC
T2 T3

(e) Update after T2. (f) Update after T3.(c) State tree corresponding to
the state in (a).

(d) Update after T1.

(a) Statecharts.

T1

T2

A

C

K

L

K

M

T3

A

C

Figure 5.1: Updates of the location tree at different hierarchical levels.

is adapted for synchronization computations: we may need one join for the
sending part, e.g. c!, and one more for the receiving, e.g. c?. We use two
stamps to distinguish these two parts.

The size of a join is the number of active source locations that are re-
quired to execute it. Figure 5.2 shows that the size is dynamic and has to be
computed dynamically. In the first case (a) the join involves 3 locations and
the second case (b) there are 2. An alternative representation (c) separates
these two cases with two multi-edges: the problem with this representation
is that the graph needs to be “unfolded”, which destroys its compactness.
The trade-off is to compute the size of the join on-the-fly.

From the implementation based on leaves and from the fact that our
model was not simpler from the other existing statecharts, we simplified the
model to the HTA without entries and exits. This gave back a simple graph
to work on. The simpler data structure is an extension of the basic location
vector of Uppaal. The location vector represents the whole tree this time.
This makes computation of transitions using edges from superlocation more
natural. However, we have to take care of not active superlocations (or types
AND and XOR). In addition to this we need a cut/graft filter1 to execute
the corresponding cut/graft operations of the semantics. This filter allows

1a block in the pipeline architecture, see Section 6.1.1.

108

|join|=2

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D
E E

(a) Statecharts and graph repre− (b) Statecharts and graph repre−

A

B

C

D

EE E

(c) Alternative graph representation.

|join|=3

sentations for a join of size 3. sentations for a join of size 2.

Figure 5.2: Dynamic size for joining multi-edges.

us to use the self-termination channel synchronization. We detail this filter
in the next section.

We are working on a third approach to take the best from these both
approaches, namely saving the leaves only and decompressing to the whole
tree for successor computation.

Variables

The current implementation does not take advantage yet of the variables
marked inactive even if the library is implemented. This has no impact in
practice because the models we use do not take advantage of local variables
yet. There are mainly two choices we face for the representation of the
variables:

1. The variables are represented as one large global array where every
declared variable has its cell. The active variables, depending on the
active locations2, are saved on a smaller vector and a mapping is com-
puted and used upon load and save. The operations are applied di-
rectly on the large array.

2some local variables “exist” only for some given configurations.

109

2. The variables are represented as a small array containing only the
active variables. In this case the mapping to the globally indexed
variables is used upon access, which is, within the operations.

If we analyze these two solutions, it appears that we always need the map-
ping, so the difference is when we use it. In the first case we use it for all
the active variables twice. In the second case we use it depending on the ac-
cesses. Now considering that the models always access a few variables on the
edges, (2) is better. Another advantage for (2) is that it allows simpler code
for the different load/save algorithms, and there are many optimizations
(and implementations) possible there. Finally, the mapping has to be up-
dated for some transitions. The cost of updating the mapping and updating
the small variable array (shrink or grow) has to be taken into account too.
However, it is small and it occurs rarely with respect to all the computed
transitions because this concerns only some of the transitions involving a
cut/graft.

Clocks

The current implementation uses the free operation in Uppaal to free un-
used clocks. We have similar choices as for the variable case to optimize
this. However, the clock representation for n clocks needs (n+ 1)2 integers
in memory for the DBMs we are using3. Furthermore, common operations
cost O(n2) in time and one O(n3) (Floyd’s algorithm to tighten the con-
straints [Flo62]). With these considerations the approach (2) for variables
applied to clocks is better.

We note that the dimension of the zone, i.e., the number of clocks used,
is dynamic and depends on the active locations. This is similar to the notion
of active clocks, which is more fine grained. Furthermore, using the compact
zone representation stores exactly the constraints of active clocks.

5.1.2 Computation of States for the Simplified HTA

The computation of states for the simplified HTA as defined in Chapter 4
the successor computation of Uppaal with a back-end implementing the
HTA semantics. The architecture of the engine is presented in Chapter 6
and is based on a data pipeline. Computing states for HTA is done by
inserting a new “filter” block that implements the graft and cut operations.
The graft and cut basic algorithms are given as pseudo-code in Figure 5.3.
The corresponding graft function is given in Figure 5.4.

3+1 comes from the reference clock

110

repeat
stabilized = true
for loc in location vector do

if loc != idle then
if loc.parent != idle or justLeft(loc) then

loc = idle
reset(loc.parent.var)
reset(loc.parent.clocks)
stabilized = false

endif
if loc.nested == idle then

graft(loc.nested)
stabilized = false

endif
endif

done
until stabilized

Figure 5.3: Graft/cut stabilization algorithm.

graft(loc):
if AND(loc) then

for l in loc do fork(l) done
else

loc.init()
endif reset(loc.var)
reset(loc.clocks)

Figure 5.4: Fork algorithm.

111

The basic algorithm is a fix-point computation to stabilize the state
to a valid configuration. The current configuration may contain a started
graft or a cut that both need to be completed. As the cut part accesses
the state of the parent location, this may require additional loops if the
parent location is not stabilized itself. The first if block corresponds to
the cut case. The location of a superlocation is set to idle if it parent is
idle or if the location was just left. The additional or-condition is used to
resolve transitions involving edges from a superlocation to itself where the
superlocation has to be left and re-entered. The second if block corresponds
to the graft case. The superlocation is entered recursively to its initial
location.

In practice the locations are declared in hierarchical order with the top-
level first. This leads to a simplification of the basic algorithm where the
repeat until loop may be removed with the stabilized flag. We need then to
separate the cut and graft in two different loops to resolve the special case
of edges starting from and ending to the same superlocation. The algorithm
is then correct because when a location is tested for cut, it is guaranteed
that its parent’s cut was resolved before. Furthermore, the graft algorithm
is forward and it does not need more loops. The algorithm is optimal in
the sense that for a location vector (tree description) of length n we test for
exactly n cuttings and graftings.

5.1.3 Experimental Results

To test the hierarchical engine we use our hierarchical model from the case
study of Chapter 2 and the pacemaker example presented in Section 4.4.

The Fieldbus

Table 5.1 shows the memory and time consumptions to generate the whole
statespace obtained with the property A[] true for the case study model
represented in the HTA and the TA language. We use the CVS version 3.3.36
that incorporates a default PW-List modified with the HTA implementation.
The machine used is the same 400MHZ Ultra Sparc station as in previous
experiments.

Engine version HTA model TA model

TA - 98M / 113s
HTA 84M / 112s 98M / 118s

Table 5.1: Resource consumption for the whole statespace generation.

112

Reading the table vertically shows the small overhead due to the cut and
graft operations. However, as the HTA language is better adapted for this
model, the gain compensates this overhead. We gain about 14% in memory
at no speed cost. Although the implementation has room left for optimiza-
tions it outperforms the TA engine for an equivalent non hierarchical model.
Furthermore, the test was run in this case with the graft/cut turned on for
the TA model on purpose to evaluate its overhead separately. This can be
turned off for simple TA models as it is a filter that can be skipped on
the pipeline, in which case the result is identical to the TA version. This
overhead is negligible and is even compensated when a HTA model is used.

The Pacemaker

We check the following properties:

(i) A[] Heart.Detail.Flatline imply wasSwitchedOff == 1,
(ii) A[] Pacemaker.On.Idle imply wasSwitchedOff == 1,

(iii) E<> Heart.Detail.Flatline, and
(iv) E<> Pacemaker.On.Idle,

where (i) and (ii) are safety properties saying that the heart is allowed to stop
beating only if the pacemaker is switched off. (iii) checks that the heart may
stop to beat to check that property (i) is not trivially true. (iv) checks that
the pacemaker may go idle to check that (ii) is not trivially true. We check
these properties on the hierarchical model described in the simplified HTA
language and on the flat model obtained from the automatic translation
HTA-to-flat-TA described in [DMY02]. More details on the translation are
found in [DMY03].

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Figure 5.5: Constants for which the
properties hold.

The pacemaker is sensitive to
timing constraints and the results
of the verification depend on the
constants used to tune the model.
Figure 5.5 shows the constants for
which the safety properties hold. If
we change MODE SWITCH DELAY to 65
then (i) does not hold any more,
meaning that changing mode too
quickly may put the patient in a
dangerous situation. We allow the
programmer (in the model) to switch the pacemaker off to generate more

113

behaviors and we check the models for this delay set to 65 and to 66. Ta-
ble 5.2 shows the results. We use a Celeron 633MHz equipped with 192M
of memory under Linux 2.4.18 for this experiment. The verifier used is the
same HTA engine as in the previous experiment. We give time and memory
consumptions to verify the four properties in the same run.

Model Delay=66 Delay=65

TA 5.3s/13M 15.5s/14M
HTA 0.5s/4M 0.4s/4M

Table 5.2: Results to verify the pacemaker.

This example gives good results for memory and speed. This is due to
the fact that the pacemaker was designed from the beginning with hierarchy
and makes heavy use of XOR and AND locations with edges defined from
superlocations. The experiments show the cost of translating these edges
while they are cheap for a native hierarchical model.

5.2 An Abstraction Technique for HTA

5.2.1 Background

Abstract Interpretation

The Galois connection [CC92a] is appropriate for interpretation of programs
where the concrete and abstract domains are naturally defined as integers.
This relation must be defined between two partially ordered sets (posets).
In our case where the predominant structures are the control location and
the clocks (whose representation is already symbolic) it is artificial to de-
fine the partial order. This will not help us in model-checking properties,
though we use similar techniques to manipulate the variables of our au-
tomaton. This technique can be used to define precise abstract functions
and in our case of model-checking we are interested in the properties. It is
costly to define one abstraction for every property we want to verify. We
prefer to focus on abstracting the model based on its hierarchical structure
and then check several properties on it. The extensive work of Cousot &
Cousot [CC77, CC79, CC92a, CC92b, CC94, CC99, Cou00, CC02] presents
abstract interpretation of programs, abstract model-checking, and refine-
ment techniques.

Levi [Lev01] presents an abstraction for µ-calculus model-checking. The
idea is to obtain an approximate semantics by substituting the domain of

114

computation and its basic operations with an abstract simpler domain. This
is similar to our work though we apply the technique to timed automata.

Cleaveland et al. [CIY95] develop a framework based on state abstrac-
tion. They use the democratic Kripke structures to abstract Kripke struc-
tures and show that a class of them that are safe approximations in the
sense that CTL* properties satisfied for the abstract model also hold for the
concrete model. Our abstraction is preserves only safety properties and we
focus our efforts in abstracting time.

Hiding and Refinement

This technique consists of hiding variables or locations from the original
model and using abstract values instead in the abstract model. To do this
a mapping (surjection) from the concrete states to the abstract states is

defined. For safety properties M̂ |= φ ⇒ M |= φ with M the concrete

model, M̂ the abstract model, and φ the property to check.

Usually the variables to keep are chosen within the cone of influence
[BBD+99] of the properties to check, where one tracks data dependency
relative to properties to abstract the other data. The variables we chose to
abstract are obtained from the hierarchical structure we want to abstract.

This technique is by essence an over-approximation and spurious traces
may be obtained. These traces or counter-examples do not have concrete
equivalents in the concrete model. In such cases further refinement of the
abstract model is needed. In [CGJ+00] Clarke et al. show how to identify
spurious traces and to use them to guide refinement. In [CCK+02] Clarke et
al. present a SAT based automatic abstraction refinement framework where
the abstract model uses variable hiding. The same authors presented also a
BDD approach previously [CGL94].

Tripakis and Yovine [TY01] show how to verify dense-time systems mod-
eled as TA with untimed verification techniques. There the TA is trans-
formed into another where exact time delays are abstracted away. This
abstraction is formalized under the concept of timed-abstracting bisimula-
tion [LY93]. In practice the algorithm generates a graph (minimization step)
whose vertices correspond to the zones of the symbolic time representation.
The interest is to be able to have more or less precise time graphs with dif-
ferent refinements. In our work we keep time information and the different
levels on refinements are defined in function of the hierarchy of the model.
It is also interesting to quote the opposite work that consists in refining ab-
stract descriptions into more precise implementations. Alur et al. [TAKB96]
tackle the problem of proving the correctness of such refinements. This re-

115

finement checking is implemented in the verifier COSPAN.

Preservation

We apply abstraction techniques to approximate a complex model by a sim-
pler one. To make this technique useful we have to preserve some properties
between the abstract and the concrete models. We refer the reader to Dams’
thesis [Dam96] for more details on preservation theory. Jensen [Jen99] gives
general conditions for preservation of properties based on simulation re-
lations for untimed and timed systems. We also base our abstraction on
simulation and we are interested in safety properties.

Abstraction in the Case Study

In the case study of Chapter 2 we use variable and state hiding to code
an under-approximation model for debugging purposes. The abstraction is
carried out manually on implementation specific data. The abstract model is
then the protocol logic as described in the implementation that corresponds
to the one in the specification.

5.2.2 Abstracting Away from Hierarchy

There has been extensive work on abstraction techniques and our goal is
not elaborate on the theory but to use it and define an abstraction natu-
rally adapted for our model. Our abstraction is based on variable, clock,
and location hiding. The hiding is guided by the hierarchical structure of
the automaton. Our proposed abstraction is innovative in the sense that it
proposes an abstraction on symbolic states. Clock constraints are approxi-
mated according to the part of the automaton that is abstracted. In contrast
to [TY01] where time is abstracted away, we keep here time information.

Idea of the Abstraction

The idea of our abstraction is to remove nested automata and to replace
them by information that describes what the removed automata may do.
Figure 5.6 illustrates this idea. We want to abstract the superlocation A,
which is, to remove its nested automata. There are 3 locations with invari-
ants on the clock x, so the maximal possible upper bound for x is x ≤ 4 in
this example. There is no upper bound for the clock y so we assume y is not
bounded. For the lower bounds, we note that x is reset but not y, which
gives the constraints describing what may happen to the clocks: 0 ≤ x ≤ 4

116

for x and y0 ≤ y for y with y0 being the clock value of y when entering A.
For the variables, we note that a may be updated. It is expensive to know
the exact value of a since we have to analyze the conditions of exit of A,
and analyze the nested automaton. Instead we extract the information “a
is unknown”. Finally, the nested automaton may synchronize with another
automaton, in this example on c!.

{x<3}

{x<=4}

{x<4}

x:=0,
a:=1

x:=0,
a:=2

y>=2

x==4

incoming outgoing incoming outgoing

A

lower constraint on x: x:=0
upper constraint on y: none

upper constraint on x: x<=4

c!

lower constraint on y: none

possible synchronization: c!
unknown value for: a

+

y<2

A

abstraction

Figure 5.6: The idea of the abstraction for HTA.

Abstracting the nested automaton of A results in a basic location A with
the additional information: 0 ≥ x ≤ 4, y ≤ ∞, a is unknown, and c! is possi-
ble. When A is active, instead of applying a conventional delay operation on
the zone (symbolic representation of time), we use the additional informa-
tion given by the abstraction on the clock constraints. Furthermore, if there
are additional constraints (from other locations) then they are also applied.
For the variables, successor states will have the unknown value for a and
the operations on integers take this into account. Finally, when computing
channel synchronizations, it is assumed that c! is available.

This abstraction uses the hierarchical structure to compute an over-
approximation of the verification and it is based on a set of superlocations
to abstract, in this example A. The goal of the over-approximation is to
preserve safety properties. We use the notations of Chapter 4 to formalize
this abstraction. In particular, we need to characterize the set of variables
affected by the unknown value, the new operations on zones, and the syn-
chronization.

Notations

We use the notations of Chapter 4 where states of hierarchical automata
are of the form (ρ, µ, ν, θ) where ρ describes the active locations, µ the

117

values of the variables, ν the values of the clocks, and θ the history.
AND(l),XOR(l),BASIC(l) are predicates that characterize the type of the
locations. η describes the structure of the statecharts (η(l) is the set of
sublocations of l), η∗ is the reflexive transitive closure, and η−1(l) returns
the parent location of l.

When we describe clock constraints we write xi − xj ./ cij where ./∈
{<,≤}. The cases i = 0 and j = 0 correspond to the reference clock and we
replace it in the examples by 0.

Formalization of the Abstraction

Symbolic States. As we are interested in applying the abstraction in an
existing engine using symbolic state representation, we describe this abstrac-
tion with symbolic states. Therefore, we define a mapping from the concrete
states to the abstract states. The states are symbolic, that is, we use clock
constraints to represent sets of clock values. We consider for this purpose
the symbolic state (ρ, µ,D, θ) ∈ Statespace where D is the clock constraint,
instead of ν previously used in Chapter 4. We use notations and definitions
from Section 4.5 and reuse known results on symbolic model-checking.

We recall the basic definition and property of clock constraints [Pet99].
Let A and A′ be the solution sets of the clock constraints D and D′:

A↑ = {w + d
∣∣w ∈ A and d ∈ IR+},

{x}A = {x[w]
∣∣w ∈ A}, and

A ∧A′ = {w
∣∣w ∈ A and w ∈ A′},

with x[w] being the assignment that maps the clock x to 0. The closure
property of clock constraints states that for clock constraints D and D ′ with
solution sets A and A′ respectively, there exist clock constraints D1, D2, D3

with solution sets A↑, {x}A,A ∧ A′ respectively. This allows us to define
operations on clock constraints directly and avoid to use the solution set. We
will use clock constraints in the form {xi−xj ./ cij} because this corresponds
to standard implementations that use DBMs.

In the following we describe how to compute abstract states. We cha-
racterize the abstract locations that define the abstraction. We describe the
operations we use for the abstracted integer and clock variables.

Locations. The abstraction is based on a set of superlocations. We replace
these superlocations by basic locations associated with extra information
that describes which side-effects the superlocation may have on the rest of

118

the system. To identify these locations, we define the function A : S →
{true, false} that returns true if the superlocation is abstracted and false
otherwise. In practice the user marks a set Ŝ of superlocations and all its
sublocations as abstracted, which is, for l ∈ S,A(l) = true if l ∈ Ŝ, false
otherwise. Ŝ must be well defined in the sense that (i) all sublocations
of abstracted superlocations are also abstracted and (ii) a basic location is
abstracted only if its parent location is abstracted:

(i)s ∈ Ŝ ⇒ η∗(s) ⊆ Ŝ
(ii)s ∈ Ŝ ∧ BASIC(s)⇒ η−1(s) ∈ Ŝ

We note the minimal subset of abstracted locations Ŝm = Ŝ\{l ∈ Ŝ
∣∣ η−1(l) /∈

Ŝ}. These are the superlocations defined as abstract at the highest level of
the location hierarchy.

Integer Variables. When we abstract a superlocation and replace it with
a basic location, we have to compute the possible side-effects the original
nested automaton has on the system. The abstraction checks if variables
are changed and assigned them to the special value unknown to represent
these changes. We define the function VarSetρ : 2Var → 2Var to identify
the subset of variables possibly modified in such active superlocations for a
given ρ (ρ gives the locations in a state). A variable is possibly modified in a
superlocation if an expression assigns any value to it on an edge inside that
superlocation. This is written: for l ∈ Ŝ, ModifVar(l) is the set of variables
possibly modified in η∗(l) over S. VarSetρ is then given by:

VarSetρ(V) = {v ∈ V
∣∣ ρ(η−1(l)) = l ∧ v ∈ ModifVar(l)}.

In this definition, ρ can be used for the concrete or the abstract model. We
remind that ρ(η−1(l)) = l tests if l is active. In the following, V will be

the subset of variables relevant for the abstraction. This subset is V̂ar =
Var \ {v ∈ Var

∣∣ ∃l ∈ Ŝ.v ∈ Var(l)}: we take the set of variables from which
we remove the particular variables belonging to abstracted locations.

Similarly, we use ModifClkρ and Ĉlocks for clocks to identify the set
of possible modified clocks and the subset of used clocks in the abstracted
model. The expressions we are interested in for clocks are the clock resets

x := 0 for a clock x. We also use ChanSyncρ and Ĉhan to identify the
set of abstracted channel synchronizations and the set of used channels in
the abstracted model. The expressions we are interested in for channel
synchronization are of the form c! or c? for a channel c.

119

Arithmetic Operations on the Abstract Domain. As shown in Fig-
ure 5.6, we record possible side-effects on variables with a special U value.
We need to modify the semantics of arithmetic operations on the abstract
model to incorporate this special value:

• Binary operators: x⊕ y = U if x = U ∨ y = U for x, y integer variables
and ⊕ any binary operator. We have two exceptions: true∨x = true
and false ∧ x = false for any value of x.

• Unary operators: 	x = U if x = U for any unary operator.
• Conditional expressions: (c?x : y) = U if c = U ∨ x = U ∨ y = U .

U is used for integers and booleans. If an expression holds for concrete
variables, then it still holds or it is unknown if at least one variable is set
to U . Conversely if an expression does not hold for concrete variables, then
it does not hold or it is unknown if at least one variable is unknown. As a
particular case, the expression a∧¬a is always false on the concrete domain
but if a has the unknown value then the expression is valuated to unknown.

Clock Variables. As shown in Figure 5.6, we keep clock information and
we approximate their values symbolically. When removing a nested au-
tomaton we keep track of which clocks may be reset and the maximal upper
bound they may reach. Concerning zone manipulation, this gives two new
operations that are stretch-down denoted ⇓ and the stretch-up denoted ⇑.
The stretch-down stretches the zone down for some clocks instead of pro-
jecting the zone as the reset does. The stretch-up stretches the zone up and
then we restrict it to maximal upper bounds with the weakest invariants.

We use the following notations:

u ≤C w ≡ u(x) ≤ w(x) for x ∈ C and u(y) = w(y) for y /∈ C
u ≥C w ≡ u(x) ≥ w(x) for x ∈ C and u(y) = w(y) for y /∈ C

Let A be the solution set of a clock constraint D. The operation stretch-down
⇓ on a subset C of clocks is defined as:

A⇓(C) = {u
∣∣ ∀w ∈ A. u ≤C w}.

The result of the operation for a DBM D is computed as follows:

D⇓(C) ={xi − xj ./ cij ∈ D
∣∣xj /∈ C}∪

{x0 − xj ≤ 0
∣∣xj ∈ C}∪

{xi − xj <∞
∣∣xj ∈ C ∧ xi 6= xj ∧ i 6= 0},

120

where the union of constraints corresponds to their conjunctions. The first
term keeps the upper bounds, the second term removes the lower bound,
and the third term removes the lower bounds from diagonal constraints. In
practice the third term is xi−xj ≤ max(xi) to keep the DBM in a canonical
form.

Figure 5.7 shows the difference between the reset and the stretch-down
operations. The zone used in this example is characterized by the constraints
{y ≥ 2, y ≤ 2, y − x ≤ 0, x− y ≤ 1, x ≥ 1, x ≤ 3} where we omit constraints
of the form xi − xi ≤ 0. The reset on y results in {y ≥ 0, y ≤ 0, y − x ≤
∞, x− y ≤ ∞, x ≥ 1, x ≤ 3}. The stretch-down operation on y is computed
as follows: {x ≥ 1, y − x ≤ 0, x ≤ 3, y ≤ 2} for the first expression, {y ≥ 0}
for the second, and {x− y ≤ ∞} for the third.

-.-.-.-.-.-
-.-.-.-.-.-
-.-.-.-.-.-
-.-.-.-.-.-
-.-.-.-.-.-
-.-.-.-.-.-

/./././././
/./././././
/./././././
/./././././
/./././././
/./././././

0.0.0.0.0.0
0.0.0.0.0.0
0.0.0.0.0.0

1.1.1.1.1.1
1.1.1.1.1.1
1.1.1.1.1.1

reset(y) stretch−down(y)
0 01 x x3 1 3

y y

1

2 2

1
2.2.2.2.2.2
2.2.2.2.2.2
2.2.2.2.2.2

3.3.3.3.3.3
3.3.3.3.3.3
3.3.3.3.3.3

Figure 5.7: Reset and stretch-down operations.

The wanted properties that come directly from the definition are for any
(x1, . . . , xn):

(i) {x1, . . . , xn}D ⊆ D⇓({x1,...,xn}).
(ii) D ⊆ D⇓({x1,...,xn}).

For the solution set A of a clock constraint D, the stretch-up ⇑ operation
is defined as:

A⇑(C) = {u
∣∣ ∀w ∈ A. u ≥C w},

which corresponds to the following operation for D as a DBM:

D⇑(C) = {xi − xj ./ cij ∈ D
∣∣xi /∈ C}∪

{xi − xj <∞
∣∣xi ∈ C ∧ xi 6= xj},

where the first term keeps the lower bounds and the second term removes
the upper bounds. We note that (D⇓(x))⇑(x) = free(D,x) for a clock x
with the free operation as defined in [Ben02]. The free operation removes all

121

constraints for a given clock. Figure 5.8 compares the stretch-up, stretch-
down, and the free operations. The stretch-up operation on y is computed
as follows: {x ≥ 1, y ≥ 2, x ≤ 3, x − y ≤ 1} for the first expression, and
{y − x ≤ ∞, y ≤ ∞} for the second.

45454545454
45454545454
45454545454
45454545454
45454545454
45454545454

65656565656
65656565656
65656565656
65656565656
65656565656
65656565656

7575757575757
7575757575757
7575757575757
7575757575757
7575757575757
7575757575757
7575757575757
7575757575757

85858585858
85858585858
85858585858
85858585858
85858585858
85858585858
85858585858
85858585858

9
9
9
9
9
9
9

:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:
:5:5:5:5:5:5:

;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;
;5;5;5;5;5;5;

<5<5<5<5<5<
<5<5<5<5<5<
<5<5<5<5<5<

=5=5=5=5=5=
=5=5=5=5=5=
=5=5=5=5=5=

y

0

y

0

y

0
stretch−up(y) stretch−down(y) free(y)

1

2

1 1

2 2

x x x3 3311 1

>5>5>5>5>5>5>
>5>5>5>5>5>5>
>5>5>5>5>5>5>

?5?5?5?5?5?
?5?5?5?5?5?
?5?5?5?5?5?

@5@5@5@5@5@5@
@5@5@5@5@5@5@
@5@5@5@5@5@5@

A5A5A5A5A5A5A
A5A5A5A5A5A5A
A5A5A5A5A5A5A

Figure 5.8: ⇑, ⇓, and free.

The property we obtain is D ⊆ D⇑({x1,...,xn}) for any (x1, . . . , xn). In
the following we use the notation DC to restrict the clock constraint D to a
subset of clocks C.

Having defined how to stretch up zones we define how to bound them
with maximal upper bounds. We compute these maximal upper bound as
the weakest invariant W (s) for a superlocation s ∈ S.AND(s) ∨XOR(s):

W (s) = Inv(s) ∨
∨

l∈η(s)

W (l),

where we define Inv(s) ∨ Inv(s′): for {xi − xj ./ cij} constraints of Inv(s)
and {xi − xj ≤ c′ij} constraints of Inv(s′):

Inv(s)∨Inv(s′) = {xi−xj ./ c′′ij
∣∣xi−xj ./ cij , x−y ./ c′ij , c′′ij = max(cij , c

′
ij)}.

We consider that Inv is total over the clocks in the sense that it contains
xi − xj ≤ ∞ for “free” clock constraints xi − xj ./ cij . Furthermore, the
definition omits details on ./ for simplicity, e.g.:

{x− y ≤ 3} ∨ {x− y < 3} = {x− y ≤ 3}.

We use WC(s) to restrict W over a set of clocks C. The idea is then to
stretch up a zone and then to restrict it the least possible, i.e., with W to
keep the over-approximation small and correct.

122

Abstract States. Our abstraction is based on superlocation: a set of
superlocation to be abstracted defines the abstraction. The abstracted vari-
ables and clocks are handled with respective arithmetic and symbolic oper-
ations that take into account the original behavior. We define the notion of
abstract state with respect to a particular set of abstracted location Ŝ to
map concrete states to the abstract domain:

Definition 12 (Abstract State) (ρ̂, µ̂, D̂, θ̂) is an abstract state of
(ρ, µ,D, θ) iff

(i) ρ̂ = ρ[∀l ∈ Ŝm.l 7→ ∅].

(ii) µ̂ = µ[∀v ∈ Vρ.v 7→ U] with VarSetρ(V̂ar) ⊆ Vρ ⊆ V̂ar.

(iii) D
Ĉlocks

⊆ D̂ such that D̂ satisfies the invariant

Iρ̂ ∧
∧

s∈Ŝ.ρ(η−1(s))=s

W
Ĉlocks

(s).

(iv) θ̂ = θ[∀l ∈ Ŝ.l 7→ ∅]. �

The location tree ρ̂ is given by removing abstract locations from ρ. The
variable mapping µ̂ is derived from µ by assigning U to a subset of vari-
ables. It is important to notice that this subset must contain at least the
variables that can be changed in the abstracted locations. The abstract
zone includes the concrete zone and satisfies the invariant on ρ. The history
has its abstracted locations removed. A mapping from concrete states to
abstract states is a particular choice for Vρ and D̂.

In practice, we choose a particular initial abstract state that corresponds
to Vρ = VarSetρ(V̂ar) for the variables and

D̂ = (D
⇓(ModifClkρ)

Ĉlocks
)⇑(Ĉlocks) ∧ Iρ̂ ∧

∧

s∈Ŝ.ρ(η−1(s))=s

W
Ĉlocks

(s)

for the zone. This initial zone satisfies the initial invariants and includes the
corresponding concrete zone on the concrete domain. We note this parti-
cular initial abstract state Ŝ0. The rules are then used to deduce successor
states that are abstract states of the concrete ones when the corresponding
transitions are taken.

Simulation Relation

To show that our abstraction preserves safety properties, we establish a
simulation relation between the concrete and the abstract model. To do so

123

we have to update the transition rules for the abstract model to take into
account the new operations we have defined. We now define the transition
relation for the abstract system. The rules of Section 4.5.1 are adapted for
the abstract model when an abstract location is active as described in the
following.

Action Rule. We add to the action of a transition (i) the variable assign-
ment to unknown and (ii) a ⇓ operation for additional clocks. We define
these in terms of update of the previously computed state:

(i) µ̂′ = µ̂[∀v ∈ ModifVarρ̂(V̂ar).v 7→ U].

(ii) D̂′ = D̂⇓(ModifClkρ̂)⇑(Ĉlocks) ∧ Iρ̂ ∧Wρ̂,

where Wρ̂ =
∧
s∈Ŝ.ρ(η−1(s))=s

W
Ĉlocks

(s). We update D̂ with the stretch-up

and stretch-down operations to enlarge the zone and apply the following
constraints: Iρ̂, the current invariant, and Wρ̂, the weakest invariant of the
abstracted superlocations. For states where the locations are not abstracted
the ⇑ operation is not necessary and is skipped. For these states, the addi-
tional constraints W

Ĉlocks
(s) will be empty. In addition an edge is said to

be enabled if its guard evaluates to true or U .

Delay Rule. We enforce the invariant term with information coming from
the removed automata. We rewrite the rule symbolically as:

Inv′(ρ̂, D̂↑
d
) ¬UrgentEnabled(ρ̂, µ̂, D̂↑

d
)

delay,

(ρ̂, µ̂, D̂, θ̂)
↑d−→ (ρ̂, µ̂, D̂↑

d
, θ̂)

where ↑d is the symbolic delay operation bounded by d and Inv′(ρ̂, D̂↑)
stands for

Inv(ρ̂, ν̂ + d) ∧
∧

s∈Ŝ.ρ̂(η−1(s))=s

W
Ĉlocks

(s).

Sync Rule. We use the previous sync rule and we add another rule to
enable the abstracted synchronizations. An edge guarded by a synchroniza-
tion can be taken in the abstract model if its matching channel is present in
ChanSyncρ̂. c is used for c! or c? and c̄ is the matching c? and c! respectively.

EdgeEnabled(t, ρ̂, µ̂, ν̂) c̄ ∈ ChanSyncρ̂(Ĉhan)
Async,

(ρ̂, µ̂, ν̂, θ̂)
t−→ Tt(ρ̂, µ̂, ν̂, θ̂)

where t = S
g,c,r,u−−−−→ S′.

124

Urgency. If we consider a state and an abstraction of it, we have by defini-
tion of the abstract operations the property: guard of concrete edge satisfied
implies guard of corresponding abstract edge satisfied, given that the ab-
stract edge was not abstracted. The same holds for the invariant conditions
since it is relaxed in the abstract model. When considering synchronization
this holds too.

Now if we take into account urgency, some delays might be disabled.
If we examine Figure 5.9 urgency may conflict in the abstract model. Let
us consider the concrete model with S having a nested automaton and the
abstract model without the nested automaton. It is possible in S.w to wait.
If the state is S.A and g is disabled then it is possible to wait too. However,
if g is enabled, it is not possible to wait due to urgency. The abstract model
has c? always enabled if S is active so we need to disable urgency when
urgency may be enabled by some automaton that has been abstracted.

x<5

w A

B

S

u,c?

x<5

g,c!

Figure 5.9: Urgency conflicts.

Let us consider what our rules state for this case. The delay rule is
enabled if there is a pair of edges with c! and c? enabled. For the abstract
case there is no such pair so the delay will be enabled. If there is such a
pair not coming from the abstracted automaton there will be no conflict in
terms of allowed delays. The Async rule will enable the edge as it should
be and if there is another edge (not abstracted) the sync rule may enable it
too.

In conclusion, if any abstracted edge may enable urgency in the concrete
model, this urgency is always disabled in the abstract model: if no synchro-
nization is used then the edge disappears ; if synchronization is used then it
is ignored by the delay rule since the edge disappears as well. We have then
the property that any delay enabled in the concrete model will be enabled
in the abstract model for a state and any of its abstractions.

125

Theorem 1 (Simulation) ∀s ∈ Statespace, s is simulated by any of its

abstract states. We note ŝ one of them: ∀α, whenever s
α−→ s′, then ŝ

α̂−→ ŝ′

and s′ / ŝ′. �

Proof of Theorem 1. Let s be any concrete state and ŝ an abstract
state of s. For any transition s

α−→ s′, it is possible to take the corresponding

transition ŝ
α̂−→ ŝ′ on the abstract domain by executing the corresponding

edges if they are not abstracted, or a τ action if they are abstracted. In
particular, the Async rule takes care of synchronizations where one of the
two edges involved is abstracted. Concerning the delay, the abstract delay
rule is weaker than the concrete one, which allows delays of at least the same
duration. By definition, the obtained state is an abstract state of s′. �

Corollary 1 The abstracted model is a safe over-approximation of the con-
crete model: S0 / Ŝ0. �

Corollary 2 For safety properties φ: Ŝ0 |= φ⇒ S0 |= φ. �

Particular Cases. We examine what happens in particular delay/reset
cases. Figure 5.10 shows what happens in two scenarios. In the first scenario,
we start from a given zone (1) resulting from a transition to a state with
the location S.a active. The upper bound on the clock y depends on the
invariant on S. We apply delay bounded by the invariant (2). Then we can
take a transition taking the edge that leads to S.B and we delay again (3).
These are transitions involving internal edges of S. Let us consider what the
abstract model (abstracting S) does: y may be reset so stretch-down(y) is
applied. There is no bound on x and y has y < 2 so stretch-up is bounded
only for y. For the further abstracted internal actions, the obtained zone (4)
includes (1),(2), and (3). In the second scenario an external edge leading to
C is taken, thus having an external reset. The reset (5) is then applied on
the abstract model normally. However, the stretch-up applied by the action
rule restores the zone (6) as an over-approximation. Further internal actions
are still approximated.

Application. The application of the abstraction is to be able to deduce
safety properties for the concrete model from the abstract model. With the
same notation as Definition 6:

M /A(M) A(M) |= ∀�φ
M |= ∀�φ

126

x

y

0
reset(y)

external

BCBCBCBCBDCDCDCDCD

ECEFCF

GCGCGHCHICICICICICI
ICICICICICI
ICICICICICI

JCJCJCJCJ
JCJCJCJCJ
JCJCJCJCJ

KCK
KCK
LCL
LCL
MCMNCN

OCOCOCOCOCOCOCOCOCO
OCOCOCOCOCOCOCOCOCO
OCOCOCOCOCOCOCOCOCO

PCPCPCPCPCPCPCPCPCP
PCPCPCPCPCPCPCPCPCP
PCPCPCPCPCPCPCPCPCP

QCQCQCQCQCQCQ
QCQCQCQCQCQCQ
QCQCQCQCQCQCQ

RCRCRCRCRCRCR
RCRCRCRCRCRCR
RCRCRCRCRCRCR

SCSCS
SCSCS
SCSCS

TCTCT
TCTCT
TCTCT

UCUCU
UCUCU
UCUCU

VCVCV
VCVCV
VCVCV

WCWCWCWCWCWCWCWCWCW
WCWCWCWCWCWCWCWCWCW
WCWCWCWCWCWCWCWCWCW

XCXCXCXCXCXCXCXCXCX
XCXCXCXCXCXCXCXCXCX
XCXCXCXCXCXCXCXCXCX

x

y

0
reset(y)+delay+invariant

internal−>nothing more

x

y

0
delay+invariant

y:=0 y:=0

x

y

0
reset(y)

x

y

0
stretch−down(y)+stretch−up(x,y)+bound

A B

y<2

S

C
y:=0

external reset
internal reset

(1) (2) (3)

(4)

(5) (6)
y

0 x
stretch−up(x,y)+bound

YCY
YCY
ZCZ
ZCZ

Figure 5.10: Resets and delays for concrete and abstract models.

127

if a model M is simulated by an abstract model A(M) and A(M) satisfies
a property of the form ∀�φ, then M also satisfies the same property. φ is
property that characterizes states, it has no TCTL quantifier.

5.2.3 Spurious Traces

A spurious trace is a trace obtained from the abstract model that does not
have a corresponding valid trace for the concrete model. The only way to
confirm a (counter-example) trace is to try to generate the corresponding
concrete trace, which is, to use the reachability algorithm on the concrete
model. To reduce the cost of a such check the abstract trace can be used
to guide the reachability. For this purpose we propose the notion of guided
reachability with respect to an abstract trace:

Definition 13 (Guided Reachability) The transition S
α−→ S′ may be

chosen if Ŝ
α̂−→ Ŝ′, which corresponds to try to simulate the abstract model

with the concrete one. �

Unfortunately this could be as expensive as the original reachability
problem on the concrete model if the abstracted part of the model is the
main source of states in the statespace. However, this should not happen in
practice because the abstraction are localized and models usually follow some
logic, which gives order and dependency between different abstracted/non-
abstracted parts of the model.

Another approach we used in Chapter 2 is to use another kind of model
reduction such that the reduced model is simulated by the concrete one:
R(M) /M as for the case study (under-approximation in this case), instead
of M / A(M) for the abstraction we defined here. Such a reduction is able
to check for paths in the reduced model that are guaranteed to exist in the
concrete model. However, if a path is not found in R(M), the problem of
the spurious trace remains because this path may still exist in M . This
approach is useful to confirm traces that are “likely” to exist in the concrete
model, where “likely” is judged by the modeler.

5.2.4 Implementation

The implementation of our abstraction technique described in Section 5.2
consists of two parts, namely static and dynamic analysis. The static ana-
lysis is done when parsing the model to collect static information related to
the structure of the model. The dynamic analysis is based on the abstract
semantics.

128

Static Analysis: Collect Information

In this phase superlocations are equipped with a record of their nested ac-
tions and synchronizations. This record is made of the lists of assigned vari-
ables, reset clocks, weakest invariants, and possible synchronizations. The
assigned variables are only those that do not belong to the superlocations
since they are completely removed in the actual instance. The same holds
for the reset clocks. The weakest invariants are computed for all the non-
local clocks for all locations where delay is possible, i.e., non urgent and non
committed locations. All the possible non-local channel synchronizations
are gathered.

The instance is built with the superlocations as basic locations equipped
with this extra information instead of a nested automaton. The problems
that do not appear here come from all the parameterized names (variables,
channels, clocks) that must be mapped without creating the instance of the
nested automaton.

Dynamic Analysis: Reachability

The successor computation uses the pool of possible synchronizations at-
tached to abstracted locations to match for channel synchronization expres-
sions, i.e., c? matches c!. The synchronization is recognized although an
edge may be missing syntactically, as described in the semantics.

The variables present in the set of possibly modified variables are set
to a special unknown value when locations that have such sets are entered.
The operations on variables are updated to include the abstract semantics
to manipulate them. This is done in an extension of the graft/cut filter for
simplicity.

The clocks present in the set of possibly reset clocks are subject to the
⇓ operator when locations having such sets are entered. This is done along
with the variable reset to unknown. The ⇑ operation is done along with the
delay ↑ operation, i.e., in the delay filter.

There is no need to do more for the location vector because the nested
automata instances simply do not exist.

Experimental Results

We applied the abstraction to the bus coupler model of the case study of
Chapter 2. The results show that the abstraction does not work as one could
expect in every case. We analyze the limits of the abstraction.

129

Limits of Abstraction. The abstraction we use is based on the hierar-
chical structure of a model. A superlocation is abstracted and information
concerning internal variable assignments and clock resets/delays is added
to the abstracted model. This information allows execution of the abstract
semantics.

In the best case, the abstraction simplifies greatly the exploration since
potentially many locations, and more importantly cross-products of these
with other automata, are replaced by one (abstract) location. Furthermore,
some variables are set to an unknown value that does not propagate “too
far” and does not introduce chaos in the model. Concerning the clocks, the
abstract zone always includes the non-abstract zone.

In the worst case, removing locations will introduce chaos and break the
order of the automaton. This is done via the side-effects on the variables that
are used for further computation. The unknown value may propagate and
produce many combinations with other known values. Furthermore, much
more transitions may be enabled, allowing greater freedom in the abstracted
model. This is disastrous if the size of the non-abstracted automata is large,
as it is the case in the bus coupler model. If the abstracted locations have
synchronizations with the rest of the model that control order, then this
is guaranteed to bring chaos to the model since these synchronizations will
always be enabled.

Limitation from the Model-Checker. Apart from the reasons coming
purely from the model, there is another reason coming from the model-
checker that may make the abstraction fail. Let us consider Figure 5.11.
It represents four states A1, A2, A3, and A4, with possible values for the
variables a, b, c. The state A1 does not contain abstract locations and has a
given known variable vector. The states A2, A3, and A4 contain an abstract
location and have different unknown sets. After taking a transition to B,
we obtain different states where the only difference comes from the values
of these variables. Now comes a problem similar to the zone inclusion of the
symbolic part of the states: if we have a variable set to unknown (U in the
figure), then this case contains all other possible cases. We have similarly
for zone inclusions, < 1, 2, 3 >⊆< U, 2, 3 >⊆< U,U, 3 >⊆< U,U,U > so it
is necessary to explore only the case with < U,U,U >. However, we have a
limit in the engine at the present time because the discrete part of a state
is used to compute a hash value to quickly find the state and then apply
inclusion checking on the zones, see chapter 3. Limiting the hash to the
control location part only and then performing an inclusion checking on the

130

B

A1

A3

A4

<a=1,b=2,c=3>

<a=U,b=2,c=3>A2

<a=U,b=U,c=3>

<a=U,b=U,c=U>

Figure 5.11: How abstraction may break down.

variables requires much more changes and results in a huge performance hit.
The performance hit is explained by the sharing results we have from 3.3:
we know that given one control location, there are many possible variable
combinations.

Generation of the Statespace

Figure 5.12 shows the structure of the bus coupler model. The root is named
system. We have the tasks for the couplers for the ports 1 and 4, along
with the field interface automata. The figure is basically the same as in
Figure 2.12 with numbered XOR locations. The FIxx automata are rather
complex (24 locations each), the sublocations of the couplers are simpler
(between 3 and 17 locations). The semaphores have 2 or 4 locations. The
channel synchronizations follow the communication given in Figure 2.12.

As there are 4096 ways to configure the systems with abstract/non-
abstract locations we limit ourselves to a few interesting cases only. Ta-
ble 5.3 shows the different results obtained. We conduct the experiments
on a Celeron 633MHz equipped with 192MB of memory under Linux 2.4.18.
We give the abstracted locations in the table. An empty case means no ab-
straction. We classify the different locations as semaphores, FI, and ports.
Furthermore, to classify how the statespace explodes we give for the possible

131

receive_from_FI

ack_FI ack_bus send_to_FI

receive_from_bus

send_to_bus

sema_fi_port1

sema_port1_fi

sema_port4_fi

sema_fi_port4

FI_sender FI_receiver

1

2

3

4

5 6

7

8 9

10

11

12

coupler_port4coupler_port1

system

Figure 5.12: Bus coupler model structure and abstractions.

cases the (approximate) maximal size of the waiting list where it stabilized.
The property checked is A[] true to generate the whole statespace.

Setup Semaphores FI Port 1 Port 4 Consumed Waiting

1 99s/86M 13000

2 1,3 199s/142M 40000

3 10,12 61s/45M 40000

4 1,3,10,12 155s/70M 40000

5 2,11 300s/66M 70000

6 4,5,6 Stopped -

7 7,8,9 Stopped -

8 1,3 2 10s/14M 2700

9 1,3 4,5,6 48s/49M 17000

10 1,3 2 4,5,6 2s/6M 600

11 10,12 11 3s/9M 700

12 10,12 7,8,9 22s/29M 10000

13 10,12 11 7,8,9 <1s/5M 100

14 1,3,10,12 2,11 <1s/4M 100

15 1,3,10,12 4,5,6 7,8,9 7s/9M 5600

Table 5.3: Abstraction configurations and results. Stopped means we
stopped the model-checker manually.

The model has all the “bad” characteristics for the abstraction: it has
only shared variables, the side-effects propagate, the different superlocations
synchronize much with each other, and the size of the different locations is
such that it is favorable to explosions due to introduced chaos in the behavior
of one component. The base reference for the analysis is the setup (1), the
full model without any superlocation abstracted.

(2) and (3) abstract the semaphores on the port 1 and the port 4 re-
spectively. The waiting list size shows the explosion of the successors due

132

to the removal of synchronization. (3) explodes less than (2) because it has
no acknowledgment back, which give a lighter synchronization dependency.
As the components rely heavily on semaphores, removing them only gives a
bad configuration. The case (4) is in between (2) and (3), as expected.

(5) abstracts only the FI parts. As the behavior of the couplers depends
on the FI, and because of the shared buffer they use to communicate, this
configuration creates more chaos. The successor computation explodes but
not the statespace because the propagation of unknown stabilizes quickly.

(6) and (7) are the worst cases. These abstract the core of the couplers,
so removing them leaves the FI on both sides completely free with their
respective semaphores totally free as well. The semaphore counters are free
to combine and the unknown variables are free to combine with them too. In
short the couplers regulate the synchronization and the order of the whole
model.

(8) and (11) abstract the FI and the corresponding semaphores. This is
a good configuration where a coupler sees the FI with the synchronizations
as a black box. (11) is substantially faster as expected from the comparison
between (2) and (3).

(9) and (12) abstract the couplers and the corresponding semaphores.
This is a good configuration where a FI sees the coupler with the synchro-
nization as a black box. The gain compared to the full model is explained by
the results obtained from (6) and (7). We still see with the help of the max-
imal size of the waiting lists that the couplers are important in controlling
the order of the model.

(10) and (13) correspond to the complete abstraction of one port. This
is a logical abstraction where one communicating side sees the other as a
black box. As expected, this is a good configuration.

(14) abstracts both FIs and combines the gains of (8) and (11). This
allows us to focus on the communication between the couplers only and
forget the rest of the system.

(15) abstracts both couplers and combines the gains of (9) and (12).
This allows us to focus on the FIs alone. The communication from one FI
to the other goes through a black box so at this level of abstraction it is
loose.

Verification of the Properties. The analysis of the statespace shows
how the models explode or are reduced. We study the six main correct-
ness properties checked in Section 2.3.2. It is important to see how the
abstraction behaves now with respect to important properties of the model.

133

Table 5.4 shows the results for these properties on the different configu-
rations. The safety properties (A[] φ) marked yes are satisfied and those
marked no are not. Properties marked X correspond to those that refer to
abstracted locations and therefore can not be checked.

Setup Safety 1 Safety 2 Safety 3 Safety 4 Safety 5 Safety 6

1 yes yes yes yes yes yes
2 yes no no no no no
3 yes yes yes yes yes no
4 yes no no no no no
5 X yes yes yes yes X
8 X yes yes yes yes yes
9 yes X X yes yes yes
10 X X X yes yes yes
11 yes yes yes yes yes X
12 yes yes yes X X yes
13 yes yes yes X X X
14 X yes yes yes yes X
15 yes X X X X yes

Table 5.4: Verification results on the abstract models.

The properties hold except for the configurations (2) and (4). (2) corres-
ponds to the case where the FI and the coupler of port 1 are unsynchronized.
As the protocol is supposed to synchronize these components, it is normal
that invalid values reach the coupler. The fact that properties 3 to 6 are
violated comes from the propagation of this invalid value. (4) is similar. In
the configuration (3) the last property does not hold for the same reason as
for (2): the coupler and the FI are unsynchronized so invalid values may be
sent.

It is interesting to note that if we have good configurations, where the
synchronizing semaphores are abstracted with one side (coupler or FI), then
the properties hold.

Applying Abstraction. Considering the results of our abstraction on
the bus coupler case study, we can now define how to apply successfully this
abstraction. This abstraction is suited for models with limited side-effects
on variables: a structured model with local variables gives good results.
The models should also have limited synchronization between components.
For this class of model, a good abstraction configuration is given by the

134

logical structure of the model. As the bus coupler case study shows, if
one component relies heavily on another for communication, it is logical
to abstract them both. Abstraction on blocks logically connected together
works well because the propagation of the (potential) introduced chaos is
contained.

Pacemaker Example

Although the hierarchical model performs already well for the pacemaker,
we tried the abstraction on the pacemaker. The verification is faster and
consumes slightly less memory. However, for such an example the important
property that checks for the heart beat is never satisfied. This comes from
the fact that this example is time sensitive and approximating on time incurs
a small error enough to trigger bad behaviors. Our experiments included
abstractions for the pacemaker superlocations AVI, VVT, and VVI.

5.3 Conclusion

We define and formalize a new abstraction based on our hierarchical timed
automaton. This abstraction allows over-approximated analysis of models
and is appropriate for models that are too large for direct analysis. Its im-
plementation gives good results for appropriate abstraction configurations.

We discussed some of the issues in implementing an engine support-
ing hierarchical timed automata. Our current prototype outperforms the
non-hierarchical Uppaal when it checks hierarchical models while Uppaal
checks their corresponding flattened models.

Uppaal code is changing at a fast pace and we are integrating new
algorithms and structures. In particular the tree representation is more
compact. This work is in progress for the next major release of Uppaal
since basic structures are changed.

135

136

Chapter 6

A New Tool Architecture

Based on the theory of timed automata [AD94] a number of tools have
been developed such as Uppaal [LPY97], Kronos [Yov97], or RED [Wan01].
Other than timed automata, there are other tools in the model-checking
arena such as HyTech [HHWT97, AHH96], Murphi [DDHY92], and
Spin [Hol91, Hol97]. Every tool has its specific characteristics and focuses
on a particular aspect: the timed automata are well suited to handle timed
models where clocks are appropriate models time, the hybrid tools are suited
for models where real-valued variables that model continuous environment
parameters are important, and the discrete tools are best at verifying models
written in a formalism close to programming languages or even programs
written in C [HS00].

Various techniques and algorithms have been developed to improve
model-checking for these tools such as approximate analysis [WT94], com-
pact data structures [LLPY97], clock reductions [DY96], symmetry reduc-
tion [ID96, ID93], partial order reductions [BJLY98, Min99], distributed
model-checking [BHV00], and many others. Whereas publications are rich
in algorithm descriptions, theoretical results, and experimental results, there
has been little information on how these optimizations fit together into a
common efficient architecture. Implementation of algorithms is as impor-
tant as the algorithms themselves and this is the reason why we present our
architecture.

In this chapter we present the architecture of the Uppaal tool that can
be used more generally in any model-checker. It is a flexible architecture that
is appropriate for research experimentation by allowing multiple orthogonal
features to be tested. We explain the implementation of Uppaal and how
it can be extended to accommodate new features.

137

6.1 A Pipeline Architecture for Uppaal

The first Uppaal version was released in 1995 [BLL+95] and it was then the
first verification tool for timed automata where the system could be mod-
eled graphically. In 1999 the architecture was changed to a client-server, see
Figure 1.5. Finally, in the past two years the internal structure has been
changed around a data flow-centric architecture. We remind that the Up-
paal tool is the result of a team work and many people have been involved
in its development.

We present the pipeline architecture and the parser library that accepts
the input language. Then we discuss the development of the tool.

6.1.1 Implementation

The main design goals of the engine are flexibility and efficiency. It should be
easy to integrate several features for experimenting on different algorithms
and it should be fast enough to deal with large models. Most often, fast
enough means to consume as little memory as possible because the real
bottleneck of computers is the memory system. The older engine was a
more or less direct implementation of the reachability algorithm given in
Figure 3.1. Such an implementation has several disadvantages:

- The implementation became more and more complicated as new op-
tions were added.

- The checks for options were done in the main exploration loop, slowing
the verification and cluttering the code.

- Experimental extensions and structures required major changes due
to new algorithms.

- Maintenance was difficult because of the mixture of different options.
- Options that are orthogonal in theory, i.e., used in conjunction with

each other, could not be combined together orthogonally in practice.

The architecture was then restructured as a pipeline, idea borrowed from
computer graphics. The pipeline incarnates the natural data flow of the
reachability algorithm and its basic blocks are reused for the liveness al-
gorithm. The architecture is shown in Figure 6.1. Following the termino-
logy for pipeline architecture, the different components are either filters or
buffers, represented as boxes in the figure. These components are detailed
in the next section. A filter has a put method to receive data. The processed
data is then sent to the next component. A buffer is a passive component
receiving data with a put method and offering data with a get method. A

138

Reachability

Transition

Expand

Expression

SuccessorTraceStore

Delay Normalization Progress ActiveClockReduction

PW-List

Query

Fork

Only if
 unexploredPush flow

Pull flow

EnumeratePump

Figure 6.1: The pipeline architecture of Uppaal. Transitions are generated
from the states provided by the PW-List buffer. The successor states are
then computed and their trace is optionally kept. Delay is applied to these
states and the normalization on the zones is applied. Optionally the progress
of the verification is displayed before applying the active clock reduction
algorithm. If the resulting states are unexplored states then the Query filter
checks properties on them. The Expand filter serves to reuse previously
explored states when checking several properties.

pump controls the data flow by getting states from the buffer and injecting
them to the transition generator. The pipeline is a data pipeline and involves
no concurrency in contrast with common pipeline design seen in processors.
The design may accommodate concurrency but we believe it is inefficient
due to the amount of data flowing between the different concurrent units
and due to load balancing issues.

The benefits of using a common filter and buffer interface are flexibility,
code reuse, and efficiency. The flexibility comes from the possibility to
exchange a component for another to test different algorithms. Furthermore,
the pipeline can be configured at runtime to use a particular component
instead of another that implements a given algorithm. Such a configuration
allows us to skip completely some stages in the pipeline if they are not
necessary. The code reuse comes from the reuse of the components inside
other building blocks. For instance the Successor filter is used by the
reachability checker, the liveness checker, the deadlock checker, the Expand

filter, and the trace generator.

The programming language used to implement Uppaal is C++ [Str97].
This object-oriented language fits perfectly to the pipeline design. Figure 6.2
shows the class diagram for a few important classes. The classes are in fact
C++ templates and are typed for the different data flowing through the

139

PWList Transition

Source<OUT>

bool tryGet(OUT *)

Sink<IN>

bool tryGet(IN *)

Filter<IN,OUT>

void setSink(Sink<OUT> *)

Sink<OUT> sink

Buffer<IN,OUT>

int getSize()

int size

Figure 6.2: Class diagram for the pipeline.

different components. The Source is defined to generate a type OUT and
the Sink to receive a type IN. The Buffer receives and offers data. It is
naturally a sink and a source. The Filter receives data of type IN so it is
a sink and it forward the processed data to the next sink (generally a filter
too, but may be a buffer). The next sink receives the output type OUT from
the filter. The filter has a setSink method to configure the pipeline. The
buffer has a getSize method to check for its size, generally it is the length
of the waiting list. The PW-List component as described in Section 3.1.1 is
a (typed) buffer. The Transition component is a filter.

Two noticeable features of the sink and the source interface definitions
are their respective tryPut and tryGet methods. These methods return
booleans as results, which allows us to use conditional components such as
the Fork component. A tryGet on the buffer may fail if the waiting list
is empty, in which case the argument is not written and the reachability
terminates. A tryPut to the buffer may fail if the state has already been
explored, in which case it is discarded.

Technically, these interfaces are virtual, which incurs a performance pe-
nalty in C++ because the call of such methods must be resolved dynamically
(table lookup). However, it is largely offset by the benefits we named previ-
ously. The performance hit is negligible. It even improves performance in the
cases where a component is skipped. It also alleviates the need to allocate
memory temporary since the stack is used. For example, if we consider the
successor generator component Successor, the older implementation had
to store the different successor states in a vector and then process them.

140

Now they are sent though the pipeline one by one, as they are computed
on-the-fly.

6.1.2 Typed Data Flow

We go now through the reachability pipeline and presents the different data
types used. In particular we describe how we limit copying of data.

GlobalStateReference

States are pumped out from the PW-List component to compute the suc-
cessor states. The type of the component is actually a GlobalStateReference
(GSR). The GSR is an interface whose implementation depends on the kind
of PW-List one uses. The GSR is used for two purposes: (1) to reduce copy
of data, and (2) to abstract from data representation. The interface has two
methods:

void writeDiscrete(GlobalState *) and
void writeSymbolic(GlobalState *).

The state reference itself is not a copy of a state. It is a light-weight inter-
face used to copy only the needed data when necessary. When computing
transitions, the guards of the edges are evaluated. To do this, the discrete
part has to be copied first. If the guard is false then there is no need to
copy the symbolic data (zone), and we can try another edge without any
further copy. If the guard is true then the symbolic part is copied too. We
repeat this for every successor. The internal representation of a GSR de-
pends completely on the PW-List and the low level structures used to store
actual data. By using this interface it is easy to try any storage algorithm.

Successor

The Transition component generates Successor data. Those are pairs made
of the global state representation (GlobalState) and a list of edges to take for
a given transition. This is fed to the Successor component that executes the
actions on the edge(s) and computes the next successor state. The output
type is still a Successor to keep track of the taken edge(s). Separating the
successor computation in two is more flexible and allows structured code.
Furthermore, it is easy to change semantics by changing the Transition

component only, to adopt for example a maximal progress semantics.
The TraceStore is an optional component and is used to record traces

of states. The Delay filter applies the delay operation on zones if delays

141

are allowed in the given state. The zone is then normalized [Ben02] by the
Normalization filter and we obtain a WaitingState.

WaitingState

A waiting state is a global state with additional information intended to
tune the use of the passed list. For some optimizations, like [LLPY97],
it is desirable not to store states in the passed list. Those waiting
states go through optional filters: the Progress filter displays the cur-
rent progress of the search by printing the size of the current waiting list.
The filter ActiveClockReduction applies the active clock reduction tech-
nique [Yov97]. The waiting state is then sent to the PW-List via a Fork

component.

The PW-List receives a state and it stores it in some internal representa-
tion, which is unknown at this stage of the pipeline. This is important to al-
low different optimizations based on on sharing, graph reduction [LLPY97],
or approximations like hashing [Hol98, WL93] or convex-hull [Bal96]. The
PW-List, with respect to its semantics given in Section 3.1.1, may reject
states and not store them because they were already explored or accept
them. If a state is accepted, it is copied and the original state is available
for modifications. If a state is rejected then the pipeline discards it. The
Fork conditional filter sends the state to the query checker only if the state
was accepted, in which case the query checker Query may modify the state
for evaluation (zone operations are destructive).

The PW-List offers another capability to enumerate previously explored
states. This is used to feed the Expand filter when several properties are
examined. In this case the engine can skip to generate again the whole
statespace and compute only parts of it. The Expand filter is actually a
compound object made of other internal filters. We do not go into further
details.

General Design

The pipeline is adapted for the Uppaal model-checker and is tuned to handle
time. However, its principles are general enough to be reused in other model-
checkers. The PW-List structure can be used in any model-checker, along
with the global state reference interface for flexibility with respect to memory
management. The flexibility of the transition and successor filters can be
used to carry out different experiments on semantics.

142

6.1.3 Parser Library

Along with the pipeline, Uppaal features a separated parser library, dis-
tributed under the LGPL license. This library allows other tool implemen-
tors to use the TA language as an input language. The library supports the
TA, XTA, and XML formats. The library is built on an abstract interface
that is independent of any internal representation of the system. It offers one
large interface that is automatically called upon parsing. This library allows
greater flexibility for Uppaal and for other tools that adopt the library.

6.2 Extensions

We discuss the possible extensions of Uppaal based on its current architec-
ture.

6.2.1 Plugin

Semantics Changes

The flexible pipeline structure of the engine allows semantics changes in
the form of plug-in component. We are working on defining an interface to
change parts of the pipeline dynamically. This means that it is possible to
use a module as a plug-in to replace for example the default Transition

filter. This allows us to turn the engine into a more UML verification engine
if channels are handled like events and maximal progress is implemented.

Engine Reuse

The engine itself can be used as a plug-in within other tools. The Times
tool1 is such an example. The Times tool is a schedulability analysis tool
and it is using the engine for its reachability analysis capabilities on timed
automata.

6.2.2 Hierarchy

Implementation on hierarchical timed automata has been done with this
architecture. The implementation is a prototype and we discuss further ex-
tensions of the current version. These extensions all respect the architecture
of the tool.

1www.timestool.com

143

Data Type

To optimize on the internal hierarchical tree representation, special dynamic
data types are in development. These data are dynamic in the sense that
the set of defined variables and clocks depends on a given current state
configuration. This change has no impact on the architecture. Dynamic
insertion/removal of clocks and variables are implemented and will be in-
corporated to the state representation.

Graft/Cut

The graft/cut operations defined in the semantics are currently implemented
as a separate filter that processes states, following this way the architecture
philosophy. As a side-effect of this implementation, disabling the filter for
non-hierarchical models incurs no overhead at all for such models.

PW-List

The PW-List itself does not need to be modified to accommodate for opti-
mized hierarchical representation. However, the state reference needs to be
updated to reflect the data type changes.

6.2.3 New Algorithms

We are investigating on an implementation of PW-List that stores the states-
pace on disk. This is similar to [SD98] but it is defined as a PW-List imple-
mentation. This allows for different caching policies to keep only parts of
the statespace in main memory and use sequential synchronizations with the
disk. We are developing new experimental normalization algorithms for the
symbolic zone representation. In practice this means to swap the normal-
ization filter for a new implementation. We may change the way the query
filter handles properties to check for several properties at the same time.
Again, this kind of changes involves swapping one filter in the pipeline.

6.3 Conclusion

We have presented a new architecture applicable for model-checkers. The ar-
chitecture is shown to be flexible and adapts to changes and new algorithms.
This is an important research means since it allows us to experiment with
different algorithms and combine them to study their influences on each
other. The development of new theories and algorithms for model-checking

144

is important but it must be followed by the development of corresponding
implementations.

145

146

Chapter 7

Conclusions

The original goal of this work was to develop a modeling language and a
model checker for timed systems that may contain hierarchical structures.
In order to find the limits of Uppaal and to evaluate the real needs in terms
of modeling capabilities, we started with an industrial case study to check
an existing product, a fieldbus protocol. The protocol was too complex to
be modeled at once and the model-checker could not cope with the huge
size of the statespace. The study was carried out on the core of the proto-
col implementation, which involved 5541 lines on Modula-2 and 151 pages
of documentation. We applied abstraction techniques manually to verify
the models step-by-step. Right from the start we realized that we had to
face the questions: how faithful the models we developed were with respect
to the implementation and what we wanted to verify. We constructed the
models from the implementation but we had to approximate the behaviors
for some parts of it, e.g., the system calls. Upon validation of the models,
the engineers were the judges and it was particularly delicate as we were
dealing with a real product. Slight miss-interpretations on semaphore syn-
chronizations for example lead to behaviors in the models that were refuted.
Furthermore, statements claiming errors were difficult to be accepted and
lead to miss-understandings. Indeed sometimes what we call errors were not
real bugs in the software and they were tolerable behaviors that could be
improved. Apart from this, the engineers enjoyed the tool and its intuitive
graphical language.

From this project we realized that we needed to handle structured mo-
dels. We designed hierarchical extensions to support such models with the
goal to implement them in Uppaal. To check that the language met our
expectations we implemented a flattening algorithm (detailed in [Möl02])

147

to check hierarchical models. We tested it on a pacemaker example. Then
we tried to implement it directly in the model-checker. It turned out that
firstly, this version of the language was difficult to implement due to its
complex semantics and secondly, that the Uppaal engine was not suitable
for it by far. We had then to optimize it first and bring new structures and
algorithms into the engine. Then we got rid of the source of the complexity
in the hierarchical extensions while keeping sufficient expressivity. This sim-
plified version was implemented successfully and we could experiment with
the bus coupler and the pacemaker.

To utilize the hierarchical structure in the engine we have developed an
abstraction technique based on the hierarchical language to handle systems
for which direct verification failed. The idea was to achieve an automatic
abstraction similar to the one we did manually in the case study. The al-
gorithm implemented works but there is still room for improvement. There
are also open issues left concerning the exact verification on how to exploit
more information from the hierarchy, for example with local search. We
have to find the advantage the hierarchical structures could give over the
conventional partial-order reduction, which in our case is particularly diffi-
cult when applied to timed systems. Simple solutions have proven to work
best until now, for example the notion of committed location. This is an
important aspect not to be neglected because of efficiency and correctness
issues of the practical implementation problems. We intend to continue to
improve the tool with this philosophy.

In this project we succeeded in defining and implementing a hierarchical
language to model timed systems. The model-checker is able to handle the
model using the hierarchical structure natively. We also improved the per-
formance of the current Uppaal both in speed and memory usage by means
of new structures and implemented an automatic abstraction technique. The
remaining goal is how to better exploit hierarchy for exact verification. We
currently exploit this information only for approximate verification.

Future Work

The tool Uppaal is the result of a team work contributed by many people
from Uppsala and Aalborg universities mainly. There are occasional coop-
eration with other universities to try new algorithms. The Uppaal source
code has matured and changed a lot since its early beginning in 1995. The
future work from now is to rewrite and re-organize the code to set up a new
base for the upcoming 8–10 years. The parser library is in good progress.
The PW-List library incorporating all the previous optimizations is almost

148

complete. Furthermore, as we are developing a tool for formal verification,
it is also important to ensure its correctness. We are improving the imple-
mentation by using software components and better testing for this purpose.
Concerning the future work related to this thesis, we are working on new
data structures for a better hierarchical engine. These include an optimized
tree structure and special management of dynamic data. These structures
require a radical change in the Uppaal engine. This opens further develop-
ments based on hierarchical information exploitation.

The next major Uppaal version, i.e., Uppaal 4.xx, will incorporate
all the features presented in this thesis in an optimized version, plus all
the previous optimizations discussed in this thesis. Furthermore, we are
working on new experiments such as distributing statespaces on disk and
are addressing the ever growing wish list of features for Uppaal. The most
recent features include improvements of the modeling language (C syntax)
and the query language.

149

150

Chapter 8

Appendix

8.1 Automata Figures of the Case Study

loop

gotMsg

sending
x<=750

timedout1

write

waitDataR
x<=750

timedout2

acking x<=5000

start

readnottrans readtrans

nacking x<=5000

x:=0,
store:=transparent

deliver?

devmbr:=1

cpumbr==0

x:=0

cpumbr==1,
x==750 x:=0

devdataW:=1,bctrans:=store

cpudataR==0,
x==750 x:=0

store:=0,
devmbr:=0

store:=0,
bctrans:=-1,
devmbr:=0,
devdataW:=0

bctrans:=-1

cpudataR==1,
bctrans==0
x:=0,bctrans:=-1,store:=0

cpudataR==1,
bctrans==1

x:=0,bctrans:=-1,store:=0

devmbr:=0,
devdataW:=0

cpudatalost==0
devmbr:=0,x:=0,
devdataW:=0

cpudatalost==1

devmbr:=0,x:=0,
devdataW:=0

x:=0

x:=0
nack!

x:=0

x:=0
ack!

Figure 8.1: The template of the slave coupler.

151

loop

waitMBR
x<=1000

timedout1

write

waitDataR
x<=2000

timedout2

OK

start

cpumbr:=1,x:=0

x==1000,devmbr==1
x:=0

cpumbr:=0

devmbr==0

x:=0

transparent:=0,cpudataW:=1
transparent:=1,cpudataW:=1

x==2000,
devdataR==0
x:=0 devdataR==1

x:=0

cpumbr:=0,
cpudataW:=0,
transparent:=-1

cpudataW:=0,cpumbr:=0,
transparent:=-1

transparent:=-1

Figure 8.2: The template of the FI master.

loop

waitDataW1
x<=2000

timedout1

read work

waitDataW0
x<=1000

start

timedout2

OK

willread

x:=0

devdataW==0,
x==2000 x:=0

x:=0

vfitrans==0

vfitrans==1
cpulost:=0,cpumbr:=1,cpudataR:=1

x:=0,
cpulost:=0,cpumbr:=1,cpudataR:=1

cpulost:=-1

x:=0,
cpulost:=1,cpumbr:=1,cpudataR:=1

devdataW==0

x:=0

devdataW==1,
x==1000
x:=0

cpulost:=-1,
cpudataR:=0,
cpumbr:=0

cpulost:=-1,
cpudataR:=0,cpumbr:=0

devdataW==1
x:=0

vfitrans:=bctrans

Figure 8.3: The template of the FI slave.

152

start
waitDataW

x<=10000timedout1

sending
x<=10000

sent

ack

waitanswer
x<=1700

resynchronize
x<=2000

OK

acking
x<=750

mbrwillread

bctrans:=-1,
devdatalost:=-1

x==10000,
cpudataW==0
devmbr:=1,
x:=0

devmbr:=0

x:=0 x:=0
deliver!

bctrans==1
devdatalost:=0

bctrans==0
x==1700
x:=0

devdatalost:=0,
x:=0

ack?

devdatalost:=1,
x:=0

nack?

cpudataW==0

x:=0

x==2000
x:=0

devdataR:=1

cpudataW==0

x:=0

x==750

x:=0

devdataR:=0,devmbr:=0,
bctrans:=-1,devdatalost:=-1

cpudataW==1
x:=0

devmbr:=1
bctrans:=vfitrans

Figure 8.4: The template of the master coupler.

mAFP

D R
RbadAFP

AFPbadR

AFPbadAFP

DbadR

RbadD

AFPbadD

mSeqBit!=rpSeqBit
mStatusAFP?

SSIZE==1

mStatus:=Dormant
mStatusD?

SSIZE>1

mStatus:=Receive
mStatusR?

mStatus:=AFP
mStatusAFP?

m_completeMsg==1
mStatus:=Dormant

mStatusD?
mStatusR?mStatusD?

mStatusAFP?

mStatus:=AFP

SSIZE<=1
mStatusR?

mStatus:=Receive

mSeqBit==rpSeqBit
mStatusAFP?

mStatusR?
mStatus:=Receive

m_completeMsg!=1,
mPacketTO!=0
mStatusD?

mStatus:=Dormant

mPacketTO==0
mStatus:=Dormant

mStatusD?

SSIZE!=1,
mPacketTO!=0

mStatusD?

mStatus:=Dormant

mPacketTO==0

mStatus:=Dormant
mStatusD?

Figure 8.5: Master monitor automaton.

153

answer sent1 send

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=0

send!
size>0
ACK?

NACK?

size>0
d_size:=size,
d_count:=count,
d_seq:=seq,
d_trans:=(size>1?1:0),
d_init:=0,
size:=size-1,
count:=(count>SLIDE?0:count+1)

send!

size==0 ACK?

size==0 count:=0,
size:=0

NACK?

size==0
seq:=(seq==0?1:0),
count:=0,
size:=0

ACK?

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=1

send!

Figure 8.6: Slave test working with the master.

answer sent1 send

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=0

send!
size>0
ACK?

NACK?

size>0
d_size:=size,
d_count:=count,
d_seq:=seq,
d_trans:=(size>1?1:0),
d_init:=0,
size:=size-1,
count:=(count>SLIDE?0:count+1)

send!

size==0 ACK?

size==0 count:=0,
size:=0

NACK?

size==0
seq:=(seq==0?1:0),
count:=0,
size:=0

ACK?

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=1

send!

size>0
d_size:=size,
d_count:=count,
d_seq:=seq,
d_trans:=(size>1?1:0),
d_init:=1,
size:=size-1,
count:=(count>SLIDE?0:count+1)

send!

Figure 8.7: Master test working with the slave.

154

A AO

I

IAE

WFR

IAEbadWFR1

IAEbadAO

IAEbadI

IAEbadA2

IAEbadIAE

AbadA2

AbadI

AbadAO

AbadWFR

AbadIAE1

AObadAO
AObadWFR

AObadA

WFRbadI
WFRbadA

WFRbadIAE

WFRbadWFR

IbadIAE

IbadWFR

IbadAO

IbadA

IbadI

IAEbadWFR2

AbadA1AbadIAE2

IAEbadA1

sInit==1,
SSIZE>1

sStatusA?

sInit==1,SSIZE==1
sStatus:=IdleAfterErr
sStatusIAE?

s_msgComplete==1
sStatus:=WaitForRec

sStatusWFR?

sStatus:=Idle
sStatusI?

sStatus:=IdleAfterErr
sStatusIAE?

SSIZE>1
sStatus:=Active
sStatusA?

SSIZE==1
sStatus:=WaitForRec
sStatusWFR?

sInit==1,SSIZE==1
sStatus:=Active

sStatusA?

sInit!=1
sStatusIAE?

SSIZE==1,sInit==1

sStatus:=WaitForRec
sStatusWFR?

sStatus:=AnswOuts
sStatusAO?

sStatusAO?

sInit!=1
sStatusA?

sStatusI?
sStatus:=Active

sStatus:=Idle

sStatus:=WaitForRec

sStatus:=AnswOuts

sInit==1
sStatusIAE?

sInit!=1,sPacketTO!=0sStatusIAE?
s_msgComplete!=1sStatusWFR?

sStatusAO?
sStatusI?

SSIZE<=1 sStatusA?

sInit!=1
sStatusA?

sStatus:=Idle

sStatus:=AnswOuts

sStatus:=WaitForRec

sStatus:=IdleAfterErr

sStatusI?

sStatusA?

sStatusAO?

SSIZE!=1
sStatusWFR?

sStatusIAE?

sStatusA?
sStatusWFR?

sStatusAO?

sStatusWFR?
sStatusI?

sStatusA?
sStatusIAE?

SSIZE!=1
sStatusWFR?

sStatus:=Active
sStatus:=AnswOuts

sStatus:=WaitForRec

sStatus:=IdleAfterErr

sStatus:=Idle

sStatus:=Active

sStatus:=IdleAfterErr

sStatus:=WaitForRec

sStatus:=Active

SSIZE!=1,SPacketTO!=0sStatusIAE?

sInit!=1
sStatusWFR?

sStatus:=WaitForRec

sStatus:=IdleAfterErr
SSIZE!=1

sStatusA?
sStatus:=Active

sPacketTO==0
sStatus:=IdleAfterErr

sStatusIAE?

Figure 8.8: Slave monitor automaton.

155

8.2 Grammar of Hierarchical Timed Automata

In the following we present the BNF grammar of the HTA language and the
query language as it is used by the verifier Uppaal. The complete grammar
has a compatible alternative set of rules to be backward compatible with
the older XTA format. This syntax adopts C style statements. The C
implementation is not yet complete: constructs like for-loops are recognized
by the parser but not yet implemented by the model-checker. The same
applies for the history location.

NAT is a natural number. ID is an identity, a valid name. TYPENAME
is a name as well, but used for the type definition. We note them as terminals
for simplicity.

HTA → Declaration Inst System
Declaration →

| Declaration ADecl
ADecl → FunctionDecl | VariableDecl

| TypeDecl | ProcDecl
Inst →

| Inst ID = ID (ArgList) ;
System → ”System” ProcessList ;

ProcessList → ID
| ProcessList , ID

FunctionDecl → Type Id OptionalParameterList Block
OptionalParameterList → ()

| (ParameterList)
ParameterList → Parameter

| ParameterList , Parameter
Parameter → Type & ID ArrayDecl

| Type ID ArrayDecl
VariableDecl → Type DeclIdList ;

DeclIdList → DeclId
| DeclIdList , DeclId

DeclId → Id ArrayDecl VarInit
VarInit →

| = Initializer
Initializer → Expression

| { FieldInitList }
FieldInitList → FieldInit

| FieldInitList , FieldInit
FieldInit → Id : Initializer

156

ArrayDecl →
| ArrayDecl [Expression]

TypeDecl → ”typedef” Type TypeIdList ;
TypeIdList → TypeId

| TypeIdList , TypeId
TypeId → Id ArrayDecl

Type → TypePrefix TYPENAME Range
| TypePrefix ”struct” { FieldDeclList }

Id → ID
| TYPENAME

FieldDeclList → FieldDecl
| FieldDeclList FieldDecl

FieldDecl → Type FieldDeclIdList ;
FieldDeclIdList → FieldDeclId

| FieldDeclIdList , FieldDeclId
FieldDeclId → Id ArrayDecl
TypePrefix →

| ”urgent” | ”broadcast”
| ”urgent” ”broadcast”
| ”const”

Range →
| [Expression , Expression]

ProcDecl → “orstate” IdOptionalParameterList { ProcBody }
| ”andstate” Id OptionalParameterList { ThreadBody }

ProcBody → ProcLocalDeclList States ProcInstanceList
AbstractStates LocFlags History Init Transitions

ThreadBody → ProcLocalDeclList States ProcInstanceList LocFlags
ProcInstanceList →

| ProcInstanceList ”instance” Inst
ProcLocalDeclList →

| ProcLocalDeclList LocalDecl
LocalDecl → FunctionDecl | VariableDecl | TypeDecl

AbstractStates → ”abstract” StateList ;
States → ”state” StateDeclList ;

StateDeclList → StateDecl
| StateDeclList , StateDecl

StateDecl → ID
| ID { Expression }

History →
| ”history” ID ;

157

Init → ”init” ID ;
Transitions →

| ”trans” TransitionList ;
TransitionList → Transition

| TransitionList , TransitionOpt
Transition → ID − > ID { Guard Sync Assign }

TransitionOpt → − > ID { Guard Sync Assign }
Guard →

| ”guard” Expression ;
Sync →

| ”sync” SyncExpr ;
Assign →

| ”assign” ExprList ;
LocFlags →

| Commit
| Urgent
| Commit Urgent

Commit → ”commit” StateList ;
Urgent → ”urgent” StateList ;

StateList → ID
| StateList , ID

Block → { BlockLocalDeclList StatementList }
BlockLocalDeclList →

| BlockLocalDeclList VariableDecl
| BlockLocalDeclList TypeDecl

StatementList →
| StatementList Statement

Statement → Block
| ;
| Expression ;
| ”for” (ExprList ; ExprList ; ExprList) Statement
| ”while” (ExprList) Statement
| ”do” Statement ”while” (ExprList) ;
| ”if” (ExprList) Statement ElsePart
| ”break” ;
| ”continue” ;
| ”switch” (Expression) { SwitchCaseList }
| ”return” Expression ;
| ”return” ;

ElsePart →

158

| ”else” Statement
SwitchCaseList → SwitchCase

| SwitchCaseList SwitchCase
SwitchCase → ”case” Expression : StatementList

ExprList → Expression
| ExprList , Expression

Expression → ”false”
| ”true”
| NAT
| ID
| ID (ArgList)
| Expression [Expression]
| (Expression)
| Expression ++
| ++ Expression
| Expression −−
| −− Expression
| UnaryOp Expression
| Expression BinaryOp Expression
| Expression ? Expression : Expression
| Expression . ID
| ”deadlock”
| Expression ”imply” Expression

BinaryOp → < | <= | == | ! = | > | >= | + | − | ∗ | / | %
| & | “|′′ | ^ | << | >> | && | “||′′ | <? | >?

Assignment → Expression AssignOp Expression
AssignOp → = | + = | − = | / = | % = | & = | | = | ^=

| <<= | >>=
UnaryOp → − | !

ArgList →
| Expression
| ArgList , Expression

PropertyList → PropertyList Property
Property →

| Quantifier Expression
| Expression −− > Expression

Quantifier → E <>
| E[]
| A <>
| A[]

159

160

References

[Abd01] Parosh Aziz Abdulla. Using (timed) petri nets for verification of
parameterized (timed) systems. In VEPAS’2001, Verification of Pa-
rameterized Systems, ICALP’2001 satellite workshop, 2001.

[ABH+97] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer,
and Sriram K. Rajamani. Partial-order reduction in symbolic state-
space exploration. In Proceedings of the Ninth International Confer-
ence on Computer-Aided Verification, volume 1254 of LNCS, pages
340–351. Springer, 1997.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking
for real-time systems. In 5th Symposium on Logic in Computer Sci-
ence (LICS’90), pages 414–425, 1990.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking
in dense real-time. Information and Computation, 104(1):2–34, 1993.

[ACH92] Rajeev Alur, Costas Courboubetis, and Nicolas Halbwachs. Mini-
mization of timed transition systems. In CONCUR ’92, Third Inter-
national Conference on Concurrency Theory, volume 630 of LNCS,
pages 340–354. Springer, 1992.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicholas Halbwachs, Thomas A.
Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph
Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid sys-
tems. Journal of Theoretical Computer Science, 138(1):3–34, 1995.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time
systems. In Proc. of Int. Colloquium on Algorithms, Languages, and
Programming, volume 443 of LNCS, pages 322–335, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, April 1994. Fundamental
Study.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic
symbolic verification of embedded systems. IEEE Transaction on
Software Engineering, 22:181–201, 1996.

161

[AILKC+00] Alcatel, I-Logix, Kennedy-Carter, Kabira Technologies. Inc.,
Project Technology. Inc., Rational Software Corporation, and Telel-
ogic AB. Action semantics for the UML. Response to OMG RFP
ad/98-11-01, September 2000.

[AK00] Colin Atkinson and Thomas Kühne. Strict profiles: Why and how. In
UML 2000, The Unified Modeling Language, volume 1939 of LNCS,
pages 309–322. Springer, 2000.

[AL92] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real
time. In Proc. of REX Workshop “Real-Time: Theory in Practice”,
number 600 in LNCS, pages 1–27. Springer, 1992.

[AMY02] Rajeev Alur, Michael McDougall, and Zijiang Yang. Exploiting be-
havioral hierarchy for efficient model checking. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Computer Aided Verification, 14th
International Conference, CAV 2002,Copenhagen, Denmark, July 27-
31, 2002, Proceedings, volume 2404 of Lecture Notes in Computer
Science, pages 338–342. Springer, 2002.

[AN01] Parosh Aziz Abdulla and Aletta Nylén. Timed petri nets and BQQs.
In Proceedings of ICATPN’2001, 22nd International Conference on
application and theory of Petri nets, 2001.

[AY98] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchi-
cal state machines. In Proceedings of the Sixth ACM Symposium on
Foundations of Software Engineering (FSE’98), ACM, pages 175–188,
1998.

[Bal96] Felice Balarin. Approximate reachability analysis of timed automata.
In 17th IEEE Real-Time Systems Symposium. IEEE Computer Soci-
ety Press, 1996.

[BBD+99] Tom Bienmüller, Udo Brockmeyer, Werner Damm, Gert Döhmen,
Claus Eßmann, Hans-Jürgen Holberg, Hardi Hungar, Bernhard Josko,
Rainer Schlör, Gunnar Wittich, Hartmut Wittke, Geoffrey Clements,
John Rowlands, and Eric Sefton. Formal verification of an avion-
ics application using abstraction and symbolic model checking. In
Felix Redmill and Tom Anderson, editors, Towards System Safety -
Proceedings of the Seventh Safety-critical Systems Symposium, pages
150–173. Springer, 1999.

[BBD+02] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen,
Paul Pettersson, and Wang Yi. Uppaal implementation secrets. In
Proc. of 7th International Symposium on Formal Techniques in Real-
Time and Fault Tolerant Systems, 2002.

[BC95] Robert H. Bourdeau and Betty H.C Cheng. A formal semantics for
object model diagrams. IEEE Transactions on Software Engineering,
21(10):799–821, October 1995.

162

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDD. In Fifth International
Conference on Tools and Algorithms for the Construction and Ana-
lysis of Systems, volume 1579. Springer, 1999.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Journal of Information and Computation, 98(2):142–170,
1992.

[BD91] Bernard Berthomieu and Michel Diaz. Modeling and verification of
time dependent systems using time petri nets. IEEE Trans. on Soft-
ware Engineering, 17(3):259–273, 1991.

[Ben02] Johan Bengtsson. Clocks, DBMs and States in Timed Systems. PhD
thesis, Uppsala University, 2002.

[BF98] Jean-Michel Bruel and Robert B. France. Transforming UML models
to formal specifications. In UML’98 - Beyond the notation, LNCS.
Springer, 1998.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,
Paul Pettersson, and Judi Romijn. Efficient guiding towards cost-
optimality in uppaal. In T. Margaria and W. Yi, editors, Proceedings
of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, number 2031 in Lecture Notes
in Computer Science, pages 174–188. Springer, 2001.

[BFK+98] Howard Bowman, Giorgio P. Faconti, Joost-Pieter Katoen, Diego
Latella, and Mieke Massink. Automatic verification of a lip synchro-
nisation algorithm using uppaal. In Bas Luttik Jan Friso Groote and
Jos van Wamel, editors, In Proceedings of the 3rd International Work-
shop on Formal Methods for Industrial Critical Systems. Amsterdam,
The Netherlands, 1998.

[BG92] Gerard Berry and Georges Gonthier. The esterel synchronous pro-
gramming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87–152, 1992.

[BHS91] Ferenc Belina, Dieter Hogrefe, and Amardeo Sarma. SDL with Ap-
plications from Protocol Specification. Prentice-Hall, 1991.

[BHV00] Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed
timed model checking - How the search order matters. In Proc. of 12th
International Conference on Computer Aided Verification, Lecture
Notes in Computer Science, Chicago, Juli 2000. Springer.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Par-
tial order reductions for timed systems. In Proceedings of the 9th
International Conference on Concurrency Theory, September 1998.

163

[BJR97] Grady Booch, Ivar Jacobson, and James E. Rumbaugh. Unified Mo-
deling Language User Guide. Addison Wesley, 1997.

[BJR99] Grady Booch, Ivar Jacobson, and James E. Rumbaugh. The Unified
Modeling Language Reference Manual. Addison Wesley, 1999.

[BLA+99] Gerd Behrmann, Kim G. Larsen, Henrik Reif Andersen, Henrik Hul-
gaard, and Jørn Lind-Nielsen. Verification of hierarchical state/event
systems using reusability and compositionality. In TACAS: Tools and
Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, 1999.

[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Uppaal — a tool suite for automatic verification of
real–time systems. In Proc. of Workshop on Verification and Control
of Hybrid Systems III, number 1066 in Lecture Notes in Computer
Science, pages 232–243. Springer, October 1995.

[BLP+99] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient timed reachability analysis using clock difference
d iagrams. In Proceedings of the 12th Int. Conf. on Computer Aided
Verificat ion, volume 1633 of Lecture Notes in Computer Science.
Springer–Verlag, 1999.

[Bry86] Randal E. Bryan. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[CAB+94] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, He-
lena Gilchrist, Fiona Hayes, and Paul Jeremaes. Object-Oriented
Development: The Fusion Method. Object-Oriented Series edition.
Prentice Hall, 1994.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Conference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New
York, NY.

[CC92a] Patrick Cousot and Radhia Cousot. Abstract interpretation and ap-
plication to logic programs. Journal of Logic Programming, 13(2–
3):103–179, 1992. (The editor of Journal of Logic Programming has mis-

takenly published the unreadable galley proof. For a correct version of this

paper, see http://www.di.ens.fr/~cousot.).

164

[CC92b] Patrick Cousot and Radhia Cousot. Comparing the Galois connec-
tion and widening/narrowing approaches to abstract interpretation,
invited paper. In M. Bruynooghe and M. Wirsing, editors, Proceedings
of the International Workshop Programming Language Implementa-
tion and Logic Programming, PLILP ’92,, Leuven, Belgium, 13-17
August 1992, Lecture Notes in Computer Science 631, pages 269–295.
Springer, Berlin, Germany, 1992.

[CC94] Patrick Cousot and Radhia Cousot. Higher-order abstract interpreta-
tion (and application to comportment analysis generalizing strictness,
termination, projection and PER analysis of functional languages),
invited paper. In Proceedings of the 1994 International Conference
on Computer Languages, pages 95–112, Toulouse, France, 16–19 May
1994. IEEE Computer Society Press, Los Alamitos, California.

[CC99] Patrick Cousot and Radhia Cousot. Refining model checking by ab-
stract interpretation. Automated Software Engineering, 6(1):69–95,
1999.

[CC02] Patrick Cousot and Radhia Cousot. Modular static program analysis,
invited paper. In R.N. Horspool, editor, Proceedings of the Eleventh
International Conference on Compiler Construction (CC 2002), vo-
lume 2304, pages 159–178, Grenoble, France, April 2002. Springer.

[CCK+02] Pankaj Chauhan, Edmund M. Clarke, James Kukula, Samir Sapra,
Helmut Veith, and Dong Wang. Automated abstraction refinement
for model checking large state spaces using sat based conflict analysis.
In Formal Methods in Computer Aided Design (FMCAD’02), page 18,
November 2002.

[Cer92] Karlis Cerans. Decidability of bisimulation equivalences for paral-
lel timer processes. In Computer Aided Verification, volume 663 of
LNCS. Springer, 1992.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement. In
E. A. Emerson and A. P. Sistla, editors, Proceedings of CAV, volume
1855 of LNCS, pages 154–169. Springer, July 2000.

[CGL93] Karlis Cerans, Jens Chr. Godskesen, and Kim G. Larsen. Time model
specification - theory and tools. In 5th International Conference on
Computer Aided Verification, volume 697 of LNCS. Springer, 1993.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction. ACM Transactions on Programming Lan-
guages and Systems, 16(5):1512–1542, September 1994.

[CGMP99] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron
Peled. State space reduction using partial order techniques. STTT,
2(3):279–287, 1999.

165

[CIY95] Rance Cleaveland, Purush Iyer, and Daniel Yankelevich. Optimality
in abstractions of model checking. In Static Analysis, Second In-
ternational Symposium, SAS’95, volume 983 of LNCS, pages 51–63.
Springer, September 1995.

[CK97] Søren Christensen and Lars Michael Kristensen. State space analysis
of hierarchical coloured petri nets. In B. Farwer, D.Moldt, and M-O.
Stehr, editors, Proceedings of Workshop on Petri Nets in System En-
gineering (PNSE’97) Modelling, Verification, and Validation, number
205 in LNCS, pages 32–43, Hamburg, Germany, 1997.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Reverst, and
Clifford Stein. Introduction to Algorithms. The MIT Press Mas-
sachusetts Institute of Technology, 2001.

[CN97] Gianfranco F. Ciardo and David M. Nicol. Automated paralleliza-
tion of discrete state-space generation. In Journal of Parallel and
Distributed Computing, volume 47, pages 153–167. ACM, december
1997.

[Coo00] Steve Cook. The UML family: Profiles, prefaces and packages. In
Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third Interna-
tional Conference, York, UK, October 2000, Proceedings, volume 1939
of LNCS, pages 255–264. Springer, 2000.

[Cou00] Patrick Cousot. Interprétation abstraite. Technique et science infor-
matique, 19(1–2–3):155–164, January 2000.

[CP99] Ching-Tsun Chou and Doron Peled. Formal verification of a partial-
order reduction technique for model checking. Journal of Automated
Reasoning, 23(3–4):265–298, 1999.

[CVWY92] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis
Yannakakis. Memory efficient algorithms for the verification of tem-
poral properties. Formal Methods in System Design, pages 275–288,
1992.

[Dam96] Dennis René Dams. Abstract Interpretation and Partition Refinement
for Model Checking. PhD thesis, Eindhoven University, 1996.

[dB99] Lydie du Bousquet. Feature interaction detection using testing and
model-checking experience report. In FM’99 Formal Methods, volume
1708 of LNCS, pages 622–641. Springer, 1999.

[DBL02] Henning Dierks, Gerd Behrmann, and Kim G. Larsen. Solving plan-
ning problems using real-time model checking (translating PDDL3
into timed automata). Workshop proceeding of AIPS’02 available
at http://csl.anu.edu.au/˜thiebaux/papers/aips02/ saipsproc4.ps.gz,
April 2002.

166

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang.
Protocol verification as a hardware design aid. In IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
pages 522–525. IEEE Computer Society, 1992.

[DGKK98] Dennis Dams, Rob Gerth, Bart Knaack, and Ruurd Kuiper. Partial-
order reduction techniques for real-time model checking. Formal As-
pects of Computing, 10(5–6):469–482, 1998.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In J. Sifakis, editor, Proceedings of Automatic
Verification Methods for Finite State Systems, volume 407 of LNCS,
pages 197–212. Springer, 1989.

[DJHP98] Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli.
A compositional real-time semantics of STATEMATE designs. In
Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors,
Compositionality: The Significant Difference, International Sympo-
sium, COMPOS’97, Bad Malente, Germany, September 8-12, 1997,
volume 1536 of LNCS, pages 186–238. Springer, 1998.

[DJVP03] Werner Damm, Bernhard Josko, Angelika Votintseva, and Amir
Pnueli. A formal semantics for a UML kernel language. http://www-
omega.imag.fr/queries/dm-downloads.php, January 2003.

[DKRT97] Pedro .R. D’Argenio, Joost-Pieter. Katoen, Theo C. Ruys, and Jan
Tretmans. The bounded retransmission protocol must be on time! In
In Proceedings of the 3rd International Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1217 of
LNCS, pages 416–431. Springer, April 1997.

[DM01] Alexandre David and M. Oliver Möller. From huppaal to uppaal: A
translation from hierarchical timed automata to flat timed automata.
Technical Report RS-01-11, BRICS, March 2001.

[DMY02] Alexandre David, M. Oliver Möller, and Wang Yi. Formal verification
of UML statecharts with real-time extensions. In Ralf-Detlef Kutsche
and Herbert Weber, editors, Fundamental Approaches to Software
Engineering, 5th International Conference, FASE 2002, volume 2306
of LNCS, pages 218–232. Springer, 2002.

[DMY03] Alexandre David, M. Oliver Möller, and Wang Yi. Verification of
UML statecharts with real-time extensions. Technical Report 2003-
009, Uppsala University, 2003.

[Dou99] Bruce Powel Douglas. Real-Time UML. Addison Wesley, 1999.

[DOY94] Conrado Daws, Alfredo Olivero, and Sergio Yovine. Verifying ET-
LOTOS programs with Kronos. In Proceedings of the 7th IFIP
WG G.1 International Conference of Formal Description Techniques

167

FORTE’94, Formal Description Techniques VII, pages 227–242.
Chapman & Hall, October 1994.

[DU95] David L. Dill and Ulrich Stern. Improved probabilistic verification by
hash compaction. In P.E. Camurati and H. Eveking, editors, Correct
Hardware Design and Verification Methods, volume 987, pages 206–
224, Stanford University, USA, 1995. Springer.

[DY96] Conrado Daws and Sergio Yovine. Reducing the number of clock
variables of timed automata. In Proceedings of the 17th IEEE Real
Time Systems Symposium, RTSS’96. IEEE Computer Society Press,
December 1996.

[DY98] Akash Deshpande and Sergio Yovine. System design using teja and
kronos. case study: The FDDI protocol. In “Educational Case Studies
in Protocols”, ECASP, FORTE/PSTV’98, 1998.

[DY00] Alexandre David and Wang Yi. Modelling and analysis of a commer-
cial field bus protocol. In Proceedings of the 12th Euromicro Confer-
ence on Real Time Systems, pages 165–172. IEEE Computer Society,
2000.

[EFLR98] Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe.
The UML as a formal modelling notation. In UML’98 - Beyond the
notation, LNCS. Springer, 1998.

[ES97] E. Allen Emerson and A. Prasad Sistla. Using symmetry when model
checking under fairness assumption: an automata theoretic approach.
ACM Transactions on Programming Languages and Systems, 19(4),
1997.

[FELR98] Robert B. France, Andy Evans, Kevin Lano, and Bernhard Rumpe.
The UML as a formal modeling notation. Computer Standards &
Interfaces, 19:325–334, 1998.

[Flo62] Robert W. Floyd. Acm algorithm 97: Shortest path. Communications
of the ACM, 5(6):345, 1962.

[GLM02] Sefania Gnesi, Diago Latella, and Mieke Massink. Modular semantics
for a UML statechart diagrams kernel and its extension to multi-
charts and branching time model-checking. The Journal of Logic and
Algebraic Programming, 51:43–75, 2002.

[GO03] Susanne Graf and Ileana Ober. A real-time profile for UML and
how to adapt it to SDL. http://www-omega.imag.fr/queries/dm-
downloads.php, March 2003.

[God90] Patrice Godefroid. Using partial orders to improve automatic veri-
fication methods. In Second International Conference on Computer
Aided Verification, volume 531 of LNCS, pages 176–185. Springer,
1990.

168

[God95] Patrice Godefroid. Partial-Order Methods for the Verification of Con-
current Systems. PhD thesis, Université de Liège, 1995.

[GOO] Susanne Graf, Ileana Ober, and Iulian Ober. Timed annotations with
UML. to be published at SVERTS Workshop, UML 2003.

[Hal96] Anthony Hall. Using formal methods to develop an ATC information
system. IEEE Software, 13(2):66–76, March 1996.

[Har87] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231–274, 1987.

[Hen94] Thomas A. Henzinger. Symbolic model checking for real-time sys-
tems. Information and Computation, 111:193–244, 1994.

[HG97] David Harel and Eran Gery. Executable object modeling with state-
charts. Computer, 30(7):31–42, 1997.

[HGdR88] Cornelis Huizing, Rob Gerth, and Willem P. de Roever. Modeling
statecharts in a fully abstract way. In Proceedings of CAAP 88, vo-
lume 299 of LNCS, pages 271–294. Springer, 1988.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech:
A model checker for hybrid systems. software Tools for Technology
Transfer, 1:110–122, 1997.

[HJJJ84] Peter Huber, Arne M. Jensen, Leif O. Jespen, and Kurt Jensen. To-
wards reachability trees for high-level petri nets. In Advances on Petri
Nets’84, volume 188 of LNCS. Springer, 1984.

[HL02] Martijn Hendriks and Kim G. Larsen. Exact acceleration of real-time
model checking. In E. Asarin, O. Maler, and S. Yovine, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 65. Elsevier
Science Publishers, April 2002.

[HLP00] Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided synthe-
sis of control programs using uppaal. In Ten H. Lai, editor, Proc.
of the IEEE ICDCS International Workshop on Distributed Systems
Verification and Validation, pages E15–E22. IEEE Computer Society
Press, April 2000.

[HLS99] Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal verifica-
tion of a power controller using the real-time model checker uppaal.
5th International AMAST Workshop on Real-Time and Probabilistic
Systems, available at http://www.uppaal.com, 1999.

[HLY92] Uno Holmer, Kim G. Larsen, and Wang Yi. Decidability of bisimula-
tion equivalence between regular timed processes. In Computer Aided
Verification, volume 575 of LNCS. Springer, 1992.

169

[HM99] Nisse Husberg and Tapio Manner. Emma: Developing an industrial
reachability analyser for SDL. In FM’99 Formal Methods, volume
1708 of LNCS, pages 642–661. Springer, 1999.

[HN96] David Harel and Amnon Naamad. The STATEMATE semantics of
statecharts. ACM Transactions of Software Engineering and Method-
ology, 5(4), October 1996.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. In Proc. of
IEEE Symposium on Logic in Computer Science, 1992.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, 1997.

[Hol98] Gerard J. Holzmann. An analysis of bitstate hashing. Formal Methods
in System Design, 13:289–307, 1998.

[HP85] David Harel and Amir Pnueli. On the development of reactive sys-
tems. Logics and Models of Concurrent Systems, F-13:477–498, 1985.

[HPSS87] David Harel, Amir Pnueli, Jeanette P. Schmidt, and R. Sherman. On
the formal semantics of statecharts. In IEEE Symposium on Logic in
Computer Science, pages 54–64, 1987.

[HS00] Gerard J. Holzmann and Margaret H. Smith. Automating software
feature verification. Bell Labs Technical Journal, 5(2):72–87, 2000.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. For-
mal modelling and analysis of an audio/video protocol: An industrial
case study using uppaal. In Proceedings of the 18th IEEE Real-Time
Systems Symposium, pages 2–13, December 1997.

[HU01] John E. Hopcroft and Jeffrey D. Ullman. Introduction fo Automata
Theory, Languages, and Computation. Addison Wesley, 2001.

[Hui91] Cornelis Huizing. Semantics of Reactive Systems: Comparison and
Full Abstraction. PhD thesis, Technical University Eindhoven, 1991.

[ID93] C. Norris Ip and David L. Dill. Efficient verification of symmetric
concurrent systems. In International Conference on Computer De-
sign: VLSI in Computers and Processors, IEEE Computer Society,
pages 230–234, 1993.

[ID96] C. Norris Ip and David L. Dill. Better verification through symmetry.
Formal Methods in System Design, 9(1/2):41–75, August 1996.

170

[IIC+02] ARTISAN Software Tools Inc., I-Logix Ind., Rational Software Corp.,
Telelogic AB, TimeSys Corporation, and Tri-Pacific Software. UML
profile for schedulability, performance, and time specification. Avail-
able from the OMG web site http://www.omg.org, Mars 2002.

[IKL+00] Torsten K. Iversen, K̊are J. Kristoffersen, Kim G. Larsen, Morten
Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson,
and Chris B. Thomasen. Model-checking real-time control programs
— Verifying LEGO mindstorms systems using uppaal. In Proc. of
12th Euromicro Conference on Real-Time Systems, pages 147–155.
IEEE Computer Society Press, June 2000.

[Jen99] Henrik Ejersbo Jensen. Abstraction-Based Verification of Distributed
Systems. PhD thesis, Aalborg University, 1999.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML semantics
FAQ. In Ana M. D. Moreira and Serge Demeyer, editors, Object-
Oriented Technology, ECOOP’99 Workshop Reader, ECOOP’99
Workshops, volume 1743 of LNCS, pages 33–56, 1999.

[KLL+96] K̊are J. Kristofferson, François Laroussinie, Kim G. Larsen, Paul Pet-
tersson, and Wang Yi. A compositional proof of a real-time mutual
exclusion protocol. Technical Report RS-96-55, BRICS, December
1996.

[KLPW99] K̊are J. Kristoffersen, Kim G. Larsen, Paul Pettersson, and Carsten
Weise. VHS case study 1 - experimental batch plant using uppaal.
BRICS, University of Aalborg, Denmark, May 1999.

[KP92] Yonit Kesten and Amir Pnueli. Timed and hybrid statecharts and
their textual representation. In J. Vytopil, editor, Formal Techniques
in Real-time and Fault Tolerant Systems, 2nd International Sympo-
sium, volume 571 of LNCS, pages 591–620. Springer, 1992.

[Kwo00] Gihwon Kwon. Rewrite rules and operational semantics for model
checking UML statecharts. In Andy Evans, Stuart Kent, and Bran
Selic, editors, UML 2000 - The Unified Modeling Language, Advanc-
ing the Standard, Third International Conference, volume 1939 of
LNCS, pages 528–555. Springer, 2000.

[LBB+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker,
Thomas Hune, Paul Pettersson, and Judi Romijn. As cheap as possi-
ble: Efficient cost-optimal reachability for priced timed automata. In
G. Berry, H. Comon, and A. Finkel, editors, Proceedings of CAV 2001,
number 2102 in Lecture Notes in Computer Science, pages 493–505.
Springer, 2001.

[LE99] Kevin Lano and Andy Evans. Rigorous development in UML. In Fun-
damental Approaches to Software Engineering (FASE’99). Springer,
1999.

171

[Lev97a] Francesca Levi. Compositional verication of timed statecharts. In
Advances in Temporal Logic, number 16 in Applied Logic, pages 47–
70, 1997.

[Lev97b] Francesca Levi. Verification of Temporal and Real-time Properties of
Statecharts. PhD thesis, University of Pisa, June 1997.

[Lev01] Francesca Levi. A symtolic semantics for abstract model checking.
Science of Computer Programming, 39:93–123, 2001.

[LLPY97] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Effi-
cient verification of real-time systems: Compact data structures and
state-space reduction. In Proc. of the 18th IEEE Real-Time Systems
Symposium, pages 14–24. IEEE Computer Society Press, December
1997.

[LMM99a] Diego Latella, Istvàn Majzik, and Mieke Massink. Automatic verifi-
cation of a behavioural subset of UML statechart diagrams using the
SPIN model-checker. Formal Aspects of Computing, 11(6):637–664,
1999.

[LMM99b] Diego Latella, Istvàn Majzik, and Mieke Massink. Towards a formal
operational semantics of UML statechart diagrams. In P. Ciancarini,
A. Fantechi, and R. Gorrieri, editors, 3rd International Conference
on Formal Methods for Open Object-Oriented Distributed Systems,
Boston, 1999 (FMOODS’99), pages 331–347. Kluwer Academic Pub-
lishers, 1999.

[LMS97] Yassine Lakhnech, Erich Mikk, and Michael Siegel. Hierarchical au-
tomata as model for statecharts. In Proc. of the Asian Computing
Science Conference (ASIAN’97), volume 1345 of LNCS, pages 181–
196. Springer, 1997.

[LNAB+98] Jørn Lind-Nielsen, Henrik Reif Andersen, Gerd Behrmann, Henrik
Hulgaard, K̊are J. Kristoffersen, and Kim G. Larsen. Verification
of large state/event systems using compositionality and dependency
analysis. In Tools and Algorithms for the Construction and Analysis
of Systems, LNCS, pages 201–216. Springer, 1998.

[LP97] Henrik Lönn and Paul Pettersson. Formal verification of a TDMA
protocol startup mechanism. In Proc. of the Pacific Rim Int. Symp.
on Fault-Tolerant Systems, pages 235–242, December 1997.

[LP99a] Johan Lilius and Ivan Porres. Formalising UML state machines for
model-checking. In In Robert B. France and Bernhard Rumpe, ed-
itors, UML’99 - The Unified Modeling Language, volume 1723 of
LNCS, pages 430–445. Springer Verlag, 1999.

[LP99b] Johan Lilius and Ivan Porres. vUML: a tool for verifying UML mo-
dels. In Proceedings of the Automatic Software Engineering Confer-
ence (ASE’99). IEEE Computer Society, October 1999.

172

[LPWY99] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock
difference diagrams. Nordic Journal of Computing, 6(3):271–298,
1999.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-checking for
real-time systems. In Proc. of Fundamentals of Computation The-
ory, number 965 in Lecture Notes in Computer Science, pages 62–88,
August 1995.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–
152, October 1997.

[LPY00] Fredrik Larsson, Paul Pettersson, and Wang Yi. On memory-block
traversal problems in model checking timed systems. In Susanne Graf
and Michael Schwartzbach, editors, Proc. of the 6th Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
number 1785 in Lecture Notes in Computer Science, pages 127–141.
Springer, 2000.

[LPY01] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and
analysis of a gearbox controller. Springer International Journal of
Software Tools for Technology Transfer (STTT), 3(3):353–368, 2001.

[LvdBC99] Gerald Luettgen, Michael von der Beeck, and Rance Cleaveland. Stat-
echarts via process algebra. In J.C.M. Baeten and S. Mauw, edi-
tors, CONCUR’99. Concurrency Theory, 10th International Confer-
ence, Eindhoven, The Netherlands, 1999 Proceedings, Lecture Notes
in Computer Science, vol. 1664. Springer, 1999.

[LY93] Kim G. Larsen and Wang Yi. Time abstracted bisimulation: Implicit
specification and decidability. In Proceedings of MFPS93 (the 9th In-
ternational Conference on Mathematical Foundations of Programming
Semantics), volume 802 of LNCS, pages 160–176. Springer, 1993.

[Mar89] Florence Maraninchi. Argonaute: Graphical description, semantics
and verification of reactive systems by using a process algebra. In
J. Sifakis, editor, Automatic Verification Methods for Finite State
Systems, volume 407 of LNCS, pages 38–53. Springer, 1989.

[Mar92] Florence Maraninchi. Operational and compositional semantics of
synchronous automaton compositions. In CONCUR’92, number 630
in LNCS, pages 550–564. Springer, 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Min99] Marius Minea. Partial Order for Verification of Timed Systems. PhD
thesis, Carnegie Mellon University, 1999.

173

[MLPS97] Erich Mikk, Yassine Lakhnech, Carsta Petersohn, and Michael Siegel.
On formal semantics of statecharts as supported by STATEMATE. In
2nd BCS-FACS Northern Formal Methods Workshop. Springer, July
1997.

[MLSH98] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holz-
mann. Implementing statecharts in Promela/SPIN. In Workshop
in Industrial-Strength Formal Specifications Techiniques (WIFT’98).
IEEE Computer Society Press, 1998.

[Möl02] M. Oliver Möller. Structure and Hierarchy in Real-Time Systems.
PhD thesis, BRICS, University of Aarhus, February 2002. available
from http://www.verify-it.de/papers.html.

[NY01] Peter Niebert and Sergio Yovine. Computing efficient operation
schemes for chemical plants in multi-batch mode. European Journal
of Control, 2001.

[OMG01] OMG unified modeling language specification. www.omg.org,
September 2001. version 1.4.

[Pag96] Florence Pagani. Partial orders and verification of real-time systems.
In Bengt Jonsson and Joachim Parrow, editors, Formal Techniques in
Real-Time and Fault-Tolerant Systems, 4th International Symposium,
FTRTFT’96, volume 1135 of LNCS, pages 327–346. Springer, 1996.

[Pap95] Christos H. Papadimitriou. Computational Complexity. Addison Wes-
ley, 1995.

[Pel93] Doron Peled. All from one, one for all: on model checking using
representatives. In Fifth International Conference on Computer Aided
Verification, volume 697 of LNCS, pages 409–423. Springer, 1993.

[Pel96] Doron Peled. Partial order reduction: Linear and branching temporal
logics and process algebras. DIMACS workshop on Partial Order
Methocs in Verification, 1996.

[Pet99] Paul Pettersson. Modelling and Verification of Real-time Systems
Using Timed Automata: Theory and Practice. PhD thesis, Uppsala
University, 1999.

[Por01] Ivan Porres. Modeling and Analyzing Software Behavior in UML.
PhD thesis, Åbo Akademi University, 2001.

[PS91] Amir Pnueli and M. Shalev. What is in a step: On the semantics of
statecharts. In Theoretical Aspects of Computer Science, volume 526
of LNCS, pages 244–264. Springer, 1991.

[RBL+95] James E. Rumbaugh, Michael Blaha, William Premer Lani, Frederick
Eddy, and William Corengen. Object Oriented Modeling and Design.
Prentice Hall, 1995.

174

[Rok93] Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits.
PhD thesis, Stanford University, 1993.

[RP85] Rami R. Razouk and Charles V. Phelps. Performance analysis using
timed petri nets. In Protocol Testing, Specification, and Verification,
pages 561–576, 1985.

[SB03] Sanjit A. Seshia and Randal E. Bryant. Unbounded, fully symbolic
model checking of timed automata using boolean methods. In War-
ren A. Hunt and Jr. Fabio Somenzi, editors, Computer Aided Verifi-
cation, volume 2725, pages 154–166, LNCS, 2003. Springer.

[SD98] Ulrich Stern and David L. Dill. Using magnetic disk instead of main
memory in the murphi verifier. In Computer Aided Verification. 10th
International Conference, pages 172–183, 1998.

[Ski98] Steven S. Skiena. The Algorithm Design Manual. Springer, 1998.

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison Wes-
ley, 1997.

[TAKB96] Serdar Taşiran, Rajeev Alur, Robert P. Kurshan, and Robert K. Bray-
ton. Verifying abstractions of timed systems. In Proceedings of the
Seventh Conference on Concurrency Theory, volume 1119 of LNCS.
Springer, 1996.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[TY98] Stavros Tripakis and Sergio Yovine. Verification of the fast reserva-
tion protocol with delayed transmission using the tool Kronos. In
Proceedings of the 4th IEEE Real-Time Technology and Applications
Symposium, RTAS’98. IEEE Computer Society Press, June 1998.

[TY01] Stavros Tripakis and Sergio Yovine. Analysis of timed systems using
time-abstracting bisimulations. Formal Methods in Systems Design,
18:25–68, 2001. Kluwers Academic Publishers, Boston.

[US94] Andrew C. Uselton and Scott A. Smolka. A compositional seman-
tics for statecharts using labeled transition systems. In International
Conference on Concurrency Theory, volume 836, pages 2–17, 1994.

[Val90] Antti Valmari. A stubborn attack on state explosion. In Second In-
ternational Conference on Computer Aided Verification, volume 531
of LNCS, pages 156–165. Springer, 1990.

[vdB94] Michael von der Beeck. A comparison of statecharts variants. In
Formal Techniques in Real-time and Fault-Tolerant Systems, volume
863 of LNCS, pages 128–148, 1994.

[vdB01] Michael von der Beeck. Formalization of UML statecharts. In UML
2001, volume 2185 of LNCS, pages 406–421, 2001.

175

[Wan01] Farn Wang. RED: Model-checker for timed automata with clock-
restriction diagram. In Paul Pettersson and Sergio Yovine, editors,
Workshop on Real-Time Tools, Aalborg University Denmark, number
2001-014 in Technical Report. Uppsala University, 2001.

[Wan03] Farn Wang. Efficient verification of timed automata with BDD-like
data-structures. In Verification, Model Checking, and Abstract Inter-
pretation: 4th International Conference, VMCAI 2003, volume 2575
of LNCS, pages 189–205. Springer, 2003.

[WC99] Andre Wong and Marsha Chechik. Formal modeling in a commercial
setting: A case study. In FM’99 Formal Methods, volume 1708 of
LNCS, pages 590–605. Springer, 1999.

[WL93] Pierre Wolper and Denis Leroy. Reliable hashing without collision
detection. In C. Courcoubetis, editor, Computer Aided Verifica-
tion: Proc. of the 5th International Conference CAV’93, pages 59–70.
Springer, Berlin, Heidelberg, 1993.

[WT94] Howard Wong-Toi. Symbolic Approximations for Verifying Real-time
Systems. PhD thesis, Stanford University, 1994.

[Yan00] Mihalis Yannakakis. Hierarchical state machines. In Theoretical Com-
puter Science, Exploring New Frontiers of Theoretical Informatics,
International Conference IFIP TCS 2000, volume 1872 of LNCS,
pages 315–330. Springer, 2000.

[Yi91] Wang Yi. A Calculus of Real Time Systems. PhD thesis, University
of Göteborg, 1991.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. In-
ternational Journal of Software Tools for Technology Transfer, 1:123–
133, October 1997.

[YPD94] Wang Yi, Paul Petterson, and Mats Daniels. Automatic verification
of real-time communicating systems by constraint-solving. In Seventh
International Conference on Formal Description Techniques, pages
223–238, 1994.

[Zub80] Wlodzimierz M. Zuberek. Timed petri nets and preliminary perfor-
mance evaluation. In Proceedings of the 7th anual symposium on
Computer Architecture, pages 88–96. ACM Press, 1980.

[Zub85] Wlodzimierz M. Zuberek. Extended d-timed petri nets, timeouts, and
analysis of communication protocols. In Proceedings of the 1985 ACM
annual conference on the range of computing : mid-80’s perspective,
pages 10–15. ACM Press, 1985.

176

177

Recent technical reports from the department of Information
Technology:

2003-035 Elisabeth Larsson and Bengt Fornberg: Theoretical and Compu-
tational Aspects of Multivariate Interpolation with Increasingly
Flat Radial Basis Functions

2003-036 Emad Abd-Elrady, Torsten Söderström, and Torbjörn Wigren:
Periodic Signal Modeling Based on Liénard’s Equation

2003-037 Dan Wallin and Erik Hagersten: Bundling: Reducing the Over-
head of Multiprocessor Prefetchers

2003-038 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: On
Fixed-Parameter Complexity of Infinite Games

2003-039 Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Sak-
sena: Insights to Angluin’s Learning

2003-040 Wendy Kress: Error Estimates for Deferred Correction Methods
in Time

2003-041 Wendy Kress: A Compact Fourth Order Time Discretization
Method for the Wave Equation

2003-042 Gerardo Schneider: Invariance Kernels of Polygonal Differential
Inclusions

2003-043 Kajsa Ljungberg, Sverker Holmgren, and Örjan Carlborg: Si-
multaneous Search for Multiple QTL Using the Global Optimiza-
tion Algorithm DIRECT

2003-044 Dan Wallin, Henrik Johansson, and Sverker Holmgren: Cache
Memory Behavior of Advanced PDE Solvers

2003-045 Sven-Olof Nyström: A Polyvariant Type Analysis for Erlang

2003-046 Martin Karlsson: A Power-Efficient Alternative to Highly Asso-
ciative Caches

2003-047 Jimmy Flink: Simuleringsmotor för t̊agtrafik med stöd för exper-
imentell konfiguration

2003-048 Timour Katchaounov and Tore Risch: Interface Capabilities for
Query Processing in Peer Mediator Systems

2003-049 Martin Nilsson: A Parallel Shared Memory Implementation of
the Fast Multipole Method for Electromagnetics

2003-050 Alexandre David: Hierarchical Modeling and Analysis of Timed
Systems

178

