
A Tool Architecture for the Next Generation of

Uppaal

Alexandre David1, Gerd Behrmann2, Kim G. Larsen2, and Wang Yi1

1 Department of Information Technology, Uppsala University, Sweden
{adavid,yi}@it.uu.se

2 Department of Computer Science, Aalborg University, Denmark
behrmann@cs.auc.dk.

Abstract. We present the design of the model-checking engine and in-
ternal data structures for the next generation of Uppaal. The design is
based on a pipeline architecture where each stage represents one indepen-
dent operation in the verification algorithms. The architecture is based
on essentially one shared data structure to reduce redundant computa-
tions in state exploration, which unifies the so-called passed and waiting
lists of the traditional reachability algorithm. In the implementation,
instead of using standard memory management functions from general-
purpose operating systems, we have developed a special-purpose storage
manager to best utilize sharing in physical storage. We present experi-
mental results supporting these design decisions. It is demonstrated that
the new design and implementation improves the efficiency of the current
distributed version of Uppaal by about 60% in time and 80% in space.

1 Introduction

Based on the theory of timed automata [1], a number of verification tools have
been developed for timed systems in the past years [7, 22]. Various efficient
algorithms and data structures, e.g. techniques for approximative analysis[21],
state space reduction[18], compact data structures[4], clock reduction [10] and
other optimisations, for timed automata are available. However, there has been
little information on how these techniques fit together into a common efficient
architecture.

This paper provides a view of the architecture and some optimisations of the
real time model checker Uppaal.1 The goal of Uppaal has always been to serve
as a platform for research in timed automata technology. As such, it is important
for the tool to provide a flexible architecture that allows experimentation. It
should allow orthogonal features to be integrated in an orthogonal manner to
evaluate various techniques within a single framework and investigate how they
influence each other.

The timed automaton reachability algorithm is basically a graph exploration
algorithm where the vertices are symbolic states and the graph is unfolded on

1 Visit http://www.uppaal.com for more information.

the fly. During exploration, the algorithm maintains two sets of symbolic states:
The waiting list contains reachable but yet unexplored states, and the passed
list contains explored states. Maintaining two sets of states does incur some
overhead that can be eliminated by unifying them. We show that this results in
a significant speedup.

Furthermore states are not generated independently from each other. This
means the same sets of locations will be explored several times with different sets
of variables. The same holds for the variable and the symbolic representation of
time. We show how to take advantage of this in the storage layer of the engine.

We present a flexible architecture in the form of a pipeline. We show how this
architecture makes it possible to implement various algorithms and data struc-
tures in an orthogonal manner making it possible to evaluate these techniques
within a common framework. We present results of combining the two main
data structures, the waiting list and the passed list, into a single data structure.
We show how this improves speed and memory usage. Finally, we show with a
storage layer the effect of sharing common data of states, thereby reducing the
memory usage by up to 80%. In particular the sharing property holds for the
location and variable vectors, and the zones.

Outline Section 2 summarises the definition of timed automata, the semantics,
and the timed automaton reachability algorithm. In section 3 we present the
pipeline architecture of Uppaal and in section 4 we discuss how the passed and
waiting list can be combined into a single efficient data structure. The actual
representation of the state data is discussed in section 5. We present experimental
results in section 6. We conclude the paper with a summary of results and related
work.

2 Notations

In this section we summarise the basic definition of a timed automaton, the
concrete and symbolic semantics and the reachability algorithm.

Definition 1 (Timed Automaton). Let C be the set of clocks. Let B(C) be
the set of conjunctions over simple conditions on the form x ./ c or x − y ./ c,
where x, y ∈ C and ./∈ {<,≤,=,≥, >}. A timed automaton over C is a tuple
(L, l0, E, I), where L is a set of locations, l0 ∈ L is the initial location, E ⊆
L × (B(C) × 2C) × L is a set of edges between locations with guards and clocks
to be reset, and I : L → B(C) assigns invariants to locations.

Intuitively, a timed automaton is a graph annotated with conditions and resets
of non-negative real valued clocks.

Definition 2 (TA Semantics). A clock valuation is a function u : C → R≥0

from the set of clocks to the non-negative reals. Let R
C be the set of all clock

valuations. Let u0(x) = 0 for all x ∈ C. We will abuse the notation by considering
guards and invariants as sets of clock valuations.

The semantics of a timed automaton (L, l0, E, I) over C is defined as a tran-
sition system (S, s0,→), where S = L × R

C is the set of states, s0 = (l0, u0) is
the initial state, and →⊆ S × S is the transition relation such that:

– (l, u) → (l, u + d) if u ∈ I(l) and u + d ∈ I(l)
– (l, u) → (l′, u′) if there exists e = (l, g, r, l′) ∈ E s.t. g holds, u′ = [r 7→ 0]u,

and u′ ∈ I(l)

where for d ∈ R, u+d maps each clock x in C to the value u(x)+d, and [r 7→ 0]u
denotes the clock valuation which maps each clock in r to the value 0 and agrees
with u over C \ r.

The semantics of timed automata results in an uncountable transition system.
It is a well known-fact that there exists an exact finite state abstraction based on
convex polyhedra in R

C called zones (a zone can be represented by a conjunction
in B(C)). This abstraction leads to the following symbolic semantics.

Definition 3 (Symbolic TA Semantics). Let Z0 = I(l0)∧
∧

x,y∈C x = y = 0
be the initial zone. The symbolic semantics of a timed automaton (L, l0, E, I)
over C is defined as a transition system (S, s0,⇒) called the simulation graph,
where S = L × B(C) is the set of symbolic states, s0 = (l0, Z0) is the initial

state, ⇒= {(s, s′) ∈ S × S | ∃e = (l1, g, r, l2), t : s
e
⇒ t

δ
⇒ s′} : is the transition

relation, and:

– (l, Z)
δ
⇒ (l,norm(M, (Z ∧ I(l))↑ ∧ I(l)))

– (l, Z)
e
⇒ (l′, r(g ∧ Z ∧ I(l)) ∧ I(l′)) if e = (l, g, r, l′) ∈ E.

where Z↑ = {u+ d | u ∈ Z ∧ d ∈ R≥0} (the future operation), and r(Z) = {[r 7→
0]u | u ∈ Z}. The function norm : N × B(C) → B(C) normalises the clock
constraints with respect to the maximum constant M of the timed automaton.

The relation
δ
⇒ contains the delay transitions and

e
⇒ the edge transitions.

The classical representation of a zone is the Difference Bound Matrix (DBM).
For further details on timed automata see for instance [1, 8]. Given the symbolic
semantics it is straightforward to construct the reachability algorithm, shown in
Fig. 1.

Note that the above definitions can be extended in the standard way to
networks of automata (using a location vector), timed automata with finite data
variables (using a variable vector) and to hierarchical timed automata [13].

3 Architecture

The seemingly simple algorithm of Fig. 1 turns out to be rather complicated
when implemented. It has been extended and optimised to reduce the runtime
and memory usage of the tool. Most of these optimisations are optional since
they involve a tradeoff between speed and memory usage.

waiting = {(l0, Z0 ∧ I(l0))}
passed = ∅

while waiting 6= ∅ do

(l, Z) = select state from waiting

waiting = waiting \ {(l, Z)}
if testProperty(l, Z) then return true

if ∀(l, Y) ∈ passed : Z 6⊆ Y then

passed = passed ∪ {(l, Z)}
∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ waiting : Z′ 6⊆ Y ′ then

waiting = waiting ∪ {(l′, Z′)}
endif

done

endif

done

return false

Fig. 1. The timed automaton reachability algorithm. The function testProperty evalu-
ates the state property that is being checked for satisfiability. The while loop is refered
to as the exploration loop.

The architecture of Uppaal has changed a lot over time. Some years ago
Uppaal was a more or less straightforward implementation of the timed au-
tomaton reachability algorithm annotated with conditional tests on features or
options. Although it was simple, it had several disadvantages:

– The core reachability algorithm became more and more complicated as new
options were added.

– There was an overhead involved in checking if an option was enabled. This
might not seem much, but when this is done inside the exploration loop the
overhead adds up.

– Some experimental designs and extensions required major changes due to
new algorithms.

The architecture of Uppaal is constantly restructured in order to facilitate
new designs and algorithms, see Fig. 2 for the latest incarnation. The main goals
of the design are speed and flexibility. The bottom layer providing the system
and symbolic state representations has only seen minimal architectural changes
over the years. In fact, the code where most options are implemented are in the
state space manipulation and state space representation components.

The idea of our pipeline architecture comes from computer graphics. In
pipeline terms our architecture is composed of the connection of the filters and
buffers components. Intuitively a filter has a put method to receive data. The
result is then sent to the next component. A buffer is a purely passive component
that awaits for data with a put method and offers data with a get method. A
pump, ommitted here for simplicity, pumps data from a buffer and sends it to
a serie of connected filters ending on the starting buffer. This is a data pipeline

Representation

State
Manipulation

LeadsTo
Checker

Liveness
Checker

Reachability
Checker

State Space

Query

User Interface

P
ar

se
r

P
ar

se
r

System Representation State Representation

Fig. 2. Uppaal uses a layered architecture. Components for representing the input
model and a symbolic state are placed at the bottom. The state space representations
are a set of symbolic states and together with the state operations they form the
next layer. The various checkers combine these operations to provide the complex
functionality needed. This functionality is made available via either a command line
interface or a graphical user interface.

and there is no concurrency involved in contrast with pipeline designs seen in
audio and video processing.

The reachability checker is actually a filter that takes the initial state as its
input and generates all reachable states satisfying the property. It is implemented
by composing a number of other filters into a pipeline, see Fig. 3. The pipeline
realises the reachability algorithm of Fig. 1. It consists of filters computing the
edge successors (Transition and Successor), the delay successors (Delay and
Normalisation), and the unified passed and waiting list buffer (PWList). Ad-
ditional components include a filter for generating progress information (e.g.
throughput and number of states explored), a filter implementing active clock
reduction [10], and a filter storing information needed to generate diagnostic
traces. Notice that some of the components are optional. If disabled a filter can
be bypassed completely and does not incur any overhead.

Semantically, the PWList acts as a buffer that eliminates duplicate states,
i.e. if the same state is added to the buffer several times it can only be retrieved
once, even when the state was retrieved before the state is inserted a second
time. To achieve this effect the PWList must keep a record of the states seen and
thus it provides the functionality of both the passed list and the waiting list.

Definition 4 (PWList). Formally, a PWList can be described as a pair (P,W) ∈
2S × 2S, where S is the set of symbolic states, and the two functions put :
2S × 2S × S → 2S × 2S and get : 2S × 2S → 2S × 2S × S, such that:

– get(P,W) = (P,W \ {(l, Z)}, (l, Z)) for some (l, Z) ∈ W .

Reachability

Transition

Expand

expression

SuccessorTraceStore

Delay Normalisation Progress ActiveClockReduction

PWList

Query

Fork

Only if
 unexploredPush flow

Pull flow

Enumerate

Fig. 3. The reachability checker is actually a compound object consisting of a pipeline
of filters. Optional elements are dotted.

– put(P,W, (l, Z)) = (P ∪ {(l, Z)},W ′) where

W ′ =

{

W ∪ {(l, Z)} if ∀(l, Y) ∈ P : Z 6⊆ Y

W otherwise

Here P and W play the role of the passed list and waiting list, respectively,
but as we will see this definition provides room for alternative implementations.
It is possible to loosen the elimination requirement such that some states can
be returned several times while still ensuring termination, thus reducing the
memory requirements [18]. We will call such states transient. Section 4 will
describe various implementations of the PWList.

In case multiple properties are verified, it is possible to reuse the previously
generated reachable state space by reevaluating the new property on all previ-
ously retrieved states. For this purpose, the PWList provides a mechanism for
enumerating all recorded states. One side effect of transient states is that when
reusing the previously generated reachable states space not all states are actually
enumerated. In this case it is necessary to explore some of the states using the
Expand filter.2 Still, this is more effective than starting over.

The number of unnecessary copy operations during exploration has been
reduced as much as possible. In fact, a symbolic state is only copied twice during
exploration. The first time is when it is inserted into the PWList, since the PWList
might use alternative and more compact representations than the rest of the
pipeline. The original state is then used for evaluating the state property using
the Query filter. This is destructive and the state is discarded after this step.
The second is when constructing the successor. In fact, one does not retrieve a
state from the PWList directly but rather a reference to a state. The discrete
and continous parts of the state can then be copied directly from the internal
representation used in the PWList to the memory reserved for the successor.
Since handling the discrete part is much cheaper than handling the continous

2 The Expand filter is actually a compound filter containing an instance of the
Successor and Transition filters.

part, all integer guards are evaluated first. Only then a copy of the zone is made
and the clock guards are evaluated.

The benefits of using a common filter and buffer interface are flexibility, code
reuse, and acceptable efficiency. Any component can be replaced at runtime with
an alternate implementation providing different tradeoffs. Stages in the pipeline
can be skipped completely with no overhead. The same components can be used
and combined for different purposes. For instance, the Successor filter is used
by both the reachability checker, the liveness checker, the deadlock checker, the
Expand filter, and the trace generator. Since the methods on buffers and filters
are declared virtual they do incur a measurable call overhead (approximatively
5%). But this is outweighed by the possibility of skipping stages and similar ben-
efits. In fact, the functionality provided by the Successor filter was previously
provided by a function taking a symbolic state as input and generating the set of
successors. This function was called from the exploration loop which then added
these successors to the waiting list. The function returned the successors as an
array of states.3 The overhead of using this array was much higher than the call
overhead caused by the pipeline architecture.

4 Unifying the Passed list and Waiting List

In this section we present the concept of the unified passed and waiting list, and
a reference implementation for the structure.

4.1 Unification Concept

The main conceptual difference between the present and previous implementa-
tions of the algorithm is the unification of the passed list and waiting list. As
described in the previous sections, these lists are the major data structures of
the reachability algorithm. The waiting list holds states that have been found
to be reachable but not yet been explored whereas the passed list contains the
states that have been explored. Thus a state is first inserted into the waiting list
where it is kept until it is explored and then moved to the passed list. The main
purpose of the passed list is to ensure termination and also to avoid exploring
the same state twice. Fig. 1 shows the reachability algorithm based on these
lists.

One crucial performance optimisation is to check whether there is already
a state in the waiting list being a subset or superset of the state to be added.
In this case one of the two states can be discarded [5]. This was implemented
by combining the queue or stack structure in the waiting list with a hash table
providing a fast method to find duplicate states. Obviously, the same is done for
the passed list. This approach has two drawbacks: (i) states are looked up in a
hash table twice, and (ii) the waiting list might contain a large number of states
that have previously been explored though this is not noticed until the state is
moved to the passed list thus wasting memory.

3 It was actually a vector from the C++ Standard Library.

The present implementation unifies the two hash tables into one. There is
still a collection structure representing the waiting list, but it only contains
simple references to entries in the hash table. Furthermore pushing a state to
the waiting list is a simple append operation.

A number of options are available via different implementations of the PWList
to approximate the representation of the state-space such as bitstate hashing [15],
or choose a particular order for state-space exploration such as breadth first,
depth first, best first or random [3, 2]. The ordering is orthogonal to the storage
structure and can be combined with any data representation.

Q = PW = {(l0, Z0 ∧ I(l0))}
while Q 6= ∅ do

(l, Z) = select state from Q

Q = Q \ {(l, Z)}
if testProperty(l, Z) then return true

∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ PW : Z′ 6⊆ Y ′ then

PW = PW ∪ {(l′, Z′)}
Q.append(l′, Z′)

endif

done

done

return false

Fig. 4. Reachability algorithm using the unified PWList. In the reference implemen-
tation (sub-section 4.2) Q only contains references to the entries in PW .

This unified structure implements the PWList interface defined in the previ-
ous section: From the pipeline point of view new states are pushed and waiting
states to be explored are popped. Using this structure allows the reachability
algorithm to be simplified to the one given in Fig. 4. In this algorithm the states
popped from the queue do not need inclusion checking, only the successors need
this.

4.2 Reference Implementation

Figure 5 shows the reference implementation of our unified structure. The hash
table gives access to the reachable state-space. Every state has a discrete state
entry and a union of zones as its symbolic part. The waiting queue is a simple
collection of state references (e.g. a linked list).

The first characteristic of this reference implementation is that it builds on
top of the storage interface, which allows to change the actual data representation
independently of the exploration order. This order depends on the waiting queue
that keeps state references.

The second characteristic comes from its state-space representation: the main
structure is a hash table giving access to states. The states have a unique entry for

waiting queue

reference to state entry

reference to zone

ha
sh

 ta
bl

e

double linked (collision) list

discrete part (keys)

zone union (list of keys)

Fig. 5. Reference implementation of PWList.

a given discrete part, i.e. locations and variables. The symbolic part is a union of
zones, or more precisely of zone keys handled by the storage structure. As a first
implementation this union is a list of keys, but we plan for future experiments a
CDD representation that is well-suited for such union of zones [4]. Besides, this
representation avoids any discrete state duplicates. The zones share the same
discrete parts here. The storage underneath may implement sharing of all data
between different discrete states and zones of different unions of zones: this is at
a lower level and it is described in section 5.

The third characteristic is the limited use of double-linked lists. The discrete
state list (collision list of the hash table) is double-linked because we need to be
able to remove transient states when they are popped of the waiting list. The
waiting queue is single-linked because its length is rather small and it is efficient
to decide on a validity bit if a popped state should be explored or thrown away.
In this case we postpone the removal of states. The same applies for the zones
in the zone union. Proper removal of states involves a simple flag manipulation.
It is an implementation detail, not to be discussed here. At first glance it seems
that the unification would not gain anything from a relatively small waiting list
compared to the passed list (in most cases). However the costs of look-ups in
small or large hash-tables are about the same, and we need one look-up instead
of two.

The put operation is described as follows: hash the discrete part of the state
to get access to the zone union. Check for inclusion, remove included zones,
add this new zone, or refuse the zone. Finally add a reference to the waiting
queue. The get operation consists of popping a state reference and checking for
its validity (a simple flag).

4.3 Experiments

To isolate the impact of the unified list, we instrument the reference implemen-
tation. We use the same experiments presented in section 6 with the addition
of dacapo, a TDMA protocol. We count in the inclusion checking the number
of (symbolic) states that are included in the new state and the number of new

key
key

{vector or DBM}

{vector or DBM}

{DBM, key}
subset|superset|equal|none

save

load

inclusion

allocate

allocatorstorage

free

Fig. 6. The interface of the storage with the allocator underneath.

states rejected because they are already explored. Among these states that are
on the passed and the waiting list, we count those that are marked “waiting”,
i.e. not yet explored. Table 1 shows how often an inclusion is detected with a
waiting state. The figures are highly dependent on the model and which states
are generated. Compared with the traditional 2-lists approach, we avoid to push
states to the passed list or the waiting list. However the exploration is still the
same since a waiting state that is going to be explored is guaranteed not to be
in the passed or the waiting list in both approaches. In addition to this, if we
consider the length of the waiting list compared with the passed list, we expect a
performance improvement, but not critical. This is confirmed in the experiments
of section 6.

Model superset result subset result

Cups 97% 86%
Bus Coupler 17% 60%
Dacapo 86% 81%

Table 1. Percentage of waiting states of the inclusion detections. The new states are
compared to the waiting states: they may include those (superset result) or may be
included in those (subset result).

5 Storage Structure

The storage structure is the lower layer whose role is to store simple data. It is in
charge of storing location vectors, integer variables, zone data, and other meta
variables used for certain algorithms, i.e. guiding [2]. This structure is based on
keys: data is sent to the storage that returns a key to be able to retrieve the
data later. In addition to this the storage is able to perform simple operations
such as equality testing of vectors and inclusion checking of zones to avoid the
intermediate step of reading the data first with the associated key. The different
storage implementations are built on top of a specialised data allocator. This
allocator allocates memory by big chunks and is optimised to deliver many small
memory blocks of limited different types. This means that the memory allocation
has very little overhead and is very efficient for allocating and deallocating many
memory blocks of the same size. This is justified by the nature of the data we
are storing: there are few types of vectors and data structures stored but their

number is huge. Figure 6 illustrates the main functions of the interface with the
allocator underneath.

The storage structure is orthogonal to a particular choice of data representa-
tion and the PWList structure. We have implemented two variants of this stor-
age, namely one with simple copy and the other one with data sharing. Other
particular algorithms aimed at reducing the memory footprint such as convex
hull approximation [21] or minimal constraint representation [18] are possible
implementations. These will be ported from the Uppaal code base.

It is important to notice that Uppaal implements a minimal constraint rep-
resentation based on graph reduction. This reduction gives 20-25% gain in mem-
ory. It can give even more gain in addition to the shared storage implementation,
but it is not implemented here.

5.1 Simple Storage

The simple storage copies data in memory allocated by the allocator and is able
to restore original data. This is similar to the default implementation of Uppaal

with the difference that DBM matrices are saved without their diagonal. The
diagonal contains the constraints xi − xi ≤ 0 which do not need to be copied.4

5.2 Shared Storage

To investigate how data might be shared, we instrumented the current imple-
mentation of Uppaal to see how much of the data was shared. We put a printout
code at the stage where a state is stored after having tested it for inclusion. The
printing was processed through a perl script to analyse it. Table 2 shows consis-
tent results concerning storage of location vectors, integer variables, and DBM
data. These results hold through different examples. This can be explained by
the way the reachability works: when computing the next state all the possi-
bilities are tried, so for a given location many variable settings exist. The same
holds in the other direction: a given variable set will exist in many location con-
figurations. The differences in the results are consistent: audio and dacapo are
middle sized models, fischer is the well-known Fischer’s protocol for mutual ex-
clusion which behaves badly with respect to timing constraints, and bus coupler
is a very big example. The bigger the model, the more combinations, and the
more sharing we get. The audio model is more oriented on control locations. The
obtained results justified this shared storage implementation.

The shared storage has a hash table internally to be able to find previously
saved data quickly. This requires to compute a hash value for every saved data.
However we need to compute hash values anyway to retrieve the discrete part
of a state so this is done only once. Another possible overhead is the lookup in
collision lists. By a careful choice of the hash function collisions are rare and

4 A DBM representing a non empty zone has always its diagonal set to 0. We store
only non empty zones, hence we don’t need to copy this diagonal.

besides this matches are found in 80% of the cases because of the high sharing
property of stored data.

A particular choice has been made concerning the deletion of stored data
for this implementation (the interface is free on this point). Only zone data, i.e.
DBMs here, are really deallocated. We justify this by the high expected sharing
of the discrete part of the states, that is not going to be removed from the
passed list. When testing for zone inclusion, we may have to remove zones (this
is implemented), but the discrete part is equal. The only case where this does not
hold is for transient states because they are stored only in the waiting list and
never in the passed list. This will give a set of locations that could be freed from
memory. However removing data requires double linked lists, and the locations
and variables are saved the same way. For this implementation we adopted this
compromise.

Model Unique locations Unique variables Unique DBMs

Audio 52.7% 25.2% 17.2%
Dacapo 4.3% 26.4% 12.7%
Fischer4 9.9% 0.6% 64.4%
Bus coupler 7.2% 8.7% 1.3%

Table 2. Results from instrumented Uppaal. The smaller the numbers are, the more
copies there are.

6 Experiments

We conduct the experiments on the development version 3.3.24 of Uppaal with-
out guiding on a Ultra SparcII 400MHz with 4GB of memory. This version in-
corporates the pipeline and is already twice as fast as the official version due
to memory optimization such as reduced number of copies. Here we compare
results without and with the PWList structure.

We use an audio protocol [6] (audio), a TDMA protocol [20] (dacapo), an
engine gear controller [19] (engine), a combinatorial problem (cups), a field bus
communication protocol [14] (different parts BC, master, and slave), and a pro-
duction plant with three batches [17]. Table 3 shows time and space to gener-
ate the whole state space, i.e. the property A[] true, except for cups where
the reachability property E<> cups[2] == 4 and y <= 30 is used because the
whole state space is too large. Time results under 0.5s are reported as 0.5s in the
table. The result > 4G means the verifier crashed because it ran out of memory.

We choose the options -Ca to use DBM representation with active clock
reduction. Our implementation does not take full advantage of this because
dynamic sized-DBM is not supported in the model-checker. Concerning the four
last large examples we used the flag -H273819,273819 to increase manually the
size of the hash tables. Default sizes give twice longer verification times.

Depending on the careful chosen options given to Uppaal our new imple-
mentation gives improvements of up to 80% in memory. If we take into account
the factor 2 in speed and this improvement we obtain about 60% speed gain.

No PWList PWList - copy PWList - shared

audio 0.5s 2M 0.5s 2M 0.5s 2M
engine 0.5s 3M 0.5s 4M 0.5s 5M
dacapo 3s 7M 3s 5M 3s 5M
cups 43s 116M 37s 107M 36s 26M
BC 428s 681M 359s 641M 345s 165M
master 306s 616M 277s 558M 267s 153M
slave 440s 735M 377s 645M 359s 151M
plant 19688s > 4G 9207s 2771M 8513s 1084M

Table 3. Experimental results.

The memory gain is expected due to the showed sharing property of data. The
speed gain comes from only having a single hash table and from the zone union
structure: the discrete test is done only once and then inclusion checks is done
on all the zones in one union. This is showed by the results of the simple copy
version. The plant example has 9 clocks and 28 integer variables. The results
show the gain in avoiding discrete duplicates. The amount of shared data is less
than in other examples. Slight time improvements of the shared version comes
from the smaller memory footprint only since there is a computation overhead.
We gain on the page and cache faults.

For small examples the results are identical with all versions (results show
allocated memory, less memory is used). The results scale with the size of the
models, in particular the sharing property of the data holds.

7 Conclusions and Related Work

We have presented a pipeline architecture for the design of a real time model
checker based on reachability analysis. The idea of using pipeline is from com-
puter graphics. It is simple, versatile, and easy to maintain. The architechture
has been implemented based on a shared data structure unifying the passed and
waiting lists adopted in the traditional reachability analysis algorithms for finite
state systems. We have also developed a special-purpose memory manager for
the architecture to best utilize sharing in physical representation (storage) of
logical structures adopted in the verification algorithms.

The work presented in this paper provides a platform for integration of var-
ious techniques developed in recent years for efficient analysis of timed systems.
It paves the way for a new version of the Uppaal engine with full support for
hierarchical models.

Related work The state space storage approach presented in this paper is similar
to the one in [11] for hierarhical coloured Petri nets. Both approaches share
similarities with BDDs [9] in that common substructures are shared, but avoid
the overhead of the fined grained data representation of BDDs. The zone union
used in our state representation is a simple list of zones. A more elaborate
representation is the CDD [4] that can be used efficiently for analysis. However
CDDs pose a number of unresolved problems if we want to use a unified passed

and wait structure. Furthermore it is not known how to cope with engine specific
data connected to symbolic states. The passed/waiting list unification has been
applied to Petri Nets [12] for the purpose of distributed model-checking. Our
approach aims at reducing look-ups in the hash table and eliminating waiting
states earlier. The particular implementation of the storage that shares data is
different from the state compression used in Spin [16]. In Spin a global state
descriptor represents a state and it holds a descriptor for the variables, followed
by descriptors for every processes and channels. The user may choose the number
of bits for these descriptors, which naturally limits the range of these descriptors.
Our representation holds one descriptor for the locations, one for the variables,
and one for the zones. The variable sharing is the only similarity. Locations
and variables are treated equally as data vectors and are shared as such. It is
important to notice that compression is orthogonal and compatible with this
representation.

Acknowledgments

As this work was done on the current Uppaal engine, we are grateful to all
its developers. The questions of unification and memory management had been
discussed in our group previously. We would like to thank Johan Bengtsson for
discussions and his work in implementing the current version of the Uppaal

engine as well as nice scripts to collect statistics.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[2] Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim Larsen, Paul Petterson,
and Judi Romijn. Efficient guiding towards cost-optimality in uppaal. In Proc. of
TACAS’2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[3] Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed model
checking - How the search order matters. In Proc. of 12th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science, Chicago,
Juli 2000. Springer-Verlag.

[4] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi.
Efficient timed reachability analysis using clock difference diagrams. In Proceed-
ings of the 12th Int. Conf. on Computer Aided Verification, volume 1633 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[5] Johan Bengtsson. Reducing memory usage in symbolic state-space exploration
for timed systems. Technical Report 2001-009, Uppsala University, Department
of Information Technology, May 2001.

[6] Johan Bengtsson, W.O. David Griffioen, K̊are J. Kristoffersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of an Audio Protocol
with Bus Collision Using Uppaal. Number 1102 in Lecture Notes in Computer
Science, pages 244–256. Springer–Verlag, July 1996.

[7] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Uppaal — a Tool Suite for Automatic Verification of Real–Time Systems. In Proc.
of Workshop on Verification and Control of Hybrid Systems III, number 1066 in
Lecture Notes in Computer Science, pages 232–243. Springer–Verlag, October
1995.

[8] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are
timed automata updatable? In Proceedings of the 12th Int. Conf. on Computer
Aided Verification, volume 1855 of Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[9] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
In Transactions on Computers, volume C-35 no. 8 of IEEE, August 1986.

[10] C.Daws and S.Yovine. Reducing the number of clock variables of timed automata.
In Proceedings of the 1996 IEEE Real-Time Systems Symposium, RTSS’96. IEEE
Computer Society Press, 1996.

[11] S. Christensen and L.M. Kristensen. State space analysis of hierarchical coloured
petri nets. In B. Farwer, D.Moldt, and M-O. Stehr, editors, Proceedings of Work-
shop on Petri Nets in System Engineering (PNSE’97) Modelling, Verification, and
Validation, number 205, pages 32–43, Hamburg, Germany, 1997.

[12] Gianfranco F. Ciardo and David M. Nicol. Automated parallelization of discrete
state-space generation. In Journal of Parallel and Distributed Computing, vol-
ume 47, pages 153–167. ACM, 1997.

[13] Alexandre David, Oliver Möller, and Wang Yi. Formal verification uml statecharts
with real time extensions. In Proceedings of FASE 2002 (ETAPS 2002), volume
2306 of Lecture Notes in Computer Science, pages 218–232. Springer-Verlag, 2002.

[14] Alexandre David and Wang Yi. Modeling and analysis of a commercial field bus
protocol. In Proc. of the 12th Euromicro Conference on Real Time Systems, pages
165–172. IEEE Computer Society, June 2000.

[15] Gerard J. Holzmann. On limits and possibilities of automated protocol analysis.
In Proc. 7th IFIP WG 6.1 Int. Workshop on Protocol Specification, Testing, and
Verification, pages 137–161, 1987.

[16] Gerard J. Holzmann. The model checker spin. In IEEE Transactions on Software
Engineering, volume 23, may 1997.

[17] Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided Synthesis of Control
Programs Using Uppaal. In Ten H. Lai, editor, Proc. of the IEEE ICDCS In-
ternational Workshop on Distributed Systems Verification and Validation, pages
E15–E22. IEEE Computer Society Press, April 2000.

[18] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient Verifica-
tion of Real-Time Systems: Compact Data Structures and State-Space Reduction.
In Proc. of the 18th IEEE Real-Time Systems Symposium, pages 14–24. IEEE
Computer Society Press, December 1997.

[19] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of
a Gear-Box Controller. In Proc. of the 4th Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, number 1384 in Lecture Notes in
Computer Science, pages 281–297. Springer–Verlag, March 1998.

[20] Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA Protocol
Startup Mechanism. In Proc. of the Pacific Rim Int. Symp. on Fault-Tolerant

Systems, pages 235–242, December 1997.
[21] Howard Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems.

PhD thesis, Standford University, 1995.
[22] Sergio Yovine. Kronos: A verification tool for real time systems. In Int. Journal

on Software Tools for Technology Transfer, pages 134–152, Oct 1997.

