
Unification & Sharing in Timed Automata

Verification

Alexandre David1, Gerd Behrmann2, Kim G. Larsen2, and Wang Yi1

1 Department of Information Technology, Uppsala University, Sweden
2 Department of Computer Science, Aalborg University, Denmark

Abstract. We present work on unifying the two main data structures
involved during reachability analysis of timed automata. We also present
result on sharing common elements between states. The experimental
evaluations show speedups of up to 60% and memory savings of up to
80% compared to previous implementations.

1 Introduction

Timed automata (TA) is a popular formalism for modelling real-time aspects.
The distinctive feature of TA is the use of clocks. Clocks are non-negative real
valued variables, that can be compared and reset, and which increase at identical
rates during delay transitions. A number of verification tools for TA exist. Like all
verification tools, they suffer from the state explosion problem. In addition, they
must deal with the infinite state-space of TA (due to the real valued clocks). Most
tools use a pseudo-explicit state-space exploration algorithm based on zones.
Zones describe infinite sets of clock valuations, and the state-space is represented
by pairs (l, Z) called symbolic states containing the current location and the
zone (more generally, the state-space of a network of TA extended with bounded
integer variables might be represented by triples (l,ν, Z) containing a location
vector l, a variable vector ν and a zone Z).

During state-space exploration, it is for reasons of termination and efficiency
necessary to keep track of both which symbolic states have been explored as well
as which still need to be explored. In this paper we present results on unifying
these two data structures into a common structure. We also present orthogonal
results on sharing common location vectors, variable vectors and zones between
symbolic states. We will motivate these decisions and evaluate them through
experiments in a prototype implementation based on the real-time verification
tool Uppaal.

Related work The sharing approach presented in this paper is similar to the one
in [1] for hierarhical coloured Petri nets. Both approaches share similarities with
BDDs in that common substructures are shared, but avoid the overhead of the
fine grained data representation of BDDs. The unification has been applied to
Petri Nets [2] for the purpose of distributed model-checking. Our approach aims
at reducing look-ups in the hash table and eliminating waiting states earlier. To
our knowledge, there has been no work on these issues in the context of TA.



2 Unification and Sharing

During state-space exploration, there is a fundamental need to maintain two sets
of symbolic states: States that need to be explored (the waiting list) and states
that have been explored (the passed list). States are taken from the waiting list,
compared to the states in the passed list, and if unexplored added to the passed
list while successors are added to the waiting list.

Since symbolic states are sets of concrete states, it makes sence to define
inclusion between states having the same location and variable vector, i.e.,
(l,ν, Z) ⊆ (l,ν, Z ′) iff Z ⊆ Z ′. We say that (l,ν, Z) is covered by (l,ν, Z ′).
Three observations are essential for good performance:

– When determining whether a state s has already been explored by comparing
it to the passed list, rather than searching for states identical to s, we might
as well look for states covering s.

– When adding a state s to the waiting list, there is no need to add s if it is
covered by an existing state.

– When adding a state s to the passed list or the waiting list, all states covered
by s can be removed.

The traditional approach to imple- WL = PL = {s0}
while WL 6= ∅ do

s = select and remove state from WL

if s |= ϕ then return true

∀s′ : s ⇒ s′ do

if ∀s′′ ∈ PL : s′ 6⊆ s′′ then

PL = PL ∪ {s}
WL = WL ∪ {s}

endif

done

done

return false

Fig. 1. Explicit state reachability algo-
rithm. States are inserted into both the
passed list and the waiting list.

menting these operations is to use a hash
table and define the hash function on
the location vector and variable vector,
but not on the zone. Thus, it is easy to
find states with the same location vector
and variable vector. This approach has
a major drawback: It is often the case
that many states in the waiting list are
covered by states in the passed list, but
this is not realized until the states are
moved from the waiting list to the passed
list. This enlarges the waiting list, wast-
ing memory and increasing the cost of
adding new states. One solution would
be to move the passed list lookup s.t. states are added to the passed list and
the waiting list at the same time, see Fig. 1. Then the waiting list is guaranteed
to only contain unexplored states. However, this solution is undesirable: First,
states in the waiting list are duplicated. Second, although it is not apparent from
Fig. 1, adding a state s to the passed and waiting lists still requires a partial
traversal of those data structures in order to eliminate states covered by s.

Instead we propose to unify the two data structures into a single data struc-
ture – for lack of a better name we call it the unified list. When adding a state
s to the unified list, it is compared to existing states: If s is covered by any of
the existing states, then s is not added. Otherwise, all states covered by s are
removed and s is added. Internally, it is still necessary to keep track of which
states have been explored and when retrieving a state from the list, it is marked



waiting queue

reference to state entry

reference to zone

ha
sh

 ta
bl

e

double linked (collision) list

discrete part (keys)

zone union (list of keys)

Fig. 2. Implementation of a unified passed and waiting list.

as explored, but not actually removed. Figure 2 shows one possible implemen-
tation of the unified list data structure. A hash table provides fast access to a
linked list of zones sharing the same location vector and variable vector. At the
same time, a list (ordered either in FIFO or LIFO depending on the desired
exploration order) of references to unexplored states is maintained.

Unifying the passed and waiting lists reduces the number of needless states,
i.e. states covered by previously explored states, stored on the waiting list. It
does not reduce the amount of memory needed to store each symbolic state. Our
second proposal is to share common location vectors, variable vectors, and zones
among states. This is motivated by the results shown in Tab. 1. This can be
implemented by storing location vectors, variable vectors, and zones in different
hash tables. The unified list then only maintains references (keys) to the elements
in those hash tables.

3 Experiments

We conduct our experiments on development version 3.3.24 of Uppaal on an
Ultra Sparc II 400MHz with 4GB of memory. This version incorporates a new ar-
chitecture and is already twice as fast as the official 3.2 version. Here we compare
results without and with the unified list structure for an audio protocol (Audio),
a TDMA protocol (Dacapo), an engine gear controller (Engine), a combinatorial
problem (Cups), a field bus communication protocol (different parts BC, Master,

Table 1. The number of unique location vector, variable vectors and zones, measured
in percent for four different examples. The lower the number, the more copies of the
same data there are.

Model Unique locations Unique variables Unique zones

Audio 52.7% 25.2% 17.2%
Dacapo 4.3% 26.4% 12.7%
Fischer4 9.9% 0.6% 64.4%
Bus coupler 7.2% 8.7% 1.3%



Table 2. Experimental results for 8 examples without unification, with unification,
and with unification and sharing.

Model Before Unification Unication & Sharing

Audio ≤ 0.5s 2M ≤ 0.5s 2M ≤ 0.5s 2M
Engine ≤ 0.5s 3M ≤ 0.5s 4M ≤ 0.5s 5M
Dacapo 3s 7M 3s 5M 3s 5M
Cups 43s 116M 37s 107M 36s 26M
BC 428s 681M 359s 641M 345s 165M
Master 306s 616M 277s 558M 267s 153M
Slave 440s 735M 377s 645M 359s 151M
Plant 19688s > 4G 9207s 2771M 8513s 1084M

and Slave), and a production plant with three batches. We refer to the Uppaal

web-site for references to these examples.
Table 2 shows time and space requirements to generate the whole state-space,

except for cups where a reachability property is used because the whole state
space is too large. The result > 4G means the verifier crashed because it ran
out of memory. In all examples, zones were represented using the DBM data
structure, and active clock reduction was enabled. In the four last examples, the
hash table size of the passed list and waiting list was enlarged to 273819 (using
the default size doubles the verification time). The unified list implementation
automatically resizes the hash table and does not suffer from this problem.

Focusing on the experiments with unification and without sharing, we see
an increase in speed and a slight reduction in memory usage. This is due to
not wasting space on storing states in the waiting list, that are not going to be
explored anyway and due to keeping a list of zones having the same location
and variable vector. The latter is also responsible for the speedup. This is in
particular the case in the plant example, which has 9 clocks and 28 integer vari-
ables. Focusing on the experiments with sharing, we see a significant reduction
in memory usage of up to 80%. We also observe a slight speedup, which we
expect is due to the smaller memory footprint - this seems to compensate for
the computational overhead caused by maintaining extra hash tables. For small
examples, the results are identical for all versions. The results scale with the size
of the models, in particular the sharing property of the data holds. In total, we
observe a speedup of up to 60%.

Acknowledgments go to Ahiable Antoinette and Johan Bengtsson.

References

[1] S. Christensen and L.M. Kristensen. State space analysis of hierarchical coloured
petri nets. In B. Farwer, D.Moldt, and M-O. Stehr, editors, Proceedings of

PNSE’97, number 205, pages 32–43, Hamburg, Germany, 1997.
[2] Gianfranco F. Ciardo and David M. Nicol. Automated parallelization of discrete

state-space generation. In Journal of Parallel and Distributed Computing, vol-
ume 47, pages 153–167. ACM, 1997.


