
Verification of UML
Statechart with Real-time

Extensions

Alexandre David
M. Oliver Möller

Wang Yi

Department of Information Technology
Uppsala University
Box 337, SE-751 05 Uppsala, Sweden

Technical report 2003-009
Februari 2003

ISSN 1404-3203

VERIFICATION OF UML STATECHART WITH

REAL-TIME EXTENSIONS

Alexandre David∗ M. Oliver Möller†

Wang Yi∗
∗Department of Information Technology, Uppsala University, Sweden

{adavid,yi}@docs.uu.se,

† BRICS Department of Computer Science, Aarhus University, Denmark
omoeller@brics.dk.

Abstract. We develop a formal model for hierarchical timed systems. The
statechart-like hierarchy features parallelism on any level and connects superstate
and substate via explicit entries and exits. Time is represented by clocks, invariants,
and guards. For this formalism we give an operational semantics that is appropriate
for the verification of universal timed computation tree logic (TCTL) properties.

Our model is strongly related to the timed automata dialect as present in the
model checking tool Uppaal. Here networks of timed automata are enriched with
shared variables, hand-shake synchronization, and urgency.

We describe a flattening procedure that translates our formalism into a network
of Uppaal timed automata. This flattening preserves a correspondence of the sets
of legal traces. Therefor the translation can be used to establish properties in the
hierarchical model.

As a case study, we use the standard UML modeling example of a cardiac pace-
maker. We model it in our hierarchical language, flatten it to Uppaal input, and
use the latter for a formal analysis.

Our formalism remains decidable with respect to TCTL properties. In general
the encoding of statecharts requires an abstraction step, which is not covered by
this article.

1. Introduction

The correct both concurrent and real-time. Any one of these features al-
ready complicates the design, for basic descriptions may entail unforeseen
behaviors. This suggests to include concerns for correctness a priori, before
a prototype of a system is built.

In model-based development this requires appropriate modeling languages
that describe the system under development on a high level. If this model
should be used for an analysis of the system, it needs a formal semantics
and machinery to support this analysis. Since early design model undergo
frequent changes, automation in the analysis is not only desirable but a
prerequisite.

For most reasonably expressive modeling languages, even basic proper-
ties are undecidable, which prevents fully automated treatment in general.

2

However, under appropriate safe abstractions the analysis might be able to
establish or refute a relevant sub-set of the actual system properties.

For reactive systems, Harel and Pnueli suggest to use hierarchical state-
machines with parallelism on various levels as an appropriate modeling lan-
guage [HP85]. The properties could be expressed in dialects of temporal
logics.

However, standard statechart formalisms typically use event queues for
communication, which renders reachability an undecidable problem. More-
over, the timing properties are usually a second class citizen in the sense,
that timeout events are used to generate timing conditions.

What we propose is to include time prominently in a formalism that is
structurally close to statecharts and features a less powerful synchronization
mechanism than events. Properties of this formalism, which are chosen
from a real-time version of temporal logics, should remain decidable. The
necessary abstraction step from a “real” statechart design model then could
be carried out on the level of data-abstraction, where a rich tradition in the
framework of abstract interpretation exists [CC77].

Following this idea we define a formalism for timed systems that is halfway
between UML statecharts and Uppaal timed automata. Basically we ex-
tend timed automata with a statechart-style hierarchy and parallelism on
any level. The resulting language is described by a formal syntax and given a
operational semantics. Considering the rich set of existing formal statechart-
like languages—including several timed variations—, the introduction of yet
another formalisms might come as a surprise. It is motivated along two
dimensions.

First, we are primarily concerned with the formal analysis of models in
our language. In particular, we plan to pursue a model checking approach
that is powerful enough to capture the complete behavior of a system with
respect to a timed logic. To deal with the high computational complexity, we
strive to benefit from the intensive research on the timed automata model.
This dictates to restrict our formalism to decidable primitives that moreover
allow for reasonable efficiency in the exhaustive analysis of a system.

Second, the multitude of variations in the statechart formalism makes the
choice of one formalism not easier. No two variations we know of are com-
parable. We note a trend to treat statecharts as a programming language
close formalism, e.g., by attaching C++ code to states and transitions. It is
conceivable that algorithmic treatment of this requires an abstraction step.
The anchor of our formalism is the possibility for fully automatic analysis.
As a price, the translation of other formalisms into it might have to be an
abstraction function. This still allows for a faithful analysis with respect to,
e.g., safety properties.

Thus our language is structurally close to full-featured statechart for-
malisms and conceptually close to timed automata. The former is incor-
porated, e.g., by the Rhapsody tool, and the latter by the real-time model
checking tool Uppaal.

3

Plan. This article is organized as follows. In Section 2 we introduce our
timed statechart-like formalism, called hierarchical timed automata. In Sec-
tion 3 we give the (flat) timed automata formalism that can serve as an
input to the model checking tool Uppaal. In Section 4 we define a subset
of TCTL that can be effectively used for model-checking. This is appro-
priate both for the hierarchical and for the flat timed model. In Section 5
we give a description of a flattening procedure that translates hierarchical
timed automata into an equivalent flattened network. In Section 6 we sketch
the correctness of this translations, in the sense that both hierarchical and
flattened model satisfy a common set of TCTL properties. We implemented
this flattening procedure for a XML representation of both formalisms. In
Section 7 we use the model of a cardiac pacemaker as a case study. In
Section 8 we give concluding remarks.

2. Hierarchical Timed Automata

We fist give an informal introduction and then define the syntax of our
formalism. Next we present the operational semantics.

2.1 Syntax of Hierarchical Timed Automata

Hierarchical Timed Automata (HTAs) are motivated by the statechart for-
malism of [Har87]. As the main syntactic restriction the event communi-
cation is replaced by a less expressive hand-shake synchronization. This is
necessary to maintain decidability.

We introduce the syntax of HTAs first intuitively and then by a formal
definition.

2.1.1 A Restricted Statechart Formalism

Since we are primarily interested in formal verification, we restrict the rich
and expressive UML statechart formalism. Timed behavior is reflected by
(formal) clocks, timed guards, and invariants. Our goal is to tailor a for-
malism where essential properties remain decidable.

Unlike in UML, where statecharts give rise to the incarnation of objects, we
treat a statechart itself as behavioral entity. The notion of thread execution
is simplified to the parallel composition of state machines. Relationships to
other UML diagrams are dropped.

Our formalism does not support special-purpose modeling constructs, like
synchronization states. Some UML tools allow to use C++ as an action
language, i.e., C++ code can be arbitrarily added to transitions or states.
Formal verification of this is out of scope of this work, we restrict to primitive
functions and basic variable assignments. Event communication is simplified
to the case where two parts of the system synchronize via handshake.

What we preserve is the essence of the statechart formalism: hierarchical
structure, parallel composition at any level, synchronization of remote parts,

4

and history.

2.1.2 Data Components

We introduce the data components of hierarchical timed automata that are
used in guards, synchronizations, resets, and assignment expressions. Some
of this data is kept local to a superstate S.

Integer variables. Let Var be a finite set of integer variables. Var(S) ⊆ Var

is the set of integer variables local to a superstate S.
Clocks. Let Clocks be a finite set of clock variables. The set Clocks(S) ⊆

Clocks denotes the clocks local to a superstate S. If S has a history en-
try, Clocks(S) contains only clocks, that are explicitly declared as forgetful.
Other locally declared clocks of S belong to Clocks(root).

Channels. Let Chan a finite set of synchronization channels. Chan(S) ⊆
Chan is the set of channels that are local to a superstate S, i.e., there cannot
be synchronization along a channel c ∈ Chan(S) between one transition
inside S and one outside S.

Synchronizations. Chan gives rise to a finite set of channel synchroniza-
tions, called Sync. For c ∈ Chan, c?, c! ∈ Sync.

Guards and invariants. A data constraints is a boolean expressions of the
form E ./ E, where E is an arithmetic expression over Var and ./∈ {<
, >,=,≤,≥}. A clock constraints is an expressions of the form x ./ n or
x − y ./ n, where x, y ∈ Clocks and n ∈ Z with ./∈ {<, >,=,≤,≥}. A
clock constraint is downward closed, if ./∈ {<,=,≤}. A guard is a finite
conjunction over data constraints and clock constraints. An invariant is a
finite conjunction over downward closed clock constraints. Guard is the set
of guards, Invariant is the set of invariants. Both contain additionally the
constants true and false.

Assignments. A clock reset is of the form x := 0, where x ∈ Clocks. A
data assignment is of the form v := E, where v ∈ Var and E an arithmetic
expression over Var. Reset is the set of clock resets and data assignments.

2.1.3 Structural Components

We give now the formal definition of our hierarchical timed automaton.

Definition 1. (Hierarchical Timed Automaton (HTA))
A hierarchical timed automaton is a tuple 〈S,S0, η, type, Var, Clocks, Chan, Inv, T 〉
where

◦ S is a finite set of locations.
◦ S0 ⊆ S is a set of initial locations.
◦ η : S → ℘ (S). η maps S to all possible substates of S. η is required to

give rise to a tree structure where a special superstate root ∈ S is the
root. We readily extend η to operate on sets of locations in the obvious
way.

5

◦ type : S → {AND, XOR, BASIC, ENTRY, EXIT, HISTORY} is the
type function for locations. Superstates are of type AND or XOR.

◦ Var, Clocks, Chan are sets of variables, clocks, and channels. They give
rise to Guard, Reset, Sync, and Invariant as described in Section 2.1.2.

◦ Inv : S → Invariant maps every locations S to an invariant expression,
possibly to the constant true.

◦ T ⊆ S × (Guard × Sync × Reset × {true, false}) × S is the set of
transitions. A transition connects two locations S and S′, has a guard
g, an assignment r (including clock resets), and an urgency flag u. S
is called the source and S′ is called the target of the transition. We

use the notation S
g,s,r,u
−−−−→ S′ for this and omit g, s, r, u, when they are

necessarily absent (or false, in the case of u).

Notational conventions. We use the predicate notation TYPE(S) for
TY PE ∈ {AND, XOR, BASIC, ENTRY, EXIT, HISTORY}, S ∈ S. E.g.,
AND(S) is true, exactly if type(S) = AND. The type HISTORY is a special
case of an entry. We use HENTRY(S) to capture simple entry or history
entry, i.e., HENTRY(S) stands for ENTRY(S) ∨ HISTORY(S).

We define the parent function

η−1(S) :=

{
b, where S ∈ η(b) if S 6= root

⊥ otherwise

We readily extend η−1 to operate on sets of locations, i.e., for S ′ ⊆ S:
η−1(S ′) := {η−1(S)

∣∣ S ∈ S ′}. Furthermore, we use η∗(S) to denote the set
of all nested locations of a superstate S, including S. η−∗(S) is the set of
all ancestors of S, including S. Moreover we use η+(S) := η∗(S) \ {S}.

We introduce η̃ to refer to the children, that are proper locations.

η̃(S) := {b ∈ η(S)
∣∣ BASIC(b) ∨ XOR(b) ∨ AND(b)}

We use Var+(S) to denote the variables in the scope of superstate S: Var+(S) =⋃
b∈η−∗(S) Var(S). Clocks+(S) and Chan+(S) are defined analogously.

2.1.4 Well-Formedness Constraints

We give a set of well-formedness constraints to ensure consistency, grouped
as for the syntactic categories locations, initial locations, variables, entries,
and transitions.

Location constraints. We require a number of sanity properties on loca-
tions and structure:

(1) The function η gives rise to a proper tree rooted at root, and S =
η∗(root).

(2) Only superstates contain other locations: AND(S)∨XOR(S) ⇔ η(S) 6=
∅.

6

(3) Substates of AND superstates are not basic: AND(S) ∧ b ∈ η(S) ⇒
¬BASIC(b).

(4) No invariants on pseudo-locations: HENTRY(S)∨EXIT(S) ⇒ Inv(S) =
true.

(5) For every superstate S, at most one exit can be declared to be the
default exit . If existent, the default exit is reachable from every location
in S.

Initial location constraints. S0 has to correspond to a consistent and
proper control situation, i.e., root ∈ S0 and for every S ∈ S0 the following
holds:

(1) BASIC(S) ∨ XOR(S) ∨ AND(S),

(2) S = root ∨ η−1(S) ∈ S0,

(3) XOR(S) ⇒ |η(S) ∩ S0| = 1, and

(4) AND(S) ⇒ η(S) ∩ S0 = η̃(S).

Variable constraints. We explicitly disallow conflict in assignments in syn-
chronizing transitions:

It holds that S1
g,c!,r,u
−−−−→ S2, S′

1
g′,c?,r′,u′

−−−−−−→ S′
2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅,

where vars(r) is the set of integer variables occurring in r. We require an
analogous constraint to hold for the pseudo-transitions originating in the
entry of an AND superstate.

Static scope: For S1
g,s,r,u
−−−−→ S2 ∈ T , g, r are defined over Var+(η−1(S1)) ∪

Clocks+(η−1(S1)) and s is defined over Chan+(η−1(S1)).
Entry constraints. Let e ∈ S, HENTRY(e). If XOR(η−1(S)), then T

contains exactly one transition e
r
−→ S′. If AND(η−1(S)), then T contains

exactly one transition e
r
−→ ei for every proper substate Bi ∈ η̃(η−1(S)), and

ei ∈ η(Bi).
In case of HISTORY(e), outgoing transitions declare the default history
locations.
At most one entry of a superstate can be declared to be the default entry . If
a superstate S has a history entry, then every substate B of S has to provide
a history entry or a default entry.

Transition constraints. Transitions have to respect the structure given in
η and cannot cross levels in the hierarchy, except via connecting to entries or
exits. The set of legal transitions is given in Table 2.1. Note that transitions
cannot lead directly from entries to exits. The internal transitions are those
made inside one superstate: from a state to a state, from a state to an exit or
from an entry to a state. The constraint expresses that the parent state must
be the same. The entering transition is from a state to an entry and the fork
transition is from an entry to an entry. The constraints express the transition
to a nested state. The exiting and join transitions are symmetric to entering
and fork. The changing transition is from the exit of a superstate to the
entry of another superstate. The constraint states that both superstates
must have a common parent.

7

Entering
transitions

transitions

Exiting
transitions

Changing
transitions

Internal
Comment S S′ Constraint

BASIC BASIC

Internal BASIC EXIT η−1(S) = η−1(S′)
HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY
η−1(S) = η−2(S′)

Exiting EXIT BASIC(S)
and join EXIT EXIT

η−2(S) = η−1(S′)

Changing EXIT HENTRY η−2(S) = η−2(S′)

Fig. 2.1: Overview on Legal Transitions S
g,s,r,u
−−−−→ S′.

Transitions S
g,s,r,u
−−−−→ S′ with HENTRY(S) or EXIT(S′) are called pseudo-

transitions. They are restricted in the sense that they cannot carry syn-
chronizations or urgency flags, and only either guards or assignments. For
HENTRY(S), only pseudo-transition of the form S

r
−→ S′ are allowed. For

EXIT(S′), only pseudo-transition of the form S
g
−→ S′ are allowed. For

EXIT(S) ∧ EXIT(S′), this is further restricted to be of the form S −→ S′.

2.2 Operational Semantics of HTAs

We define now the operational semantics of the hierarchical timed automa-
ton formalism. Legal steps between configurations of a HTA give rise to a
set of traces.

A configuration captures a snapshot of the system, i.e., the active loca-
tions, the integer variable values, the clock values, and the history of some
superstates. Configurations are of the form (ρ, µ, ν, θ), where

ρ : S → 2S captures the control situation. ρ can be understood as a
partial, dynamic version of η that maps every superstate S to the set
of active substates. If a superstate S is not active, ρ(S) = ∅. We
define Active(S) := S ∈ ρ+(root), where ρ+(S) is the set of all active
substates of S. Notice that Active(S) ⇔ S ∈ ρ(η−1(S)).

µ : S → (Z)∗. µ gives the valuation of the local integer variables of
a superstate S as a finite tuple of integer numbers. If ¬Active(S)
then µ(S) = λ (the empty tuple). If Active(S) then we require that
|µ(S)| = |Var(S)| and µ is consistent with respect to the value of shared
variables (i.e., always maps to the same value). We use µ(S)(a) to de-
note the value of a ∈ Var(S). When entering a non-basic location, local
variables are added to µ and set to an initial value (0 by default). We
use the shorthand 0Var(S) for the tuple (0, 0 . . . 0) with arity |Var(S)|.

ν : S → (IR≥0)
∗. ν gives the real valuation of the clocks Clocks(S) defined

locally to the superstate S, thus |ν(S)| = |Clocks(S)|. If ¬Active(S)
then ν(S) = λ.

θ reflects the history that might be restored by entering superstates via
history entries. It is split up in the two functions θstate and θvar, where

8

θstate(S) returns the last visited substate of S—or an entry of the
substate, in the case where the substate is not basic—(to restore ρ(S)),
and θvar(S) returns a vector of values for the local integer variables.
There is no history for clocks at the semantics level, all non-forgetful
clocks belong to Clocks(root).

We call a configuration where all S in ρ+(root) are of type BASIC, XOR,
or AND a proper configuration.

History. We capture the existence of a history entry with the predicate
HasHistory(S) := ∃b ∈ η(S). HISTORY(b). If HasHistory(S) holds, the
term HEntry(S) denotes the unique history entry of S. If HasHistory(S)
does not holds, the term HEntry(S) denotes the default entry of S. If S is
basic HEntry(S) = S. If none of the above is the case, then HEntry(S) is
undefined.

Initially, ∀S ∈ S.HasHistory(S) ⇒ θstate(S) = HEntry(S) ∧ θvar(S) =
0Var(S).

Reached locations by forks. In order to denote the set of locations reached
by following a fork, we define the function Targetsθ : 2S → 2S relative to θ.

Targetsθ(L) :=

L ∪
⋃⋃⋃

S∈L{b
∣∣ b ∈ θstate(S) ∧ HISTORY(S)} ∪ {b

∣∣ S
r
−→ b ∧ ENTRY(S)}

If the argument is a singleton, we use the notation Targetsθ(S) for Targetsθ({S}).
Targets∗θ is the reflexive transitive closure of Targetsθ.

Configuration vector transformation. Taking a transition t : S
g,s,r,u
−−−−→ S′

entails in general 1. executing a join to exit S, 2. taking the proper transi-
tion t itself, and 3. executing a fork at S′. If S (respectively S′) is a basic
location, part 1. (respectively 3.) is trivial. Together, 1–3 define a proper
step. We represent a proper step formally by a transformation function Tt,
which depends on a particular transition t. The three parts of this step are
described as follows.

(1) join:
(ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 := ρ[∀b ∈ ρ+(S). b 7→ ∅].
µ is updated to µ1 := µ[∀b ∈ ρ+(S). b 7→ λ].
ν is updated to ν1 := ν[∀b ∈ ρ+(S). b 7→ λ].

If EXIT(S), the history is recorded. Let H be the set of superstates
h ∈ ρ+(η−1(S)), where HasHistory(h) holds. Then
θ1
state:= θstate[∀h ∈ H. h 7→ HEntry(ρ(h))] and

θ1
var := θvar[∀h ∈ H. h 7→ µ(h)].

If ¬EXIT(S) or H = ∅, then θ1 := θ.

(2) proper transition part:
(ρ1, µ1, ν1, θ1) is transformed to (ρ2, µ2, ν2, θ2) := (ρ1[S′/S], r(µ1), r(ν1), θ1).
r(µ1) denotes the updated values of the integers after the assignments

9

and r(ν1) the updated clock evaluation after the resets.

(3) fork:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the control
to all proper locations reached by the fork, i.e., those in Targets∗θ2(S′).
Note that ρ2(b) = ∅ for all b ∈ η+(S′). Thus we can compute ρ3 as
follows:

ρ3 := ρ2

Forall b ∈ Targets∗θ2(S′)

If ENTRY(b)

Then ρ3(η−2(b)) := ρ3(η−2(b)) ∪ {η−1(b)}

Else ρ3(η−1(b)) := {b} /? BASIC ?/

µ3 is derived from µ2 by first initializing all local variables of the super-
states B in Targets∗θ2(S′), i.e., µ3(Var(B)) := 0Var(B). If HasHistory(B),

θvar(B) is used instead of 0Var(B). Then all variable assignments and
clock-resets along the pseudo-transitions belonging to this fork are exe-
cuted to update µ3 and ν3. The history does not change; θ3 is identical
to θ2.

Note that parts 1. and 3. correspond to the identity transformation, if S and
S′ are basic locations. We define the configuration vector transformation Tt

for a transition t : S
g,s,r,u
−−−−→ S′:

Tt(ρ, µ, ν, θ) := (ρ3, µ3, ν3, θ3)

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 respectively
ν3 of the transformed configuration corresponding to transition t.

Starting points for joins. A superstate S can only be exited, if all its
parallel substates can synchronize on this exit. For an exit e ∈ η(S) we
recursively define the family of sets of exits PreExitSets(e). Each element
E of PreExitSets(e) is itself a set of exits. If transitions are enabled to all
exits in E, then all substates can synchronize.

PreExitSets(e) :=

⋃
b1,...,bk

£
1≤i≤k

PreExitSets(bi), where

k = |η̃(η−1(e))|, {b1, . . . , bk} ⊆ η+(η−1(e)),
∀i.EXIT(bi) ∧ bi −→ e ∈ T
η−1({b1, . . . , bk}) = η̃(e)

if
EXIT(e)∧
AND(η−1(e))

⋃
m∈η(η−1(e))

PreExitSets(m), where m
g,r
−−→ e ∈ T

∪ {{e}}

 if

EXIT(e)∧
XOR(η−1(e))

{ {} } if BASIC(e)

10

Here, the operator £ : (22S)× (22S) → 22S is a product over families of sets,
i.e., it maps ({A1, . . . , Aa}, {B1, . . . , Bb}) to {A1∪B1, A1∪B2, . . . , Aa ∪Bb}
and is extended to operate on an arbitrary finite number of arguments in
the obvious way.

Rule predicates. To give the rules, we need to define predicates that
evaluate conditions on the dynamic tree ρ. We introduce the set set of
active leaves (in the tree described by ρ), which are the innermost active
states in a superstate S:

Leaves(ρ, S) := {b ∈ ρ+(S)
∣∣ ρ(b) = ∅}

The predicate expressing that all the substates of a state S can synchronize
on a join is:

JoinEnabled(ρ, µ, ν, S) := BASIC(S) ∨
∃E ∈ PreExitSets(S). ∀b ∈ Leaves(ρ, S).

∃b′ ∈ E. b
g
−→ b′ ∧ g(µ, ν)

Note that JoinEnabled is trivially true for a basic location S.
For the invariants of a location we use a function Invν : S → {true, false},

that evaluates the invariant of a given location with respect to a clock evalu-
ation ν. We use the predicate Inv(ρ, ν) to express, that for control situation
ρ and clock valuation ν all invariants are satisfied.

Inv(ρ, ν) :=
∧

b∈ρ+(root)

Invν(b)

We introduce the predicate TransitionEnabled over transitions t : S
g,s,r,u
−−−−→

S′, that evaluates to true, if t is enabled.

TransitionEnabled(t : S
g,s,r,u
−−−−→ S′, ρ, µ, ν) :=

g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, S) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(S′)

Since urgency has precedence over delay, we have to capture the global
situation, where some urgent transition is enabled. We do this via the
predicate UrgentEnabled over a configuration.

UrgentEnabled(ρ, µ, ν):= ∃t : S
g,r,u
−−−→ S′. TransitionEnabled(t, ρ, µ, ν) ∧ u

∨∃t1 : S1
g1,s,r1,u1
−−−−−−→ S′

1, t2 : S2
g2,s̄,r2,u2
−−−−−−→ S′

2.
TransitionEnabled(t1, ρ, µ, ν) ∧
TransitionEnabled(t2, ρ, µ, ν) ∧ (u1 ∨ u2)

Rules. We give now the action rule. It is not possible to break it in join,
action, and fork because the join can be taken only if the action is enabled
and the action is taken only if the invariants still hold after the fork.

11

TransitionEnabled(t : S
g,r,u
−−−→ S′, ρ, µ, ν)

action
(ρ, µ, ν, θ)

t
−→ Tt(ρ, µ, ν, θ)

Here g is the guard of the transition and r the set of resets and assignments.
The urgency flag u has no effect here. This rule applies for action transi-
tions between basic locations as well as superstates. In the latter case, this
includes the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d
−→ (ρ, µ, ν + d, θ)

where ν + d stands for the current clock assignment plus the delay d ∈ IR≥0

for all the clocks. Time elapses in a configuration only when all invariants
are satisfied and there is no urgent transition enabled.

The last transition rule reflects the situation, where two action transitions
synchronize via a channel c.

TransitionEnabled(t1 : S1
g1,c!,r1,u1
−−−−−−→ S′

1, ρ, µ, ν) S1 6∈ η+(S2)

TransitionEnabled(t2 : S2
g2,c?,r2,u2
−−−−−−→ S′

2, ρ, µ, ν) S2 6∈ η+(S1)
sync

(ρ, µ, ν, θ)
t1,t2
−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

We choose the order first t1, then t2 here. This could be inverted, since
the well-formedness constraints ensure that the assignments cannot conflict
with each other. The side conditions S1 6∈ η+(S2) and S2 6∈ η+(S1) prevent
synchronization of a superstate with its own descendants. For example,
in Fig. 2.2 The a? transition exiting SUB cannot synchronize with the a!

transition in P.
If no action transition is enabled or becomes enabled when time progresses,

we have a deadlock configuration, which is typically a bad thing. If in ad-
dition an invariant prevents time to elapse, this is a time stopping deadlock .
Usually this is an error in the model, since it does not correspond to any
real world behavior.

Similar to Def. 9, we define a set of timed traces for an HTA that capture
its behavior. We explicitly exclude sequences that are zeno or not maximally
extended.

Definition 2. (HTA Timed Trace Semantics)
Let M = 〈S,S0, η, type, Var, Clocks, Chan, Inv, T 〉 be an hierarchical timed
automaton. A timed trace of M is a sequence of configurations {(ρ, µ, ν, θ)}K =
(ρ, µ, ν, θ)0, (ρ, µ, ν, θ)1, . . . of length K ∈ IN ∪ {∞} if

12

a!

P

SUB

Q

a?a?

MAIN

Fig. 2.2: The a? Transition Exiting SUB Cannot Synchronize with a! in P.

(i) It starts at the initial configuration, i.e, for (ρ, µ, ν, θ)0:
S0 = (ρ0)∗(root), µ = [Var 7→ (0)∗], and ν = [Clocks 7→ 0],

(ii) Every step from (ρ, µ, ν, θ)k to from (ρ, µ, ν, θ)k+1 is derived from the
rules action, delay, and sync,

(iii) (maximally extended finite sequences)
If K < ∞, then for (ρ, µ, ν, θ)K no further step is enabled, and

(iv) (non-zeno)
If K = ∞ and {(ρ, µ, ν, θ)}K contains only a finitely many k such that
(ρk, µk) 6= (ρk+1, µk+1), then eventually every clock value exceeds every
bound (∀x ∈ Clocks ∀c ∈ IN ∃k. νk(x) > c).

The set of timed traces, denoted by Tr(M), is the timed trace semantics for
M .

3. The Timed Automata Model of Uppaal

Uppaal [LPY97] is a tool box for modeling, verification and simulation
or real-time systems. It has been developed jointly by Uppsala University
and Aalborg University throughout the last seven years. It is appropriate
for systems that can be described as collection of non-deterministic parallel
processes.

The modeling language used in Uppaal is an enriched dialect of the
well studied timed automaton formalism [AD94], i.e., it features real-valued
clocks over a finite control structure. Additionally the language allows for
networks of timed automata that communicate through channels and/or
shared variables. The usability and scalability of this formalism has been
demonstrated by successfully application in various case studies, e.g., [LPY98,
LP97,HSLL97].

13

In this Chapter we formally introduce the modeling language of Uppaal
and equip it with a trace-based (formal) semantics. We use this semantics to
specify the specification language of the tool, that allows for (timed) safety,
reachability, inevitability, potentially always, and unbounded response.

3.1 Informal Description

An Uppaal model consists of a network of timed automata with clocks, in-
variants, variables over basic data types, guards, handshake synchronization,
urgency, and committed locations.

The basic unit is one process, that consists of a directed control graph
with labels on locations and transitions. One location is marked as initial,
indicated by the notation ◦©.

Data components. The data part of the model consists of discrete in-
teger variables and (formal) clocks, that can take any non-negative real
value. In Uppaal, integers are constrained to have values in the interval
[-32767; 32767]. Exceeding the limits wraps around to this finite domain.
Variables and clocks can be local to one process or global. If they are local,
standard scoping rules apply and they cannot be accessed by other processes.

We note that for integer variables, Uppaal allows for some useful con-
structs. It is possible to declare integers with limited range, construct arrays
of fixed width, and deal with integer expressions containing constants and
the operators +, -, *, and /. For simplicity, we treat variables here always
as integers and do not describe the full range of valid integer expressions.
For the details we refer to [LPY97] and the online help.

Control structure.
Every location can be equipped with an invariant . This is constrained to

be a conjunction of expressions x ≤ const and x < const, where x is a clock
and const is an integer constant.

Locations can be equipped with one of the attributes urgent or committed .
If a location is urgent, no time delay is possible before this location is left.
A committed location also has to be left immediately, but leaving this lo-
cation has precedence over other possible transitions. We use the graphical
notations u© and c© for urgent or committed locations respectively.

Transitions are directed arcs between locations called the source and the
target . Transitions can carry guards, assignments, and synchronization sig-
nals. We assume that guards and assignments are always given, in case of
absence they are considered constant true or empty respectively.

Attributes for transitions.
For a location l, all transitions with source l are called outgoing transitions

of l.
A guard is a conjunction of boolean expressions over variables and clock
constraints of the form x∼const or x-y∼const, where x,y are clocks, ∼∈
{<,≤, >,≥}, and const is an integer constant.

Outgoing transitions without synchronization signals are enabled , if their
guard evaluates to true and the invariant of the target location holds after

14

a1 b1

INV: x1 <= 2

c1cs

id == 0 x1 := 0

x1 <= 2

id := 1,

x1 := 0

x1 := 0

id == 0

x1 > 2, id == 1

x1 := 0,

id := 0

a2 b2

INV: x2 <= 2

c2cs

id == 0 x2 := 0

x2 <= 2

id := 2,

x2 := 0

x2 := 0

id == 0

x2 > 2, id == 2

x2 := 0,

id := 0

Fig. 3.3: Fischer’s Protocol for Mutual Exclusion (2 Processes).

execution of the assignment.
An outgoing transition t1 with synchronization signal b! is enabled, if

there exists an outgoing transition t2 in a parallel process with matching
synchronization signal b?, and for both t1 and t2 the guards evaluate to
true and the location invariants of the target locations hold after executing
the corresponding assignments.

An assignment is a sequence of expressions that are either clock resets or
of the form v := expr, where v is an integer variable or element of an array
of integers, and expr is an arithmetic expression over integers.

Clock resets are of the form x := 0, where x is a clock.

Example 1. (Fischer’s Mutex)
Fig. 3.3 shows of Fischer’s mutual exclusion protocol for two Uppaal pro-
cesses. The processes share the integer variable id (initially set to 0). Each
process owns a clock xi, i.e., has exclusive read and reset operations on it.
This clock is used to time the progress to the critical section (cs). The
mutual exclusion property requires, that always at most one process in the
critical section.

The processes, call them P1 and P2, start at a1 and a2 with id == 0

and clocks set to 0. Further progress in action and time delay is non-
deterministic, as long as it obeys the restrictions of guards and invariants
of the model. For example, an arbitrary amount of time can elapse (delay
step) before any of the two processes takes a transition (action step). As
a possible first action step, the first process can pass the guard id == 0,
reset its clock xi to 0, and move control to the location a2. The invariant
INV: xi <= 2 requires, that a2 is left again before clock xi exceeds 2, i.e.,
within 2 time units. The only option to do so is taking the transition to
c1, that writes the process number (1) to the shared variable id and resets
the clock x1. Now in order to progress to the critical section cs, time has
to elapse for more than 2 time units (guard xi > 2). The guard id == 1

makes sure, that no other process i has taken the transition bi to ci in the
meantime. As it turns out, this suffices to establish mutual exclusion.

Behavior.

15

A configuration is a snapshot of the system with one designated control
location for every process and values for all variables and clocks. An exe-
cution of the model starts in the implicit initial configuration, where every
process is in its initial location, all clocks are 0 and all variables (global as
local) are set to their initial value (integers are 0, arrays are filled with 0).

A configuration evolves in action steps and delay steps. Action steps are
either isolated of synchronized. A simple action step amounts to taking one
enabled transition of one process, execute assignments and clock resets and
move control for this process to the new location. A synchronized action
step means that two processes with enabled transitions, that carry matching
synchronization signals (e.g, b! and b?) both take these transitions. Both
associated assignments and clock resets are executed—the one corresponding
to the !-transitions first—and control is updated for both processes.

If one of the processes is in a committed location, then all action steps
not starting in committed location are blocked. In case of a synchronized
action step, at least one of the two participating processes is required to be
in a committed location, otherwise the step is blocked.

A delay step increases the value of all clocks by a real value d > 0. Delay
is only enabled, if several conditions hold true.

(1) No process is in an urgent location,

(2) No process is in a committed location,

(3) No synchronized action on an urgent channel is enabled, and

(4) No location invariants are violated after the delay d.

We note that the real-valued nature of the delay steps is not directly observ-
able, since clocks are always compared to integer values (in guards, invari-
ants, and formulas). The possibility of real-valued delays basically allows
for any order of the fractional part of clocks, which is not possible if the
granularity of time is fixed in advance [Alu91].

A trace is a sequence of configurations, starting with the initial configura-
tion. For every two consecutive configurations ci and ci+1 in a trace, there
has to exist an action or delay step that transforms ci into ci+1. For safety
properties, it suffices it suffices to consider only finite traces, since every
safety property can be violated (if at all) after a finite number of steps. For
liveness, we have to consider both infinite and maximally extended finite
(deadlocked) traces, since liveness properties can fail in the later case.

3.2 Formal Syntax

We define the formal syntax of Uppaal models as a parallel composition of
processes.

For simplicity, we assume a set of labels Labels, that ranges over syntac-
tically correct invariants, assignments, guards and synchronization labels.
As a well-formedness condition, labels are constrained to occur only in ap-
propriate places, contain only declared variables, and have to respect the
variable types.

16

Definition 3. (Uppaal Process)
An Uppaal process A is a tuple 〈L, T,Type, l0〉, where

◦ L is a set of locations,

◦ T is a set of transitions l
g,s,a
−−−→ l′, where l, l′ ∈ L, g is a guard, s

is a synchronization label (optional), and a is an assignment (possibly
empty),

◦ Type : L →{o, u, c} is a type function for locations, and
◦ l0 ∈ L is the initial location.

We use the following access functions to refer to invariants, guards, syn-
chronizations, and assignments.

◦ Inv : L → Labels maps to the invariant of a location (possibly constant
true),

◦ Guard : T → Labels maps to the guard of a transition (possibly constant
true),

◦ Sync : T → Labels ∪ {∅} maps to the synchronization label of a tran-
sition (if any), and

◦ Assign : T → Labels ∪ {∅} maps to the assignment associated with a
transition (possibly the empty assignment).

Definition 4. (Uppaal Model)

An Uppaal model is a tuple 〈 ~A, Vars, Clocks, Chan, Type〉, where

◦ ~A is a vector of processes A1, . . . , An;
We use the index i to refer to Ai-specific parts Li, Ti, Typei, and l0i ,

◦ Vars is a set of variables, i.e., (bounded) integers and arrays,
◦ Clocks is a set of clocks, Clocks ∩ Vars = ∅,
◦ Chan is a set of synchronization channels, Chan ∩ Vars = ∅, and

Chan ∩ Clocks = ∅,
◦ Type is a polymorphic type function extending the Typei, i.e., Type

maps

– locations to {o, u, c} (according to the functions Typei),
– channels to {o, u}, and
– variables to {int, array}.

We use o, u, c, int, and array as predicates, i.e., for a channel b the
expression u(b) evaluates to true, if and only if Type(b) = u.

Definition 5. (Configuration)

A configuration of an Uppaal model 〈 ~A, Vars, Clocks, Chan, Type〉 is a triple

(~l, e, ν), where ~l is a vector of locations, e is the environment for discrete
variables, and ν is the clock evaluation, i.e.:

◦ ~l = (l1, . . . , ln), where li ∈ Li is a location of process Ai,
◦ e : Vars → (Z)∗ maps every variable v to either a value (if int(v)) or a

tuple of values (in case of array(v)), and
◦ ν : Clocks → IR≥0 maps every clock to a non-negative real number. For

d > 0, the notation (ν + d) : Clocks → IR≥0 describes the function “ν

17

shifted by d” in the following sense:
∀x ∈ Clocks. (ν(x) + d) = ν(x) + d.

Sometimes it is necessary to refer to certain parts of a configuration. We call
~l the control situation the pair (~l, e) the discrete part , and ν the continuous
part of a configuration.

3.3 Trace Semantics of the Uppaal Model

Uppaal models evolve according to legal steps, that are either delays or
actions. The compendium of all legal steps defines the behavior of the
model.

We start by formulating simple actions, synchronized action, and delay
steps. To modify the control situation ~l, we use the notation ~l[l′i/li] to
indicate, that at position i, li was replaced by l′i, and the other positions did
not change. We readily use assignments a as transformers on the function e

(and ν) and write a(e) (and a(ν)) for the resulting evaluations. Furthermore
we use the notation e, ν |=loc ϕ to indicate, that a boolean expression ϕ
holds true under the evaluations e, ν for the contained variables and clocks,
and (~l, e, ν) |=loc ϕ analogously in the case that ϕ contains expressions of
the form Ai.li (denoting that process Ai is in location li). We defer a formal
definition of |=loc to Section 4.1.

Definition 6. (Simple Action Step) For a configuration (~l, e, ν), a sim-

ple action step is enabled, if there is a transition li
g,a
−−→ l′i ∈ Ti, li in ~l, such

that

(1) e, ν |=loc g,

(2) a(e), a(ν) |=loc Inv(l′i), and

(3) if ∃lc in ~l with c(lc), then c(li).

We abbreviate this with (~l, e, ν)
a

=⇒ (~l[l′i/li], a(e), a(ν))

Definition 7. (Synchronized Action Step) For a configuration (~l, e, ν),
a synchronized action step is enabled if and only if for a channel b there ex-

ist two transitions li
gi,b!,ai
−−−−→ l′i ∈ T and lj

gj ,b?,aj
−−−−−→ l′j ∈ T , li, lj in ~l, i 6= j,

such that

(1) e, ν |=loc gi ∧ gj,

(2) aj(ai(e)), aj(ai(ν)) |=loc Inv(l′i) ∧ Inv(l′j), and

(3) if ∃lc in ~l with c(lc), then c(li) ∨ c(lj).

We abbreviate this with (~l, e, ν)
τ

=⇒ (~l[l′i/li][l
′
j/lj], aj(ai(e)), aj(ai(ν))

Definition 8. (Delay Step) For a configuration (~l, e, ν), a delay step
with delay d is enabled, if and only if all of the following holds.

18

(1) ∀li in ~l. ¬u(li),

(2) ∀li in ~l. ¬c(li),

(3) ¬∃li
gi,b!,ai
−−−−→ l′i ∈ Ti, lj

gj ,b?,aj
−−−−−→ l′j ∈ Tj, with li, lj in ~l, i 6= j, such that

u(b), e, ν |=loc gi, e, ν |=loc gj, aj(ai(e)) |=loc Inv(l′i) ∧ Inv(l′j), and

(4) e, (ν + d) |=loc

∧
i

Inv(li).

We denote this by (~l, e, ν)
d

=⇒ (~l, e, (ν + d)).

Definition 9. (Well-Formed Sequence/Timed Trace)

Let M = 〈 ~A, Vars, Clocks, Chan, Type〉 be a Uppaal model. A sequence of

configurations {(~l, e, ν)}K = (~l, e, ν)0, (~l, e, ν)1, . . . of length K ∈ IN ∪ {∞}
is called a well-formed sequence for M , if

(i) (~l, e, ν)0 =
(
(l01, . . . , l

0
n), [Vars 7→ (0)∗], [Clocks 7→ 0]

)
,

(ii) (maximally extended finite sequences)

If K < ∞, then for (~l, e, ν)K no further step is enabled,

(iii) (non-zeno)

If K = ∞ and {(~l, e, ν)}K contains only finitely many k such that

(~l k, ek) 6= (~l k+1, ek+1), then eventually every clock value exceeds every
bound (∀x ∈ Clocks ∀c ∈ IN ∃k. νk(x) > c).

A well-formed sequence for M is called a timed trace for M , if in addition
the following holds.

(iv) For every k < K, the two subsequent configurations k and k + 1 are
connected via a simple action step, a synchronized action step, or a
delay step, i.e.,

(~l, e, ν)k a
=⇒ (~l, e, ν)k+1 or

(~l, e, ν)k τ
=⇒ (~l, e, ν)k+1 or

(~l, e, ν)k d
=⇒ (~l, e, ν)k+1.

Condition (iii) weeds out those traces, where time converges towards a finite
value in an infinite number of steps. These traces are also called zeno traces
and correspond to a degenerated behavior of the model, i.e., they have no
counterpart in the physical world where time always progresses.

We note that according to this definition, an infinite trace may yield an
infinite loop of (synchronized) action steps. This also prevents time from
progressing, but is rather a failure of the model than a flaw of the modeling
language. These degenerated traces are kept in semantics to make it possible
to detect failures of this type.

Example 2. (Zeno Traces) Consider a Uppaal model consisting of one
Uppaal process A and one clock x. A has only one (initial) location l with
the invariant x ≤ 2. Now one can construct a sequence of delay steps with

19

A:

S

c
M

F

B:

S

c
M

F

C:

S

c
M

F

a!

b!

a?

c?

b?

c!

Fig. 3.4: The Control Situation A.F and B.F and C.F Can be Reached Via the Trace

(A.S B.S C.S)
τ

=⇒ (A.M B.M C.S)
τ

=⇒ (A.F B.M C.M)
τ

=⇒ (A.F B.F C.F).

delay values 1, 1/2, 1/4, 1/8, ect. This sequence can be infinite without ever
reaching a configuration with ν(x) = 2.

According to Def. 9 (iii), this sequence is not a valid trace. For this
Uppaal model every trace is finite and ends, due to (ii), in the configuration
where A is at l and ν(x) = 2. There are uncountably many such traces.

We now associate an Uppaal model M with an (typically uncountable)
set T (M) of timed traces that are either infinite or maximally extended
(deadlocked).

Definition 10. (Trace Semantics) Let M be an Uppaal model. Then
the trace semantics of M , written T (M), is the set of timed traces according
to Def. 9.

Note that timed traces are memoryless in the sense that the possible futures
do only depend on a configuration and not on the history. If two traces
σ1, σ2 ∈ T (M) contain the same configuration s, the prefixes leading to s
can be interchanged and the resulting sequences are both again timed traces
in T (M). This property is sometimes called fusion closure.

We note that the Uppaal timed automata model has been equipped with
semantics before, in particular in [Pet99]. However, the latter does not
correspond to the implementation of committed locations as implemented
in Uppaal 3.0.x, 3.2.x, and later. In Fig. 3.4 the control situation A.F and

B.F and C.F can not be reached according to [Pet99] p. 140 (second bullet
point). In the implementation it can be reached, and our semantics reflects
this.

4. The Logic Language of Uppaal

The Uppaal model checking engine allows to automatically establish or re-
fute properties that are expressed in a specification language. This language

20

is a subset of timed computation tree logic (TCTL, [ACD93]), where primi-
tive expressions are location names, variables, and clocks from the modeled
system.

We define validity of formulas in the specification language relative to the
semantics given in the previous section.

4.1 Local Properties

A local property is a condition, that for a specific configuration is either true
or false. The basic building blocks are expressions over locations, variables,
and clocks. It is crucial for the efficiency of property verifications that clocks
can only be compared to integer values.

Definition 11. (Local Property)

Given an Uppaal model 〈 ~A, Vars, Clocks, Chan, Type〉. A formula ϕ is a
local property iff it is formed according to the following syntactic rules.

ϕ ::= deadlock

| A.l for A ∈ ~A and l ∈ LA

| x ./ c for x ∈ Clocks, ./∈ {<, <=, ==, >=, >}, c ∈ Z

| x − y ./ c for x, y ∈ Clocks, ./∈ {<, <=, ==, >=, >}, and c ∈ Z

| a ./ b for a, b ∈ Vars ∪ Z, ./∈ {<, <=, !=, ==, >=, >}
| (ϕ1) for ϕ1 a local property
| not ϕ1 for ϕ1 a local property
| ϕ1 or ϕ2 for ϕ1, ϕ2 local properties (logical OR)
| ϕ1 and ϕ2 for ϕ1, ϕ2 local properties (logical AND)
| ϕ1 imply ϕ2 for ϕ1, ϕ2 local properties (logical implication)

The truth value of a local property can effectively be evaluated in a config-
uration s.

Definition 12. (Validity of a Local Property) A local property ϕ is

valid in a configuration s = (~l, e, ν), in symbols s |=loc ϕ, iff it is valid
according to the following structural definitions.

s |=loc deadlock iff no delay or action steps are enabled in s

s |=loc A.l iff l = li in ~l for A = Ai in ~A
s |=loc x ./ c iff ν(x) ./ c, ./∈ {<, <=, ==, >=, >}
s |=loc x − y ./ c iff ν(x) − ν(y) ./ c, ./∈ {<, <=, ==, >=, >}
s |=loc a ./ b iff e(a) ./ e(b), ./∈ {<, <=, !=, ==, >=, >}
s |=loc (ϕ1) iff s |=loc ϕ1

s |=loc not ϕ1 iff ¬ (s |=loc ϕ1)
s |=loc ϕ1 or ϕ2 iff s |=loc ϕ1 or s |=loc ϕ2

s |=loc ϕ1 and ϕ2 iff s |=loc ϕ1 and s |=loc ϕ2

s |=loc ϕ1 imply ϕ2 iff ¬(s |=loc ϕ1) or s |=loc ϕ2

Above, ϕ1 and ϕ2 stand for local properties.

21

E<> ϕ reachability of ϕ
A[] ϕ safety (invariantly ϕ)
E[] ϕ possibly always ϕ
A<> ϕ inevitably ϕ
ϕ --> ψ unbounded response

(corresponds to A[] (ϕ ⇒ A<> ψ)) ϕ, ψ: local properties

Fig. 4.5: The Classes of TCTL Formulas, that Uppaal can Model Check.

This notion of locality must not be confused with locality in the sense of
“local to one process.” The Uppaal language allows also to declare variables
and clocks locally to one process P and uses the syntax P.var to identify
the var that is local to P . Note that every locally declared variable or clock
can be equivalently replaced by a global one under appropriate renaming of
labels. For simplicity we therefore treat all variables and clocks as global.

4.2 Temporal Properties

The five classes of temporal properties that Uppaal can effectively verify
are summarized in Fig. 4.5. We define the validity of temporal properties
via our trace semantics (Def. 10). We chose to give the direct definition of
three of the classes and define the remaining two classes as syntactic duals.

Definition 13. (Temporal Properties)

Let M = 〈 ~A, Vars, Clocks, Chan, Type〉 be an Uppaal model and let ϕ and
ψ be local properties. The validity of temporal properties is defined for the
classes A[], A<>, and --> as follows.

M |= A[] ϕ iff ∀{(~l, e, ν)}K ∈ T (M). ∀k ≤ K. (~l, e, ν)k |=loc ϕ

M |= A<> ϕ iff ∀{(~l, e, ν)}K ∈ T (M). ∃k ≤ K. (~l, e, ν)k |=loc ϕ

M |= ϕ --> ψ iff ∀{(~l, e, ν)}K ∈ T (M). ∀k ≤ K.

(~l, e, ν)k |=loc ϕ ⇒ ∃k′ ≥ k. (~l, e, ν)k′

|=loc ψ

The two temporal property classes dual to A[] and A<> are defined below.

M |= E<> ϕ iff ¬ (M |= A[] not(ϕ))

M |= E[] ϕ iff ¬ (M |= A<> not(ϕ))

Example 3. (Fischer’s Mutex, Continued)
The mutual exclusion property of the Uppaal model in Example 1 can
be expressed by the local property not (P1.cs and P2.cs). This is
a local property that has to hold invariantly, i.e., it should be true that
Fischer 2 |= A[] not (P1.cs and P2.cs).

Other temporal properties that should hold include, e.g., that every pro-
cess can reach the critical section: E<> P1.cs and E<> P2.cs .

22

Uppaal is not a modeling tool for design. The timed automata model is
much more restricted than a formalism that a system developer would use.
One of the important missing features is hierarchical structure.

Most interesting properties in a real-world design language can be expected
to be undecidable. Automated analysis then requires an abstraction step.
To establish soundness of this step, it has to be clear what gets abstracted.
In compiler optimization, for example, safe over-approximation by replacing
data domains by Boolean values has been very successful (e.g., [NNH99]).
Here data is abstracted, but control structure is preserved.

There is a gap between a design tool and a formalism for automated anal-
ysis. The former tends to have rich data types, powerful synchronization
mechanisms, and hierarchical organization. The latter has the strong obli-
gation to remain in a decidable fragment.

5. Flattening Hierarchical Timed Automata

We now address the algorithmic verification of the hierarchical timed au-
tomata (HTA) model from Section 2. Our claim is that presence of the
hierarchies does merely complicate the verification part, but not hinder it.
In particular we consider the specification language of Uppaal suitable for
specifying properties.

The foundation for establishing properties of HTAs is the trace-based for-
mal semantics. We do not have a model checking engine for HTAs. Instead
we flatten a HTA model to a Uppaal model and make use of the well-
engineered implementation of that tool. This translation is complicated
mainly by the implicit synchronization on exit. We give first a high-level
description and subsequently elaborate to the relevant details.

5.1 Overview on the Flattening Procedure

Flattening of statechart-like languages is complicated mainly by the presence
of transitions that result in a cascade of entries and exits. In particular the
synchronization on exit gives rise to complex auxiliary constructs.

In this Section we give an overview description of our flattening procedure.
It is subsequently elaborated in Section 5.2.

Flattening a hierarchical timed automaton.On the topmost level of an HTA
we find a parallel composition of superstates, conceptually under an implicit
root. Each can be of type AND or XOR and can itself contain superstates.
The complete collection of superstates is called the instantiation tree. In
Section 2.1 this corresponds to η. At any point in time the behavior of
a HTA depends on the sub-tree of this instantiation tree that is currently
active.

Every superstate S in the instantiation tree is translated to one Uppaal
process Ŝ. All those processes are put in parallel. An auxiliary location in
Ŝ is added for the configurations where S is not active (i.e., is idle). The
translation proceeds in three main phases.

23

I. Collection of instantiations: The instantiation tree is traversed and for
every superstate S the skeleton of a (flat) process Ŝ is constructed.
This contains basic locations, transitions, and the auxiliary initial lo-
cation Ŝ IDLE. Entries to S are translated to guarded transitions from
Ŝ IDLE.

II. Computation of global joins: Transitions originating from superstates
can require a cascade of substate exits, called global join. All configu-
rations that can synchronize to such a global join are computed. This
yields a guard condition that evaluates to true if an only if one such
cascade can be taken to completion.

III. Post-processing channel communication: If a transition in the HTA
starts at a superstate S and carries a synchronization, it cannot syn-
chronize with a transition inside S. Since the sub-state/superstate
relation is lost in the translation, we resolve this conflict explicitly by
duplicating channels and transitions.

Correspondence of hierarchical and flattened model. A configuration in the

HTA model M corresponds to one configuration in the flattened version M̂ .

All other configurations of M̂ are either intermediate to this or unreachable.

This correspondence allows us to associate every trace of M with one in M̂ .
This association dictates the property language for hierarchical timed au-

tomata. We sketch this only conceptually. Of main interest are the classes
of properties that can be model checked with Uppaal, see Section 4. Con-
sequently, the syntax of properties for hierarchical timed automata is like in
Fig. 4.5. The difference is that the local properties are required to identify
(super)locations, variables, and clocks uniquely. It is necessary to trace back
every identifier to the point in the instantiation tree where it is declared.
Note that scoping rules allow to override a declarations of x in an ancestor
superstate in the instantiation tree. Thus the identifier x can be associated
with a different variable, and even a different type, depending on where it
occurs.

These scoping problems can be solved via renaming . All ambiguities in-
troduced by name duplications can be consistently resolved by prefixing a
path of instantiation names to identifiers, starting at the implicit root. For
simplicity we omit this renaming in our description and treat all variables,
clocks, and channels as global. This way for every property ϕ in the HTA
we can compute a corresponding property ϕ̂ for the flattened model, where
the identifiers and names of superstates are replaced accordingly.

The subsequent Section 5.2 contains a more detailed description of the
flattening procedure. In Section 7 we use a cardiac pacemaker as a case
study.

5.2 Flattening in More Detail

We now give a detailed description our flattening procedure. This is orga-
nized in three phases: Translation of superstates and their entries, transla-

24

Algorithm: PHASE I: instantiateTemplates

input: Stack S of superstates to translate
output: Set P of (flat) timed automata

Set G of global join starting points
P := {Global Kickoff automaton for s ∈ S}
G := ∅

While notempty(S)

S := pop(S)
C := {non-basic locations B in S}

Forall B ∈ C
push([B in S], S)
/? [B in S] inherits all invariants attached to S ?/

create a location B̂ in Ŝ

EB := {set of entries of B in S}

Forall e ∈ EB

create a committed location B̂e in Ŝ

create a transition from B̂e to B̂ in Ŝ

/? this transition carries a synchronization enter B in S via e! ?/

If type(S) = XOR Then

G := G ∪ {B in S}

P := P ∪ {translation Ŝ of superstate S, depending on type(S)}

Fig. 5.6: Algorithm for Translation of the Instantiation Tree.

tion of exits, and post-processing of channels.
In their syntactic representation via XML files, both the hierarchical timed

automata model and then Uppaal model rely on a template mechanism.
Templates for superstates (processes) are instantiated to create the concrete
superstates (processes) that constitute the actual model. This works very
much like instantiation of classes to objects, and the motivation is also simi-
lar. It should be easy to make small consistent modifications, e.g., via setting
parameters. Parts that are (nearly) identical should not be described twice
but derived as two instantiations of the same template. The implementa-
tion of our flattening procedure therefore in fact translates a set of HTA
templates plus an instantiation at root level to a set of flat timed automata
templates where each is instantiated exactly once.

Conceptually, however, the translation works on instantiation level. If a
superstate template is instantiated twice, the two instantiations are trans-
lated separately. This makes it easier to take the context into account. At
template level, e.g., no parent superstate can be attributed to a template.
To construct translations of entries or exits, knowledge about this context
is crucial. For simplicity we therefore describe the translation as if all su-
perstates and processes were primitives.

25

c c

c cc

c A ACTIVE

enter A in S via e1?
enter B1 in A via e1,1!

exit A?

enter Bn in A via en,1
!

A IDLE

enter A in S via em?

enter Bn in A via en,m
!enter B1 in A via e1,m

!

Fig. 5.7: Translation of Entries and Exits an AND Superstate.

5.2.1 Translation of Superstates and Entries — Phase I

We sketch now the translation of a superstate S to a process Ŝ, the pseudo-
code is given in Fig. 5.6.

For every location l in S, l̂ is created in Ŝ. Additional Ŝ contains the
location S IDLE, which is the initial location. Every entry of S corresponds
to a transition in Ŝ originating from S IDLE. Some auxiliary constructions
are necessary to mimic the behavior of hierarchical machines adequately.
They depend on the type (XOR or AND) of S.

Translation of XOR superstates.
In a hierarchical XOR superstate X, at most one location is active at a

given time. For every substate B of X we introduce a location B ACTIVE IN X
in X̂. Moreover, for every entry e of B we introduce an auxiliary loca-
tion in X̂, called X AUX B e. These are declared committed and are con-
nected to B ACTIVE IN X with a transition that synchronizes on a channel
enter B in X via e. Transitions leading originally to a B-entry e in X
are represented in the translation by leading to X AUX B e and trigger—
without interleaving with other processes—the activation of the substate
B.

Exits of substates B are translated similarly by transitions from B ACTIVE IN X.
They give rise to additional complications since leaving an AND substate
B is only possible if all descendants of B can exit. So in fact a chain of exit
transitions starting at B ACTIVE IN X can be necessary, see Section 5.2.2.

If the XOR superstate X is inactivated (exited), this corresponds in the

translation X̂ to transitions to X IDLE. This transition carries the synchro-
nization exit X?. If the superstate X has a default exit, every non-auxiliary
location in X̂ has such a transition to B IDLE.

Translation of AND superstates. An AND superstate A is a parallel com-
position of superstates. Either non of them is active or all of them are.
In the translation Â (Fig. 5.7), this corresponds to locations A IDLE and
A ACTIVE. If A is activated, this is specific to an entry ei of A. The sub-
states Bj of A are entered one after another. Which entry is used for each
Bj is dependent on ei. Thus for every entry ei of A there is a separate chain
of transitions leading from A IDLE to A ACTIVE. The choice of entries of Bj

is reflected by appropriate signals enter Bj in A via ej,i. The auxiliary
locations in the chain are declared committed, so no time can elapse before
A ACTIVE is reached and interleaving with other processes is blocked.

26

Kickoff. Since the root of the instantiation tree is implicit, one special
process is needed to trigger the entry of the topmost superstates. This
process is called Global Kickoff and also initializes all variables.

We note that the topmost superstates Si are considered special, since they
do not synchronize on exit. Instead, they can be enabled to become in-active
via following a special exit transition. Once one of these Si becomes inac-
tive, this status can never be revoked in our hierarchical timed automaton
formalism, since there is no machine that could accommodate a transition to
some Si. If a superstate S is intended to be able to be both inactivated and
activated again, it cannot nest at the root level but must be itself contained
in a superstate.

History. History amounts to record the status of an XOR superstate X
when it is exited. Since we assume all variables and clocks to be global, this
amounts to storing the last control location. This can be encoded via an
auxiliary integer variable hist that is updated along each transition in X̂.

Each value corresponds exactly to one location l̂i in X̂. The history entry

then has a transition to each location l̂i guarded by the expression hist== i.
If hist has its initial value 0, then then the only guard evaluating to true
leads to the default history location.

The clocks local to superstates with history entry are not frozen on exit
but kept running. Reachability for automata with stopwatches is undecid-
able [CL00]. If local clocks are declared to be forgetful, then they are reset
along every entry. Otherwise they resume with the accumulated value.

For simplicity we do not treat history in our flattening procedure.
Urgent transitions. In the HTA formalism transitions can be declared ur-

gent. The corresponding concept in the Uppaal model is to declare channels
urgent, i.e., channels where synchronization has preference over time delay.
An urgent transition t can be encoded by this as follows.

a) If t does not carry synchronization:
Add a dummy synchronization Hurry? on the transition and add one
parallel process HurryDummy that constantly offers synchronization on
this channel.

b) If t synchronizes on channel c:
Declare c urgent. If there are situations where two non-urgent transi-
tions can synchronize on c, then it is necessary to introduce a urgent
and non-urgent copy of c and duplicate all transitions where both ur-
gent and non-urgent synchronizations are possible.

For simplicity we do not treat urgency in our flattening procedure.

5.2.2 Exit of Superstates via Global Joins — Phase II

The exit of a superstate S is represented in Ŝ by a transition to S IDLE which
carries the synchronization signal exit S?. These exits do not necessarily
happen in isolation, but might happen as part of a cascade of exits from
superstates and non-basic substates. Thus it is necessary

27

Algorithm: PHASE II: expandGlobalJoins

input: Set G of global join starting points
output: auxiliary constructions: counters and guarded transitions

JoinTrees := ∅

Forall g ∈ G
collect all trees T of control locations that can synchronize to g;
the leaves of T are sets of basic locations that share transitions to the
same exit e.

/?
These sets are singletons, if e is an ordinary exit
and span over all basic locations in the superstate otherwise

?/

JoinTrees := JoinTrees ∪ {T}

Forall T ∈ JoinTrees

let L̂ := {l̂
∣∣∣ l is element in a basic location set of T}

declare the counter triggerT

Forall l̂ ∈ L̂

Forall transitions k̂ → l̂

add the assignment triggerT := triggerT + 1 to k̂ → l̂

Forall transitions l̂ → m̂

add the assignment triggerT := triggerT − 1 to l̂ → m̂
let N := number of leaves of T

let ST := superstates S occurring in T

Forall transitions t starting at root(T)

create a chain of transitions, starting with t̂,
corresponding to exiting every S ∈ ST

Fig. 5.8: Pseudo-code for the Encoding of All Global Joins.

(1) to derive conditions that allow a set of superstates to exit, and
(2) to make sure that always the complete set of exits is performed.

We call the process of performing a legal set of exits a global join.

Example 4. (Global Join)
Consider Fig. 5.9 (i) with control at (L2,L3). Then the superstates S3, S2,
and S1 have to be left, in order to reach l. The same holds for control
situation (L2′, L3). This cascade of exits is encoded the sequence of in
Fig. 5.9 (ii). However, if control is at (L2,L4), then S4 must be left as
well, this would correspond to a different sequence of substate exits than
displayed in (ii), i.e., a different global join.

One transition leaving a superstate B can give rise to a number of global
joins, possibly exponential in the depth of hierarchical structure.

For every global join there is exactly one proper transition that does not
lead to an exit. In Example 4 this is the transition to l. An auxiliary
variable trigger keeps track of the number of active basic locations, that
can participate in this join. In a transition from L2 to L2′, for example,
the value of trigger does not change. trigger has to reach the threshold

28

S1

S3S2

[sync] [guard]
[assign]

l

L3

X

L2

L2
′

L4

S4

c

c

c

[assign]

c

l̂

S1 ACTIVE IN X

[sync]
(trigger == 2) ∧ [guard]

exit S3!

exit S2!

exit S1!

(i) Part of an XOR Superstate X (ii) Exits in X̂, starting at (L2,L3)

Fig. 5.9: Translation of a Global Join That is Rooted at XOR Superstate X.

Algorithm: PHASE III: postprocessChannels

input: Queue Q over (syncSignal, transition, S)

While notempty(Q)

(syncSignal, transition, S) :=pop(Q)
If ∃ transition t with match(syncSignal) in S:

create a new channel c

replace channel(syncSignal) on transition by c

Forall transitions t with match(syncSignal) outside S
create a copy t′ of t, where channel(syncSignal) is replaced by c

if ∃(s′, t, S′) ∈ Q then push
(
(s′, t′, S′), Q

)

Fig. 5.10: Pseudo-code for Post-processing Synchronization Channels.

value—here: 2—to enable the global join. It is crucial that the proper
transition terminating the global join—here: S1 to l—can be taken, i.e.,
that the guard (if any) evaluates to true. Likewise the synchronization
with other transitions (if any) has to be possible at this point in time.

Thus, in the sequence of substate exits in Fig. 5.9 (ii), [guard] and [sync]

are attached to the first transition, while [assign] is executed along the
last transition.

5.2.3 Post-Processing of Channels — Phase III

Transitions that cause the same location to be exited are in conflict, i.e., they
cannot be executed simultaneously. The only case where two transitions in
the HTA model are taken truly simultaneous (and not interleaved) is the
synchronization along channels. E.g., in Fig. 2.2, the a? transition exiting
SUB cannot synchronize with the a! transition in P.

In the flattening the structural relation of ancestor/descendant is lost.

Therefor we have to prevent synchronization between the processes ŜUB

29

MAIN IDLE SUB ACTIVE IN MAIN

cccc

P IDLE lP1 lP2 outside MAIN

enter SUB in MAIN via eSUB!

a parallel MAIN?

exit P!exit Q!exit Q!

enter SUB in MAIN via eSUB!

enter P in SUB via eP ? a parallel P!

exit P?

a parallel P!

a parallel MAIN!

Fig. 5.11: Part of the Flattened Model of the HTA in Fig. 2.2 After Phase III.

and P̂ explicitly. We achieve that by introducing duplications of channels
such that synchronization is guaranteed to happen between processes that
correspond to parallel superstates. This can make it necessary to also intro-
duce duplications of transitions.

For example, the HTA in Fig. 2.2 is flattened such that channel a is re-
placed by two copies a parallel P and a parallel MAIN. One can synchronize
with superstates parallel to P and one with superstates parallel to MAIN.
The signals a! and a? along channel a have to be replaced accordingly.

Parts of the flattened model are drawn in Fig. 5.11. If a superstate is both
parallel to P and to MAIN, a transition originally carrying a! is replaced by
two transitions, one carrying a parallel P! and one carrying a parallel MAIN!.
The pseudo-code for this post-processing is given in Fig. 5.10.

6. Semantic Correspondence of HTAs and TAs

Hierarchical and flattened model are related in that with every hierarchical
configuration we can associate a flat one. We show that every hierarchical
trace corresponds to a projection of a trace in the flattened version. A
similar connection holds in the other direction. It follows that both models
are equivalent with respect to the TCTL properties checkable with Uppaal.

6.1 Hierarchical and Flat Configurations

Conceptually we can relate a configuration of a HTA M to a configuration

of the flattened Uppaal model M̂ . The reverse direction is not possible
in general; some configurations of the Uppaal model do not make sense
from the HTA point of view, e.g., if a process corresponding to a substate is
active but not the process corresponding to its superstate. Our construction
guarantees that those configurations are not reachable. Other configurations

30

in the Uppaal model are intermediate steps in the encoding of an exit
or entry. We call those configurations of the Uppaal model that have a
counterpart in the hierarchical model stable.

Definition 14. (Stable/Unstable Configuration)

Given a HTA M and a corresponding Uppaal model M̂ , where every su-

perstate S in M corresponds to the process Ŝ in M̂ . A stable configuration

of M̂ then is a configuration (~l, e, ν), where

◦ No l ∈ ~l is committed, i.e., ∀i. ¬c(li),

◦ If X is a XOR superstate and for some S X ACTIVE IN S ∈ ~l, then
X IDLE 6∈ ~l, and

◦ If A is a AND superstate and for some S A ACTIVE IN Ŝ ∈ ~l, then for
every substate Bi of A: Bi IDLE 6∈ ~l.

Every consistent Uppaal model configuration that is not stable is called
unstable.

We can define a relation of configurations of a HTA M to stable configuration

of M̂ .

Definition 15. (Matching Configuration)
Given a HTA M and a proper configuration c := (ρ, µ, ν, θ) of it. A config-

uration s := (~l, e, ν) of M̂ is a matching configuration, in symbols c ∼M s
if the following holds.

(i) ∀S ∈ ρ+(root). BASIC(S) ⇒ Ŝ ∈ ~l,

(ii) ∀S ∈ ρ+(root). XOR(S) ∨ AND(S) ⇒ S ACTIVE IN (η−1(S)) ∈ ~l,
and

(iii) ∀v ∈ Var(root). µ(v) = e(v)

It is easy to see that the flat configuration in the above definition is neces-
sarily stable. The relation ∼M ignores history and the values of auxiliary
variables. In general ∼M is an injection. By construction of the steps,
however, for every reachable hierarchical configuration c only one flat con-
figuration s is reachable.

6.2 Correspondence of Steps

The flattened version M̂ of a HTA M is a refinement in the sense that every

step in M corresponds to a finite sequence of steps in M̂ . If an ordinary
transition or a delay is mimicked this sequence is of length 1. The exit
and entry of superstates require a larger number of steps to be taken in the
flattened version.

Delay. A delay step of duration d is possible if no urgent transition is
enabled and all invariants remain true throughout this delay. In phase I, all
invariants of superstates are inherited, i.e., every location in the flattened

31

model carries a conjunction of the invariants of all ancestor superstates it is
derived from. Thus, a duration step from a HTA configuration c is possible
if and only if it is possible in a corresponding flat s with c ∼M s.

Join. The computation of PreExitSets(e) in Section 2.2 corresponds to
the sets of locations that are computed in expandGlobalJoins. Recall that
PreExitSets(e) is a family of sets of basic locations. The global join can be
taken if control is such that one location in each set is active. These sets
are locations in the same XOR superstate, thus not more than one can be
active. For the global join gi the auxiliary variables (triggeri) reflects the
number of locations that are in the sets of gi, i.e. PreExitSets(e). If this
number reaches the threshold |PreExitSets(e)|, the global join can be taken.

Every such performed global join relies on one proper transition t that
does not lead to an exit. t is necessarily part of a XOR superstate X. The
encoding of the global join is a chain of transitions (like in Fig. 5.9 (b)).
The first transition carries guard and synchronization of t. The subsequent
transitions signal the substates Bi of X to become idle, i.e., the processes

B̂i corresponding to these substates take a transition to Bi IDLE. Since the
intermediate locations of the chain are declared committed, this sequence
cannot be disturbed by ordinary transitions or time delays.

If t synchronizes (with a transition parallel to t) this can entail two simul-
taneous executions of global joins and, possibly, also entries of substates.
Since the transitions are necessarily parallel (or: independent), this does
not cause problems. There might be several legal sequences of transitions
that lead to the same next stable configuration.

Transition. A simple action step that does not exit or enter any super-
states corresponds naturally to taking one transition in a (flat) process. In
the flattened model, auxiliary variables (trigger) are updated along this
transition. This is merely housekeeping and does not enable or block tran-
sitions. The invariants of locations are inherited. Thus the transition part
of the HTA is directly mimicked in the translation.

The analogous argument holds for the synchronization of two transitions
along a channel. The renaming in phase III guarantees that synchronizations
are only possible between transitions that correspond to parallel transitions
in the HTA.

Fork. Entries of XOR superstates activate one location that can be basic
or a superstate. Entries of AND superstates activate all substates; those are
necessarily superstates again. Thus every entry can result in the activation
of a set of superstates. This set is given by the (static) structure.

In the flattened version this set of superstates is activated by adding aux-
iliary locations and synchronizing via enter B in S via e!. There are no
guards allowed and the auxiliary locations are declared committed. Thus
this sequence of synchronizations takes place without interleaving with or-
dinary transitions and without time delay.

It is important that all parts, once started, can execute to completion. Thus

32

we can relate one step in a HTA M to a sequence of steps in M̂ , where only
the first and the last configurations are stable.

Lemma 1. (Step Encoding)
For a HTA M there exist a step between two configurations (ρ, µ, ν, θ) and
(ρ′, µ′, ν ′, θ′) according to rules action and sync (see Section 2.2) if and only

if for the Uppaal model M̂ there exists a corresponding sequence

(~l, e, ν)
α

=⇒ (~l1, e1, ν1)
τ

=⇒ · · ·
τ

=⇒ (~lk, ek, νk)
τ

=⇒ (~l′, e′, ν ′)

where (ρ, µ, ν, θ) ∼M (~l, e, ν), (ρ′, µ′, ν ′, θ′) ∼M (~l′, e′, ν ′), all (~li, ei, νi) are
unstable configurations, α ∈ {a, τ} and the remaining synchronizations τ
are along channels exit B and enter B in S via e.

Other modeling elements. We do not address history or urgency in our
argumentation. This is for the sake of clarity; they are not causing compli-
cations.

History amounts to the assignment of special variables that direct control
on re-entry. In the flattened version this yields a mutual exclusive choice of
the transitions from the history entry to exactly one location (which can be
in fact a superstate; then either the history entry or default entry is used).
Along this transitions only those clocks declared as forgetful are reset to 0
and all others remain untouched.

Urgency can be completely replaced by Uppaal’s mechanism for synchro-
nization on urgent channels as explained earlier.

6.3 Correspondence of Traces

After asserting that the step relation of a HTA M is indeed refined to the

step relation of the flattened M̂ , we can relate the sets of traces. The
key observation is that for every timed trace in M there exits at least one

corresponding timed traces for M̂ . For every timed trace for M̂ there exists
exactly one timed trace for M .

The trace relation is not a bijection, since in M̂ interleavings between the
intermediate transitions are possible. This is only the case for synchronized
action steps, which are guaranteed to connect only independent transitions.
Thus all such interleavings lead to the same stable configuration.

Proposition 1. (Correspondence of Hierarchical and Flattened Model)

Given a HTA M and the flattened Uppaal model M̂ of it. For every timed
trace σ = {(ρ, µ, ν, θ)i}i≥0 of M there exists a corresponding timed trace

σ̂ = {(~l, e, ν)j}j≥0 of M̂ such that

∀i. ∃k, k′, k < k′. (ρ, µ, ν, θ)i ∼
M (~l, e, ν)k ∧

(ρ, µ, ν, θ)i+1 ∼M (~l, e, ν)k′ ∧

∀k < j < k′. (~l, e, ν)j is unstable.

33

Conversely, for every timed trace σ̂ = {(~l, e, ν)j}j≥0 of M̂ there exists a
corresponding timed trace σ = {(ρ, µ, ν, θ)i}i≥0 of M such that

∀k, k′, k < k′. if (~l, e, ν)k and (~l, e, ν)k′ are stable

and all (~l, e, ν)j with k < j < k′ are unstable, then

∃i. (ρ, µ, ν, θ)i ∼
M (~l, e, ν)k ∧

(ρ, µ, ν, θ)i+1 ∼M (~l, e, ν)k′ .

Observe also that by construction the entries and exits cannot get “stuck”

in the middle of the transition. Thus M̂ does not yield maximally extended
finite traces that terminate in unstable configurations. This entails that all

trace properties, that Uppaal can establish for M̂ , also hold for M .

Corollary 1. (Flattening Sound and Complete)
A timed property ϕ from the TCTL fragment in Section 4 holds in an hi-
erarchical model M if and only if the the corresponding property ϕ̂ holds in

M̂ .

Proof. (Sketch)
By Proposition 1 the sets of traces match modulo the unstable configurations

contained in the traces of M̂ . Local properties of M cannot refer to the
auxiliary variables in the unstable configurations and by our well-formedness
conditions the values of variables in Var(root) change at most once along a
sequence of unstable configurations.

For the TCTL fragment in Section 4 it suffices to quantify over traces.
The hierarchical and the flat traces are only distinguishable by the names
of identifiers. Those we assume to be translated properly in ϕ̂. 2

7. Case Study: A Cardiac Pacemaker

We exemplify our flattening procedure on the model of a cardiac pacemaker.
The flattened version is model checked with Uppaal for a safety and a
liveness property.

The pacemaker is put in parallel with a model of a human heart and
a programmer. We translate the hierarchical timed automaton model of
this composition to an equivalent (flat) Uppaal timed automata model and
explain the obtained automata in detail. Then we report on run-time data of
the formal verification of this translation with respect to safety and response
properties.

7.1 The Hierarchical Timed Automaton Model

The hierarchical model is a parallel composition of three XOR superstates:
the human heart, the cardiac pacemaker itself, and a programmer setting
up the pacemaker.

34

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Fig. 7.12: Model of a Human Heart That Might Require Pacing.

Heart model. The human heartbeat is in fact a complex sequence of cham-
ber contractions, where two atrial and two ventricular chambers collaborate
to establish blood circulation. We use a simplified model of a human heart,
that might require pacing (Fig. 7.12). We consider only two chambers,
namely the (left) atrial and ventricular ones. A healthy heart contracts
those in a steady rhythm. We mimic this by the time delays DELAY AFTER V

and DELAY AFTER A and the local clock t. In our example we only monitor
the ventricular chamber. The part after entry V synchronizes on VSense,

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToIdle?
ToInhibited?

Inhibited

RefractDone!

t==RefTime

ToOff?ToOn?

inAVI

ToTriggered?

Triggered

t:=0

V_Sense?

inIdle

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?
Off

On

Self Inhibited

Idle

Self Triggered

Fig. 7.13: Model of the Pacemaker. Initially Self Inhibited is Entered.

35

in case that anybody is listening (indicated by listening == 1).
After the contraction of the ventricular chamber, our heart model might

non-deterministically stop beating on own account. If it does so for too long,
the critical state FLATLINE is reached.

The pacemaker can send an impulse either to the atrial or ventricular
chamber, i.e., synchronize on channels APace or VPace. The particular heart
chamber then is scheduled for contraction in the very next moment, regard-
less on when these signals occur. This is modeled by using the default exit
and re-entering at one of the leftmost locations.

We use the local clock t to model this rhythm. Since in our example we
only monitor the ventricular chamber, this one synchronizes on VSense, in
case that anybody is listening (indicated by listening == 1).After the con-
traction of the ventricular chamber, our model might non-deterministically
stop beating on own account. If it does so for too long, the critical state
FLATLINE is reached.A pacemaker can send a signal either to the atrial
or ventricular chamber, i.e., synchronize on channels APace or VPace. The
particular heart chamber then is scheduled for contraction in the very next
moment, no matter when these signals occur. This is modeled by using the
default exit and re-entering at one of the leftmost locations.

Pacemaker model. The main component of the pacemaker is a XOR su-
perstate with the two sub-states Off and On. If the pacemaker is on, it
can in the different modes Idle, AAI, AAT, VVI, VVT, and AVI. The first
letter indicates, to which chamber of the heart an electrical pacing pulse is
sent (articular or ventricular). The second letter indicates, which chamber
of the heart is monitored (articular or ventricular). In the Self Inhibited (I)
modes, a naturally occurring heartbeat blocks a pulse from being sent. In
the Self Triggered (T) modes, a pacing pulse will always occur, triggered
either by a timeout or by the heart contraction itself.

For simplicity we restrict to the operation modes Idle, VVT, VVI, and
AVI. Of particular interest is the AVI mode, which is described as an AND

superstate with two parallel substates. In our example only the ventricular
chamber is observed, but a pace signal may be sent either chamber.

Programmer model. A medical person—here called the programmer—is
responsible for switching the pacemaker on/off and for selecting the op-
eration mode. This the programmer does via the signals commandedOn!,
commandedOff!, toIdle!, toVVI!, toVVT!, and toAVI!. We do not make
assumptions, on how or in which order she issues the signals. However, we
require a time delay of at least DELAY_AFTER_MODESWITCH after each sig-
nal. If one of the signals commandedOff! or toIdle! was issued this is
recorded in the binary variable wasSwitchedOff. Note that we equipped
the pacemaker with default exits, thus it can always synchronize with these
signals.

The programmer is modeled by a XOR superstate with two locations. In
the initial location, Modeswitch, any signal can be issued while entering the
second location. The second location is left after exactly DELAY_AFTER_MODESWITCH

time units. We include two additional locations, Random and Idle, to encode

36

Detail

L1

L2

IDLE

L15

L16

HrtDtlVCtrctENTRYtrhrtsm4Dtl5!

HrtDtlACtrctENTRYtrhrtsm4Dtl5!

HrtACtrctENTRYtrhrtsm4?

HEART_TIME := 0

HrtVCtrctENTRYtrhrtsm4?
HEART_TIME := 0

xtSglNR4?

triggerVar2 == 1
APace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

triggerVar2 == 1
VPace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

VContraction
HEART_TIME <= 0

AContraction
HEART_TIME <= 0

AfterVContraction
HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

AfterAContraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped
HEART_TIME <= HEART_ALLOWED_STOP_TIME

Flatline

IDLE

HrtDtlACtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HrtDtlVCtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1
VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0

HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME
HEART_TIME := 0

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

Fig. 7.14: Flattened Version of the Heart Model.

alternative behavior of the programmer. They are not relevant here.

7.2 Translation to Uppaal Timed Automata

The three superstates Heart, Pacemaker, and Programmer are flattened to
a network of Uppaal processes. In particular this translation yields

◦ two processes for the Heart: a top-level, where exit and re-entry hap-
pens and one for the substate where the heart is beating (Fig. 7.14),

◦ seven processes for the Pacemaker, put together as

– one process for the top-level where the pacemaker is either On or
Off (Fig. 7.15),

– one process for superstate where the pacemaker is on (Fig. 7.16),
– one process for the VVI operation mode (Fig. 7.17),
– one process for the VVT operation mode (Fig. 7.18),
– three processes for the AVI operation mode, one for the AND

superstate (Fig. 7.19) and two for the substates listening to the
ventricular chamber (Fig. 7.20) and pacing the articular chamber
(Fig. 7.21),

◦ one process for the Programmer (Fig. 7.22), and
◦ one process to start the three parts (Fig. 7.23).

Translation of heart (Fig. 7.14). The XOR superstate X and the XOR

substate S are translated to the two processes. The translation of X (up-
per part of Figure) is responsible for selecting the entry VContraction or

37

Off

subComponent

L3

L4

L5

L6

L7

IDLE

L17

L18

L19

L20

L21

L22 L23

L24L25

L26L27

L28L29

L30L31

L32 L33

L34L35

L36L37

L38L39

L40L41

L42 L43 L44 L45

L46
L47L48

L49

L50L51L52L53

L54L55L56L57

L58L59L60L61

PcOdfltENTRYtrpcmkr2sbCmpt6!

PcOIdlENTRYtrpcmkr2sbCmpt6!

PcOVVIENTRYtrpcmkr2sbCmpt6!
PcOVVTENTRYtrpcmkr2sbCmpt6!

PcOAVIENTRYtrpcmkr2sbCmpt6!

PcOffENTRYtrpcmkr2?

PcIdlENTRYtrpcmkr2?

PcVVTENTRYtrpcmkr2?

VVT_TIME := 0

PcVVIENTRYtrpcmkr2?

VVI_TIME := 0

PcAVIENTRYtrpcmkr2?

AVI_A_TIME := 0, AVI_V_TIME := 0

commandedOn?

VVI_TIME := 0

triggerVar3 == 1

commandedOff?
V_listening := 0, wasSwitchedOff := 1xtSglNR6!

triggerVar3 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1

xtSglNR6!

triggerVar3 == 1

toInhibited?

V_listening := 0, VVI_TIME := 0xtSglNR6!
triggerVar3 == 1 toTriggered?

V_listening := 0, VVT_TIME := 0

xtSglNR6!

triggerVar3 == 1

toAVI?

V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR6!

triggerVar4 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!
xtSglNR6!

triggerVar4 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toAVI?
V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR7!
xtSglNR6!

triggerVar5 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0
xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar7 == 2
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2
toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

Fig. 7.15: Translation of the Topmost XOR Superstate of the Pacemaker.

AContraction. The translation of S (lower part of Figure) encodes the be-
havior. Note that from every location there is a transition to IDLE; this
corresponds to the default exit of S.

Flattened pacemaker (Figures 7.15, 7.16, 7.17, 7.18, 7.19, 7.20, 7.21). The
most complicated process is the translation of the topmost XOR superstate.
The basic locations are IDLE (far left), subComponent (center), and Off (far
right). The pacemaker is on, when it control resides in subComponent and
off, when the control is at Off.

The committed locations serve to encode the entry of the single substate
and the global joins originating from it. For example, the four locations on
the left L4, L5, L6, and L7 correspond to entering the modes Idle, VVIMode,
VVTMode, and AVIMode. Control of the pacemaker can reside in the locations
Idle, VVIMode, VVTMode, and AVIMode. There are no direct transitions
between these modes, the superstate has to be exited to change in between
them.

38

Idle

VVIModeL8

VVTModeL9

AVIModeL10

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7!

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9!

PcOAVIENTRYtrpcmkr2sbCmpt6?
AVI_A_TIME := 0, AVI_V_TIME := 0

PcOVVTENTRYtrpcmkr2sbCmpt6?
VVT_TIME := 0

PcOVVIENTRYtrpcmkr2sbCmpt6?
VVI_TIME := 0

PcOIdlENTRYtrpcmkr2sbCmpt6?
triggerVar3 := triggerVar3 + 1

PcOdfltENTRYtrpcmkr2sbCmpt6?
VVI_TIME := 0

xtSglNR6?
triggerVar3 := triggerVar3 - 1

xtSglNR6?

xtSglNR6?

xtSglNR6?

Fig. 7.16: Translation of the XOR Superstate On.

Refractory

VVI_TIME <= REFRACTORY_TIME WaitingforSense
VVI_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVI_TIME <= 0

Pacing
VVI_TIME <= 0

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7?
triggerVar4 := triggerVar4 + 1

VVI_TIME == REFRACTORY_TIME
VVI_TIME := 0, V_listening := 1

VentricularChamberSense?
VVI_TIME := 0

VVI_TIME == SENSE_TIMEOUT
VVI_TIME := 0, V_listening := 0

VPace!
VVI_TIME := 0

xtSglNR7?
triggerVar4 := triggerVar4 - 1 xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?
triggerVar4 := triggerVar4 - 1

xtSglNR7?
triggerVar4 := triggerVar4 - 1

Fig. 7.17: Translation of the XOR Superstate Corresponding to the VVI Mode.

The AVI mode is modeled by a AND superstate with two parallel XOR

substates. In the translation this is reflected by a process with two non-
committed locations IDLE and ACTIVE (Fig. 7.19) that synchronizes with
two other processes AVI-A and AVI-V (Figures 7.21,7.20).

Translation of programmer (Fig. 7.22). Since the programmer is a XOR

superstate with only basic locations, the translation is very similar. It con-
tains the additional location IDLE.

Refractory

VVT_TIME <= REFRACTORY_TIME WaitingforSense
VVT_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVT_TIME <= 0

Pacing
VVT_TIME <= 0

IDLE

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8?
triggerVar5 := triggerVar5 + 1

VVT_TIME == REFRACTORY_TIME
VVT_TIME := 0, V_listening := 1

VentricularChamberSense?

VVT_TIME := 0,V_listening := 0
VVT_TIME == SENSE_TIMEOUT

VVT_TIME := 0, V_listening := 0

VPace!
VVT_TIME := 0

xtSglNR8?
triggerVar5 := triggerVar5 - 1 xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?
triggerVar5 := triggerVar5 - 1

xtSglNR8?
triggerVar5 := triggerVar5 - 1

Fig. 7.18: Translation of the XOR Superstate Corresponding to the VVT Mode.

39

IDLE ACTIVE

pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork1
pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork2

PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11!

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9?

xtSglNR9?

Fig. 7.19: Translation of the AND Superstate Corresponding to the AVI Mode.

Refractory

Waiting

WaitingAU
AVI_V_TIME <= 0

APacing

IDLE
PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11?
triggerVar7 := triggerVar7 + 1

AVI_Refractory_Done?

V_listening := 1

VentricularChamberSense?
AVI_V_TIME := 0, V_listening := 0

A_LISTENING_TO_V == 0
V_listening := 1

AVI_Sense_from_V!
V_listening := 1

AVI_APace?
V_listening := 0

AVI_APace_Done?
xtSglNR11?

triggerVar7 := triggerVar7 - 1
xtSglNR11?
triggerVar7 := triggerVar7 - 1

xtSglNR11?
triggerVar7 := triggerVar7 - 1

xtSglNR11?
triggerVar7 := triggerVar7 - 1

Fig. 7.20: Translation of the XOR Superstate AVI-V.

Refractory

AVI_A_TIME <= REFRACTORY_TIME Waiting
AVI_A_TIME <= SENSE_TIMEOUT

APacing
AVI_A_TIME <= 0

APacingAU
AVI_A_TIME <= 0

IDLE

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10?
triggerVar7 := triggerVar7 + 1

AVI_A_TIME == REFRACTORY_TIME
AVI_Refractory_Done!
A_LISTENING_TO_V := 1, AVI_A_TIME := 0

AVI_Sense_from_V?
AVI_A_TIME := 0

AVI_A_TIME == SENSE_TIMEOUT
APace!

A_LISTENING_TO_V := 0, AVI_A_TIME := 0

AVI_APace!
AVI_A_TIME := 0

AVI_APace_Done!

AVI_A_TIME := 0

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

Fig. 7.21: Translation of the XOR Superstate AVI-A.

Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?
triggerVar1 := triggerVar1 + 1

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

PROGRAMMER_TIME == MODE_SWITCH_DELAY
triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1

Fig. 7.22: Translation of the XOR Superstate Programmer.

40

start

L11 L12

L13

PcAVIENTRYtrpcmkr2!

PrgrmmrMdswtchENTRYtrprgrmmrsm3!

HrtACtrctENTRYtrhrtsm4!

Fig. 7.23: The Additional KickOff Process.

HTA model Uppaal model

XML tags 564 1191
proper control locations 35 45

pseudo-states / committed locations 33 63
transitions 47 177

variables and constants 33 72
formal clocks 6 6

Table I: Size of the HTA Model and the Corresponding Uppaal Model.

Kickoff (Fig. 7.23). This process starts the three superstates Heart, Pacemaker,
and Programmer. In the only process of the Uppaal model where in the
initial configuration a transition is enabled.

Increase in Model Size

Both data formats, HTA and Uppaal timed automata, are described in
terms of XML grammars. The flattening of the HTA yields an moderate
increase in terms of model size. Table I lists this data in detail. A large
number of committed locations were introduced to encode entry and global
joins. However, these forks and joins are triggering a deterministic sequence
of actions and thus do not significantly increase the state space. A simi-
lar observation holds for the introduced auxiliary variables: The values of
variables triggering global joins are completely determined by the current
control state. The auxiliary channels introduced to switch components from
IDLE to ACTIVE and vice versa does not increase the complexity significantly.

7.3 Model Checking the Uppaal Model

The translation of the HTA model can serve as input to the Uppaal tool.
The system is not deadlock free. When the programmer switches off the
pacemaker and the heart stops beating, a configuration is reached where
unbounded delay is possible. In one variation, the programmer was explic-
itly disallowed to exit. In a second variation, the pacemaker could not be

41

switched off. In both variations, deadlock freedom was established via a run
of the model checking engine on a true invariant with switch settings -Aa

(convex hull approximation and active clock reduction switched on), and
took 3.50 respectively 1.75 seconds.

We verified two desirable properties in the (non-variated) obtained hier-
archical timed automaton model.

(1) A[] (heart_sub.FLATLINE => (wasSwitchedOff == 1))

(2) A[] (heart_Sub.AfterAContraction =>

A<> heart_Sub.AfterVContraction)

REFRACTORY_TIME = 50
SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50
DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 7.24: Parameters That Yield Property (1).

Property (1) is a safety
property and states, that
the heart never stops for
too long, unless the pace-
maker was switched off by
the programmer (in which
case we cannot give any
guarantees). Property
(2) is a response prop-
erty and states, that af-
ter an articular contrac-
tion, there will inevitably
follow a ventricular con-
traction. In particular this guarantees, that no deadlocks are possible be-
tween these control situations.

Version 3.1.57 of the Uppaal tool is able to perform the model checking
of both properties successfully in 11.83 respectively 4.26 seconds. The veri-
fication of the typically more expensive property (2) is faster, since here it is
possible to apply a property preserving convex hull over-approximation, that
is not preservative with respect to property (1). We use a Sun Enterprise 450
with UltraSPARC-II processors, 300 MHz, and made use of Uppaal’s rich
set of optimization options. In particular the active clock reduction gives
drastic improvements in model checking time in this example.

It is worthwhile to mention, that validity of property (1) is strongly de-
pendent on the parameter setting of the model. We use the constants from
Fig. 7.24. If the programmer is allowed to switch between modes very fast,
it is possible that she prevents the pacemaker from doing its job. E.g.,
for MODE_SWITCH_DELAY = 65 the property (1) does not hold any more. In
practice it is often a problem to find parameter settings, that entail a safe
or correct operation of the system. In related work, an extended version
of Uppaal is used to derive parameters yielding property satisfaction auto-
matically, see [HRSV01].

Hierarchical structures are powerful formalisms; one indication for this is
that there are many options on how to fill the details. This has been subject
to intensive research [vdB94,Har97]. As we see it, the crucial choice in our
semantics for HTAs is to treat cascades of entries and exits of superstates

42

monolithically. This is somewhat clumsy, but allows for a conceptually
simple correspondence between configurations of the hierarchical model and
the flattened version.

Partially due to this decision, the reference implementation turned out to
be surprisingly complicated. The source consists of more than 9000 lines of
documented Java code, see http://www.brics.dk/~omoeller/hta/vanilla-1/.
The high-level description given in this Chapter is a way to increase trust
in our procedure and to allow for future maintenance.

The global join construction is a side effect of treating exit steps monolith-
ically. We point out that entries and exits do not behave fully symmetric
here. This is not an introduced problem; exiting more than one superstate
implicitly requires synchronization. Giving conditions under which parts of
a system to be entered is simpler than specifying at what point in time they
can be left or interrupted. To the best of our knowledge this hat not been
addressed before in the literature and we belief there is room for further
elaboration on this topic.

In the pacemaker case-study, the increase in size of the generated model
seems acceptable. Mainly entries and exits complicate Since we use com-
mitted locations to encode this it probably does not contribute significantly
to the model checking time. The medium-sized model is sufficiently compli-
cated to render the properties we model check non-trivial. The parameters
that yield the safety property, e.g., were found experimentally. As for the
usability of the flattened model, a lay-outer is desirable. The processes of
the pacemaker case study are layouted by hand.

An alternative approach for model checking HTAs is to implement a model
checking engine that operates directly on the hierarchical model. The con-
figuration vector is more complicated to encode, but the sets of clock eval-
uations is not different from other dense-time formalisms. The algorithmic
challenge is the implementation of superstate exits; basically the same com-
putations as used in the global joins have to be performed. We consider it
interesting to compare the run-times of model checking HTA models directly
with those obtained after a flattening step. This would give an impression
on how much overhead is really introduced by the flattening. There are
plans in the DoCS group at Uppsala to address this, and we refer to their
web-pages1 for further information.

8. Conclusion

It is perceivable that there is a gap between industrial tools and academic
tools. Industrial tools aim to support the design and production activity of
their customers. The user interface has to be friendly; employees are going
to interact with it for weeks and months. Academic tools aim to support
research activity. Implementation is carried out by student programmers or

1 http://www.docs.uu.se/docs/index.eng.shtml

43

PhD students. The user interface can be anything, even textual, since the
typical user is either a researcher or a student.

The hierarchical timed automata formalism is neither the first nor the first
timed variation of statecharts. A number of related approaches are compared
and classified in [vdB94]. According to this classification, our formalism
would be described by the column g/t - (-) + - + - + - + o - + - i

c + + + - - - + - - d: graphical/textual, no negated trigger event, no
(implicit) timeout event, timed transitions, no disjunction of trigger events,
trigger conditions, no state reference, assignments to variables, no inter-level
transition, history mechanism, operational semantics, not compositional,
with synchrony hypothesis, not deterministic, interleaved concurrency, con-
tinuous time, globally consistent, causal, instantaneous states, no finiteness
restriction in number of transitions, no priorities, no non-preemptive inter-
rupt, preemptive interrupt, no distinction of internal and external events,
no local events, discrete events.

We substitute “hand-shake synchronization” for “events” in van der Beeck’s
classification. The main motivation to construct this new formalism is the
closeness to the Uppaal model; a translation to Uppaal exists, see Sec-
tion 5. We found no existing statechart variant readily appropriate for this
purpose. The major omission in HTAs with respect to UML statecharts are
events.

There are two main difficulties with events. First, the precise notion of
events has not (yet) been given in the UML, though version 1.4 is more
specific than its predecessors. As a side effect some UML tools (e.g., Rhap-
sody) do no longer correspond to this definition. Not all the holes are filled.
In particular it is not specified yet if events are instantaneous or are queued
and resolve at some later time. An unambiguous definition is a prerequisite
for a formal treatment.

Second, if the event queue can grow without bound model checking is un-
decidable in general. This presents a serious problem, since no complete
algorithm can be formulated any more. We argue that this is rather an
introduced than an inherent problem. Due to constrained resources in run-
ning applications, the event queue usually has a bounded size. The exact
bound, however, might not be known a priori. The approach of limiting the
size of the event queues is followed in [Vot02].

Another possibility is to reason about event queues that have a certain
regular structure. Sets of queue situations can have a finite encoding, though
their cardinality is not finite. Here we refer to the work of Abdulla and
Jonsson [AJ96,AJ01].

The work on the HTA formalism is continuing. A graphical editor for the
language is currently under development at Aalborg University. It uses an
XML representation of the described syntax. For practical reasons super-
states are not constructed as primitives but generated from parameterized
templates. More on this representation can be found in [DM01].

To assert the usability of the HTA formalism bigger examples are needed.
However those are tedious to construct without an appropriate editor. We

44

expect that the HTA formalism further evolves once the generation of ex-
amples has been made easier.

In the context of the AIT-WOODDES project the HTA formalism is
planned to be used as an intermediate format. UML statechart models
as constructed by the tool Rhapsody are to be translated to Uppaal via
the HTA representation. This requires clearly an abstraction step. For once
to safely omit code that is part of the model, and second to approximate
events. AIT-WOODDES: Advanced

Information Technology—
Workshop on Object-Oriented
Design and Development
of Embedded Systems.
This is a project founded
by the European Union,
No IST-1999-10069. See
http://wooddes.intranet.gr.

References

Rajeev Alur, Costas Courcoubetis, and David Dill. Model Checking in Dense Real-Time.
Information and Computation, 104(1):2–34, 1993. A preliminary version appeared in
the Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science
(LICS 1990).

Rajeev Alur and David L. Dill. Automata for Modelling Real-Time Systems. Theoretical
Computer Science, 126(2):183–236, April 1994.

Parosh Aziz Abdulla and Bengt Jonsson. Verifying Programs with Unreliable Channels.
Information and Computation, 127(2):91–101, June 1996.

Parosh Aziz Abdulla and Bengt Jonsson. Ensuring Completeness of Symbolic Verification
Methods for Infinite-State Systems. Theoretical Computer Science, 256(1–2), 2001.

Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University, 1991.

Patrik Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. Proc. of
the 4th ACM Symposium on Principles of Programming Languages, pages 238–252,
January 1977.

Franck Cassez and Kim G. Larsen. The Impressive Power of Stopwatches. In Proc. of
CONCUR 2000: Concurrency Theory, volume 1877 of Lecture Notes in Computer
Science (LNCS), pages 138–152. Springer–Verlag, 2000.

Alexandre David and M. Oliver Möller. From HUppaal to Uppaal: A Translation from
Hierarchical Timed Automata to Flat Timed Automata. Research Series RS-01-11,
BRICS, Department of Computer Science, University of Aarhus, March 2001.

David Harel. Statecharts: A Visual Formalism for Complex System. Science of Computer
Programming, 8(3):231–274, 1987.

David Harel. Some Thoughts on Statecharts, 13 Years Later. In O. Grumberg, editor,
Proc. of the 9th Int. Conf. on Computer Aided Verification, volume 1254 of Lecture
Notes in Computer Science (LNCS), pages 226–231. Springer–Verlag, 1997.

David Harel and Amir Pnueli. On the Development of Reactive Systems. In K. R. Apt,
editor, Logics and Models of Concurrent Systems, volume F-13 of NATO ASI, pages
477–498, New York, 1985. Springer–Verlag.

Thomas S. Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear
Parametric Model Checking of Timed Automata. Research Series RS-01-5, BRICS,
Department of Computer Science, University of Aarhus, January 2001. 44 pp.

Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modelling and
Analysis of an Audio/Video Protocol: An Industrial Case Study Using Uppaal. In
Proc. of the 18th IEEE Real-Time Systems Symposium, pages 2–13. IEEE Computer
Society Press, December 1997.

Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA Protocol Start-Up
Mechanism. In Proc. of IEEE Pacific Rim International Symposium on Fault-
Tolerant Systems, pages 235–242, 1997.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear

45

Controller. In Proc. of the 4th International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems., volume 1384 of Lecture Notes in Computer
Science (LNCS), pages 281–297. Springer–Verlag, 1998.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer–Verlag, 1999.

Paul Pettersson. Modelling and Analysis of Real-Time Systems Using Timed Automata:
Theory and Practice. PhD thesis, Department of Computer Systems, Uppsala Uni-
versity, February 1999.

Michael von der Beeck. A Comparison of Statechart Variants. In H. Langmaack,
W. de Roever, and J. Vytopil, editors, Formal Techniques in RealTime and Fault-
Tolerant Systems, volume 863 of Lecture Notes in Computer Science (LNCS), pages
128–148. Springer–Verlag, 1994.

Angelika Votintseva. Specification-Based Test Generation for UML. to appear: Technical
report, Universität Oldenburg (Abteilung Technische Informatik), 2002.

Recent technical reports from the Department of Information Technology

2002-033 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: Memoryless Determinacy of
Parity and Mean Payoff Games: A Simple Proof

2002-034 Stefan Johansson: Numerical Solution of the Linearized Euler Equations Using High
Order Finite Difference Operators with the Summation by Parts Property

2002-035 Ken Mattsson, Magnus Svärd, Mark Carpenter, and Jan Nordström: Accuracy Re-
quirements for Steady and Transient Aerodynamics

2002-036 Bernhard Müller: Control Errors in CFD!

2002-037 Bob Melander and Mats Björkman: Trace-Driven Network Path Emulation

2002-038 Parosh Aziz Abdulla and Alexander Rabinovich: Verification of Probabilistic Systems
with Faulty Communication

2002-039 R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimate of the constant in the
strengthened CBS inequality for anisotropic non-conforming FEM systems

2002-040 Torsten Söderström: Why are errors-in-variables problems often tricky?

2002-041 Per Lötstedt and Martin Nilsson: A Minimum Residual Interpolation Method for Linear
Equations with Multiple Right Hand Sides

2003-001 Parosh Abdulla, Johann Deneux, Pritha Mahata, and Aletta Nylén: Downward Closed
Language Generators

2003-002 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: On Combinatorial Structure
and Algorithms for Parity Games

2003-003 Magnus Svärd and Jan Nordström: A Stable and Accurate Summation-by-Parts Finite
Volume Formulation of the Laplacian Operator

2003-004 Kaushik Mahata and Torsten Söderström: Subspace estimation of real-valued sine
wave frequencies

2003-005 Samuel Sundberg: Solving the linearized Navier-Stokes equations using semi-Toeplitz
preconditioning

2003-006 Henrik Brandén and Per Sundqvist: An Algorithm for Computing Fundamental Solu-
tions of Difference Operators

2003-007 Henrik Brandén, Sverker Holmgren, and Per Sundqvist: Discrete Fundamental Solu-
tion Preconditioning for Hyperbolic Systems of PDE

2003-008 Julian Richardson and Pierre Flener: Program Schemas as Proof Methods

2003-009 Alexandre David, M. Oliver Möller, and Wang Yi: Verification of UML Statecharts with
Real-Time Extensions

2003-010 Alexandre David, Johann Deneux, and Julien d’Orso: A Formal Semantics for UML
Statecharts

2003-011 Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi: A Tool Architecture
for the Next Generation of UPPAAL

Februari 2003
ISSN 1404-3203

http://www.it.uu.se/

