
New Uppaal Architecture

Alexandre David1, Gerd Behrmann2, Kim G. Larsen2, and Wang Yi1

1 Department of Information Technology, Uppsala University, Sweden
{adavid,yi}@docs.uu.se

2 Department of Computer Science, Aalborg University, Denmark
behrmann@cs.auc.dk.

Abstract. We present the design of the new model-checking engine ar-
chitecture and new internal data structures for the next generation of
Uppaal. Experimental results demonstrate that the new implementation
based on these structures improves the efficiency of Uppaal by about
80% in both time and space. In addition, the new version is built to
handle hierarchical models. The challenge in handling hierarchy comes
from the very dynamic structure of hierarchical systems: the level of
concurrency and the scope of data variables and clocks are not constant.

1 Introduction

The interest in timed automata, first introduced by Alur and Dill[1] in 1990, as
a modelling language for timed systems has risen as tools have become more
sophisticated and faster. Although the basic model checking algorithms and
data structures, including techniques for approximative analysis[18], state space
reduction[16], compact data structures[16, 6], clock reduction [11] and other op-
timisations, for timed automata are well known, there has been little information
on how these techniques fit together into a common efficient architecture.

This paper provides a view of the architecture of the real time model checker
Uppaal.1 The goal of Uppaal has always been to serve as a platform for research
in timed automata techniques. As such, it is crucial for the tool to provide a
flexible architecture that allows experimentation, i.e., it must be possible to
integrate orthogonal features in an orthogonal manner such that it becomes
possible to evaluate various techniques within a single framework and investigate
how these influence each other.

The timed automaton reachability algorithm is basically a graph exploration
algorithm where the vertices are symbolic states and the graph is unfolded on
the fly. During exploration, the algorithm maintains two sets of symbolic states:
The waiting list contains reachable but yet unexplored states, and the passed
list contains reachable explored states. Maintaining two sets of states does incur
some overhead that can be eliminated by unifying them. We show that this
results in a significant speedup.

Hierarchical automata are extensions of regular automata where each state
can contain another automaton or a number of concurrent automata. The notion
1 Visit http://www.uppaal.com for more information.



of hierarchy in automata languages was first introduced by Harel as statecharts[14]
and later in UML2. There has been recent effort in extending UML with real
time concepts and, vice versa, extending timed automata with a notion of hierar-
chy [13]. Although the hierarchical concepts do not invalidate the existing model
checking algorithms for timed automata, the varying degree of concurrency and
number of variables make it challenging to represent the states of the system in
a compact, efficient and orthogonal manner. We present how this can be done
in the new architecture of Uppaal.

Contributions We contribute a flexible and efficient architecture for timed au-
tomata model checkers. We show how this architecture makes it possible to im-
plement various algorithms and data structures in an orthogonal manner making
it possible to evaluate these techniques within a common framework. Especially,
we show how hierarchical timed automata can be supported. We present re-
sults of combining the two main data structures, the waiting list and the passed
list, into a single data structure. Finally, we show the effect of sharing common
elements of states, thereby reducing the memory requirements by up to 80%.

Related work The state space storage approach presented in this paper is simi-
lar to the one in[12] for hierarhical coloured petri nets. Both approaches share
similarities with BDDs [10] in that common substructures are shared, but avoid
the overhead of the fined grained data representation of BDDs.

The zone union used our state representation is a simple list of zones. A
more elaborate representation is the CDD [6] that can be used efficiently for
analysis. However there are still a number of unresolved problems if we want
to use a unified passed and wait structure. Furthermore it is not known how to
cope with meta-data needed for individual symbolic states.

Hiearchical state-space verification is not new [2, 7]. However these stud-
ies concern theory with algorithm presentations and complexity analysis. They
do not address the practical issues for hierarchical searching. In [17] a hybrid
approach is used to deal with hierarchical systems but they do not handle hi-
erarchical timed automata. In [3] an ROBDD based approach to hierarchical
reachability analysis for untimed systems is presented, but ROBDD based tech-
niques are not directly applicable to timed automata, although a number of
attempts have been made.

Outline Section 2 summarises the definition of timed automata, the semantics,
and the timed automaton reachability algorithm. In section 3 we present the ar-
chitecture of Uppaal and in section 4 we discuss how the passed and waiting list
can be combined into a single efficient data structure. The actual representation
of the states in this new data structure is discussed in section 5 and section 6
extends this to hierarchical timed automata. Finally, we present preliminary
experimental results in section 7.

2 http://www.uml.org



2 Notations

In this section we summaries the basic definition of a timed automaton, the
concrete and symbolic semantics and the reachability algorithm.

Definition 1 (Timed Automaton). Let C be the set of clocks. Let B(C) be
the set of conjunctions over simple conditions on the form x ./ c or x − y ./ c,
where x, y ∈ C and ./∈ {<,≤,=,≥, >}. A timed automaton over C is a tuple
(L, l0, E, g, r, I), where L is a set of locations, l0 ∈ L is the initial location,
E ∈ L × L is a set of edges, g : E → B(C) assigns guards to edges, r : E → 2C

assigns clocks to be reset to edges, and I : L → B(C) assigns invariants to
locations.

Intuitively, a timed automaton is a graph annotated with conditions and resets
of non-negative real valued clocks.

Definition 2 (TA Semantics). A clock valuation is a function u : C → R≥0

from the set of clocks to the non-negative reals. Let R
C be the set of all clock

valuations. Let u0(x) = 0 for all x ∈ C. We will abuse the notation by considering
guards and invariants as sets of clock valuations.

The semantics of a timed automaton (L, l0, E, g, r, I) over C is defined as a
transition system (S, s0,→), where S = L×R

C is the set of states, s0 = (l0, u0)
is the initial state, and →⊆ S × S is the transition relation such that:

– (l, u) → (l, u + d) if u ∈ I(l) and u + d ∈ I(l)

– (l, u) → (l′, u′) if there exist e = (l, l′) ∈ E s.t. u ∈ g(e), u′ = [r(e) 7→ 0]u,
and u′ ∈ I(l)

where for d ∈ R, u+d maps each clock x in C to the value u(x)+d, and [r 7→ 0]u
denotes the clock valuation which maps each clock in r to the value 0 and agrees
with u over C \ r.

The semantics of timed automata results in an uncountable transition system.
It is a well known-fact that there exists a exact finite state abstraction based on
convex polyhedra in R

C called zones (a zone can be represented by a conjunction
in B(C)). This abstraction leads to the following symbolic semantics.

Definition 3 (Symbolic TA Semantics). Let Z0 = I(l0) ∧
∧

x,y∈C x = y be
the initial zone. The symbolic semantics of a timed automaton (L, l0, E, g, r, I)
over C is defined as a transition system (S, s0,⇒) called the simulation graph,
where S = L × B(C) is the set of symbolic states, s0 = (l0, Z0 ∧ I(l0)) is the

initial state, ⇒= {(s, u) ∈ S × S | ∃e, t : s
e
⇒ t

δ
⇒ u} : is the transition relation,

and:

– (l, Z)
δ
⇒ (l,norm(M, (Z ∧ I(l))↑ ∧ I(l)))

– (l, Z)
e
⇒ (l′, re(g(e) ∧ Z ∧ I(l)) ∧ I(l′)) if e = (l, l′) ∈ E.



where Z↑ = {u + d | u ∈ Z ∧ d ∈ R≥0} (the future operation), and re(Z) =
{[r(e) 7→ 0]u | u ∈ Z}. The function norm : N × B(C) → B(C) normalises the
clock constraints with respect to the maximum constant M of the timed automa-
ton.

The relation
δ
⇒ contains the delay transitions and

e
⇒ the edge transitions.

The classical representation of a zone is the Difference Bound Matrix (DBM).
For further details on timed automata see for instance [1, 9]. Given the symbolic
semantics it is straight forward to construct the reachability algorithm, shown
in Fig. 1. The symbolic semantics can be extended to cover networks of commu-
nicating timed automata (resulting in a location vector to be used instead of a
location), timed automata with finite data variables (resulting in the addition
of a variable vector) and to hierarchical timed automata.

waiting = {(l0, Z0 ∧ I(l0))}
passed = ∅

while waiting 6= ∅ do

(l, Z) = select state from waiting

waiting = waiting \ {(l, Z)}
if testProperty(l, Z) then return true

if ∀(l, Y ) ∈ passed : Z 6⊆ Y then

passed = passed ∪ {(l, Z)}
∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ waiting : Z′ 6⊆ Y ′ then

waiting = waiting ∪ {(l′, Z′)}
endif

done

endif

done

return false

Fig. 1. The timed automaton reachability algorithm. The function testProperty evalu-
ates the state property that is being checked for satisfiability. The while loop is refered
to as the exploration loop.

3 Architecture

The seemingly simple algorithm of Fig. 1 turns out to be rather complicated
when implemented. To make matters worse it has been extended and optimised
to reduce the runtime and memory usage of the tool. Most of these optimisations
are optional since they involve a tradeoff between speed, memory usage and
feature richness.

The architecture of Uppaal has changed a lot over time. Some years ago
Uppaal was a more or less straightforward implementation of the timed au-



State Space
Representation

State
Manipulation

State Representation

LeadsTo
Checker

Liveness
Checker

Reachability
Checker

System Representation

Query

User Interface

P
ar

se
r

P
ar

se
r

Fig. 2. Uppaal uses a layered architecture. Components for representing the input
model and a symbolic state are placed at the bottom. The state space representations
are semantically a set of symbolic states and together with the state operations they
form the next layer. The various checkers combine these operations to provide the com-
plex functionality needed. This functionality is made available via either a command
line interface or a graphical user interface.

tomaton reachability algorithm annotated with conditional tests on features or
options. Although simple it had several disadvantages:

– The core reachability algorithm became more and more complicated as new
options where added.

– There was an overhead involved in checking if an option was enabled. This
might not seem as much, but when this is done inside the exploration loop
the overhead adds up.

– Some experimental designs and extensions required that certain algorithms
were replaced with radically different algorithms.

The architecture of Uppaal is constantly restructured in order to facilitate
new designs and algorithms without needing to fork the code base, see Fig. 2
for the latest incarnation. The main goals of the design are speed and flexibil-
ity. The bottom layer providing the system and state representations has only
seen minimal architectural changes over the years. In fact, the code where most
options are implemented are in the state space manipulation and state space
representation components.

The basic building blocks of the three checkers are filters and buffers. Buffers
have the traditional put and get methods to add and remove elements and a
mechanism for enumerating all elements. Filters accept input via a put method
and provide output by putting data into another filter or a buffer (filters and
buffers share the same sink interface containing the put method). Several fil-



ters and buffers can be connected to form a pipeline.3 The various state space
representations provide an implementation of the buffer interface and the state
manipulations provide an implementation of the filter interface.

Reachability

Transition

Expand

expression

SuccessorTraceStore

Delay Normalisation Progress ActiveClockReduction

PWList

Query

Fork

Only if
 unexploredPush flow

Pull flow

Enumerate

Fig. 3. The reachability checker is actually a compound object consisting of a pipeline
of filters. Optional elements are dotted.

The reachability checker is actually a filter that takes the initial state as
its input and generates all reachable states satisfying the property. It is imple-
mented by composing a number of other filters into a pipeline, see Fig. 3. The
pipeline realises the reachability algorithm of Fig. 1. The pipeline consists of
filters computing the edge successors (Transition and Successor), the delay
successors (Delay and Normalisation), and the unified passed and waiting list
buffer (PWList). Additional components include a filter for generating progress
information (e.g. throughput and number of states explored), a filter implement-
ing active clock reduction [11], and a filter storing information needed to generate
diagnostic traces. Notice that some of the components are optional. If disabled
a filter can be bypassed completely and does not incur any overhead.

Semantically, the PWList acts as a buffer that eliminates duplicate states,
i.e. if the same state is added to the buffer several times it can only be retrieved
ones, even when the state was retrieved before the state is inserted a second
time. To achieve this effect the PWList must keep a record of the states seen and
thus it provides the functionality of both the passed list and the waiting list.

Definition 4 (PWList). Formally, a PWList can be described as a pair (P,W ) ∈
2S × 2S, where S is the set of symbolic states, and the two functions put :
2S × 2S × S → 2S × 2S and get : 2S × 2S → 2S × 2S × S, such that:

– put(P,W, (l, Z)) = (P ∪ {(l, Z)},W ′) where

W ′ =

{

W ∪ {(l, Z)} if ∀(l, Y ) ∈ P : Z 6⊆ Y

W otherwise

3 In contrast to pipeline designs seen in audio and video processing software and
hardware design there is no concurrency involved.



– get(P,W ) = (P,W \ {(l, Z)}, (l, Z)) for some (l, Z) ∈ W .

Here P and W play the role of the passed list and waiting list, respectively,
but as we will see this definition provides room for alternative implementations.
It is possible to loosen the elimination requirement such that some states can be
returned several times while still ensuring termination, thus reducing the mem-
ory requirements[16]. In this paper we will call such states transient. Section 4
will describe various implementations of the PWList.

In case multiple properties are verified, it is possible to reuse the previously
generated reachable state space by reevaluating the new property on all previ-
ously retrieved states. For this purpose, the PWList provides a mechanism for
enumerating all recorded states. One side effect of transient states is that when
reusing the previously generated reachable states space not all states are actually
enumerated. In this case it is necessary to explore some of the states using the
Expand filter.4 Still, this is more effective than starting over.

The number of unecessary copy operations during exploration has been re-
duced as much as possible. In fact, a symbolic state is only copied twice during
exploration. The first time is when it is inserted into the PWList, since the
PWList might use alternative and more compact representations than the rest of
the pipeline. The original state is then used for evaluating the state property us-
ing the Query filter. This is destructive and the state is discarded after this step.
The second is when constructing the successor. In fact, one does not retrieve a
state from the PWList directly but rather a reference to a state. The discrete
and continous parts of the state can then be copied directly from the internal
representation used in the PWList to the memory reserved for the successor.
Since handling the discrete part is much cheaper than handling the continous
part, all integer guards are evaluated first. Only then a copy of the zone is made
and the clock guards are evaluated.

The benefits of using a common filter and buffer interface are flexibility, code
reuse, and acceptable efficiency. Any component can be replaced at runtime with
an alternate implementation providing different tradeoffs. Stages in the pipeline
can be skipped completely with no overhead. The same components can be used
and combined for different purposes. For instance, the Successor filter is used
by both the reachability checker, the liveness checker, the deadlock checker, the
Expand filter, and the trace generator. Since the methods on buffers and filters
are declared virtual they do incur a measurable call overhead (approximatively
5%). But this is outweighed by the possibility of skipping stages and similar ben-
efits. In fact, the functionality provided by the Successor filter was previously
provided by a function taking a symbolic state as input and generating the set of
successors. This function was called from the exploration loop which then added
these successors to the waiting list. The function returned the successors as an
array of states.5 The overhead of using this array was much higher than the call
overhead caused by the pipeline architecture.

4 The Expand filter is actually a compound filter containing an instance of the
Successor and Transition filters.

5 It was actually a vector from the C++ Standard Library.



4 Unifying the Passed list and Waiting List

In this section we present the concept of the unified passed and waiting list, and
we detail a reference implementation of it.

4.1 Unification Concept

The main conceptual difference between the present and previous implementa-
tions of the algorithm is the unification of the passed list and waiting list. As
described in the previous sections, these two lists are the major data structures
of the reachability algorithm. The waiting list holds states that have been found
to be reachable but not yet been explored whereas the passed list contains the
states that have been explored. Thus a state is first inserted into the waiting
list where it is kept until it is explored at which point it is moved to the passed
list. The main purpose of the passed list is to ensure termination and secondly
to avoid exploring the same state twice. Fig. 1 shows the reachability algorithm
based on these lists.

One crucial performance optimisation is to check whether there is already a
state in the waiting list that is a subset or superset of the state being added.
In this case one of the two states can be discarded [8]. This was implemented
by combining the queue or stack structure in the waiting list with a hash table
providing a fast method to find duplicate states. Obviously, the same is done for
the passed list. This approach has two drawbacks:

– States are looked up in a hash table twice.

– The waiting list might contain a large number of states that have previously
been explored, but this is not realised until the state is moved to the passed
list thus wasting memory.

The present implementation unifies the two hash tables into one. There is still
a collection structure representing the waiting list, but it only contains simple
references to entries in the hash table. Furthermore pushing a state to the waiting
list is a simple append operation.

A number of options are realisable via different implementations of the PWList
to approximate the representation of the state-space such as bitstate hashing [15],
or choose a particular order for state-space exploration such as breadth first,
depth first, best first or random[5, 4]. The ordering is orthogonal to the storage
structure and can be combined with any data representation.

This unified structure implements the PWList interface defined in the previ-
ous section: From the pipeline point of view new states are pushed and waiting
states to be explored are popped. Using this structure allows the reachability
algorithm to be simplified to the one given in Fig. 4. In this algorithm the states
popped from the queue do not need inclusion checking, only the successors need
this.



Q = PW = {(l0, Z0 ∧ I(l0))}
while Q 6= ∅ do

(l, Z) = select state from Q

Q = Q \ {(l, Z)}
if testProperty(l, Z) then return true

∀(l′, Z′) : (l, Z) ⇒ (l′, Z′) do

if ∀(l′, Y ′) ∈ PW : Z′ 6⊆ Y ′ then

PW = PW ∪ {(l′, Z′)}
Q.append(l′, Z′)

endif

done

done

return false

Fig. 4. Reachability algorithm using the unified PWList. In the reference implemen-
tation Q only contains references to the entries in PW .

4.2 Reference Implementation

Figure 5 shows the reference implementation of our unified structure. The hash
table gives access to the reachable state-space. Every state has a discrete state
entry and a union of zone as its symbolic part. The waiting queue is a simple
collection of state references (e.g. a linked list).

The first characteristic of this reference implementation is that it builds on
top of the storage interface, which allows to change the actual data representation
independent of the exploration order. This order may be changed by modifying
only where the state reference is added in the waiting queue.

ha
sh

 ta
bl

e

double linked (collision) list

discrete part (keys)

zone union (list of keys)

waiting queue

reference to state entry

reference to zone

Fig. 5. Reference implementation of PWList.



The second characteristic comes from its state-space representation: the main
structure is a hash table giving access to states. The states have a unique entry
for a given discrete part, i.e. locations and variables. The symbolic part is a
union of zones, or more precisely of zone keys handled by the storage structure.
As a first implementation this union is a list of keys, but we plan for future
experiments a CDD representation that is well-suited for such union of zones[6].
Besides, this representation avoids any discrete state duplicates. There is sharing
of discrete data at this level. The storage underneath may implement sharing of
all data between different discrete states and zones of different unions of zones:
this is at a lower level and it is described in section 5.

The third characteristic is the limited use of double-linked lists. The discrete
state list (collision list of the hash table) is double-linked because we need to be
able to remove transient states when they are popped of the waiting list. The
waiting queue is single-linked because its length is rather small and it is efficient
to decide on a validity bit if a popped state should be explored or thrown away.
In this case we postpone the removal of states. The same applies for the zones
in the zone union. Proper removal of states involves a simple flag manipulation.
It is an implementation detail, not to be discussed here.

The push operation is described as follows: hash the discrete part of the state
to get access to the zone union. Check for inclusion, remove included zones, add
this new zone, or refuse the zone. Finally add a reference to the waiting queue.
The pop operation consists of popping a state reference and checking for its
validity (a simple flag).

4.3 Experiments

We instrumented the reference implementation to isolate the impact of the uni-
fied list. We use the same experiments presented in section 7 with the addition
of dacapo, a TDMA protocol. We count in the inclusion checking the number
of (symbolic) states that are included in the new state and the number of new
states rejected because they are already explored. Among these states that are
on the passed and the waiting list, we count those that are marked “waiting”,
i.e. not yet explored. Table 1 shows how often an inclusion is detected with a
waiting state. The figures are highly dependent on the model and which states
are generated. Compared with the traditional 2-lists approach, we avoid to push
states to the passed list or the waiting list. However the exploration is still the
same since a waiting state that is going to be explored is guaranteed not to be
in the passed or the waiting list in both approaches. In addition to this, if we
consider the length of the waiting list compared with the passed list, we expect a
performance improvement, but not critical. This is confirmed in the experiments
of section 7.

5 Storage Structure

The storage structure is the lower layer whose role is to store simple data. It is in
charge of storing location vectors, integer variables, zone data, and other meta



Model superset subset
Cups 97% 86%
Bus Coupler 17% 60%
Dacapo 86% 81%

Table 1. Percentage of waiting states of the inclusion detections. Waiting states may
be superset (strict) or subset (non-strict) of the new state we are testing.

vector
int
DBM

vector
int
DBM save

load

inclusion

storage

key

DBM
key

subset, superset,
equal, none

key

allocator

allocate

free

Fig. 6. The interface of the storage with the allocator underneath.

variables used for certain algorithms, i.e. guiding[4]. This structure is based on
keys: data is sent to the storage that returns a key to be able to retrieve the
data later. In addition to this the storage is able to perform simple operations
such as equality testing of vectors and inclusion checking of zones, without the
intermediate step of reading the data first with the associated key. The different
storage implementations are built on top of a specialised data allocator. This
allocator allocates memory by big chunks and is optimised to deliver many small
memory blocks of limited different types. This means that the memory allocation
has very little overhead and is very efficient for allocating and deallocating many
memory blocks of the same size. This is justified by the nature of the data we
are storing: there are few types of vectors and data structures stored but their
number is huge. Figure 6 illustrates the main functions of the interface with the
allocator underneath.

The storage structure is orthogonal to a particular choice of data represen-
tation and the pwlist structure. Particular algorithms aimed at reducing the
memory footprint such as convex hull approximation[18] or minimal constraint
representation[16] are possible implementations. These will be ported from the
Uppaal code base. We have implemented two variants of this storage, namely
one with simple copy and the other one with data sharing.

It is important to notice that Uppaal implements a minimal constraint rep-
resentation based on graph reduction and we do not compare this reduction.



This reduction gives 20-25% gain in memory. This reduction can give more gain
in addition to the shared storage implementation. This is not discussed here.

5.1 Simple Storage

The simple storage copies data in memory allocated by the allocator and is able
to restore original data. This is similar to the default implementation of Uppaal

with the difference that DBM matrices are save without their diagonal. The
diagonal contains the constraints xi − xi ≤ 0 which do not need to be copied.
This implementation is the reference implementation for comparison against
Uppaal and against other implementations of this storage structure.

5.2 Shared Storage

Before implementing such a structure we instrumented the current implementa-
tion of Uppaal to see how much of the data was shared. We put a printout code
at the stage where a state is stored after having tested it for inclusion. The print-
ing was processed through a perl script to analyse it. Table 2 shows consistent
results concerning storage of location vectors, integer variables, and DBM data.
This property holds through different examples and can be explained by the way
the reachability works: when computing the next state all the possibilities are
tried, so for a given location many variable settings exist. The same holds in the
other direction: a given variable set will exist in many location configurations.
The differences in the results are consistent: audio and dacapo are middle sized
models, fischer is the well-known Fischer’s protocol for mutual exclusion which
behaves badly with respect to timing constraints, and bus coupler is a very big
example. The bigger the model, the more combinations, and the more sharing we
get. The audio model is more oriented on control locations. The pre-experiment
justified this shared storage implementation.

Table 2. Results from instrumented Uppaal. The smaller the numbers are, the more
copies there are.

Model Unique locations Unique variables Unique DBMs

Audio 52.7% 25.2% 17.2%

Dacapo 4.3% 26.4% 12.7%

Fischer4 9.9% 0.6% 64.4%

Bus coupler 7.2% 8.7% 1.3%

The shared storage has a hash table internally to be able to find previously
saved data quickly. This requires to compute a hash value for every saved data.
However we need to compute hash values anyway to retrieve the discrete part
of a state so this is done only once. Another possible overhead is the lookup in
collision lists. By a careful choice of the hash function collisions are rare and



besides this matches are found in 80% of the cases because of the high sharing
property of stored data.

A particular choice has been made concerning the deletion of stored data
for this implementation (the interface is free on this point). Only zone data, i.e.
DBMs here, are really deallocated. We justify this by the high expected sharing
of the discrete part of the states, that is not going to be removed from the
passed list. When testing for zone inclusion, we may have to remove zones (this
is implemented), but the discrete part is equal. The only case where this does not
hold is for transient states because they are stored only in the waiting list and
never in the passed list. This will give a set of locations that could be freed from
memory. However removing data requires double linked lists, and the locations
and variables are saved the same way. For this implementation we adopted this
compromise.

6 Ready for the Future: Hierarchy

Hierarchy is commonly used to handle complexity of models. Well known hier-
archical statecharts are those used in State-mate and Rhapsody. Uppaal will
support hierarchy natively in the future on the base of hierarchical timed au-
tomata. The main challenge in hierarchical exploration is to handle the dynamic
of data, in particular when changing scope and level of parallelism. The pipeline
of Uppaal was modified with this in mind and the storage is built to deal with
such dynamic data.

Concerning the discrete data, they are simple vectors that need to be handled
at the beginning of the successor state computation. It is there that we get the
information on which variables and clocks we need for the next state. Then
we need to handle the symbolic part based on this information. We have to
carry operations on the smallest possible zones because such operations are cubic
and quadratic. To do so the storage structure has built-in addition of clocks in
the load function and the zones have a shrink method. The future pipeline for
successor computation using this is depicted in Fig. 7. This figure shows the
different steps needed to compute a successor of a state with the smallest number
of useless copies. From a given state with a clock x in its scope, we have to copy
the discrete part of the state to evaluate the guards of a particular transition. It
it is false other transitions from the same state may be tried, otherwise the next
location may be computed. Then the symbolic part is copied and new clocks may
be added and removed. In our case the state is changed with a new scope with a
clock y: we have to add constraints for y. Further operations can be computed like
delays, resets, and assignments to obtain the symbolic successor state. Invariant
evaluation occurs after the resets. The main difference with the non-hierarchical
version is the operation add/remove clocks. This operation will be skipped in
most cases since transitions that change scope and level of parallelism are in
minority. So we expect no negative impact on performance.



clock x;

clock y;

copy discrete

guard eval false: try next

true: next location

copy symbolic+add/remove clocks

resets−delay−assignments

invariant eval false: try next

true

Fig. 7. Future hierarchical pipeline for successor computation.

7 Experiments

We conduct the experiments on the development version of Uppaal. We compare
results before and after the modifications presented in this paper. It is worth
noticing that comparing the official version is too unfair because the development
version is already twice as fast as the official one due to memory management
optimizations, better hash functions and other optimisations.

We use two examples for these tests. Other examples such as dacapo are too
small and they are irrelevant here though the results are still consistent. We
focus on a cup example (a combinatorial problem) and the bus coupler example
(a communication protocol). Table 3 shows the obtained results. These numbers
correspond to the whole state-space construction for the “bus coupler” example
(property A[] true), and to the reachability property E<> cups[2] == 4 and

y <= 30 for the cups example because the whole state-space is too large.

Table 3. Experimental results.

Version Bus coupler Cups

Uppaal 617s - 695M 52s - 116M
New - copy 422s - 655M 46s - 113M
New - shared 350s - 167M 44s - 27M

We chose the best appropriate options to have fair comparisons: we used
-H273819,273819 to have large passed and waiting lists for the Uppaal run.



These tables are not resized dynamically as in the new versions and a good
large size have a significant impact on speed (2x). Furthermore we used the
options -Ca. The C says not to use the compact data structure, so that zones are
manipulated and saved as DBMs. The a enables active clock reduction, which
reduces memory consumption. Our new implementation does not take advantage
of this yet because this information is not transmitted to the storage.

Depending on the careful options given to Uppaal our new implementation
gives improvements of up to 80% in memory and improves speed significantly.
The memory gain is expected due to the showed sharing property of data. The
speed gain (in spite of the overheads) comes from only having a single hash
table and from the zone union structure: the discrete test is done only once,
then comes only inclusion checks on all the zones in one union. This is showed
by the results of the simple copy version.

8 Conclusions

In this paper we have presented a pipeline architecture. The idea borrowed from
the computer graphics domain is appropriate for model-checking engines. Fur-
thermore we have unified the traditional passed and waiting lists used in reach-
ability algorithms, we have changed the representation of states towards a more
symbolic one with the union of zones, and finally we have showed the sharing
property of data composing a state and taken advantage of it.

This work paves the way for a new version of the Uppaal engine with full
support for hierarchy. These new structures support it. Furthermore these new
structures allow new optimization experiments and they are flexible enough to
support all the previous list representations currently being ported.

Future work is now to continue to develop Uppaal with hierarchy support
and to combine different zone representations with the sharing implementation
we have, in particular the minimal constraint representation.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[2] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state ma-
chines. In Foundations of Software Engineering, pages 175–188, 1998.

[3] G. Behrmann, K. G. Larsen, H. R. Andersen, H. Hulgaard, and J. Lind-Nielsen.
Verification of hierarchical state/event systems using reusability and composition-
ality. Formal Methods in System Design, 21(2):225–244, 2002.

[4] Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim Larsen, Paul Petterson,
and Judi Romijn. Efficient guiding towards cost-optimality in uppaal. In Proc. of
TACAS’2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[5] Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed model
checking - How the search order matters. In Proc. of 12th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science, Chicago,
Juli 2000. Springer-Verlag.



[6] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi.
Efficient timed reachability analysis using clock difference diagrams. In Proceed-
ings of the 12th Int. Conf. on Computer Aided Verification, volume 1633 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[7] Michael Benedikt, Patrice Godefroid, and Thomas W. Reps. Model checking of
unrestricted hierarchical state machines. In Automata, Languages and Program-
ming, pages 652–666, 2001.

[8] Johan Bengtsson. Reducing memory usage in symbolic state-space exploration
for timed systems. Technical Report 2001-009, Uppsala University, Department
of Information Technology, May 2001.

[9] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are
timed automata updatable? In Proceedings of the 12th Int. Conf. on Computer
Aided Verification, volume 1855 of Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[10] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
In Transactions on Computers, volume C-35 no. 8 of IEEE, August 1986.

[11] C.Daws and S.Yovine. Reducing the number of clock variables of timed automata.
In Proceedings of the 1996 IEEE Real-Time Systems Symposium, RTSS’96. IEEE
Computer Society Press, 1996.

[12] S. Christensen and L.M. Kristensen. State space analysis of hierarchical coloured
petri nets. In B. Farwer, D.Moldt, and M-O. Stehr, editors, Proceedings of Work-
shop on Petri Nets in System Engineering (PNSE’97) Modelling, Verification,
and Validation, number 205, pages 32–43, Hamburg, Germany, 1997. Universität
Hamburg, Fachbereich Informatik.

[13] Alexandre David, Oliver Müller, and Wang Yi. Formal verification uml statecharts
with real time extensions. In Proceedings of FASE 2002 (ETAPS 2002), volume
2306 of Lecture Notes in Computer Science, pages 218–232. Springer-Verlag, 2002.

[14] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[15] Gerard J. Holzmann. On limits and possibilities of automated protocol analysis.
In Proc. 7th IFIP WG 6.1 Int. Workshop on Protocol Specification, Testing, and
Verification, pages 137–161, 1987.

[16] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient Verifica-
tion of Real-Time Systems: Compact Data Structures and State-Space Reduction.
In Proc. of the 18th IEEE Real-Time Systems Symposium, pages 14–24. IEEE
Computer Society Press, December 1997.

[17] Sofiene Tahar, Paul Curzon, and Iskander Kort. Hierarchical formal verification
using a mdg-hol hybrid tool. In IFIP CHARME 2001, volume 2144 of Lecture
Notes in Computer Science, pages 244–258. Springer-Verlag, September 2001.

[18] Howard Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems.
PhD thesis, Standford University, 1995.


