
IT Licentiate theses
2001-013

Practical Verification of Real-Time Systems

ALEXANDRE DAVID

UPPSALA UNIVERSITY
Department of Information Technology

Practical Verification of Real-Time Systems

BY

ALEXANDRE DAVID

September 2001

DEPARTMENT OFCOMPUTERSYSTEMS

INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY

UPPSALA

SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Science
at Uppsala University 2001

Practical Verification of Real-Time Systems

Alexandre David
adavid@docs.uu.se

Department of Computer Systems
Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

c© Alexandre David 2001
ISSN 1404-5117

Printed by theDepartment of Information Technology, Uppsala University, Sweden

Abstract

Formal methods are becoming mature enough to be used on non trivial examples. They are par-
ticularly well fitted for real-time systems whose correctness is defined in terms of correct responses
at correct times. Most common real-time systems are of reasonable size and can therefore be
handled by an automatic verification tool such as Uppaal. Unfortunately the application of such
techniques is not widely spread.

This thesis presents advances in making formal techniques more accessable technology for
system development and analysis. As the first contribution, we report on an industrial case study
to show that model checkers can be used for debugging and error localization. We shall present a
number of abstraction techniques applied in the case study to avoid the state explosion problem.
As the second contribution, we have developed a hierarchical extension of timed automata to
enable more structured, compact, and more complex descriptions of systems by the users. Such a
hierarchical representation is better suited for abstraction and expected to give better searching
algorithms. Finally we present a hybrid animation system serving as a plug-in module for model-
checkers to improve features for modelling and simulation.

1

2

3

List of Publications

• Modeling and Analysis of a Commercial Field Bus Protocol, Alexandre David and Wang
Yi. In Proceedings of the 12th Euromicro Conference on Real Time Systems, Stockholm
Sweden, 19-21 June 2000, pages 165-172. I participated in the discussions, made the models,
conducted the verification and wrote the paper.

• A Realtime Animator for Hybrid Systems, Tobias Amnell, Alexandre David, Wang Yi. In
proceedings of ACM SIGPLAN workshop LCTES , Vancouver June 2000, LNCS vol 1985.
I participated in the discussions, implemented parts of the engine, and wrote the implemen-
tation section.

• Formal Verification of UML Statecharts with Real-time Extensions, Alexandre David, Oliver
Möller, Wang Yi. Presented at the Nordic Workshop 2001, 10-12 October Denmark. Tech-
nical report, department of Information Technology, Uppsala University. I participated in
the discussions and wrote the sections on syntax and semantics.

• From HUppaal to Uppaal, A Translation from Hierarchical Timed automata to Flat Timed
Automata, Alexandre David and Oliver Möller. Technical report published in the BRICS
report series, ISSN 0909-0878. I participated in the discussions and wrote the sections on
syntax and semantics.

Acknowledgments

I would like to thank all the people who helped me during the work on this thesis. I cannot be
complete because many have moved, but in an attempt they are: my supervisor Wang Yi for his
patience, Paul Pettersson for his humour, the Uppsala part of the Uppaal team Elena Fersman,
Johan Bengtson, Tobias Amnell, Fredrik Larsson, and Leonid Mokrushin for their support, the
Aalborg part of Uppaal team Kim Larsen, Gerd Behrman, Oliver Möller, and K̊are Kristoffersen
for their support.

I am very grateful to Ulf Hammar and Thomas Lindström for the time they spent in discussing
implementation issues. I would like also to thank Julien d’Orso, Johann Deneux, and Sergei
Vorobyov for their help and support, Helena Pettersson and Anne Marie Nilson who know all
about administration and forms, and saved me many times. I thank my parents and my brother
for giving me courage. Finally I apologize for those not being named here. I would probably need
a book for you all.

The work has been supported by ARTES and ASTEC.

4

Introduction

This thesis consists of 3 parts: a case study on the analysis of a field protocol that is commercial
product, the work on hierarchical timed automata done in collaboration with Aalborg University,
and the work on hybrid automata.

The problem we are interested in is to analyse real-time systems. Due to the size and complexity
of real systems, it is difficult to model and verify these systems. This work aims at presenting
a technique for modeling large systems through a case study. This technique decomposes the
system in different parts that are abstracted and put together. To improve the modeling and
the verification we propose a hierarchical version of timed automata. This extension of timed
automata ultimately aims at verifying UML state-charts. Finally to help engineers to “see” if
their model is correct and to make the simulation more interactive, an animator based on hybrid
automata has been developed. This animator interacts tightly with timed automata and allows
user generated events during the simulation.

Case Study: Modeling and Analysis of a Field-bus Protocol

In this study we report on an industrial application of the Uppaal tool to model and debug a
commercial field bus communication protocol. This protocol is developed and implemented for
safety-critical application, e.g. process control. It has been running in various industrial environ-
ments over the world for the past ten years. During its seven years on the market, a number of
errors have been detected, which result in time–outs and retransmissions. Due to the complexity
it has been very time and resource consuming to troubleshoot these errors.

The company’s interest is to improve the development process, reduce the maintenance time/costs
and to improve quality of the product with the help of formal methods. The goal of the project
is not to verify the correctness of the protocol in any sense of completeness, which is basically
impossible due to the size and complexity of the system, but to localize the error sources in both
the protocol logic and the implementation at the source level.

To our knowledge, this case study is the largest reported so far, where the Uppaal tool has
been applied. The whole protocol involves hundreds of pages of protocol specification and more
than 27000 lines of source code. The study was carried out on the core of the protocol, which
involved 151 pages of documentation and 5541 lines of Modula–21, which pushed Uppaal to its
limits. We show to which extent an academic tool can be used in practice in an industrial context.

We adopt an engineering approach to achieve our primary goal, which is to find bugs. The
protocol is divided into 2 parts to tackle its size and complexity. The larger models are built
incrementally on top of simplified models studied separately. It is an engineering approach since
it is very much related to the components used in industry.

During the case study, a number of errors in the protocol logic and its implementation have been
found and debugged based on abstract models of the protocol; respective improvements have been
suggested. It turns out that many of the problems are due to incorrect usage of synchronization
and timing mechanisms in the implementation of the protocol, in particular, semaphores and
time–outs.

1figures obtained with wc

5

6

Timed Automata Extension: From HUppaal to Uppaal

We propose a hierarchical extension of timed automata. This formalism is meant to be close to
UML state-charts to ultimately allow its formal verification. This work is carried out in connection
with the WOODDES 2 project, which aims at improving design process, methods, and tools for
real-time embedded systems. We are particularly involved in the state-chart diagrams. We propose
a rich extension of Uppaal to meet this goal.

A number of modeling and verification tools for real-time systems have been developed based on
the theory of timed automata. They have been successfully applied in various case studies. They
have mainly been used in academic community and they become to enter industry, though still as
academic products. On the other hand the commercially available tools offer design capabilities
[Rha, HG97, Vis] with simulation while verification is limited. Some of them offer strong proof
capabilities but are weaker on the modeling side [pro].

The state-charts formalism is appreciated by engineers because it is intuitive and graphical.
The verification part is usable because it is automated and error traces are generated to allow
graphical debugging of systems. Hierarchical models are concise which allow complex systems to
be handled. The challenge lies in the model-checking to limit the explosion due to this conciseness.

Though we have a working prototype for a grammar and a translation, it is to be considered
work in progress. We made the implementation accessible for future reference as frozen version at
http://www.brics.dk/~omoeller/hta/vanilla-1/.

The translation version-ed Vanilla-1 is documented as a milestone to make experiments with.
It is not able to translate some powerful modeling constructs, though they are already present
syntactically.

Unresolved Issues in Vanilla-1 are in particular local declarations, scope overriding, history
entries, synchronization mechanisms other than handshake communication, and parameterized
templates.

In near future, it is planed to implement an editor for the hierarchical grammar in the Uppaal

tool. Simulation and verification of hierarchical models, however, are done on flat Uppaal timed
automata, constructed by future versions of Vanilla-1.

There is a strong correspondence between hierarchical and flat traces. However, the imperative
of introducing fresh and unambiguous names for flattened constructs makes it difficult for a human
user to see this immediately. One possible remedy for this is to equip the Uppaal simulator with
the appropriate mapping, so it can display names as specified in the hierarchical system. We feel
that it is also necessary to provide a translation of TCTL formulas to corresponding ones in the
flattened version. This seems to be purely syntactical, but strongly dependent on the mapping of
local and global variables.

Looking ahead, we believe that there is a great potential for exploiting the hierarchical structure
directly in terms of shaping more efficient model checking algorithms.

A Real-Time Animator for Hybrid Systems

Uppaal is a software tool for modeling, simulation and verification of real time systems that
can be described as timed automata. In recent years, it has been applied in a number of case
studies [KrJKW,LPY98,LP97,HSLL97,RT], which demonstrates the potential application areas
of the tool. It suits best the class of systems that contain only discrete components with real
time clocks. But it can not handle hybrid systems, which has been a serious restriction on many
industrial applications. This work is to extend the Uppaal tool with features for modeling and
simulation of hybrid systems. This part is based on the paper [ADY00].

A hybrid system is a dynamical system that may contain both discrete and continuous compo-
nents whose behavior follows physical laws [Hen], e.g. process control and automotive systems. In
this paper, we shall adopt hybrid automata as a basic model for such systems. A hybrid automaton

2Workshop for Object Oriented Design and Development of Embedded Systems

7

is a finite automaton extended with differential equations assigned to control nodes, describing the
physical laws. Timed automata [AD94] can be seen as special class of hybrid automata with the
equation ẋ = 1 for all clocks x. We shall present an operational semantics for hybrid automata
with dense time and its discrete version for a given time granularity. The discrete semantics of a
hybrid system shall be considered as an approximation of the continuous behavior of the system,
corresponding to sampling in control theory.

We have developed a real time animator for hybrid systems based on the discrete semantics.
It can be used to simulate the dynamical behavior of a hybrid system in a real time manner. The
animator implements the discrete semantics for a given automaton and sampling period, using the
differential equation solver CVODE. Currently the engine of the animator has been implemented
in Java and C using CVODE. We are aiming at a graphical user interface for editing and showing
moving graphical objects and plotting curves. The graphical objects act on the screen according
to physical laws described as differential equations and synchronize with controllers described as
timed automata in Uppaal.

8

Contents

I Modeling and Analysis of a Field Bus Protocol 7

1 The Field Bus Protocol 9

1.1 Overview . 9

1.2 Field Interface : The Transport Layer . 10

1.2.1 The Structure . 10

1.2.2 The Protocol Logic . 12

1.3 Bus Coupler : The Data Link Layer . 13

1.3.1 The Structure . 13

1.3.2 The Protocol Logic . 15

2 Modeling and Abstraction 17

2.1 The Modeling Process . 17

2.2 A Detailed Model of the Bus Coupler . 17

2.3 Abstraction Techniques . 19

2.3.1 Abstraction Mechanisms in Uppaal . 19

2.3.2 Error Pruning . 19

2.3.3 Hiding . 20

2.3.4 Atomicity and Delays . 20

2.3.5 Refining the Models . 21

2.4 Abstract Models of the Bus Coupler . 21

2.5 Relating the Models . 21

2.5.1 Error Localisation . 21

2.5.2 Reduction Relation . 22

2.5.3 Relations between the Models . 23

2.6 Modeling FI . 23

2.7 Detailed Models of FI Master . 24

2.8 Detailed Models of FI Slave . 25

2.9 Validation of FI Models . 25

3 Verification 27

3.1 Properties . 27

3.2 Bus Coupler . 28

3.2.1 Detailed Models . 28

3.2.2 Abstract Models . 30

3.3 Field Interface . 31

3.3.1 Master Model . 32

3.3.2 Slave Model . 32

3.3.3 Complete Model . 33

1

2 CONTENTS

II Hierarchical Timed Automata 37

4 Overview 39
4.1 Hierarchical Timed Automata . 39
4.2 Informal Description . 40

4.2.1 Elements of the HTA Structure . 40
4.2.2 Dynamics of Transitions . 42
4.2.3 Lax Input Language . 43
4.2.4 Differences with UML . 43

5 Formal Description 45
5.1 Formal Syntax of HTA . 45

5.1.1 Data Components . 45
5.1.2 Structural Components . 46
5.1.3 Well-Formedness Constraints . 46

5.2 Operational Semantics of HTA . 47

6 Translation to Uppaal 53
6.1 Uppaal Timed Automata . 53
6.2 Translation Algorithm . 54

6.2.1 Phase I: Collection of Instantiations . 54
6.2.2 Phase II: Computation of Global Joins . 55
6.2.3 Phase III: Post-processing Channel Communication 55
6.2.4 Correctness of the Translation . 56
6.2.5 Example . 56

6.3 The Pacemaker Case Study . 57
6.3.1 Translation to Uppaal . 59
6.3.2 Model-Checking the Translated Uppaal Model 59

7 Conclusion 61

III A Real-Time Animator for Hybrid Systems 63

8 Hybrid Systems 65
8.1 Syntax . 65
8.2 Semantics . 67
8.3 Tick semantics . 68

9 Implementation 71
9.1 The Animation System Layer . 71
9.2 The CVODE Layer . 72

IV Appendix 77

10 Figures 79

11 Translation Algorithms 87

12 Glossary 89

List of Figures

1.1 Factory communication networks . 9
1.2 Protocol layers. 10
1.3 An overview of the protocol. 10
1.4 Tasks of the FI with respect to the layers. Real tasks are represented as circles,

functions as rectangles. 12
1.5 Master protocol state machine specification. 13
1.6 Slave protocol state machine specification. 13
1.7 Bus coupler communication scheme with the different tasks. 14
1.8 The configuration of the interface between the bus coupler and the FI. 15

2.1 The two–steps modeling. 18
2.2 Complex automaton patterns. 22
2.3 Reduced automaton patterns . 22
2.4 Bus coupler abstraction used. 24
2.5 Trace equivalence, simulation and φ-equivalence. 26
2.6 φ-equivalence. 26

3.1 Overview of the state spaces and inclusions. 28

4.1 Default Exit. 42
4.2 Translation of a lax entry formulation to the explicit form. 44

6.1 Translation of entering and exiting an AND component. 55
6.2 The exit of S1 in super-state X gives rise to a number of global joins. 56
6.3 Original HTA. 57
6.4 Translated HTA. 57
6.5 Object model of the pacemaker. 58
6.6 The simplified model of the human heart. 58

8.1 Bouncing ball with touch sensitive floor and control program. 66
8.2 Industrial robot with three degrees of freedom. 66
8.3 Robot inner arm automaton . 67
8.4 Robot outer arm automaton . 68

9.1 Association between animator objects and Uppaal automata. 71
9.2 Bouncing ball on touch sensitive floor that continues until bounces are shorter than

1 second . 73
9.3 The movement of the robots outer arm. 74

10.1 Communication protocol from the FI to the bus coupler. 79
10.2 Modeling framework. 80
10.3 Static structures of the implementation model. Tasks are represented as circles and

functions/semaphores as rectangles. 81
10.4 The template of the FI master. 81

3

4 LIST OF FIGURES

10.5 The template of the FI slave. 82
10.6 The template of the master coupler. 82
10.7 The template of the slave coupler. 83
10.8 FI model overview. 83
10.9 Slave test working with the master. 84
10.10Master monitor automaton. 84
10.11Master test working with the slave. 85
10.12Slave monitor automaton. 86

List of Tables

2.1 Comparison of detailed/abstract models. 20

3.1 Resources used for verification. 28
3.2 Resources used for verification. 30
3.3 Resources used for the verification. 31

5.1 Overview over all legal transitions l
g,s,r,u
−−−−→ l′. 47

6.1 Comparison of the Hierarchical Timed Automata and the flat Uppaal models. . . 59

5

6 LIST OF TABLES

Part I

Modeling and Analysis of a Field

Bus Protocol

7

Chapter 1

The Field Bus Protocol

1.1 Overview

This field bus protocol is designed for 80 stations communicating over a bus. Figure 1.1 shows at
which network level this protocol is used. The protocol is used for process control.

A station acting as a “master” may initiate a dialog with up to 79 other stations acting as
“slaves” in this dialog. The master requests information from a slave that only responds to it, thus
the names master and slave. In fact the dialog is established between applications on stations.
Each station may have several applications running, acting as masters or slaves.

The protocol has two main layers that are the field interface (FI) to access the protocol from the
application, and the bus coupler layer to access the bus from the FI layer. These layers correspond
respectively to the transport and data link layers in the OSI protocol standard [Tan81]. There is
actually another layer below called the bus queue that is taken into account in the study for its
capacity to store messages, i.e. to generate delays. Figure 1.2 depicts the protocol stack. The field
interface (FI) covers the service data transfer and partly the message transfer layers. The bus
coupler covers mainly the message transfer protocol and partly the the packet transport protocol.
The bus queue is on the packet transport protocol.

Local area network: production control

Factory bus: control system

Device bus:

controllers, devices

Fieldbus: field instrumentation

Figure 1.1: Factory communication networks

9

10 CHAPTER 1. THE FIELD BUS PROTOCOL

confirm respond
sendConfirm

requestRespond

send

Master application Slave application

Bus

MTP

PTP

SDP

MTP

PTP

SDPService Data Transfer

Message Transfer Protocol

Packet Transport Protocol

Figure 1.2: Protocol layers.

A typical scenario is as follows: a client application uses the master part of the FI to send
requests to another station where a server application will respond through the slave part of the
FI. Figure 1.3 shows an overview with four stations over a bus. Each of them has the described
layers: the application, the FI, the bus coupler and the bus queue.

slave

master

master

slave

master

slave

slave

master

Station 1

Station 2 Station 4

Station 3

FI
Bus

Coupler
Bus
Queue

Low Level Protocol

Bus Coupler Protocol

FI Protocol

Service Call: API

Applications Bus

Figure 1.3: An overview of the protocol.

The different layers communicate with a specific protocol. We are interested in the bus coupler
and in the FI protocols. The bus coupler protocol is the communication between the FI layer and
the bus coupler layer. The FI protocol is the communication between the two FI entities on two
stations. The low–level protocols for the communication with the bus and between the two bus
coupler entities are not studied.

1.2 Field Interface : The Transport Layer

1.2.1 The Structure

This interface provides the services depicted in figure 1.2 to the application running on the station.
From the master point of view, the services are of two types: the sendConfirm/requestResponse

1.2. FIELD INTERFACE : THE TRANSPORT LAYER 11

and the sendMessage. The first one waits for an answer coming from the slave. The answer may
be simple for a confirm of type yes/no, or more complex for a full response. The slave part has
the corresponding services to answer when necessary. Note that the slave will act like a server
and the master like a client. Message passing through the protocol, depicted in figure 1.3, is as
follows:

1. the master sends a message to the field interface

2. the field interface (master side) decomposes the message into packets and sends them to the
bus coupler

3. the bus coupler (master side) sends the packets to the next bus coupler via the bus

4. the next bus coupler (slave side) sends the packets to the field interface

5. the field interface (slave side) receives the packets, rebuilds the message and sends it to the
application that is waiting on a signal

In addition, an acknowledgment mechanism ensures at every interface that messages are trans-
mitted correctly.

The field interface has three main parts, both for the master and the slave:

• the application programming interface (API). For the master, it is the different send functions
sendMessage, requestResponse, sendConfirm, and the receive function call that will block
until answer arrives or a time–out occurs. For the slave it is the equivalent receive function
call and the sendMessage function that sends a confirm or a response1.

• the packet time–out supervisor that monitors time–outs. The master and the slave are
monitored. This is a task that wakes up periodically to decrement and check a time–out
counter. When a time–out occurs, the global state variable of the master or the slave can be
changed. A time–out may be (re)set by another task, which is viewed as a normal time–out
by the supervisor.

• the receiver task that is MasterReceive for the master and SlaveDispatcher for the slave. This
task runs separately, listening to the bus coupler, assembling messages. When a message
is ready, it puts it into a queue and signals a semaphore. As we are not interested in the
message itself, only the semaphore is modeled. The different “receive” functions do a wait
call on this semaphore.

The master and the slave have a state machine each that describes how they should behave.
These correspond to the specification of the behavior of the master and the slave. The slave has
three states and the master five. These states are global states that can be modified by different
tasks. Priority and mutual exclusion are used to keep consistency and the study focuses on these
global states.

So in addition to the control tasks corresponding to the protocol, both the master and the slave
have a monitoring process that accepts all transitions between these states since the implementa-
tion just assigns the state variable. The monitoring process checks valid transitions and detects
bad ones. This is a way to check that the implementation follows the specification.

Figure 1.4 shows the tasks involved in the field interface and the layer organisation. The left
hand side of the figure depicts a master station communicating with a slave station (right hand
side). In a client/server scheme the master acts as the client and the slave as the server. The flow
of control of the client application goes to the functions of the field interface API. Other tasks are
involved, but not at this level. The same applies for the server.

The protocol reserves four ports for the communication. Ports 1 and 2 are reserved for the
master part and ports 3 and 4 for the slave parts. The communications port 1 to port 4 and

1The difference between these two is minor. The confirm is used for an answer of type yes/no and the response
for more detailed information. The other technical differences are out of scope for this study.

12 CHAPTER 1. THE FIELD BUS PROTOCOL

request respond

send confirm

send message

Client

get answer

send message

confirm

respond
Server

get message

send answer

Master Receiver

Slave Dispatcher

Packet Timeout SupervisorPacket Timeout Supervisor

port 1

port 2

port 3

port 4

port 4

port 3

port 2

port 1

Bus CouplersFI FIApplication Application

SDP MTP PTP PTP MTP SDP

B
u

s

Figure 1.4: Tasks of the FI with respect to the layers. Real tasks are represented as circles,
functions as rectangles.

port 3 to port 2 are identical and concern the bus coupler and lower layers. A bus coupler task is
associated to each of these ports. The ports are used for communication between the bus coupler
entities over the bus.

1.2.2 The Protocol Logic

The field interface protocol concerns communication between two applications, i.e. one master and
one slave. It is an alternating bit protocol at the message level and a sliding window protocol at
the packet level.

At the message level, a message bit is used as in the alternating bit, validating or not the
messages to detect a missing message in the sequence. This is standard, though at a high layer.
At the packet level, there is a very particular and important bit, namely the transparent bit. The
sliding protocol works as follows: the first and the last packets of a window slide are not transparent
and require acknowledgments. The packets in–between do not require acknowledgment, which is,
real acknowledgment from the slave. However the bus coupler uses this bit to “lie” to the FI to
deliver acknowledgments if the packet is transparent, or waits for a real acknowledgment from
the slave if it is not. This is called a shortcut for efficiency in the design of the protocol since
acknowledgments are avoided.

If there is an error, this will be detected at the end of the window. In this case the whole slide
is retransmitted and the window size is reduced by one to adapt to transmission errors.

The modeling of the protocol concerns the tasks described in figure 1.4 that implement the
send/receive of this sliding window protocol. Figures 1.5 and 1.6 show the state machines described
in the documentation. They specify the protocol at a high level, i.e. retransmissions and sliding
windows are not mentioned. The master is used this way: it is normally in the dormant state and
it goes to the awaiting first packet state when a request is transmitted and it waits for the first
packet of the answer. It goes to the state receiving while receiving the answer and then back to
dormant. The slave has to answer requests from the master, so it waits in the state idle (I) or idle
after error (IAE) depending on previous errors. If a multiple–packet message is received it goes
to the active (A) state to receive the whole message and when the last one comes in the slave goes
to the state wait for receive task (WFR) to wait for the answer from the master. The answer is
processed in the state answer outstanding (AO) to know if an error occurred or not.

1.3. BUS COUPLER : THE DATA LINK LAYER 13

Dormant Receiving

AwaitingFirstPacket

msg complete or timeout

setup master

receptionsingle

packet msg

received or

timeout

multi packet

msg received

Wrong sequence

bit. Discard msg

and wait for next.

Valid packet received

Figure 1.5: Master protocol state machine specification.

AO

IAE

WFR

I

A

Unexp. packet received

Single packet

msg with init

bit

Message type

other than

sendMsg

Answer is 0 byte

or last packet sent
SendMsg or

buffer too small

Single packet

msg received

First packet of

multi packet msg

Init bit in multi

packet msg. Start

new msg

msg complete

First packet

of multi

packet msg

with init

bit

Init bit in single
packet msg or
timeout

Discard packets

without init bits

Figure 1.6: Slave protocol state machine specification.

1.3 Bus Coupler : The Data Link Layer

1.3.1 The Structure

As mentioned in the previous section, the bus coupler is the layer below the field interface. The
tasks of the bus coupler run on a different board than the tasks of the FI. The operating systems
are different as well. The design is motivated by the fact that this protocol is implemented on
different hardwares and the lower–level layers can therefore be changed. This is for flexibility
purposes.

The bus coupler corresponds to the data link layer in the ISO standard. It communicates with
the FI via an interface, that is a shared buffer. Each bus coupler entity serves a port that is used
by the field interface, that is the different FI entities communicate with each other though some
ports, via the bus coupler that makes the link. These ports are used in the following way:

• a request from the master is sent to port 1

• this request is received by the slave from port 4

14 CHAPTER 1. THE FIELD BUS PROTOCOL

• a response is from the slave is sent to port 3

• this response is received by the master from port 2

Ports 1 and 2 are dedicated to the master and ports 3 and 4 to the slave. The ports are used
to define the two communication channels port 1 → port 3 and port 4 → port 2. These two are
identical from the bus coupler point of view. This means that the tasks serving ports 1 and port
4, port 3 and port 2 are respectively identical. The bus coupler model takes into account only one
of these symmetrical communications, that is master sends via port 1 to slave receiving via port
4.

Station 1 Station 32

1

2

1

33

4 4

master

slave

Request from master and Ack from slave

Answer from slave and Ack from master

ports

sends to FI

acknowledgment to Bus

listens to Bus

Tasks serving ports 2 and 3:

sends to Bus

acknowledgment to FI

listens to FI

Tasks serving ports 1 and 4:

Figure 1.7: Bus coupler communication scheme with the different tasks.

Figure 1.7 illustrates this communication scheme and the tasks that we are focusing on. Figure
1.4 shows the same communication, though from the FI point of view. The tasks serving the ports
1 and 4 are symmetrical in the sense that they perform identical tasks, only the receiver and
sender being switched.

The task serving port 1 listens to the FI. When it gets a packet, it forwards it to the bus and
acknowledges the FI to notify that the packet was sent. Keep in mind the role of the transparent
bit at this stage: if the packet is transparent, the acknowledgment will be positive (ACK). If the
packet is not transparent the bus coupler has to wait for a real acknowledgment from the other
side. Depending on the answer it will acknowledge the FI positively (ACK) or negatively (NACK).

The task serving port 4 listens to the bus. When it gets a packet, it forwards it to the FI
and waits for an acknowledgment from the FI. If the packet is transparent, the acknowledgment
is always positive. It is very similar to the other task.

Communication between the FI and the bus coupler entities at a port is achieved via a buffer.
This buffer is separated into fields writable by only one side, but readable by the other one. The
synchronization is based on these bits and a signal mechanism that uses interrupts through the
two operating systems. The different bits used for synchronization are:

• mail box reserved to access the buffer

• data read to notify that data has been read

• data written to notify that data has been written

• data lost to return positive or negative acknowledgment

1.3. BUS COUPLER : THE DATA LINK LAYER 15

From the FI, these bits have in practice slightly different names, which is unfortunate. We will
only consider the bus coupler view. In addition to these bits, a data field for the useful information
is used. The FI side is referred as cpu because it is the application side at a high level. The bus
coupler is referred as dev because it is the device side with low level communication with the
bus. In practice the FI requests an interrupt to the OS. The OS notifies the other board, which
generates an interrupt to the other OS. The interrupt is handled by an interrupt handler that
signals a semaphore. The concerned task is waiting on that semaphore. The model considers only
the semaphore.

mailbox
reserved

data read

data written

data lost

packet

mailbox
reserved

data read

data written

data lost

packet

dev side

Buffer

Bus Coupler

cpu side

write

read

read

write

VFI

Figure 1.8: The configuration of the interface between the bus coupler and the FI.

Figure 1.8 illustrates the configuration of the buffer interface.

1.3.2 The Protocol Logic

The bus coupler protocol has two main parts: the communication with the FI through the buffer
interface and the communication with the other bus coupler. The communication between bus
couplers involves a minimum control of packets with management of re–sending packets and associ-
ated acknowledgments. The layer below is used via a simple API with send and receive primitives.
This part of the protocol is known to be robust so we will not treat it in this study. Figure 10.1 in
appendix 10 shows the protocol we are interested in, namely the communication with the FI. Note
that when waiting for a bit, a time–out value is specified and a time–out result can be returned,
leading to a reset and another try.

The implementation of the protocol uses signals to notify the reading side when a bit has been
written. The mechanism with interrupts and signals is specific to this implementation and uses
semaphores on both sides (different boards with their own OS each) and the modeling stresses
this feature.

16 CHAPTER 1. THE FIELD BUS PROTOCOL

Chapter 2

Modeling and Abstraction

2.1 The Modeling Process

We adopt a top–down approach first to find and understand the relevant components of the system
and then a bottom–up approach with progressive abstractions that allows us to build up several
abstract models for verification. At the beginning of the project it was not planned to model the
bus coupler but it turned that this was necessary.

The following steps are taken in the modeling process as illustrated in figure 10.2 (appendix
10):

1. model the bus coupler, based on the source code. This gives the detailed bus coupler model.

2. simplify the bus coupler model with classical abstraction techniques.

3. model the FI master and slave sides separately, based on the source code.

4. derive tests for the master and the slave, combine bus coupler abstraction, master/slave test
and the slave/master models.

5. validate results on the two partial models with the help of the complete master and slave
model which contains the bus coupler abstraction.

Step 1 is to construct a detailed model based on the source code of the bus coupler, which
is presented in sub–section 2.2. This model is called the “detailed bus coupler model”. Step
2 is to derive an abstract model presented in sub–section 2.4. Abstraction techniques such as
hiding and the abstraction features of Uppaal are used. Step 3 is to construct detailed models
of the master and the slave separately, based on the source code, in sub–sections 2.6, 2.7, 2.8.
Step 4 is to derive test automaton that simulates outputs of these components (input is ignored).
The generated messages follow the logic of the protocol and can send negative acknowledgments
randomly. These test automata are used against the partial master and slave models. Step 5 is to
validate properties that are not satisfied, that is, the counter examples found in the partial models
are validated for the detailed model, sub–section 2.9.

Figure 2.1 shows with respect to the overview of figure 1.3 what is modeled in the two steps of
the study. First the bus coupler is modeled (transparent ellipses) with abstractions of lower and
upper layers. Second the FI is modeled with abstraction of the previously studied bus coupler and
an abstraction of the application using the FI.

2.2 A Detailed Model of the Bus Coupler

This model is the detailed model from which the whole bus coupler study is carried out. It is very
close to the code and it is possible to map the model to the code. It is of great interest for the

17

18 CHAPTER 2. MODELING AND ABSTRACTION

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

slave

master

master

slave

master

slave

slave

master

� �
� �
� �
� �

Station 1

Station 2 Station 4

Station 3

Bus Coupler Model

FI Model FI Model
Abstraction

FI Model

Bus Coupler Model

Figure 2.1: The two–steps modeling.

industrial partner that traces obtained from the verifier can be mapped to an execution trace of
the real code for debugging purposes. To validate a trace is to validate the associated execution
trace in the implementation.

The Uppaal model of this part of the implementation consists of 14 automata, 4 clocks and
32 integer variables modeling 2 processes sending, 2 processes receiving, 4 semaphores and 6
functions. We consider here one master application on one station communicating with one slave
application on another station. The structure of the model follows the description given in figure
1.7. The structure of the model is given in figure 10.3 (appendix 10). Circles denote processes and
rectangles functions. The functions are modeled as processes in Uppaal due to size consideration
but they behave like functions.

The data content of the packets is irrelevant to the correct behaviour of the protocol since it
is a layered protocol. The data carried by a layer has no meaning for this layer. There is however
an exception, namely the transparent bit. This information bit is checked at the field interface
and at the bus coupler layers, even though it is encapsulated as data for the bus coupler packets.
This is due to the handling of transparent packets that do not require acknowledgments. In the
model, this bit is the data of the packets. It may have the value −1 to mark corrupted data that
should not be read, or 0/1 as valid values.

The stations have several applications, slaves or masters. They all use the same bus coupler
layer serving the ports 1-4. A mutual exclusion mechanism is used to get access to the bus coupler
at the field interface level. This is not modeled here. At the bus coupler layer, the incoming
packets have a random sequence of 0, 1 or −1 since accesses may come from several applications
in different states. This is modeled by non–deterministic choices.

The same idea is used in the receiver part where the upper layer may accept or reject a packet,
which is positive or negative acknowledgment. These acknowledgments are non–deterministic since
the FI is abstracted. Note that −1 is not a value part of the protocol but used for verification
purposes.

The model consists of two bus couplers, one on the master side and one on the slave side. They
are connected in practice via a lower layer to the bus. The communication protocol has another
low-level that is partly modeled. The bus is modeled as a lossy channel preserving the ordering of
data packets. There is a bus queue on each side of the bus, between the bus coupler and the actual
bus. The queue only introduces delay when a message is to be sent. The delay varies if the queue
is full or not, which depends on the accesses done by several applications and the traffic. This is
therefore random in the model. The model for sending to the bus is a non-deterministic sending
within a time window. Time–out may occur. Transmission delays are neglected with respect to

2.3. ABSTRACTION TECHNIQUES 19

the time–out values controlling the protocol.

2.3 Abstraction Techniques

In addition to the Uppaal abstraction mechanisms, we apply two kinds of abstractions on the
detailed model to study different variations of it and to derive a simpler model without implemen-
tation details.

2.3.1 Abstraction Mechanisms in Uppaal

In the modeling process, the models are refined by various modeling mechanisms implemented in
Uppaal including:

• committed states: the state must be left immediately with no delay. Interleaving is allowed
only between the committed states. Atomicity in a sequence of states may be achieved,
thus reducing the state space. The main goal of committed states is to reduce explicitly
interleaving.

• urgent states: time is not allowed to progress in such a state, but all interleavings are allowed.
It is useful to model race condition and non-determinism.

• urgent transitions: they should be taken whenever the guards become true. It is useful to
model progress.

• shared variables: they are set and read atomically by processes running concurrently1, thus
suppressing the need for explicit mutual exclusion on them.

The goal of this low level abstraction is to control the level of non–determinism of the model.

2.3.2 Error Pruning

We study the detailed model in four different variants. The variations express different levels of
assumptions on the program. The idea of the study is to use an error pruning technique, which is
to detect an error but to stop exploration of the state space from the detected error state. This is
done by causing a deadlock when this kind of error state is detected. It is important to notice that
the deadlock in this case is part of the model only, not the protocol, and is used only for studying
the protocol. We call this state of states the error border. The interpretation of the verification is
as follows: if such a state is reached then the property is partially verified for a system that does
not contain the “error” states. However we know that an error occurs; so we make another model
with less pruning. Thus we have different refinement levels of the model with different levels of
assumptions with associated partial results. This is useful to track bugs. The different variations
are:

1. semaphore counters limited to 1, pruning error space

2. semaphore counters limited to 2, pruning error space

3. semaphore counters limited to 3, full space

4. semaphore counters limited to 3, checks added to correct the model

The limitation on the counter is still kept to bound state space generation. In the modeling
process it was proved at a stage that one semaphore behaved badly, i.e. its counter grew beyond
3. It turned out that the model was not accurate enough and did not filter the synchronization
properly. The model was refined and this behaviour disappeared. The limit of 3 comes from these

1on one transition

20 CHAPTER 2. MODELING AND ABSTRACTION

experiments where the goal was to include the case where one semaphore is at 3 and the others
at 2. The corrected version is a modification of the original model, to patch the implementation.
The models are constructed so that the following inclusions between the state spaces hold:

space1 ⊆ space2 ⊆ space3

space1\EB ⊆ space2\EB ⊆ space4 ⊆ space3

Where spacei\EB denotes spacei excluding the error border EB. The experiments in section 3.2
are consistent with these inclusions. These state spaces are comparable because spacei ⊆ spacej

comes from the fact that model j is a relaxed version of model i. The error border is meant to
detect some states and it cuts the state space from these states. Removing these detection states
and allowing further exploration gives the natural inclusions with spacei\EB.

The corrections of model 4 concern checking bits when a signal is received. This is actually
done in the function receive from the bus coupler side, but not on the FI side.

More formally, the error pruning technique used allows to partition the state space. Considering
one semaphore, the values taken into account in the model form 3 classes: [0][1][2 . . .∞]. The model
actually takes the semaphore into account up to 3. This is enough since the values of the variables
and the clock regions are the same if there is a loop that makes the counter grow.

2.3.3 Hiding

To debug the protocol logic, we simplify the detailed model (which is based on the source code)
using abstraction techniques and the modeling mechanisms listed above, in particular, the notions
of committed and urgent states. The derivation of the abstract models takes away specific parts re-
lated to implementation which are the signal implementation and the way to wait on the bits, that
is the interrupt handling and the semaphore management to signal a write or to ensure mutual ex-
clusion. The implementation uses the sequence interruption → OS → port → interruption → OS
→ interrupthandler → semaphore. The abstraction allows a direct write/wait/read synchroniza-
tion mechanism without semaphore, with the help of urgent synchronizations. The abstraction is
independent from the implementation in the sense that this synchronization may be implemented
in a different way.

We therefore hide all the semaphores and the corresponding variables. In addition to this we
hide intermediate variables, i.e. result variables. This has the effect to collapse states and reduce
the number of processes.

Table 2.1 compares the detailed bus coupler and the abstract version.

Full Abstract
Variables 32 15
Clocks 4 4
Processes 16 4
Locations2 5.8e11 11520

Table 2.1: Comparison of detailed/abstract models.

2.3.4 Atomicity and Delays

As for the detailed bus coupler model we use different variants of the model to study the behaviour.
The variations of the model are in two dimensions: breaking atomicity of transitions and allowing
delay in reading bits. We obtain 5 models:

Model 1 is the simplest model where some transitions are considered to be atomic to study their
consequences.

Model 2 relaxes model 1, by removing the atomicity of the transitions performing data-reading.

2.4. ABSTRACT MODELS OF THE BUS COUPLER 21

Model 3 relaxes model 2 by allowing delays when a bit is set to the expected value.

Model 4 also relaxes model 2 but by converting committed states related to data reading and
writing to urgent states.

Model 5 relaxes model 4 by allowing delays as in model 3.

The models that are not relaxed do not allow delay when waiting on a bit to be set or reset.
This is achieved in Uppaal by an urgent synchronization that is always enabled, but in order to
take the transition, the guard (the bit the component is waiting for) must be true. When relaxing
the models, i.e. enabling delay, this synchronization is removed, allowing time to progress even if
the guard is true. This models eager or lazy synchronization.

Atomicity in a sequence of transitions is modeled with Uppaal committed locations. Locations
that do not consume time but still do not have atomic transitions are marked urgent.

The models are derived so that the following inclusions hold:
space1 ⊆ space2 ⊆ space4⊆ ⊆

space3 ⊆ space5

The idea is to derive models 3 and 5 to stress delay and models 4 and 5 to stress race condition.
These inclusions hold by construction of the automata, which is, spacei ⊆ spacej because model
j relaxes model i by adding delays, or allowing interleavings (commit to urgent) without disabling
the previous transitions. The basic model is the same, the set of variables is the same but there
are more reachable states. The verification results are consistent with these inclusions.

2.3.5 Refining the Models

Refinement of the models is the opposite of abstraction. It gives more details and adds accuracy to
the models. It is a trade-off since abstraction is needed to reduce state explosion and refinement
is needed for accuracy of the model. In the study both were used side by side and refinement
concerning the semaphore mechanism was used when a trace was not judged valid by the engineers.

2.4 Abstract Models of the Bus Coupler

The Uppaal templates for the model 5 are given in figures 10.4, 10.5, 10.6, and 10.7 (appendix
10). The template automata for the other variants are similar with the described variations.

These automata are close to the protocol description given in figure 10.1. We recognize
the master waiting for devmbr==0 and devdataR==1 with possible time–outs, corresponding to
wait(dev.mailbox==0 and wait(dev.dataread==1) on the figure. The random transparent bit
of the packets, as explained previously, is modeled by non-deterministic transitions. States marked
with c are urgent and those marked with c are committed.

The master bus coupler is the counter part of the master. It forwards data to the slave bus
coupler and waits for an acknowledgment (non-transparent packets). Time-outs are possible here
as well.

The slave counter-part receives packets from the master bus coupler and it can choose to send
back acknowledgments (positive or negative) or not at all.

The slave receives from the bus coupler, it acknowledges positively or negatively. The waiting
is similar to the first coupler: wait for devdataW==1 and then for devdataW==0.

2.5 Relating the Models

2.5.1 Error Localisation

We are interested in properties at an abstract level from which we can infer conclusions on the
concrete model. The idea is as follows : the concrete model is a particular implementation of a

22 CHAPTER 2. MODELING AND ABSTRACTION

protocol, the reduced model is the protocol itself where particular implementation details have
been abstracted away. We use the term reduction that is more appropriate for our purposes.

The inference rule that we are looking for is :

R(M) |= φ

M |= φ

where M is the original model, R(M) the reduced one, φ a formula of the form ∃ ¦ p.
The point is to know if the protocol is correct without considering the implementation, but if

something wrong is found then it is wrong in the implementation. This is a debugging process
and our approach allows us to localise errors isolated from the implementation.

The reduction relation used here is the simulation : R ¤ M the reduced model R can be
simulated by the concrete model M , with respect to observable actions. The inference rule comes
from this. The definition is:

Definition 1 (Simulation) P ¤Q if for all actions α ∈ Action whenever P
α
−→ P ′, then for some

Q′, Q
α̂
−→ Q′ and P ′

¤ Q′. ¤

We have to define now the reduction relation Rr that R has to satisfy.

2.5.2 Reduction Relation

We wish to establish a relation allowing us to remove a component and hide non observable
variables. The hiding part of the problem is a standard hiding operation. It includes collapsing
states when transitions between them are not observable with respect to a set of hidden variables.
Removing a component is more difficult and in our case it is restrictive.

The scheme to remove a process is as follows : we have three processes in a model M such that
P1 communicates with P3 via P2. P2 is the implementation of the communication. The static
relation Rr that P1|P2|P3 satisfies is such that :

τ1

τ2

s1?

s2!

τ

ττ
τ

a==go

a!=go s2?

timeout

a==go

a==go

a!=gofail

okτ

τ

1

2

τ a:=go s!

(a) (b) (c)

Figure 2.2: Complex automaton patterns.

timeout

a==go ok

fail

a:=go

(a) (b)

Figure 2.3: Reduced automaton patterns

2.6. MODELING FI 23

• P1 implements the behaviour shown in figure 2.2(a) where τ is an internal transition to
prepare the communication, typically a reset ; a := go sets the shared control variable a to
the expected value go that P3 is waiting for ; s! is hand shaking synchronization.

• P2 implements the behaviour shown in figure 2.2(b) where τ1 can be related to τ in P1

to prepare communication, and τ2 could be a cleaning asked by P3. The τ transitions are
internal actions that ensure P3 notified =⇒ P1 sent. s1? is hand shaking communication
with P1 and s2! with P3.

• P3 implements the behaviour shown in figure 2.2(c) where τ1 is initialisation, typically clock
reset, τ2 post synchronization or cleaning actions with P2.

These constraints are abstract and automata that simulate these satisfy Rr as well and they
will clearly yield the expected property as well.

The reduced system is then P ′
1 with the reduced sub part figure 2.3(a) and P ′

3 with the reduced
sub part 2.3(b). The transition labelled a == go is urgent iff s1. . . s2 is urgent. This reduction is
in fact a busy waiting with time-out although the implementation is not, but this is the wanted
behaviour of the protocol itself.

The result is then

Rr(P1, P2, P3) R(P1)|R(P2)|R(P3) |= φ

M |= φ

with φ of the form ∃ ¦ p. We notice that R(P2) is empty.

Generalisation To generalise the idea of abstracting an implementation and extracting the
underlying protocol logic that is implemented, the property becomes :

R(M) ¤ M R(M) |= ∃ ¦ p

M |= ∃ ¦ p

This is straight forward but the point is to have the most relevant R as possible to keep
interesting properties and our Rr allows us to reduce M to that interesting model which keeps the
logic of the protocol. Other R′

r should verify R′
; M . Such a relation is used for the FI models.

2.5.3 Relations between the Models

We have two basic models with variations in each. We note Ii the implementation models and Ri

the reduced ones. As stated in section 2.3.2 :

I1\EB ⊆ I2\EB ⊆ I4 ⊆ I3

in term of space and from section 2.3.4 we have

R1 ⊆ R2 ⊆ R4⊆ ⊆

R3 ⊆ R5

The relations are R1 ¤R2 ¤ I1 ¤ I2 ¤ I3. I4 is not present because it does not contain the error
states.

2.6 Modeling FI

The field interface model follows the protocol description given in figure 1.4. The master side has
a sender process implementing the sliding window with transparent packet protocol. A receiver
process listens to incoming packets and rebuilds messages that are responses from the slave. A

24 CHAPTER 2. MODELING AND ABSTRACTION

time–out supervisor process takes care of the master time–outs. A status process monitors the
state transition for verification purposes. The master part has 3 main running processes and one
monitor process.

The slave part is similar to the master part and has a sender, a receiver (called dispatcher)
and a time–out supervisor as main processes. A state process monitors the state transitions here
as well.

In addition to these 8 main processes, 2 semaphores, 1 mutex and one forward process are
used.

The model implements only the service request response since it is the most complete and it
contains the others. The sending parts of the model as well as the receiving parts (though the
forwarder) contain an abstraction of the bus coupler depicted in figure 2.4.

send

sending
t<=1000

waitingAck
t<=2000

TO

acked nacked

t:=0

transp==0
t:=0

t==1000

t==2000

transp==1

Figure 2.4: Bus coupler abstraction used.

The model components are depicted in figure 10.8 (appendix 10). The figure shows the com-
munication between the components. As one guesses, the model is suitable to be cut into one
master side and one slave side with a test in the place of the forwarder. The semaphores and the
mutex are not depicted in the figure.

2.7 Detailed Models of FI Master

This model is verified with the components from the master side and the slave test. The sender
automata are adapted at the bus coupler level because no real receiver is modeled. It is important
to notice that these changes are very minor and consist of removing the channel synchronizations
on the sending transitions. The test slave is depicted figure 10.9 (appendix 10). This test models
the strict minimum of a slave station. It reacts to acknowledgments from the master, generates
messages (replies) with correct sequence. This test automaton is derived from the slave sending
function.

The master is monitored with the state monitor process depicted in figure 10.10 (appendix 10).
This monitor has the three central states corresponding to the protocol states. Valid transitions
are drawn directly between these states as described in the protocol. All the other undefined
transitions are present as well, though they go through an error state (committed3 in Uppaal)
to detect that the transition is taken. The specification of the master protocol state machine is
given in figure 1.5. We recognize the three central states. The labels are the original ones.

The implementation has a state variable per application. This state variable is shared between
all the components of the master, that run concurrently. It is important to keep the integrity of

3that is left immediately, but detectable for verification

2.8. DETAILED MODELS OF FI SLAVE 25

this variable by a controlled access, which is done via mutual exclusion and means of preemptive
scheduling. Reading or changing this variable is done directly by variable manipulation. The
model defers to the state monitor when changing it. When setting the variable to a specific value,
a channel synchronization for this specific value is used. The state monitor takes the transition
corresponding to this assignment, does the assignment, and depending on defined conditions in the
protocol, it will take a legal or an illegal transition. The monitor states have the particularity that
the disjunction of all outgoing transitions is always true, to avoid artificial deadlocks. Reading is
immediate and is always legal.

2.8 Detailed Models of FI Slave

The slave model is similar to the master model. It has a master test process generating messages
as the slave test, though this one may change the init bit. The slave does not do this, but the
real master may do this. The master test is depicted in figure 10.11 (appendix 10). This test
automaton is derived from the master sending function.

The slave is monitored as the master by a state monitor process that works as the master’s one.
This monitor is depicted in figure 10.12. The specification of the slave protocol state machine is
given in figure 1.6 (appendix 10). These states correspond to the five central states in the monitor
automaton.

2.9 Validation of FI Models

The master and the slave models were verified against a test automaton. These models satisfy the
simulation relation with the complete model, with respect to the observable events of the master,
respectively slave part:

Mmaster ¤ Mcomplete model with the master simulated by the complete model
Mslave ¤ Mcomplete model with the slave simulated by the complete model

This holds with respect of the visible events in the master, respectively the slave. The events
concerning actual sending of messages are hidden, though not the acknowledgments. This holds
because of the way the tests were constructed. These tests are able to produce all the outputs of
the hidden component.

However we are interested in the observation equivalence relation. Unfortunately the models
are not equivalent since the tests are less constrained than the complete models. The point is to
validate the models so that their behaviour is not too general with respect to the detailed models.

Experimentally, we rechecked the properties that were violated in the test models, i.e. those
that gave counter–examples, to validate the counter–example in the detailed model. This is to
ensure that the test behaviour does not deviate from the real behaviour.

Formally, we strengthen the simulation relation [Mil89] towards the observation equivalence
relation with respect to a set of properties, which is, for a sub-set of real behaviours the observation
equivalence relation holds.

Definition 2 (φ-Observation equivalence) P ≈
φ Q if

1) P |= φ and Q |= φ,
2) for all α ∈ Act :

i whenever P
α
−→ P ′ such that P ′ |= φ, then for some Q′, Q

α̂
−→ Q′ and P ′

≈
φ Q′ and

Q′ |= φ,

ii whenever Q
α
−→ Q′ such that Q′ |= φ, then for some P ′, P

α̂
−→ P ′ and Q′

≈
φ P ′ and

P ′ |= φ. ¤

In our case we have:

26 CHAPTER 2. MODELING AND ABSTRACTION

Mmaster ≈
φ1 Mcomplete

Mslave ≈
φ2 Mcomplete

This is confirmed by experimental results: formally, φ characterizes the sub-set of behaviors of
the two models and on these two sub-sets are equivalent. In practice we have a set of properties
verified or violated by both the abstract and the complete models. So experimentally, one could
think that the models are equivalent, but by construction the abstract model is not limited in the
generation of messages and can generate sequences that the complete model would not generate.
In practice φ characterizes the valid traces of the abstract model and is not given explicitly. By
executing the models and respecting these sequences, the models are equivalent with respect to
these sequences.

Figure 2.5 shows the differences between trace equivalence, simulation and φ equivalence: X
and Y are trace equivalent, they generate the same traces. X can simulate Y but Y can not
simulate X: if Y takes the branch A-B-D, X has still the choice of E and C. The sub-tree verifying
some φ are equivalent, as shown in a more abstract way in figure 2.6.

A

B

C DE

A

C D

BB

E

Q P

=
φ

=
trace

−>
simulate

satisfy φ

Figure 2.5: Trace equivalence, simulation and φ-equivalence.

satisfyφ

Q P

equivalent

Figure 2.6: φ-equivalence.

Chapter 3

Verification

In this section we present the correctness properties checked. They are either reachability prop-
erties of the form ∃3 φ or invariants of the form ∀¤ φ. The predicate φ is defined over states,
variables and time.

3.1 Properties

Finding the properties to check was a problem in itself because the documentation of the protocol
was not adequate for verification purposes.

For the bus coupler models, 82 properties for the detailed models (and 35 for the reduced
models) are checked. These properties are classified into 4 classes:

• 6 correctness properties for both the detailed and the reduced models related to the logics
of the protocol

• 25 functional properties for the detailed models and 5 for the reduced ones, related to the
synchronization of the components. Violating these properties could induce bad/wrong
behaviour. The properties of the implementation models are classified as follows: 8 related
to the implemented semaphores, 10 to detection of possibly bad states belonging to the
error border and 7 related to precedence between states. The abstract models properties
were based only on precedence.

• 19 behaviour properties for the detailed models and 5 for the reduced ones, which are intu-
itively believed to hold with respect to the protocol. This is expected behaviour which has
only performance impact.

• 32 validation properties for the detailed models and 19 for the reduced ones, related to the
model itself to validate it. The protocol works in practice and the model must work the
same. A more complex model requires more validation hence the difference.

Concerning the field interface, 98 properties are checked. The classification is different: we
have correctness properties and validation properties. There is no equivalent of the functional
and behaviour properties as defined for the bus coupler. However the field interface has different
priority tasks that are modeled. We check that this modeling is correct as well as the consistency
between the state monitors and the state of the system.

• 32 correctness properties based on the state monitors.

• 50 simple validation properties related to the model itself to check that it works. These
properties reflect the model of the implementation.

27

28 CHAPTER 3. VERIFICATION

• 16 consistency properties related to the decoration of the model, i.e. parts of the models that
are not originally part of the implementation. This checks that the priority model holds, as
well as the consistency of the state monitors.

We do not intend to present all the properties but rather the important ones. Verification
was conducted on a Sun Ultra-SPARC-II Enterprise 450 model 440, quadri processor 400MHz,
though only one at a time is used by Uppaal. The computer is equipped with 4GB of physical
memory. Uppaal version is 3.0.391. Options were re-use state space, breadth-first search, active
clock reduction and no trace generation to save memory2.

3.2 Bus Coupler

3.2.1 Detailed Models

The resources consumed to verify the properties are given in table 3.1. These figures show the
size of the complete state space because the properties need complete search. They are consistent
with the inclusions space1\EB ⊆ space2\EB ⊆ space4 ⊆ space3 that were given in sub-section
2.3.2.Figure 3.1 illustrates the space inclusions.

Model Size Verification
1 129 MB 12:31 min
2 136 MB 14:41 min
3 149 MB 14:40 min
4 140 MB 11:11 min

Table 3.1: Resources used for verification.

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
Full state space, model 3: 892MB

Avoided errors

Proposed correction: 600MB

Model 1: 213MB

Model 2: 320MB

Figure 3.1: Overview of the state spaces and inclusions.

The correctness properties are:

1: A[] VFIToCoupler 1P1.written imply vfiTrans1!=-1

2: A[] (CouplerFromVFI 1P1.done and resultC11==0) imply bcTrans11!=-1

3: A[] CouplerToBus 1P1.sent1 imply bcTrans11!=-1

4: A[] CouplerFromBus 2P4.received imply bcTrans24!=-1

5: A[] CouplerToVFI 2P4.step2w0 imply bcTrans24!=-1

6: A[] VFIFromCoupler 2P4.dataTaken imply vfiTrans2!=-1

where A[] stands for ∀¤. They concern the transparent bit (data modeled) which should not
be written/read when not valid (-1) by the FI (vfiTrans) and the Bus Coupler (bcTrans). The
full state model 3 does not satisfy property 6. More models used to violate more properties here

1distributed on the web
2exact options given to verifyta are: -CDSTaqs

3.2. BUS COUPLER 29

but that was due to the granularity of the models themselves. Furthermore the trace of property
6 exploits an approximation of the model and is not judged valid by the engineers. Although the
model fails to show a real error here, it shows that the components may reach a state where they
are de–synchronized.

4 of the properties concerning semaphores are:

43: A[] not SemVFItoCoupler24.signalNotTaken

44: A[] not SemCouplertoVFI24.signalNotTaken

45: A[] not SemVFItoCoupler11.signalNotTaken

46: A[] not SemCouplertoVFI11.signalNotTaken

They mean that whenever a signal is sent, the previous one should have been accepted otherwise
“it has not been taken”. If there is a wait on that signal, it will not make much sense since the
semaphore stores previous signals. These properties are not verified for model 1 but hold for
models 2, 3, and 4. The counters may reach 2 but not 3, as pointed out in sub–section 2.3.2.

An interesting functional property (because of its result) is:

57: A[] not VFIToCoupler 1P1.OKwhenMBR

It states that the FI side should not be in a success state after the first synchronization step if
the mailbox receive flag is on (it should be off). This property is not satisfied by all the models.
The interesting point here is that it is acknowledged by the engineers but it is not considered
important because in this precise case, the communication concerns acknowledgment and no data.
This is to be documented in the implementation. Other functional properties are very similar to
this one.

2 precedence properties addressing synchronization are:

75: A[] not (VFIToCoupler 1P1.testOK and (CouplerFromVFI 1P1.step1w0 or

CouplerFromVFI 1P1.step2))

76: A[] not (CouplerToVFI 2P4.endWait2 and (VFIFromCoupler 2P4.waited or VFI

FromCoupler 2P4.wait0))

Only model 3 does not satisfy 76. Property 75 checks that one part should not be at the end of
sending a packet with success while the other side still waits for acknowledgment. Property 76
checks that one part should not be sending an ackownledgment while the other part is going to
begin to send a packet.

4 behaviour properties are:

10: A[] not (VFIToCoupler 1P1.done and resultV1!=0 and bcTrans11==1)

16: A[] not (Coupler 1P1.sentTO and bcTrans11==1)

33: A[] not (Coupler 2P4.acking and saveTrans24==1)

78: A[] (VFIToCoupler 1P1.testOK and vfiTrans1==1) imply devdatalost11==0

Property 10 states that sending a transparent packet should never fail and this is false for all
models. Property 16 states that timeout should not occur on transparent packet which is true for
all models. Property 33 states that acknowledgment is not sent after transparent packets which
is true. Property 78 states that the coupler “lies” properly to the FI when a transparent packet
is sent, which is true for all models.

Validity properties are simple reachability properties to check that the model does what it
should do. One of these is: packets are transmitted successfully.

2: E<> VFIFromCoupler_2P4.done and resultV2==0

The protocol is subject to de–synchronization, though it is not fatal. The origin comes from
race conditions when reading from and writing to the buffer.

30 CHAPTER 3. VERIFICATION

3.2.2 Abstract Models

The resources consumed to verify the properties are given in table 3.2. They are consistent with
the inclusions

space1 ⊆ space2 ⊆ space4 ⊆ space5

space2 ⊆ space3 ⊆ space5

referred in sub-section 2.3.4. 35 properties are verified.

Model Size Time
1 3.8 MB 8 sec
2 4.1 MB 9 sec
4 5.0 MB 10 sec
3 11 MB 32 sec
5 14 MB 37 sec

Table 3.2: Resources used for verification.

Due to the way we construct the models, we believe that space2 = space3 ∩ space4 though we
can not prove it. Experiments confirm this by exhibiting this common behaviour with a number of
properties. These different models are interesting when properties are verified in one model (case
for space1) but not in others (space2, thus space3 and space4). This is used to pinpoint behaviour
differences and see what the protocol is sensitive to.

The correctness properties are:

1: A[] master.waitDataR imply vfitrans1!=-1

2: A[] coupler1P1.sending imply bctrans11!=-1

3: A[] coupler2P4.gotMsg imply store24!=-1

4: A[] slave.read imply vfitrans2!=-1

5: A[] master.OK imply devdatalost11!=-1

6: A[] coupler2P4.readnottrans imply cpudatalost24!=-1

These are of the same type as the implementation properties. They state that wrong data
should not be read because they are received too early or too late. We add here the explicit test
on the acknowledgment answer from the coupler or the FI-slave with dev/cpudatalost. This is
present in the implementation as well, but indirectly.

Properties 1 and 5 are satisfied by all the models. Properties 2 and 3 are satisfied only when
no delay is allowed, which is the case for the models 1, 2 and 4. When delay is allowed a timeout
may occur concurrently leading to an unwanted change that leads to a race condition. To interpret
this as realistic or not, the hardware and runtime environment has to be taken into consideration.
In our context of non-preemptive multitasking on the Bus Coupler side, this situation is possible
if the coupler blocks while sending.

Property 4 is satisfied only for the first model. This property is sensitive to race condition.
Property 6 is satisfied only for the 3 first models. Models 4 and 5 introduce new interleavings and
a race condition is enabled by changing commit states to urgent states.

The functional properties are:

31: A[] not (coupler2P4.readnottrans and slave.read)

32: A[] not (coupler2P4.readtrans and slave.read)

33: A[] not (master.OK and coupler1P1.sending)

34: A[] not (coupler2P4.sending and cpumbr24==1 and slave.read)

35: A[] not (master.waitMBR and devmbr11==1 and coupler1P1.sending and ck11==0)

They concern de-synchronization, when a component is one cycle late on the other. Properties
31 and 32 state that the coupler should not be in a state ready to read the acknowledgment from

3.3. FIELD INTERFACE 31

the slave while this one has not written it and is about to do it: models 4 and 5 violate these
properties. This result is similar to property 6.

Property 33 states that the master should not have read the acknowledgment from the coupler
whereas this one has not written it yet. Model 5 does not satisfy this one, which means that this
property is related to delay and race condition.

Property 34 states that the coupler should not be in a state waiting for the mailbox being
available in order to write data while the slave has read data and not reserved yet the mailbox.
This is satisfied by all the models.

Property 35 states that the coupler should not be in a state when it has just reserved the
mailbox and read data from the master though this one is waiting for the mailbox to be freed in
order to write data. Models 3 and 5 do not satisfy this one. This property is sensitive to delays.

The behaviour properties are:

26: A[] not (master.timedout2 and vfitrans1==1)

27: A[] not (coupler1P1.waitanswer and bctrans11==1)

28: A[] not (coupler1P1.acking and ck11>0 and bctrans11==1)

29: A[] not (slave.timedout2 and vfitrans2==1)

30: A[] not (coupler2P4.timedout2 and bctrans24==1)

These properties are related to the nature of the packets: if they are transparent, timeout
should not occur. This is an expected behaviour, but not a critical property. Properties 26 and
30 are not satisfied, which comes from a possible delay from the bus queue. The acknowledgment
is sent to the master after having sent a message on the bus. If the queue is full and introduces
delay so is the transparent packet delayed.

Property 27 is satisfied which is straightforward with respect to the automaton. Property 28 is
not satisfied by models 3 and 5 which comes directly from the possible delays while reading bits.
Property 29 is satisfied.

The conclusion on the abstract model is that the protocol is implementable since the first
model is valid. However the implementation has to avoid some possible race conditions as well as
some delays in order to work.

The bus coupler part does not show any major flaw. As it is a rather low level implementation,
the models are very sensitive to the underlying modeling assumptions. However, the models proved
to be useful with their identified limits. The consequence is a series of improvement requests on
the implementation, i.e. the product will be improved as a result of the study.

3.3 Field Interface

The resources consumed to verify the properties are given in table 3.3.

Model Size Verification
Master, all properties 817M 1h 32min 4sec
Slave, all properties 1.46G 7h 34min 22sec

Complete, without satisfied safety properties 2.42G 6h 1min
Complete, all properties, bit state hashing 5.3M 2h 12min

Table 3.3: Resources used for the verification.

The method used was to validate the complete model with the simulator, check the master
sub-model (against a slave test) with the master properties, similarly for the slave, and check the
complete model with the validation properties and the violated safety properties. Furthermore
the complete model is checked with the full set of properties, but with bit state hashing.

32 CHAPTER 3. VERIFICATION

3.3.1 Master Model

The validation properties are of two kinds: reachability properties to check the functionality of
the models. 2 of them are:

2: E<> Master Send.sendOK

4: E<> Master Send.NackTO

They check for the success of a sending and a time–out. These check the master. The other
type is for the slave test process, there is only one, to check that a complete message is sent:

31: E<> Slave.send and Slave.size==0

All these properties are satisfied.
The consistency properties are of type A[] φ to check priority handling (one property) in the

model and the consistency of the state monitor (3 properties, one for each state):

10: A[] (Master Send.idle or Master Send.sending1 or Master Send.waiting1 or

Master Send.waitReceive or Master Send.sendingx or Master Send.waitingx) imply MP4==0

20: A[] ((Master Status.D or Master StatusDbadR) imply (MStatus==Dormant)) and

((MStatus==Dormant) imply Master Status.D or Master Status.DbadR))

All these properties are satisfied.
The safety properties of the state monitors check for bad transitions. In Uppaal it is not

possible to check for a transition so the trick is to use a committed state just for the detection.
There are 9 of these. Two of them are:

14: A[] not Master Status.RbadAFP

18: A[] not Master Status.DbadR

These two properties are not satisfied.
We show unknown transitions may occur. Some of them were acknowledged by the engineers

and they are investigating them.

3.3.2 Slave Model

The model–checking of the slave model is similar to the master model. The validation properties
are of two kinds, the reachability ones, 2 of them are:

2: E<> Slave Send.sent1

3: E<> Slave Send.NackTO

They check for sending successfully one packet and getting one time–out. They are verified.
The master test property is:

56: E<> Master.send and Master.size==0

There are 5 consistency properties concerning the state monitor (one for each state), one of
them is:

44: A[] ((Slave Status.AO or Slave Status.AObadAO or Slave Status.AObadWFR or

Slave Status.AObadA) imply ((SStatus==AnswOuts)) and ((SStatus==AnswOuts) imply

(Slave Status.AO or Slave Status.AObadAO or Slave Status.AObadWFR or Slave Status.AObadA))

The consistency property concerning the priority is:

9: A[] (Slave Send.respond or Slave Send.send0 or Slave Send.sending1 of

Slave Send.waiting1 or Slave Send.idle or Slave send.waitingMutex or Slave Send.toI or

Slave Send.sendingx or Slave Send.waitingx) imply SP4==0

3.3. FIELD INTERFACE 33

All these properties are satisfied.
There are 26 safety properties concerning the state monitor. Two of them are:

18: A[] not Slave Status.IAEbadI

26: A[] not Slave Status.AbadI

These two properties are not satisfied.
For the slave model we show here as well that unknown transitions may occur. Some of them

were acknowledged and are under investigation.

3.3.3 Complete Model

The bit state hashing experiment on the complete model proved to be unsuccessful. It is an
over–approximation method where positive results are not reliable whereas negative results are.
Unfortunately the verification gave too many false positive, so it does not apply to our study.

The full verification of the carefully chosen properties was successful. We succeeded in proving
that properties violated on the partial models were still violated on the detailed model. The
detailed model satisfied also all the simple validation properties.

For our model and our set of properties the relation given in section 2.9 holds.
The conclusion for the FI part is that we identified unknown behaviours on both the slave and

the master parts. The models are accurate enough to reproduce real code execution. Engineers
are analysing these traces to improve the code.

34 CHAPTER 3. VERIFICATION

Conclusion

This study is regarded as a success from the academic and the industrial point of view. For the
academic side, we succeeded in modeling and analysing a real product, not a toy example. We
applied a step by step method with abstractions and build incrementally our models on these
abstractions. Although the technique used is still manual, it was feasible and it increased the
knowledge of the code. Another aspect of the study is that we succeeded in teaching a formal
method to industry. From the industrial side, it is a success since they will improve the code from
a request for improvement of the code that is being written. They adopted the model–checking
method, though what we did was reverse engineering. They will take a course on model–checking
and they want to apply it from the design phase, before writing the code. The tool is better used
this way.

35

36 CHAPTER 3. VERIFICATION

Part II

Hierarchical Timed Automata

37

Chapter 4

Overview

4.1 Hierarchical Timed Automata

Hierarchical structures are a powerful mechanism to describe complex systems. They benefit from
concepts like modularity and encapsulation and scale up well in industrial settings.

Modeling languages—like UML [BRJ98]—use hierarchical structures to organize design and
specifications in different views of a system, meeting the needs of developers, customers, and
implementors. In particular, they capture a notion of correctness, in terms of requirements the
system has to meet. Formal methods typically address model correctness, for they operate on
a (possibly very close) mathematical formalization of the model. This makes it possible to pre-
vent errors inexpensively at early design stages. Of particular interests are state-chart-like mod-
els [Har87,HG97,HN96], that describe a behavioral view and allow execution of a model on a high
level.

Our ambition is to build a hierarchical real-time formalism—called Hierarchical Timed Au-
tomata model or HTA model for short—, that can be used as input for model-checking tools.
Correctness requirements are expressed in a dialect of the TCTL [HNSY94] logic. If we want
to preserve decidability, this dictates restrictions on the expressiveness of the model. We need a
formal definition of the semantics of this formalism to define the set of legal executions.

In the context of UML, this work aims at defining a real-time profile for UML state-charts,
which is, a specialization of the general state-charts tuned for real-time applications. Use of
UML as proposed in [Dou99] applied to real-time systems does not focus on state-charts and
the specific real-time features are limited to time events. The reference method presented in
[Dou00] to develop real-time systems with UML is focused on the tool Rhapsody and thus its
features only. Furthermore the state-charts diagram is the main behavioural diagram of UML
and its analysis is not addressed in these books, nor in the official OMG UML specification.
Furthermore, specifications and properties of systems are described in terms of other diagrams,
and more specifically message sequence charts (MSCs). This is in contrast with the use of timed
automata and the TCTL formulae used to express formal properties.

UML is a standard and is used in the industry. There are few limited tools to check properties
on the UML state-charts. UML state-charts have a lax semantics. The timed automata formal-
ism is well understood and has proven its power in modeling and verification, though it is not
hierarchical. These four facts are the motivation for our work: we extend timed automata with
hierarchy and limited features of state-charts, as history, to obtain a specialized UML state-charts
for real-time.

HTA are based on preliminary work done by Wang and David [DY00], refined by Moeller and
David [DM01]. The hierarchical structure of the model comes directly from UML state-charts,
though with strict restrictions concerning the entries and exits of super-states. The expressiveness
is not affected and the models are more structured. It is more tedious for the user but a sufficiently
smart editor can operate on a less restrictive input language, translated to the restrictive one. This

39

40 CHAPTER 4. OVERVIEW

lax version of the state-charts is addressed because it is useful from a user point of view.

Analysis taking advantage of the hierarchical information is difficult to attain and this topic
is beyond this licenciate thesis. However, in order to experiment with our formalism, we describe
a translation of HTA to flat Uppaal timed automata. The physical HTA representation is a
XML document type definition. Models represented in this format are translated automatically
to Uppaal models and verified.

4.2 Informal Description

4.2.1 Elements of the HTA Structure

Hierarchical timed automata are basically hierarchical state machines, that can be put in parallel
on various levels. The basic units of control are called locations, which may be basic states or
super-states, i.e., itself a (hierarchical) state machine. In the latter case, the contained locations
are called sub-states. At any point, a location is either active or inactive. Super-states can be
of type XOR (where exactly one sub-state is active, if the super-state is active) or of type And

(where every sub-state is active if the super-state is active).

Transitions connect locations. If source or target of a transitions is a super-state, the transition
connects to distinguished entries and exits. These are auxiliary structures and referred to as
pseudo-locations. Pseudo-locations are different from ordinary (proper) locations, since they mark
intermediated steps in a more complex transition, and cannot be part of a proper configurations,
see below.

Transitions can be equipped with guards, assignments and at most one synchronization. Tran-
sitions are enabled, if their guards evaluate to true (in the current configuration), the synchro-
nization (if any) is possible and they can reach a target configuration. A transition is not enabled,
if taking it would lead to a configuration where a location invariant is violated.

As auxiliary constructs, pseudo-transitions (〈connector〉s notation refers to the Element names
in the XML grammar. At least one end of a pseudo-transition connects to a pseudo-location.
Pseudo-transitions cannot be augmented with synchronizations, but in special situations may
carry guards and/or assignments, as explained in Section 5.1 in detail.

Integer variables are shared (multi-read, multi-write), and may occur in guards and assign-
ments. As a real-time construct, hierarchical timed automata are equipped with clocks. Clocks
are understood as real-valued variables that change continuous and synchronous as time passes.
Clocks can be reset to 0 on transitions, but not set to specific values. Clock values can occur in
guards in a syntactically restricted fashion1. They can also occur in invariants, but only downwards
closed, i.e., either as an expression x < c or x ≤ c, where c is an integer constant.

Hand-shake communication exits between parallel super-states by means of sending (!) or
receiving (?) a signal on a channel. Two parallel automata can synchronize on transitions by
executing them at the same instant. If they are equipped with conflicting variable assignments,
the one of the transition labeled with “!” is executed first. Channels may be declared locally,
restricting the potential participants in a hand-shake communication. We have to assure, that
the control situation remains valid after processing both transitions. A transition t originating
in a super-state S cannot synchronize with a transition inside S, for processing t corresponds to
rendering S inactive.

There is a top level, where a parallel composition of fundamental super-states is specified.
They are understood as running in parallel, but not put together in an And super-state for ease of
usage: we assume, that system designers will frequently change this part, e.g., to test a controller
with respect to different environments put in parallel. Therefore, this parallel composition is
realized textually via the 〈system〉 tag. For the fundamental super-states, an initial entry has
to be declared (〈globalinit〉). Moreover, they are allowed to terminate if specified so (canexit

1To be more precise, clocks x and y may occur in expressions x−y v c and x v c, where c is an integer constant
and v ∈ {<, >, =,≤,≥}.

4.2. INFORMAL DESCRIPTION 41

attribute in 〈globalinit〉), i.e., they can reach a special halt situation that can never be revoked.2

In the following, we describe entry and exit of super-states.

Default Entry Optionally, a super-state S can have one entry, that is declared to be the default
entry. If a transition on the next higher level ends at the border of S, without pointing to an
explicit entry, it is assumed to lead to this default entry. In the case that no default entry is
declared, such a transition is an error in the model.

History Entry A super-state may be declared to be a history-super-state, by equipping it with
a special history entry, designated by a capital H in a circle, H©. If the super-state is entered
via this, the last control location this super-state was in (before it became inactive) is restored.
Additionally, all locally declared variables are restored. The locally declared clocks are not reset,
but kept running. Only clocks explicitly declared as forgetful clock are set to 0 on entry via a
history entry.

A history entry has to be equipped with a default history location, which is entered, if this is
the first time the super-state becomes active. This location may be non-basic itself.

Every non-basic sub-state of S of a history super-state H is constrained to have either a history
entry or a default-entry. If H is entered via the history entry, and the control points to S, then S
is entered either via its history entry, or via the default entry, if S has no history entry.

There is no explicit deep history entry, that guarantees to instantiate the history of all enclosed
sub-states as well. However, this can be expressed explicitly, by adding a history entry to all such
sub-states and their descendants.

Local Clocks Clocks may be declared local to a super-state S. The first time S becomes active,
these clocks are set to 0. On re-entry, local clocks are re-set to 0 as well, with one exception:
ordinary local clocks are not re-set, if S is entered via an history entry. They can be thought of
as kept running when S becomes inactive. Their value increases in accordance to the global clock.
In general, it is not predictable whether it will be re-entered via a history entry or not.

The local clocks declared to be forgetful clock are always reset on entry, even this happens
via a history entry.

Location Invariants Transitions t to locations carrying an invariant can only be taken, if the
invariant evaluates to true (after possible clock resets executed along t). This generalizes in the
situation, where a transition points to a non-basic location: it can only be taken, if the invariants
of all reached locations (in case of a fork, there can be several) evaluate to true after executing
the run-to-completion step.

Forks Forks split the control to parallel sub-states. A fork can carry assignments and clock
resets, but no synchronization. Forks may trigger a cascade of other forks, that are all part of
the same transition. Forks do not carry guards nor synchronization and they should not have
conflicting assignments.

Joins Joins are auxiliary constructs in And super-states, that move control upward one level,
after all sub-states became inactive. A join can carry assignments and clock resets, but no syn-
chronization. Joins may be required to synchronize with other joins, that are all part of the
same transition. In our notion, either all or none of them are taken. We do not allow conflicting
assignments.

2In general, this can violate deadlock freedom. However, it corresponds very much to a situation where a part
of the system simply crashes. This aspect is useful, if the model explicitly specifies redundancy.

42 CHAPTER 4. OVERVIEW

(Explicit) Exit Explicit exits are denoted by a stub, or—alternatively—by a bullseye (•©).
Pseudo-transitions leading to an exit can only be taken, if the transition step associated with it can
be taken as a whole. (This is in conformance with the UML notion of run-to-completion steps.)
For notational convenience, various copies of explicit exits can be present in the same super-state.
They are identified by sharing the same name.

As a well-formedness constraint, every exit that is reached by a transition, has to be connected
to a transition or pseudo-transition on the next-higher level. [guard]

Figure 4.1:
Default Exit.

Default Exits The understanding of a default exit is a specially des-
ignated exit, that can be reached either unconditionally or guarded from
every enclosed location. This implies, that all non-basic sub-states are re-
quired to have default exits as well. If the guard is identical to true, this
explicitly denotes a super-state to be interrupt-able, since it can be left in
any case (provided it can synchronize on exit with parallel sub-states; typically, one of them will
trigger the interrupt).

From the inside, they are not visible in general. But they can be indicated by an unlabeled
general exit, see Figure 4.1.
A configuration describes a snapshot of the system. In particular, every configuration

1. marks every location of the system as active or inactive
2. denotes one control location for every active Xor super-state
3. defines a value for every global variable and clock, and every local variable and clock of

active super-state
4. defines a value for every local variable and local clock for every active super-state and the

inactive ones, that contains a history entry

We call a configuration proper, if it does not contain pseudo-locations. A run-to-completion step
is a tuple consisting of a proper source configuration, a step (that is either a proper transition or
a sequence containing one proper transition and arbitrary many pseudo-transitions), and a proper
target configuration (that is reached from the source configuration via execution of this step).

4.2.2 Dynamics of Transitions

An execution step of the model is either an action step or a delay step. An action step corresponds
to executing one run-to-completion step, or—in case of synchronization—two synchronizing run-
to-completion steps in an atomic fashion. A run-to-completion step is composed from one proper
transition and arbitrary many pseudo transitions. The latter ones can, e.g., encode forks, joins,
entries, or exits of sub-states. A run-to-completion step is only enabled, if

1. all the guards in the participating transition parts evaluate to true
2. the invariant(s) of the subsequent target location(s) hold after execution of assignments and

clock resets

Syntactic restrictions guarantee, that 1. is always equivalent to the case, that the conjunction of
these guards are true.

A delay step amounts to incrementing all clock variables by a real number d > 0, such that no
invariant is violated.

Synchronization on Entry If an And super-state is entered, every sub-state is entered imme-
diately. This might trigger a cascade of entries, since sub-states are allowed to be And super-states
themselves.

Synchronization on Exit A tree of joins is understood as an indivisible step, i.e., once it is
started, it is executed, including the transition following immediately, called root transition of

4.2. INFORMAL DESCRIPTION 43

this join. There are no interleavings with other transitions or time delays. If the root transition
synchronizes with another transition t, both are taken in parallel.

Pseudo-transitions to exits are allowed to have guards, but no assignment, clock-resets or
synchronization labels. This guarantees that, given the conjunction of the guards evaluates to
true in this configuration, the join can be executed to completion.

Urgency Urgency is a property of transitions and marks them as having priority over delay.
If an urgent transition is enabled, the system is not allowed to delay, but must take an action
transition as the next step.

Urgency cannot be only be used to resolve conflicts between action transitions and delay
transition. An urgent action transition does not have priority over a non-urgent one, if both of
them are enabled.

We define different levels of urgency as a mean to express priority between urgent transitions.
This makes sense only between urgent transitions (urgency u > 0). Priority is not mixed with
time in our formalism, it is defined on top of the urgency concept.

4.2.3 Lax Input Language

For notational convenience, it makes sense to allow a user to draw state-chart diagrams in a
more liberal way. In most cases, this can be safely translated to an explicit formulation. Some
examples of this are given in Figure 4.2. Note that arrows on the left-hand side are sometimes
replaced by sequences, that contain pseudo-states (stubs), pseudo-transitions, and exactly one
ordinary transition. This is the one, where guards, assignments and synchronizations are attached.
Following the UML notion of run-to-completion steps, the understanding of the explicit notation
is identical with the (usual) interpretation of the lax notation.

In case of ambiguity, we expect a model editor to be clever enough to resolve the choices
explicitly. In the following we always assume to have the explicit format, for this makes the task
of formalizing the semantics easier.

4.2.4 Differences with UML

We do not yet include the event model of UML. This is work in progress. The channel synchro-
nization is more restricted. The action language on transition is limited to simple computations
on integers only. UML defines deep history (recursive) and shallow history (at one hierarchical
level), we need only the latter one since deep history can be encoded by the shallow history. UML
defines activities in states, i.e. processing in a state, we do not have this notion at all3. UML
defines time events and we model time with clocks.

We define HTA as a core language with limited features. It is expressive enough to encode
most of the UML constructs. High level constructs, as used directly in UML state-charts, are not
part of HTA and should be seen as user facilities.

3this should be removed in the next release of the UML state-charts.

44 CHAPTER 4. OVERVIEW

label1

label2

=⇒

label2

label1

exit

Center

=⇒

Center

exit

� �

����������

=⇒

��� !�" �#

$%

Figure 4.2: Translation of a lax entry formulation to the explicit form.

Chapter 5

Formal Description

5.1 Formal Syntax of HTA

In this section we define the formal syntax of Hierarchical Timed Automata. This is split up in
the data parts, the structural parts, and a set of well-formedness constraints.

5.1.1 Data Components

We introduce the data components of Hierarchical Timed Automata, that are used in guards,
synchronizations, resets, and assignment expressions. Some of this data is kept local to a generic
location, denoted by l.

Integer variables Let V be a finite set of integer variables. V (l) ⊆ V is the set of integer
variables local to a super-state l.

Clocks Let C be a finite set of clock variables. The set C(l) ⊆ C denotes the clocks local to a
super-state l. If l has a history entry, C(l) contains only clocks, that are explicitly declared as
forgetful. Other locally declared clocks of l belong to C(root).

Channels Let Ch a finite set of synchronization channels. Ch(l) ⊆ Ch is the set of channels
that are local to a super-state l, i.e., there cannot be synchronization along a channel c ∈ Ch(l)
between one transition inside l and one outside l.

Synchronizations Ch gives rise to a finite set of channel synchronizations, called Sync. For
c ∈ Ch, c?, c! ∈ Sync. For s ∈ Sync, s̄ denotes the matching complementary, i.e., c̄! = c? and
c̄? = c!.

Guards and invariants A data constraints is a boolean expressions of the form A ∼ A, where A
is an arithmetic expression over V and ∼∈ {<,>,=,≤,≥}. A clock constraints is an expressions of
the form x ∼ n or x−y ∼ n, where x, y ∈ C and n ∈ N with ∼∈ {<,>,=,≤,≥}. A clock constraint
is downward closed, if ∼∈ {<,=,≤}. A guard is a finite conjunction over data constraints and
clock constraints. An invariant is a finite conjunction over downward closed clock constraints.
Guard is the set of guards, Invariant is the set of invariants. Both contain additionally the
constants true and false.

Assignments A clock reset is of the form x := 0, where x ∈ C. A data assignment is of the
form v := A, where v ∈ V and A an arithmetic expression over V . Reset is the set of clock resets
and data assignments.

45

46 CHAPTER 5. FORMAL DESCRIPTION

5.1.2 Structural Components

We give now the formal definition of our Hierarchical Timed Automata.

Definition 3 A hierarchical timed automaton is a tuple 〈S, S0, δ, σ, V, C,Ch, T 〉 where

• S is a finite set of locations. root ∈ S is the root.
• S0 ∈ S is a set of initial locations.
• δ : S → 2S . δ maps l to all possible sub-states of l. δ is required to give rise to a tree

structure with root root. We readily extend δ to operate on sets of locations in the obvious
way.

• σ : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY} is a type function on locations.
• V, C,Ch are sets of variables, clocks, and channels. They give rise to Guard, Reset, Sync,

and Invariant as described in Section 5.1.1.
• Inv : S → Invariant maps every locations l to an invariant, possibly to the constant true.
• T ⊆ S × (Guard× Sync×Reset×N)× S is the set of transitions. A transition connects two

locations l and l′, has a guard g, an assignment r (including clock resets), and an urgency

level u. We use the notation l
g,s,r,u
−−−−→ l′ for this and omit g, s, r, u, when they are necessarily

absent (or 0, in the case of u).

Notational conventions We use the predicate notation TYPE(l) for TY PE ∈ {AND, XOR,
BASIC, ENTRY, EXIT, HISTORY }, l ∈ S. E.g., AND(l) is true, exactly if σ(l) = AND. The
type HISTORY is a special case of an entry. We use HENTRY(l) to capture simple entry or
history entry, i.e., HENTRY(l) stands for ENTRY(l) ∨ HISTORY(l).

We define the parent function

δ−1(l)
def
=

{

n, where l ∈ δ(n) if l 6= root
⊥ otherwise

We use δ∗(l) to denote the set of all nested locations of a super-state l, including l. δ−∗ is the set

of all ancestors of l, including l. Moreover we use δ×(l)
def
= δ∗(l) \ {l}.

We introduce δ̃ to refer to the children, that are proper locations.

δ̃(l)
def
= {n ∈ δ(l) | BASIC(n) ∨ XOR(n) ∨ AND(n)}

We use V +(l) to denote the variables in the scope of location l: V +(l) =
⋃

n∈δ−∗(l) V (l). C+(l)

and Ch+(l) are defined analogously.

5.1.3 Well-Formedness Constraints

We give the rules to ensure consistency of a given Hierarchical Timed Automata.

Location constraints We require a number of sanity properties on locations and structure.
The function δ has to give rise to a proper tree rooted at root, and S = δ∗(root).
Basic nodes are empty: BASIC(l) ⇔ δ(l) = ∅.
Sub-states of And super-state are not basic: AND(l) ∧ n ∈ δ(l) ⇒ ¬BASIC(n).
Invariants of pseudo-locations are trivial: HENTRY(l) ∨ EXIT(l) ⇒ Inv(l) = true.

Initial location constraints S0 has to correspond to a consistent and proper control situation,
i.e., root ∈ S0 and for every l ∈ S0 it the following holds:

(i) BASIC(l) ∨ XOR(l) ∨ AND(l),
(ii) l = root ∨ δ−1(l) ∈ S0,
(iii) XOR(l) ⇒ |δ(l) ∩ S0| = 1, and

(iv) AND(l) ⇒ δ(l) ∩ S0 = δ̃(l).

5.2. OPERATIONAL SEMANTICS OF HTA 47

Variable constraints We explicitly disallow conflict in assignments in synchronizing transitions:

It holds that l1
g,c!,r,u
−−−−→ l′1, l2

g′,c?,r′,u′

−−−−−−→ l′2 ∈ T ⇒ vars(r) ∩ vars(r′) = ∅, where vars(r) is the
set of integer variables occurring in r. We require an analogous constraint to hold for the pseudo-
transitions originating in the entry of an And super-state.

Static scope: For l
g,s,r,u
−−−−→ l′ ∈ T , g, r are defined over V +(δ−1(l))∪C+(δ−1(l)) and s is defined

over Ch+(δ−1(l)).

Entry constraints Let e ∈ S, HENTRY(e). If Xor(δ−1(l)), then T contains exactly one

transition e
r
−→ l′. If And(δ−1(l)), then T contains exactly one transitions e

r
−→ ei for every proper

sub-state li ∈ δ̃(δ−1(l)), and ei ∈ δ(li).
In case of HISTORY(e), outgoing transitions declare the default history locations.
If a super-state s has a history entry, then every sub-state l of s has to provide either a history

entry or a default entry.

Transition constraints Transitions have to respect the structure given in δ and cannot cross
levels in the hierarchy, except via connecting to entries or exits. The set of legal transitions is
given in Table 5.1 Note that transitions cannot lead directly from entries to exits.

Transitions l
g,s,r,u
−−−−→ l′ with HENTRY(l) or EXIT(l′) are called pseudo-transitions. They are

restricted in the sense, that they cannot carry synchronizations or urgency flags, and only either
guards or assignments. For HENTRY(l), only pseudo-transition of the form l

r
−→ l′ are allowed.

For EXIT(l′), only pseudo-transition of the form l
g
−→ l′ are allowed. For EXIT(l) ∧ EXIT(l′),

this is further restricted to be of the form l −→ l′.

Intern
transitions

Entering
transitions

Exiting
transitions

Changing
transitions

Comment l l′ Constraint
BASIC BASIC

Intern BASIC EXIT δ−1(l) = δ−1(l′)
HENTRY BASIC

Entering BASIC HENTRY
and fork HENTRY HENTRY δ−1(l) = δ−2(l′)
Exiting EXIT BASIC(l)
and join EXIT EXIT δ−2(l) = δ−1(l′)
Changing EXIT HENTRY δ−2(l) = δ−2(l′)

Table 5.1: Overview over all legal transitions l
g,s,r,u
−−−−→ l′.

5.2 Operational Semantics of HTA

We present the operational semantics of our Hierarchical Timed Automata model. A configuration
captures a snapshot of the system, i.e., the active locations, the integer variable values, the clock
values, and the history of some super-states. Configurations are of the form (ρ, µ, ν, θ), where

• ρ : S → 2S captures the control situation. ρ can be understood as a partial, dynamic version
of δ, that maps every super-state s to the set of active sub-states. If a super-state s is not

active, ρ(s) = ∅. We define Active(l)
def
= l ∈ ρ×(root), where ρ×(l) is the set of all active

sub-states of l. Notice that Active(l) ⇔ l ∈ ρ(δ−1(l)).
• µ : S → (Z)∗. µ gives the valuation of the local integer variables of a super-state l as a finite

tuple of integer numbers. If ¬Active(l) then µ(l) = λ (the empty tuple). If Active(l) then we
require that |µ(l)| = |V (l)| and µ is consistent with respect to the value of shared variables

48 CHAPTER 5. FORMAL DESCRIPTION

(i.e., always maps to the same value). We use µ(l)(a) to denote the value of a ∈ V (l). When
entering a non-basic location, local variables are added to µ and set to an initial value (0 by
default). We use the shorthand 0V (l) for the tuple (0, 0 . . . 0) with arity |V (l)|.

• ν : S → (R+)∗. ν gives the real valuation of the clocks C(l) visible at location l, thus
|ν(l)| = |C(l)|. If ¬Active(l) then ν(l) = λ.

• θ reflects the history, that might be restored by entering super-states via history entries. It is
split up in the two functions θstate and θvar , where θstate(l) returns the last visited sub-state
of l—or an entry of the sub-state, in the case where the sub-state is not basic—(to restore
ρ(l)), and θvar (l) returns a vector of values for the local integer variables.
There is no history for clocks at the semantics level, all non-forgetful clocks belong to C(root).

History We capture the existence of a history entry with the predicate HasHistory(l)
def
= ∃n ∈

δ(l). HISTORY(n). If HasHistory(l) holds, the term HEntry(l) denotes the unique history entry
of l. If HasHistory(l) does not holds, the term HEntry(l) denotes the default entry of l. If l is
basic HEntry(l) = l. If none of the above is the case, then HEntry(l) is undefined.

Initially, ∀l ∈ S.HasHistory(l) ⇒ θstate(l) = HEntry(l) ∧ θvar (l) = 0V (l).

Reached locations by forks In order to denote the set of locations reached by following a
fork, we define the function Targetsθ : 2S → 2S relative to θ.

Targetsθ(L)
def
= L ∪

⋃⋃⋃

l∈L

{n | n ∈ θstate(l) ∧ HISTORY(l)} ∪ {n | l
r
−→ n ∧ ENTRY(l)}

We use the notation Targetsθ(l) for Targetsθ({l}), if the argument is a singleton. Targets∗θ is the
reflexive transitive closure of Targetsθ.

Configuration vector transformation Taking a transition t : l
g,s,r,u
−−−−→ l′ entails in general 1.

executing a join to exit l, 2. taking the proper transition t itself, and 3. executing a fork at l′.
If l (respectively l′) is a basic location, part 1. (respectively 3.) is trivial. Together, this defines
a run-to-completion step. We represent a run-to-completion step formally by a transformation
function Tt, which depends on a particular transition t. The three parts of this step are described
as follows.

1. join:
(ρ, µ, ν, θ) is transformed to (ρ1, µ1, ν1, θ1) as follows:
ρ is updated to ρ1 := ρ[∀n ∈ ρ×(l). n 7→ ∅].
µ is updated to µ1 := µ[∀n ∈ ρ×(l). n 7→ λ].
ν is updated to ν1 := ν[∀n ∈ ρ×(l). n 7→ λ].

If EXIT(l), the history is recorded. Let H be the set of super-states h ∈ ρ×(δ−1(l)), where
HasHistory(h) holds. Then

θ1
state := θstate [∀h ∈ H. h 7→ HEntry(ρ(h))] and

θ1
var := θvar [∀h ∈ H. h 7→ µ(h)].

If ¬EXIT(l) or H = ∅, then θ1 := θ.
2. proper transition part:

(ρ1, µ1, ν1, θ1) is transformed to (ρ2, µ2, ν2, θ2) := (ρ1[l′/l], r(µ1), r(ν1), θ1). r(µ1) denotes
the updated values of the integers after the assignments and r(ν1) the updated clocks after
the resets.

3. fork:
(ρ2, µ2, ν2, θ2) is transformed to (ρ3, µ3, ν3, θ3) by moving the control to all proper locations
reached by the fork, i.e., those in Targets∗θ2(l′). Note that ρ2(n) = ∅ for all n ∈ δ×(l′). Thus
we can compute ρ3 as follows:

5.2. OPERATIONAL SEMANTICS OF HTA 49

ρ3 := ρ2

Forall n ∈ Targets∗θ2(l′)

If ENTRY(n)

Then ρ3(δ−2(n)) := ρ3(δ−2(n)) ∪ {δ−1(n)}

Else ρ3(δ−1(n)) := {n} /? BASIC ?/

µ3 is derived from µ2 by first initializing all local variables of the super-states s in Targets∗θ2(l′),
i.e., µ3(V (s)) := 0V (s). If HasHistory(s), θvar(s) is used instead of 0V (s). Then all variable
assignments and clock-resets along the pseudo-transitions belonging to this fork are executed
to update µ3 and ν3. The history does not change, θ3 is identical to θ2.

Note that parts 1. and 3. correspond to the identity transformation, if l and l′ are basic locations.

We define the configuration vector transformation Tt for a transition t : l
g,s,r,u
−−−−→ l′:

Tt(ρ, µ, ν, θ)
def
= (ρ3, µ3, ν3, θ3)

If the context is unambiguous, we use ρTt and νTt for the parts ρ3 respectively ν3 of the
transformed configuration corresponding to transition t.

Starting points for joins A super-state s can only be exited, if all its parallel sub-states can
synchronize on this exit. For an exit l ∈ δ(s) we recursively define the family of sets of exits
PreExitSets(l). Each element X of PreExitSets(l) is itself a set of exits. If transitions are enabled
to all exits in X, then all sub-states can synchronize.

PreExitSets(l)
def
=

⋃

n1,...,nk

£
1≤i≤k

PreExitSets(ni), where

k = |δ̃(δ−1(l))|, {n1, . . . , nk} ⊆ δ×(δ−1(l)),

∀i.EXIT(ni), {δ−1(n1), . . . , δ
−1(nk)} = δ̃(l)

if
EXIT(l)∧
AND(δ−1(l))

⋃

m∈δ(δ−1(l))

PreExitSets(m), where m
g,r
−−→ l ∈ T

∪ {{l}}

if
EXIT(l)∧
XOR(δ−1(l))

{{}} if BASIC(l)

Here, the operator £ : (22S

) × (22S

) → 22S

is a product over families of sets, i.e., it maps
({A1, . . . , Aa}, {B1, . . . , Bb}) to {A1 ∪B1, A1 ∪B2, . . . , Aa ∪Bb} and is extended to operate on an
arbitrary finite number of arguments in the obvious way.

Rule predicates To give the rules, we need to define predicates that evaluate conditions on the
dynamic tree ρ. We introduce the set set of active leaves (in the tree described by ρ), which are
the innermost active states in a super-state l:

Leaves(ρ, l)
def
= {n ∈ ρ×(l) | ρ(n) = ∅}

The predicate expressing that all the sub-states of a state l can synchronize on a join is:

JoinEnabled(ρ, µ, ν, l)
def
= BASIC (l) ∨

∃X ∈ PreExitSets(l). ∀n ∈ Leaves(ρ, l). ∃n′ ∈ X. n
g
−→ n′ ∧ g(µ, ν)

Note that JoinEnabled is trivially true for a basic location l.
For the invariants of a location we use a function Invν : S → {true, false}, that evaluates the

invariant of a given location with respect to a clock evaluation ν. We use the predicate Inv(ρ, ν)
to express, that for control situation ρ and clock valuation ν all invariants are satisfied.

Inv(ρ, ν)
def
=

∧

n∈ρ×(root)

Invν(n)

50 CHAPTER 5. FORMAL DESCRIPTION

We introduce the predicate TransitionEnabled over transitions t : l
g,s,r,u
−−−−→ l′, that evaluates to

true, if t is enabled.

TransitionEnabled(t : l
g,s,r,u
−−−−→ l′, ρ, µ, ν)

def
=

g(µ, ν) ∧ JoinEnabled(ρ, µ, ν, l) ∧ Inv(ρTt , νTt) ∧ ¬EXIT(l′)

Since urgency has precedence over delay, we have to capture the global situation, where some
urgent transition is enabled. We do this via the predicate UrgentEnabled over a configuration.

UrgentEnabled(ρ, µ, ν)
def
= ∃t : l

g,r,u
−−−→ l′. TransitionEnabled(t, ρ, µ, ν) ∧ u

∨ ∃t1 : l1
g1,s,r1,u1
−−−−−−→ l′1, t2 : l2

g2,s̄,r2,u2
−−−−−−→ l′2.

TransitionEnabled(t1, ρ, µ, ν) ∧
TransitionEnabled(t2, ρ, µ, ν) ∧ (u1 ∨ u2)

When several urgent transitions are enabled and are in conflict, then the most urgent one is
taken. We compute this urgency level with the function EnabledUrgency over a configuration.

EnabledUrgency(ρ, µ, ν, t)
def
= max0,u(t′) | t′∈Conflict(ρ,µ,ν,t)u

where u(t′) is the urgency of a transition t′ belonging to the set of transitions in conflict with

t. A transition t′ : l′1
g′,s′,r′,u′

−−−−−−→ l′2 is in conflict with a transition t : l1
g,s,r,u
−−−−→ l2 iff

• s′ is empty and l′1 ∈∗ (l1) ∪ δ−∗(l1), TransitionEnabled(t′, ρ, µ, ν)

• or s′ is not empty and l′1 ∈∗ (l1) ∪ δ−∗(l1), TransitionEnabled(t′, ρ, µ, ν), ∃t′′ : l′′1
g′′,s̄,r′′,u′′

−−−−−−−→
l′′2 . TransitionEnabled(t′′, ρ, µ, ν)

Rules We give now the action rule. It is not possible to break it in join, action, and fork because
the join can be taken only if the action is enabled and the action is taken only if the invariants
still hold after the fork.

TransitionEnabled(t : l
g,r,u
−−−→ l′, ρ, µ, ν) u = 0 ∨ u ≥ EnabledUrgency(ρ, µ, ν, t)

action
(ρ, µ, ν, θ)

t
−→ Tt(ρ, µ, ν, θ)

Here g is the guard of the transition and r the set of resets and assignments. The urgency is used
as a priority between urgent enabled transitions. Non urgent transitions are not compared with
urgent ones. This rule applies for action transitions between basic locations as well as super-states.
In the later case, this includes the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(l)(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d
−→ (ρ, µ, ν + d, θ)

where ν + d stands for the current clock assignment plus the delay for all the clocks. Time elapses
in a configuration only when all invariants are satisfied and there is no urgent transition enabled.

The last transition rule reflects the situation, where two action transitions synchronize via a
channel c.

TransitionEnabled(t1 : l1
g1,c!,r1,u1
−−−−−−−→ l′1, ρ, µ, ν) l1 6∈ δ×(l2) u1 = 0 ∨ u1 ≥ EnabledUrgency(ρ, µ, ν, t1)

TransitionEnabled(t2 : l2
g2,c?,r2,u2
−−−−−−−→ l′2, ρ, µ, ν) l2 6∈ δ×(l1) u2 = 0 ∨ u2 ≥ EnabledUrgency(ρ, µ, ν, t2)

sync

(ρ, µ, ν, θ)
t1,t2
−−−→ Tt2 ◦ Tt1(ρ, µ, ν, θ)

5.2. OPERATIONAL SEMANTICS OF HTA 51

We choose a particular order here but it is not crucial since our well-formedness constraints ensure,
that the assignments cannot conflict with each other.

If no action transition is enabled or becomes enabled when time progresses, we have a deadlock
configuration, which is typically a bad thing. If in addition time is prevented to elapse, this is a
time stopping deadlock. Usually this is an error in the model, since it does not correspond to any
real world behavior.

Our rules describe all legal sequences of transitions. A trace is a finite or infinite sequence
of legal transitions, that start at the initial configuration S0, with all variables and clocks set to
0. For our purposes it suffices to associate a Hierarchical Timed Automata semantically with the
(typically infinite) set of all derivable traces.

52 CHAPTER 5. FORMAL DESCRIPTION

Chapter 6

Translation to Uppaal

In this Section we give a detailed description of our flattening procedure, that translates our
Hierarchical Timed Automata model to to a parallel composition of (flat) Uppaal timed au-
tomata [LPY97]. For both models we have a syntactic representation via a XML document type
definition. The translator written in Java takes as input a Hierarchical Timed Automata model
respecting the syntax of the document type definition (DTD). It outputs a timed automata model
following the syntax of the DTD. The timed automata model is then fed to the Uppaal verifi-
cation tool from version 3.2 on. The code was written by Oliver Möller and it can be found at
http://www.brics.dk/~omoeller/hta/vanilla-1/.

The fundamental concept of our flattening algorithm is the translation of every hierarchical
super-state into one Uppaal automaton. All these automatons are put in parallel. This can lead
to an exponential blow-up in terms of templates, or in other words, of the model size. This is
a consequence of the fact that hierarchical models can be exponentially more concise [AKY99].
Some auxiliary structures have to be introduced in order to mimic the behavior of hierarchical
machines adequately.

6.1 Uppaal Timed Automata

Uppaal [LPY97] is a tool box for modeling, verification and simulation or real-time systems
developed jointly by Uppsala University and Aalborg University. It is appropriate for systems that
can be described as collection of non-deterministic parallel processes. The model used in Uppaal

is the timed automaton and corresponds to the flat version of our Hierarchical Timed Automata
where each process is described as a state machine with finite control structure, real-valued clocks
and integers. Processes communicate through channels and (or) shared variables [KGLY95]. The
tool has been successfully applied in many case studies [LPY98,LP97,HSLL97].

Uppaal features committed locations, as an extension to timed automata. This special model-
ing construct is indicated by a c on the locations. If a committed location l is active, it must be left
as soon as possible, i.e., no time delay is possible and all transitions originating in non-committed
locations are blocked, unless they synchronize with a transition leaving l. Committed locations can
be used to encode more complex behavior, but also to reduce the number of possible interleavings
and thus render state space exploration more efficient. The translation makes heavy use of these
committed locations to serialize forks and joins that are intrinsically multi-synchronizations.

As another extension of timed automata, Uppaal supports integer variables. These variables
can be declared local to an automaton for a private use or global for sharing between different
automata. In the current translation variables are renamed and declared globally.

53

54 CHAPTER 6. TRANSLATION TO UPPAAL

6.2 Translation Algorithm

The basic concept of the procedure is the translation of instantiated templates. For every super-
state occurring in the HTA model, one Uppaal template is constructed. However, this cannot be
done in an transducer fashion. Since parallel states synchronize on exit, information about exits
depends on other parts, that may not have been translated yet.

Thus the translation has three phases: collection of instantiations, computation of global joins,
and post-processing channel communication.

For sake of clarity, we choose to omit various thinkable optimizations. For example, Xor sub-
states of Xor super-states or And sub-states of And super-states are not lifted, even if there are
no local variables on the lower levels.

We present the pacemaker case study, a well known example used in UML textbooks [Dou99].

6.2.1 Phase I: Collection of Instantiations

In this phase, the (implicit) hierarchical instantiation tree is traversed and for every hierarchical
super-state, the skeleton of a (flat) template is constructed.

Initially, the direct children of the root are on the stack, i.e., the fundamental super-states as
contained in the 〈system〉 element. The algorithm instantiateTemplates is given in appendix 11
How exactly the super-states I are translated is dependent on their type, that is either Xor or
And.

Xor: – have basic locations and transitions
– may contain super-states (〈component〉s)
– have at least one 〈entry〉
– may have 〈exit〉s
– entries are connected to locations or entries of sub-states
– exits are reached from locations or exits of sub-states

And: – have no basic locations, no transitions
– have at least two 〈component〉s
– have at least one 〈entry〉
– entries correspond to 〈fork〉s
– may have 〈exit〉s
– exits correspond to 〈join〉s

Translation of Xor Super-states. In a hierarchical XOR template X, at most one location
is active at the same point in time. To represent the situation that none is active, we introduce
—in the translation X̂—the special location X_IDLE, which is also the initial state. All entries
are translated by a transition from X_IDLE. For every sub-state S of X we introduce a location
S_ACTIVE_IN_X in X̂.

Moreover, for every entry e of S we introduce an auxiliary location in X̂, called X_AUX_S_e.
These are declared committed and are connected to S_ACTIVE_IN_X with a transition, that syn-
chronizes on a signal enter_S_in_X_via_e. Transitions leading originally to a S-entry e in X
are represented in the translation by leading to X_AUX_S_e and trigger—without interleaving with
other components—the activation of the sub-state S.

Exits of this sub-state S are more complicated, for they are only possible, if all non-basic
sub-states of S can exit. This is described as global joins, see Section 6.2.2.

If super-state X is inactivated, this is realized in the translation X̂ by transitions to IDLE_X,
that are triggered by an exit_X synchronization channel. If the super-state X has a default exit,
every non-auxiliary location in X̂ has a transition to IDLE_X.

Translation of And Super-states. A hierarchical AND machine A is a parallel composition
of sub-machines, where either none or all of them are active. In the translation Â (Figure 6.1),
these situations are represented by the locations A_IDLE and A_ACTIVE. If A is activated, this

6.2. TRANSLATION ALGORITHM 55

is always specific to a designated entry ei of A. The sub-machines Si of A are all entered, but
the signals enter_Si_via_ej depend on the choice of ej. Therefore, for every entry there is a
separate chain leading from A_IDLE to A_ACTIVE. The auxiliary locations in between are declared
committed (marked by a c), thus there are no time delays possible.

The exit of A is represented in Â via a transition from A_ACTIVE to A_IDLE, which carries the
synchronization signal exit_A.

Section 6.2.5 illustrates this translation with a concrete small example.

6.2.2 Phase II: Computation of Global Joins

Transitions originating from super-states are a subtle issue, for they may require a cascade of sub-
state exits—called global join—in order to be taken. The global join can be seen as a tree with
the leaves nested at arbitrary sub-state level. The translation serializes the multi-synchronization
of the join.

In Figure 6.2 (a), the sub-states S1, S2, and S3 have to be exited, before LOC can be reached.
If Sn is active in S2, it has to be exited as well. In phase I of our flattening algorithm, the
output GJ collects the topmost components, that have to be exited, if a transition (like to LOC

in Figure 6.2) has to be translated. One entry in GJ can give rise to a number of global joins,
possibly exponential in the depth of hierarchical structure. In Figure 6.2, the locations L3a and
L3b can be treated uniformly, but the location L1 has to be encoded in a different global join,
where there is no exit of sub-state Sn.

Every possible global join is translated to a sequence like in Figure 6.2 (b). The auxiliary
variable trigger keeps track of the number of active basic locations, that are connected to this
global join via a transition to an exit. It has to reach the threshold value N to enable the first
transition. Moreover, it has to be possible to mimic the transition to LOC, i.e., the guard (if any)
has to be satisfied and synchronization (if any) has to be possible. Synchronization is not possible
with transitions inside S1. If this situation arises in the given HTA model, we introduce new
channels to avoid this conflict and duplicate transitions accordingly, see 6.2.3.

The algorithm expandGlogalJoins is given in appendix 11

6.2.3 Phase III: Post-processing Channel Communication

If a transition in the Hierarchical Timed Automata formalism starts at a non-basic state S and car-
ries a synchronization, it cannot synchronize with a transition inside S. Since the sub-state/super-
state relation is lost in the translation, we resolve this scope conflict explicitly. We do this by
introducing duplications of channels and transitions.

We start with a priority queue Q over transitions that possibly can cause a conflict. These
elements were collected during the construction of the global joins. Q is sorted obeying the partial
order introduced by the sub-state/super-state relation on instantiations. The post-processing
algorithm postprocessChannels is given in appendix 11.

c

c

c

cc

c

A IDLE enter Sn via eA,m!enter S1 via eA,m!

enter S1 via eA,1!enter A via e1?

A ACTIVEenter A via em?

exit A?

enter Sn via eA,1!

Figure 6.1: Translation of entering and exiting an AND component.

56 CHAPTER 6. TRANSLATION TO UPPAAL

[sync]

L1

Sn

S2

S1

S3

LOC

[guard]

[assign]

L2

L3a

L3b

c

c

&'()*+

,-./

01234564)7

0123'56487

'56489.:;<=2)>

?3@2AA0@BBCDE&A5F@G+
&F''2A)+

(a) Part of Hierarchical Timed Automata X (b) Translation a the global join in X̂

Figure 6.2: The exit of S1 in super-state X gives rise to a number of global joins.

6.2.4 Correctness of the Translation

Starting at the root level, we can define a correspondence between every legal global state of the
HTA model and its translation into Uppaal timed automata.

Every super-state S in the Hierarchical Timed Automata model corresponds exactly to one
Uppaal timed automaton Ŝ. For proper configurations, we can relate ρ in the Hierarchical
Timed Automata model to a control vector ρ̂ in the Uppaal model. Proper configurations for
Hierarchical Timed Automata do not include pseudo-states, and for Uppaal models they do not
include committed locations. Sequences of committed locations in Uppaal are taken completely
or not at all, as for the run-to-completion step on forks and joins.

For an Uppaal automaton U , ρ̂(U) denotes the active location of U . For all Xor super-states

X, ρ̂ contains at position X̂ either a translation of a basic state l̂, sub_S_active_in_X, or IDLE,
depending on whether ρ(X) maps to a basic state, to a sub-state S, or to ∅. For AND super-state
A, ρ̂(Â) = IDLE if ρ(A) = ⊥ and ρ̂(Â) = {Ŝ |S parallel sub-state of A} otherwise. The value of
the introduced auxiliary variables is completely determined by the current control location, i.e.,
it is redundant for the configuration and only serves to enable or disable transitions.

Proposition A hierarchical state s = (ρ, u) is reachable if and only if a corresponding state
ŝ = (ρ̂, u) is reachable.

Since entries and exits in the Uppaal translation are guaranteed to take place without time
delay (due to encoding with committed locations), data and clock evaluations u carries over
without changes. If a hierarchical trace t exits, it can be mimicked by the translation in each
step. Likewise, if a translation t̂ of a hierarchical trace is legal in the Uppaal model, this is due
to a sound sequence of entries and exits and corresponds to a trace in the Hierarchical Timed
Automata formalism.

6.2.5 Example

We give a short example to illustrate the translation. Figure 6.3 shows a part of a HTA taken
from a fictious larger model. The And state A is entered by a default entry or by an explicit fork.
These entries lead to two different configurations. The exit of A is done by an explicit join or the
default exit. The And state A has the invariant x < 5 and the sub-state L1 the invariant y < 5.

The translation of this HTA is given in figure 6.4. The main automaton has the two different
ways of entering A and the two possible global joins of this model. The translated automaton A

6.3. THE PACEMAKER CASE STUDY 57

x<5

y<5

Ent1 Exit1

A

L1 L2

L4L3

S1

S2

Ent2 [exp2]

[exp1]

[exp3]

Exit2

[exp4]

Figure 6.3: Original HTA.

C

C

C C

C

Exit1

C

C

Exit2

C
x<5

Ent1

Ent2

A

[exp3]

[exp4] ^trigger==2

exA_S1_1! exA_S2_1![exp1]

[exp2] exA_S1_2! exA_S2_2!enterA_2!

enterA_1! exitA!

exitA!

L3 L4

exA_S2_2?

idle
enterS2_L3?

trigger−−

trigger++

trigger++

exA_S2_1?

enterS2_L4?

exA_S2_1?

S2

C

Idle

C

C

C

trigger:=0

trigger:=0

enterA_2?

enterA_1?

fork1

fork2

enterS1_L1!

enterS1_L1!

Active
exitA?

enterS2_L3!

enterS2_L4!

A

L1 L2

idle

y<5 trigger−−

trigger++

exA_S1_1?

exA_S1_2?

exA_S1_1?

enterS1_L1?

S1

Figure 6.4: Translated HTA.

performs the forks and waits in the state Active until (the original) A is left. The Uppaal init
states are represented as double circles. The two sub-states S1 and S2 are entered from their idle
state and they return to this idle state upon exit. The default exit starts from all the sub-states.
The explicit join is constrained by the trigger variable.

6.3 The Pacemaker Case Study

In this section we apply our flattening procedure on a Hierarchical Timed Automata version of
a cardiac pacemaker model. This model is strongly motivated by the often-used UML design
example, see e.g. [Dou99]. The pacemaker is put in parallel with a model of a human heart and
a programmer, who changes operation modes on the pacemaker. We translate the Hierarchical
Timed Automata model of this composition to an equivalent (flat) Uppaal timed automata model
and explain the obtained automata in detail. Additionally, we report on run-time data of the
formal verification of this translation with respect to safety and response properties.

58 CHAPTER 6. TRANSLATION TO UPPAAL

CommunicationCoilDriver

Battery

ReedSwitch

CommunicationGnome

VentricularPacingEngineAtrialPacingEngine

Programmer

Heart

Pacemaker

Figure 6.5: Object model of the pacemaker.

APace?

VPace?

t := 0

t := 0

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

Figure 6.6: The simplified model of the human heart.

Model

Figure 6.5 shows the object model of the pacemaker. All the relations have cardinality 1-1. The
programmer is an external actor to the system, he represents the physician who configures and
controls the pacemaker. The CommunicationCoilDriver handles communication via the telemetry
coil. The ReedSwitch is a security switch to prevent inadvertent reprogramming of the pacemaker.
The two pacing engines are in charge of pacing a particular heart chamber (atrium and ventricular).
The heart is an actor providing cardiac electrical status to the pacemaker and receiving electrical
stimuli from it.

Pacing modes refers to the different types of pacing delivered. As a naming convention, pacing
modes are encoding with a three letter abbreviation: the first letter is the paced heart chamber,
A or V. The second letter is the sensed chamber, A or V. The third letter is the type of pacing, I

6.3. THE PACEMAKER CASE STUDY 59

for inhibited or T for triggered. In the inhibited mode, the specified chamber is sensed and if no
heartbeat occurs within a specified amount of time, then the chamber is paced. In the triggered
mode the chamber is always paced.

In our model we consider only the operation modes idle, VVT, VVI and AVI. The ventricular
chamber is sensed and the atrial and the ventricular chamber are paced. The simplified heart model
takes into account only the (left) atrial and ventricular chambers. A healthy heart contracts these
chambers in steady rhythm, dictated by the time delays DELAY AFTER V and DELAY AFTER A. The
simplified hear model is depicted in figure 6.6. The local clock t is used to model the rhythm and
the heart beat is sensed with the Vsense synchronization channel. The heart may stop to beat,
but it should not do so too long, otherwise the critical state FLATLINE is reached. The pacemaker
sends signals to the atrial and ventricular chambers, synchronizing with the APace or the VPace

channels.
The reader is referred to [DM01] for a more complete description description of the model.

6.3.1 Translation to Uppaal

HTA model Uppaal model

proper control locations 35 45
pseudo-states / committed locations 33 63

transitions 47 177
variables and constants 33 72

clocks 6 6

Table 6.1: Comparison of the Hierarchical Timed Automata and the flat Uppaal models.

The HTA model consists of the programmer, the heart, and the pacemaker running in parallel.
The translation gives 14 automata corresponding to the different hierarchies as described in the
section 6. Table 6.1 compares the Hierarchical Timed Automata and the translated models. The
proper control locations refer to basic states. The pseudo-states are entries and exits that translate
into committed locations. The translation scales well and the introduced committed locations do
not increase the state space since forks and joins trigger deterministic sequences of transitions.
The extra auxiliary variables are tightly coupled to the current location and they do not have a
major impact on the state space either.

6.3.2 Model-Checking the Translated Uppaal Model

We used the translation as the input to the Uppaal tool. We checked for deadlocks and the two
desirable properties:

(i) A[] (heart_sub.FLATLINE => (wasSwitchedOff == 1))

(ii) A[] (heart_Sub.AfterAContraction => A<> heart_Sub.AfterVContraction)

The system as described is not deadlock free: when the programmer terminates after switching
off the pacemaker, and the heart stops beating, a configuration is reached where time can delay
indefinitely. In one variation, the programmer was explicitly disallowed to exit. In a second
variation, the pacemaker could not be switched off. In these two variations deadlock freedom was
established1

Property (i) is a safety property and states that the heart never stops for too long unless
the pacemaker is switched off by the programmer (in which case we cannot give any guarantees).
Property (ii) is a response property and states, that after an atrial contraction, there will inevitably

1The verification time is in order of seconds. The exact value is not relevant here since there is nothing to
compare with. It just shows the feasibility.

60 CHAPTER 6. TRANSLATION TO UPPAAL

follow a ventricular contraction. In particular this guarantees, that no deadlocks are possible
between these control situations. These properties hold though the validity of property (i) is
strongly dependent on the parameter setting of the model. We use the following constants:

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

If the programmer is allowed to switch between modes very fast, it is possible that she prevents
the pacemaker from doing its job. E.g., for MODE_SWITCH_DELAY = 65 the property (i) does not
hold any more. In practice it is often a problem to find parameter settings, that entail a safe or
correct operation of the system. In related work, an extended version of Uppaal is used to derive
parameters yielding property satisfaction automatically, see [HRSV01].

Chapter 7

Conclusion

We defined a Hierarchical Timed Automata formalism targeted to UML and its formal syntax and
semantics. We presented a translation to Uppaal timed automata to show the feasibility of the
analysis. The format of the model is in XML, making it suitable for UML and interchange with
other tools.

The model has the advantages of UML modeling and the formalism of timed automata, which
makes it appropriate for modeling large systems and analysing them. The model-checking tech-
nique hides the complexity of formal techniques and the only effort of the user is to draw the
model and write the properties. The verification is automatic. The model is targeted to the UML
standard, making it appealing for engineers. We are approaching our goal to spread more widely
the use of formal techniques in a usable way.

Future work on Hierarchical Timed Automata is the analysis of the hierarchical model without
translation. It is more difficult but the hierarchical model has more information that can be
used to perform local search and reduce the state space. A hierarchical representation of DBM1

to represent symbolic zones suits better the hierarchy. Local search in two unrelated parallel
sub-states would reduce the state space. The hierarchy can guide a search path, making use of
search cache more efficient. If a super-state can be searched independently, it can be flushed from
memory with keeping only entry and exit pointers. These are only a few techniques that have to
be explored.

1difference bound matrix

61

62 CHAPTER 7. CONCLUSION

Part III

A Real-Time Animator for Hybrid

Systems

63

Chapter 8

Hybrid Systems

8.1 Syntax

Let X be a set of real-valued variables X ranged over by x, y, z etc including a time variable t.

We use ẋ to denote the derivative (rate) of x with respects to the time variable t. Note that
in general ẋ may be a function over X; but ṫ = 1. We use Ẋ to stand for the set of differential
equations in the form ẋ = f(X) where f is a function over X.

Assume a set of predicates over the values of X; for example, 2x + 1 ≤ 10 is such a predicate.
We use G ranged over by g, h etc to denote the set of boolean combinations of the predicates,
called guards.

To manipulate variables, we use concurrent assignments in the form: x1 := f1(X) . . . xn :=
fn(X) that takes the current values of the variables X as parameters for fi and updates all xi’s
with fi(X)’s simultaneously. We use Γ to stand for the set of concurrent assignments.

We shall study networks of hybrid automata in which component automata synchronize with
each other via complementary actions. Let A be a set of action names. We use Act = { a? | α ∈
A }∪ { a! | α ∈ A }∪ { τ } to denote the set of actions that processes can perform to synchronize
with each other, where τ is a distinct symbol representing internal actions.

A hybrid automaton over X, Ẋ, G, Act and Γ is a tuple 〈L,E, I, T, L0,X0〉 where

• L is a finite set of names standing for control nodes.

• E is the equation assignment function: E : L → 2Ẋ .

• I is the invariant assignment function: I : L → G which for each node l, assigns an invariant
condition I(l).

• T is the transition relation: T ⊆ L× (G×Act×Γ)×L. We denote (l, g, α, γ, l′) by l
g,α,γ
−−−→ l′.

For simplicity, we shall use l
g,γ
−−→ l′ to stand for l

g,τ,γ
−−−→ l′.

• l0 ∈ L is the initial node.

• X0 is the initial variable assignment.

To study networks of automata, we introduce a CCS-like parallel composition operator. As-
sume that A1, ..., An are automata. We use A to denote their parallel composition. The intuitive
meaning of A is similar to the CCS parallel composition of A1, ..., An with all actions being re-
stricted, that is, A = (A1|...|An)\Act. Thus only synchronization between the components Ai is
possible. We call A a network of automata. We simply view A as a vector and use Ai to denote
its ith component.

65

66 CHAPTER 8. HYBRID SYSTEMS

Example 1 In figure 8.1 we give a simple example hybrid automaton which describes a bouncing
ball and a touch sensitive floor. The left automaton defines three variables, x, the horizontal
distance from the starting point, the height y and the speed upwards u. Initially the x-speed is 1,
the ball is at 20 m height and the gravitational constant is 9.8. The variables will change according
to their equations until the transition becomes enabled when y <= 0. The middle automaton is
a model of a sensor that will issue a signal when the ball hits the floor. The right automaton is
on the Uppaal side. It synchronizes with the sensor signal and resets a clock z. If the intervals
between signals are longer than 5 time units it will return to the initial location, but the first
interval that is shorter will lead to the location low bounces.

bounce!

init

y<=0
u:=-0.8*u

bounce?

z:=0
bounce?
z>5

z<=5

y<=0
y=20

y= u
u=-9.8

x=0

u=0

x=1
.

.
.

low_bounces

Figure 8.1: Bouncing ball with touch sensitive floor and control program.

Example 2 As a more complex example we show a model of an industrial robot. In figure 8.2
a schematic view of robot with a jointed arm is shown. The inner arm can be turned 360 degrees
around the z-axis, it can also be raised and lowered between 40 and 60 degrees. The outer arm is
positioned at the tip of the inner arm and can be raised and lowered.

y

z

θ

φ
x

ξ

Figure 8.2: Industrial robot with three degrees of freedom.

8.2. SEMANTICS 67

In figures 8.3 and 8.4 the hybrid automaton controlling the motion of the robot is shown. We
do not show the simple control automaton that starts and stops the execution.

When the execution starts the inner arm will stand still until it receives the move2pickup?

signal from the control automaton. Then the arm will start turning and lowering the arm so that
the gripping tool on the outer arm can reach a table where it will pick up an object. When th
inner arm reaches a position in front of the table it will try to synchronize with the outer arms
automaton on the signal pickup! . After the pickup the robot will raise and turn to another
table where it will again try to synchronize with the outer arm on release! . After the release
the robot will return to the original position and issue the back! signal to the controller.

φ=0
θ=0

.

.

φ=0
θ=0

.

.

φ=0; θ=45init

.

.

.

.

φ=1.5
θ=0.5

.

.

θ=0

.

.φ=2
θ=0

.

.

φ=0
θ=1

.

.

move2pickup? φ>30

θ<40
θ<40

φ>30

θ>45

pickup!

φ>270 & θ<40

φ>270 & θ>=40

atrelease!

release?

atrelease!

θ>60

φ>270
θ>60

φ>360

θ>45
back!

back!

φ>360

φ=2
θ=−1 θ=−1

φ=2

φ=0
θ=−1

.

.φ=1.5
θ=0

.

.

φ=2
θ=1

.

.

φ=0

pickup!

Figure 8.3: Robot inner arm automaton

The automaton, in figure 8.4, controlling the outer arm is simpler since the outer arm only has
one degree of freedom. It starts with lowering the arm when the controller sends a move2pickup2!.
When it comes to the right angle it will stop and wait for the inner arm to do the same, then
they will synchronize on pickup. After the pickup the arm will raise until it reaches its max (30
degrees), then it will wait for the inner arm to reach the release position. When the robot is at
the release table the outer arm will descend and then release the object in its grip. On the return
to the original position the outer arm will rise again.

8.2 Semantics

To develop a formal semantics for hybrid automata we shall use variable assignments. A variable
assignment is a mapping which maps variables X to the reals. For a variable assignment σ and a
delay ∆ (a positive real), σ + ∆ denotes the variable assignment such that

(σ + ∆)(x) = σ(x) +

∫

∆

ẋdt

For a concurrent assignment γ, we use γ[σ] to denote the variable assignment σ′ with σ′(x) =
V al(e, σ) whenever (x := e) ∈ γ and σ′(x′) = σ(x′) otherwise, where V al(e, σ) denotes the value

68 CHAPTER 8. HYBRID SYSTEMS

.
ξ=0 .

ξ=0

.
ξ=0

init: ξ=15

ξ>15

.
ξ=−1

pickup?

ξ>30

ξ<10

move2pickup2?

.
ξ=−1

.
ξ=0.5
.

atrelease?
release!

ξ<10

ξ=1

Figure 8.4: Robot outer arm automaton

of e in σ. Given a guard g ∈ G and a variable assignment σ, g(σ) is a boolean value describing
whether g is satisfied by σ or not.

A node vector l of a network A is a vector of nodes where li is a location of Ai. We write l[l′i/li]
to denote the vector where the ith element li of l is replaced by l′i.

A state of a network A is a configuration (l, σ) where l is a node vector of A and σ is a variable
assignment.

The semantics of a network of automata A is given in terms of a labelled transition system
with the set of states being the configurations. The transition relation is defined by the following
three rules:

• (l, σ)
α
; (l[l′i/li], γi[σ]) if li

gi α,γi
−→ l′i and gi(σ) for some li, gi,α,γi.

• (l, σ)
τ
; (l[l′i/li, l

′
j/lj], (γj ∪ γi)[σ]) if li

gi a! γi
−→ l′i, lj

gj a? γj

−→ l′j , gi(σ), gj(σ), and i 6= j, for some
li, lj , gi, gj , a, γi, γj .

• (l, σ)
∆
; (l, σ + ∆) if I(l)(σ) and I(l)(σ + ∆) for all positive real numbers ∆.

where I(l) =
∧

i I(li).
The execution of a hybrid automata then becomes an alternating sequence of delay and action

transitions in the form:
s0

∆0
;(l0, σ0 + ∆0)

α0
;(l1, σ1)

∆1
;(l1, σ1 + ∆1)

α1
; (l2, σ2) . . . (li, σi)

∆i
;(li, σi + ∆i)

αi
;(li+1, σi+1)

8.3 Tick semantics

The operational semantics above defines how an automaton will behave at every real-valued time
point with arbitrarily fine precision. In fact, it describes all the possible runnings of a hybrid
automata.

In practice, a “sampling” technique is often needed to analyse a system. Instead of examining
the system at every time point, which often is impossible, only a finite number of time points are
chosen to approximate the full system behavior. Based on this idea, we shall adopt a time–step
semantics called δ–semantics characterized by the granularity δ, which describes how a hybrid
system shall behave in every δ time units. In practical applications, the time granularity δ is
chosen according to the nature of the differential equations involved. In a manner similar to
sampling of measured signals the sampling interval should be short for rapidly changing functions.
To achieve finer precision, we can choose a smaller granularity.

8.3. TICK SEMANTICS 69

We use the distinct symbol χ to denote the sampled time steps. Now we have a discrete
semantics for hybrid automata.

• (l, σ)
χ
7→(l, σ + δ) if (l, σ)

δ
;(l, σ + δ) and

• (l, σ)
α
7→(l

′
, σ′) if (l, σ)

α
;(l

′
, σ′)

We use βi to range over {χ, τ} representing the discrete transitions. The “sampled” runnings
of a hybrid automaton will be in the form:

(l0, σ0)
β1
7→(l1, σ1) . . . (li, σi)

βi+1

7→ (li+1, σi+1) . . .
In the following section, we shall present a real time animator based on the δ-semantics. For

a given hybrid automaton, the animator works as an interpretor computing the δ-transitions step
by step using CVODE, a differential equations solver.

70 CHAPTER 8. HYBRID SYSTEMS

Chapter 9

Implementation

Our goal is to extend the Uppaal tool to deal with hybrid systems. The Uppaal GUI is written
in Java and the differential equation solver that we have adopted, CVODE, is written in C. This
gives the natural architecture of the animator: the animator itself with the objects is written in
Java and the engine of the animator in C, connected through the Java native interface (JNI). The
two main layers of the implementation are the animation system and the CVODE layers.

9.1 The Animation System Layer

The system to be modeled is defined as a collection of objects. Each object is described by a
hybrid automaton with its corresponding variables. Every state of the hybrid automaton has a
set of equations and transitions. The equations, conditions (guards) and assignments are given as
logical/arithmetic expressions with ordinary mathematical functions such as sine, cosine . . . , and
also user defined functions.

The evaluation of the object equations, conditions and assignments is written in C. Each
animator object, i.e. a hybrid process, is associated with one Uppaal process that is an abstraction
of the hybrid part and a bridge to Uppaal. The abstraction is modeled as a stub process that
performs the same synchronizations as the hybrid counterpart. This choice of implementation
is motivated by the desire to model-check the rest of the Uppaal processes as a closed system.
Figure 9.1 shows the association of animator objects with Uppaal automata.

uppaal

simulator

uppaal

plug-in

controller model environment model

Figure 9.1: Association between animator objects and Uppaal automata.

71

72 CHAPTER 9. IMPLEMENTATION

9.2 The CVODE Layer

At the heart of the animator we have used the CVODE [CH96] solver for ordinary differential
equations (ODE’s). This is a freely available ODE solver written in C, but based on two older
solvers in Fortran.

The mathematical formulation of an initial value ODE problem is

ẋ = f(t, x), x(t0) = x0, x ∈ R
N . (9.1)

Note that the derivative is only first order. Problems containing higher order differential equations
can be transformed to a system of first order. When using CVODE one gets a numerical solution
to (9.1) as discrete values xn at time points tn.

CVODE provides several methods for solving ODE’s, suitable for different types of problem.
But since we aim at general usage of the animator engine we cannot assume any certain properties
of the system to solve. Therefore we only use the full dense solver and assume that the system is
well behaved (non-stiff in numerical analysis terminology). This will give neither the most memory
efficient nor the best solution, but the most general.

We use one CVODE solver for the whole system. This is set up and started with new initial
values at the beginning of each delay transition. The calculations are performed stepwise, one
“tick” (δ–transition) at a time. After each tick all the conditions of the current state are checked,
if any is evaluated to true one has to be taken. If an assignment on the transition changes a
variable the solver must be reinitialized before the calculations can continue.

It is worth pointing out that the tick length δ is independent of the internal step size used
by the ODE solver, the solver will automatically choose an appropriate step size according to the
function calculated and acceptable local error of the computation. From the solvers point of view
the tick intervals can be seen as observation or sampling points.

After each tick the system variables are returned to the Java side of the animator where they
are used either to update a graph or as an input to move graphical objects.

Example 1, continued In figure 9.2 a plot of the system described in figure 8.1 is shown. The
plot shows the height and the distance of the bouncing ball. Not shown in the figure is that the
touch sensitive floor will create a signal every time the ball hits the floor, and that the system will
continue running until the time between bounces is less than 1 second.

Example 2, continued For the robot example we only show, in figure 9.3, how the outer arm
will raise and turn during the execution of the system. In order to get a better view, the plot only
shows the movement from the initial position to the release. The robot starts at the right and
turns counter clock-wise.

9.2. THE CVODE LAYER 73

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Figure 9.2: Bouncing ball on touch sensitive floor that continues until bounces are shorter than 1
second

74 CHAPTER 9. IMPLEMENTATION

−2

−1

0

1

2

3 −3
−2

−1
0

1
2

3

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Y AxisX Axis

Z
 A

xi
s

Figure 9.3: The movement of the robots outer arm.

Conclusion

We have presented a real time animator for hybrid automata. For a given hybrid automaton
modeling a dynamical system and a given time granularity representing sampling frequency, the
animator demonstrates a possible running of the system in real time, which is a sequence of sampled
transitions. The animator has been implemented in Java and C using CVODE, a software package
for solving differential equations. As future work, we aim at a graphical user interface for editing
and showing moving graphical objects and plotting curves. The graphical objects act on the
screen according to the differential equations and synchronize with controllers described as timed
automata in Uppaal.

75

76 CHAPTER 9. IMPLEMENTATION

Part IV

Appendix

77

Chapter 10

Figures

cpu.mailbox:=1

wait(dev.mailbox==0) reset all bits to 0

write packet

wait(cpu.datawritten==1)cpu.datawritten:=1

dev.mailbox:=1

read packet

set dev.datalost (0:nack or 1:ack)

dev.dataread:=1wait(dev.dataread==1)

read dev.datalost

wait(cpu.datawritten==0)

FI Bus Coupler

enabled

condition

send it and gets acknowledgment

reset all bits to 0

Figure 10.1: Communication protocol from the FI to the bus coupler.

79

80 CHAPTER 10. FIGURES

slavemaster

1 4

Couplers Couplers

B
u

s

2 3

Configuration

FIFI

1

2

3

H H
H H
H H
H H
H H
H H
H H

I I
I I
I I
I I
I I
I I
I I

J J
J J
J J
J J
J J
J J
J J

K
K
K
K
K
K
K

L L
L L
L L
L L
L L
L L
L L

M
M
M
M
M
M
M

N N
N N
N N
N N

O O
O O
O O
O O
FI slave model

P P
P P
P P
P P
P P
P P
P P

Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q

R R
R R
R R

S
S
S

FI master model

5

4

T T
T T
T T
T T
T T
T T

U U
U U
U U
U U
U U
U U

V V
V V
V V
V V
V V
V V

W W
W W
W W
W W
W W
W W

X
X
X
X

Y
Y
Y
Yabstraction

FI slave

Z
Z
Z
Z

[
[
[
[

FI master

abstraction

\
\
\
\

]
]
]
]

^
^
^
^

_
_
_
_

` `
` `
` `
` `

a a
a a
a a
a a

b b
b b
b b
b b

c c
c c
c c
c c

FI master sub model FI slave sub model

1 4

Coupler Coupler

ack

FI FI

abstractionabstraction

packet

Bus Coupler implementation model

FI FICouplers

Bus Coupler abstraction

FI master+slave

Figure 10.2: Modeling framework.

81

semaphore

semaphore

sends to coupler

listens to Bus

acknowledgment to Bus

Coupler

core

semaphore

semaphore

receives from couplerslave

automaton synchronisation

sends to Bus

acknowledgment to FI

listens to FI

Tasks serving port 1

Coupler

core
master

send ack

send packet

signal

wait

wait

signal

wait

signal

wait

signal

Tasks serving port 2

sends to FI

Figure 10.3: Static structures of the implementation model. Tasks are represented as circles and
functions/semaphores as rectangles.

loop

waitMBR
x<=1000

timedout1

write

waitDataR
x<=2000

timedout2

OK

start

cpumbr:=1,x:=0

x==1000,devmbr==1
x:=0

cpumbr:=0

devmbr==0

x:=0

transparent:=0,cpudataW:=1
transparent:=1,cpudataW:=1

x==2000,
devdataR==0
x:=0 devdataR==1

x:=0

cpumbr:=0,
cpudataW:=0,
transparent:=-1

cpudataW:=0,cpumbr:=0,
transparent:=-1

transparent:=-1

Figure 10.4: The template of the FI master.

82 CHAPTER 10. FIGURES

loop

waitDataW1
x<=2000

timedout1

read work

waitDataW0
x<=1000

start

timedout2

OK

willread

x:=0

devdataW==0,
x==2000 x:=0

x:=0

vfitrans==0

vfitrans==1
cpulost:=0,cpumbr:=1,cpudataR:=1

x:=0,
cpulost:=0,cpumbr:=1,cpudataR:=1

cpulost:=-1

x:=0,
cpulost:=1,cpumbr:=1,cpudataR:=1

devdataW==0

x:=0

devdataW==1,
x==1000
x:=0

cpulost:=-1,
cpudataR:=0,
cpumbr:=0

cpulost:=-1,
cpudataR:=0,cpumbr:=0

devdataW==1
x:=0

vfitrans:=bctrans

Figure 10.5: The template of the FI slave.

start
waitDataW

x<=10000timedout1

sending
x<=10000

sent

ack

waitanswer
x<=1700

resynchronize
x<=2000

OK

acking
x<=750

mbrwillread

bctrans:=-1,
devdatalost:=-1

x==10000,
cpudataW==0
devmbr:=1,
x:=0

devmbr:=0

x:=0 x:=0
deliver!

bctrans==1
devdatalost:=0

bctrans==0
x==1700
x:=0

devdatalost:=0,
x:=0

ack?

devdatalost:=1,
x:=0

nack?

cpudataW==0

x:=0

x==2000
x:=0

devdataR:=1

cpudataW==0

x:=0

x==750

x:=0

devdataR:=0,devmbr:=0,
bctrans:=-1,devdatalost:=-1

cpudataW==1
x:=0

devmbr:=1
bctrans:=vfitrans

Figure 10.6: The template of the master coupler.

83

loop

gotMsg

sending
x<=750

timedout1

write

waitDataR
x<=750

timedout2

acking x<=5000

start

readnottrans readtrans

nacking x<=5000

x:=0,
store:=transparent

deliver?

devmbr:=1

cpumbr==0

x:=0

cpumbr==1,
x==750 x:=0

devdataW:=1,bctrans:=store

cpudataR==0,
x==750 x:=0

store:=0,
devmbr:=0

store:=0,
bctrans:=-1,
devmbr:=0,
devdataW:=0

bctrans:=-1

cpudataR==1,
bctrans==0
x:=0,bctrans:=-1,store:=0

cpudataR==1,
bctrans==1

x:=0,bctrans:=-1,store:=0

devmbr:=0,
devdataW:=0

cpudatalost==0
devmbr:=0,x:=0,
devdataW:=0

cpudatalost==1

devmbr:=0,x:=0,
devdataW:=0

x:=0

x:=0
nack!

x:=0

x:=0
ack!

Figure 10.7: The template of the slave coupler.

Timeout supervisorTimeout supervisor

Forwarder

Bus coupler

FI sender

DispatcherBus coupler

FI sender

Receiver

State monitor State monitor

Master Slave

receive requestsend request

respond

signal

receive respond send respond

Figure 10.8: FI model overview.

84 CHAPTER 10. FIGURES

answer sent1 send

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=0

send!
size>0
ACK?

NACK?

size>0
d_size:=size,
d_count:=count,
d_seq:=seq,
d_trans:=(size>1?1:0),
d_init:=0,
size:=size-1,
count:=(count>SLIDE?0:count+1)

send!

size==0 ACK?

size==0 count:=0,
size:=0

NACK?

size==0
seq:=(seq==0?1:0),
count:=0,
size:=0

ACK?

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=1

send!

Figure 10.9: Slave test working with the master.

mAFP

D R
RbadAFP

AFPbadR

AFPbadAFP

DbadR

RbadD

AFPbadD

mSeqBit!=rpSeqBit
mStatusAFP?

SSIZE==1

mStatus:=Dormant
mStatusD?

SSIZE>1

mStatus:=Receive
mStatusR?

mStatus:=AFP
mStatusAFP?

m_completeMsg==1
mStatus:=Dormant

mStatusD?
mStatusR?mStatusD?

mStatusAFP?

mStatus:=AFP

SSIZE<=1
mStatusR?

mStatus:=Receive

mSeqBit==rpSeqBit
mStatusAFP?

mStatusR?
mStatus:=Receive

m_completeMsg!=1,
mPacketTO!=0
mStatusD?

mStatus:=Dormant

mPacketTO==0
mStatus:=Dormant

mStatusD?

SSIZE!=1,
mPacketTO!=0

mStatusD?

mStatus:=Dormant

mPacketTO==0

mStatus:=Dormant
mStatusD?

Figure 10.10: Master monitor automaton.

85

answer sent1 send

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=0

send!
size>0
ACK?

NACK?

size>0
d_size:=size,
d_count:=count,
d_seq:=seq,
d_trans:=(size>1?1:0),
d_init:=0,
size:=size-1,
count:=(count>SLIDE?0:count+1)

send!

size==0 ACK?

size==0 count:=0,
size:=0

NACK?

size==0
seq:=(seq==0?1:0),
count:=0,
size:=0

ACK?

count:=1,
size:=(SSIZE>0?SSIZE-1:0),
d_size:=SSIZE,
d_count:=0,
d_seq:=seq,
d_trans:=0,
d_init:=1

send!

size>0
d_size:=size,
d_count:=count,
d_seq:=seq,
d_trans:=(size>1?1:0),
d_init:=1,
size:=size-1,
count:=(count>SLIDE?0:count+1)

send!

Figure 10.11: Master test working with the slave.

86 CHAPTER 10. FIGURES

A AO

I

IAE

WFR

IAEbadWFR1

IAEbadAO

IAEbadI

IAEbadA2

IAEbadIAE

AbadA2

AbadI

AbadAO

AbadWFR

AbadIAE1

AObadAO
AObadWFR

AObadA

WFRbadI
WFRbadA

WFRbadIAE

WFRbadWFR

IbadIAE

IbadWFR

IbadAO

IbadA

IbadI

IAEbadWFR2

AbadA1AbadIAE2

IAEbadA1

sInit==1,
SSIZE>1

sStatusA?

sInit==1,SSIZE==1
sStatus:=IdleAfterErr
sStatusIAE?

s_msgComplete==1
sStatus:=WaitForRec

sStatusWFR?

sStatus:=Idle
sStatusI?

sStatus:=IdleAfterErr
sStatusIAE?

SSIZE>1
sStatus:=Active
sStatusA?

SSIZE==1
sStatus:=WaitForRec
sStatusWFR?

sInit==1,SSIZE==1
sStatus:=Active

sStatusA?

sInit!=1
sStatusIAE?

SSIZE==1,sInit==1

sStatus:=WaitForRec
sStatusWFR?

sStatus:=AnswOuts
sStatusAO?

sStatusAO?

sInit!=1
sStatusA?

sStatusI?
sStatus:=Active

sStatus:=Idle

sStatus:=WaitForRec

sStatus:=AnswOuts

sInit==1
sStatusIAE?

sInit!=1,sPacketTO!=0sStatusIAE?
s_msgComplete!=1sStatusWFR?

sStatusAO?
sStatusI?

SSIZE<=1 sStatusA?

sInit!=1
sStatusA?

sStatus:=Idle

sStatus:=AnswOuts

sStatus:=WaitForRec

sStatus:=IdleAfterErr

sStatusI?

sStatusA?

sStatusAO?

SSIZE!=1
sStatusWFR?

sStatusIAE?

sStatusA?
sStatusWFR?

sStatusAO?

sStatusWFR?
sStatusI?

sStatusA?
sStatusIAE?

SSIZE!=1
sStatusWFR?

sStatus:=Active
sStatus:=AnswOuts

sStatus:=WaitForRec

sStatus:=IdleAfterErr

sStatus:=Idle

sStatus:=Active

sStatus:=IdleAfterErr

sStatus:=WaitForRec

sStatus:=Active

SSIZE!=1,SPacketTO!=0sStatusIAE?

sInit!=1
sStatusWFR?

sStatus:=WaitForRec

sStatus:=IdleAfterErr
SSIZE!=1

sStatusA?
sStatus:=Active

sPacketTO==0
sStatus:=IdleAfterErr

sStatusIAE?

Figure 10.12: Slave monitor automaton.

Chapter 11

Translation Algorithms

Algorithm: PHASE I: instantiateTemplates

input: Stack S of superstates to translate
output: Set T of (flat) timed automata

Set GJ of global join starting points

T := {Global Kickoff automaton for s ∈ S}
GJ := ∅

While notempty(S)

I := pop(S)
C := {non-basic locations in I}

Forall c ∈ C
push(S, [c in I])
/? [c in I] inherits all invariants attached to I ?/
create a location ĉ in Î

Ec := {set of entries of c in I}

Forall e ∈ Ec

create a committed location ĉe in Î

create a transition from ĉe to ĉ in Î

/? this transition carries a synchronization “enter ĉ via e!” ?/

If type(I) = Xor Then

GJ := GJ ∪ {c in I}

T := T ∪ {translation Î of superstate I, depending on type(I)}

87

88 CHAPTER 11. TRANSLATION ALGORITHMS

Algorithm: PHASE II: expandGlobalJoins

input: Set GJ of global join starting points
output: Auxiliary constructions: counters and guarded transitions

JoinTrees := ∅

Forall gj ∈ GJ
collect all trees t of control locations, that can synchronize to gj;
the leaves of t are sets of basic locations, that share transitions to exits x.

/?
These sets are singletons, if x is an ordinary exit
and span over all basic locations in the superstate otherwise

?/

JoinTrees := JoinTrees ∪ {t}

Forall tree ∈ JoinTrees

let L̂ := {l̂
˛

˛ l is element in a basic location set of tree}
declare the counter triggertree

Forall l̂ ∈ L̂

Forall transitions k̂ → l̂

add the assignment triggertree := triggertree + 1 to k̂ → l̂

Forall transitions l̂ → m̂
add the assignment triggertree := triggertree − 1 to l̂ → m̂

let N := number of leaf sets in tree

let Stree := substates occurring in tree

Forall transition t starting at root(tree)
create a chain of transitions, starting with t̂,

corresponding to exiting every s ∈ Stree

/? see Figure 6.2 (b); note the additional guard triggertree==N ?/

Algorithm: PHASE III: postprocessChannels

input: priorityQueue Q over (syncSignal, transition, instantiation)

While notempty(Q)

(syncSignal, transition, instantiation) := pop(Q)
If ∃ transition t with match(syncSignal) in instantiation:

create a new channel c

replace channel(syncSignal) on transition by c

Forall transitions t′ with match(syncSignal) outside instantiation
create a copy of t′, where channel(syncSignal) is replaced by c

if there is an entry of t′ in Q, add an entry for the created copy to Q

Chapter 12

Glossary

configuration A configuration is a snapshot of the system, where every location is either active or inactive
and every variable and clock is set to one specific value. A configuration is proper, if all
active basic locations are proper.

entry A pseudo-location, that is passed to activate the corresponding superstate.
entry point Copy of an entry, displayed as bullet (•), annotated with the name of the entry.

This is a notational/graphical convenience with the semantics of an alias.
exit A pseudo-location, that is passed to inactivate the corresponding superstate.

exit point Copy of an exit, displayed as bullseye (•©).
This is a notational/graphical convenience with the semantics of an alias.

fork Auxiliary structure used in And superstates.
A fork connects an entry of the superstate with the entries of the parallel substates, thus
activating them.

global join Synchronous exit of various parallel superstates.
A global join gives rise to a tree of joins (connected via exits), that is specific to a root
transition (the one that is executed immediately after the join).
A global join can only be started, if all participants can synchronize on their exit. It is
executed without interruption, including the execution of the root transition. (In the Uppaal

translation, this requires special constructions, see Section 6.2.2.)
join Auxiliary structure used in And superstates.

A join connects exits from each of the enclosed superstates with an exit of the superstate
itself.

location The basic unit of control.
A location can be basic or a superstate, i.e., itself a hierarchical timed automaton. Basic
locations are either proper or pseudo-locations. At any time, a location is either active or
inactive.

pseudo-location Auxiliary location to encode complex transitions.
Though physically a (committed) location, this does usually not correspond to a state the
modeled system can be in and exists solely for modeling purposes, typically to encode forks,
joins, or multi-synchronization.

pseudo-transitions Auxiliary transition to encode a part of a run-to-completion step, e.g., to encode entry, exit,
or multi-synchronization.
Pseudo-transitions are connected to at least one committed location. Restrictions on allowed
guards, assignments, and synchronizations apply.

pre-exit A location that has a transition to an exit.
run-to-completion step A sequence of transitions, containing one proper transition and arbitrary many pseudo-

transitions.
This amounts to a macro-transition leading from one proper configuration to to a subsequent
proper configuration.

superstate A non-basic location.

89

90 CHAPTER 12. GLOSSARY

We distinguish Xor superstates (exactly one of the substates is active, if the superstate is
active) and And superstates (parallel composition: all substates are active, if the superstate
is active).

transition A transition connects two locations, carrying guards, assignments, and synchronization.
If these are non-basic, the transition connects to specific entries or exits. A transition is
either proper or pseudo.

Bibliography

[ABB+] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre
David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, M. Oliver
Möller, Paul Pettersson, Carsten Weise, , and Wang Yi. Uppaal - Now, Next, and
Future. To appear in Proceedings of the Summer School on Modelling and Verification
of Parallel Processes (MOVEP’2k), Nantes, France, June 19 to 23, 2001. Available at
http://www.docs.uu.se/~paupet/.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. In Theoretical Computer Science,
number 125, pages 183–235, 1994.

[ADY00] Tobias Amnell, Alexandre David, and Wang Yi. A real time animator for hybrid
systems. In J. Davidson and S.L. Min, editors, Languages, Compilers, and Tools for
Embedded Systems ACM SIGPLAN Workshop LCTES 2000, Vancouver, Canada, June
18, 2000, Proceedings, volume 1985 of Lecture Notes in Computer Science. Springer–
Verlag, June 2000.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating Hierarchical
State Machines. In Proc. of the 26th International Colloquium on Automata, Lan-
guages, and Programming, volume 1644 of Lecture Notes in Computer Science, pages
169–178. Springer–Verlag, 1999.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[CH96] S. Cohen and A. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c. 1996.

[DM01] Alexandre David and M. Oliver Möller. From Hierarichcal Timed Automata to uppaal.
Research Series RS-01-11, BRICS, Department of Computer Science, University of
Aarhus, March 2001.

[Dou99] Bruce Powel Douglass. Real-Time UML, Second Edition - Developing Efficitnt Objects
for Embedded Systems. Addison-Wesley, 1999.

[Dou00] Bruce Powel Douglass. Doing Hard Time. Adison Wesley, 2000.

[DY00] Alexandre David and Wany Yi. Hierarchical Timed Automata. unpublished draft,
dated: April 23. Contact the authors adavid@DoCS.uu.se, yi@DoCS.uu.se, 2000.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 1987.

[Hen] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic on Computer Science, LICS 96, pages 278–292.

[HG97] David Harel and Eran Gery. Executable Object Modeling with Statecharts. IEEE
Computer, 7(30):31–42, July 1997.

91

92 BIBLIOGRAPHY

[HN96] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM
Trans. Soft. Eng. Method 5:4, oct 1996.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
Model Checking for Real-Time Systems. Information and Computation, 111(2):193–
244, 1994.

[HRSV01] Thomas S. Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Lin-
ear parametric model checking of timed automata. Research Series RS-01-5, BRICS,
Department of Computer Science, University of Aarhus, January 2001. 44 pp.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modelling
and Analysis of an Audio/Video Protocol: An Industrial Case Study Using uppaal. In
Proc. of the 18th IEEE Real-Time Systems Symposium, pages ”2–13”. IEEE Computer
Society Press, December 1997.

[KGLY95] Paul Pettersson Kim G. Larsen and Wang Yi. Model-Checking for Real-Time Systems.
In Proc. of the 10th International Conference on Fundamentals of Computation Theory,
volume 965 of Lecture Notes in Computer Science, pages 62–88. Springer–Verlag, 1995.

[KrJKW] Paul Pettersson K̊a re J. Kristoffersen, Kim G. Larsen and Carsten Weise. Experimental
batch plant - vhs case study 1 using timed automata and uppaal.

[LP97] Henrik Lönn and Paul Pettersson. Formal verification of a tdma protocol start-up
mechanism. In Proc. of IEEE Pacific Rim International Symposium on Fault-Tolerant
Systems, pages ”235–242”, 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[LPY98] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear
Controller. In Proc. of the 4th International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems., volume 1384 of Lecture Notes in Computer
Science, pages ”281–297”. Springer–Verlag, 1998.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[pro] Prover homepage: http://www.prover.com.

[Rha] Rhapsody is a commercial product of I-Logix. Documentation and whitepapers are
available from http://www.ilogix.com/quick links/white papers/index.cfm.

[RT] P.R. D’Argenio J.-P. Katoen T.C. Ruys and J. Tretmans. The bounded retransmission
protocol must be on time! In Proceedings of the 3rd International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems, LNCS 1217, pages 416–
431.

[Tan81] A.S. Tanenbaum. Computer networks. Prentice–Hall, 1981.

[Vis] VisualStateTM is a commercial product of IAR Systems. Detailled information is avail-
able from http://www.iar.com.

94 BIBLIOGRAPHY

Licentiate theses from the Department of Information Technology

2001-001 Erik Borälv: Design and Usability in Telemedicine

2001-002 Johan Steensland:Domain-based partitioning for parallel SAMR applications

2001-003 Erik K. Larsson:On Identification of Continuous-Time Systems and Irregular
Sampling

2001-004 Bengt Eliasson: Numerical Simulation of Kinetic Effects in Ionospheric
Plasma

2001-005 Per Carlsson:Market and Resource Allocation Algorithms with Applicationto
Energy Control

2001-006 Bengt G̈oransson:Usability Design: A Framework for Designing Usable In-
teractive Systems in Practice

2001-007 Hans Norlander:Parameterization of State Feedback Gains for Pole Assign-
ment

2001-008 Markus Bylund:Personal Service Environments — Openness and User Con-
trol in User-Service Interaction

2001-009 Johan Bengtsson:Efficient Symbolic State Exploration of Timed Systems: The-
ory and Implementation

2001-010 Johan Edlund:A Parallel, Iterative Method of Moments and Physical Optics
Hybrid Solver for Arbitrary Surfaces

2001-011 Pär Samuelsson:Modelling and control of activated sludge processes with ni-
trogen removal

2001-012 PerÅhgren:Teleconferencing, System Identification and Array Processing

2001-013 Alexandre David:Practical Verification of Real-time Systems

Department of Information Technology, Uppsala University, Sweden

