
Tools for Real-Time UML:

Formal Verification and Code Synthesis

Tobias Amnell1, Alexandre David1, Elena Fersman1,
M. Oliver Möller2, Paul Petterson1 and Wang Yi1

1 Department of Information Technology, Uppsala University,
{tobiasa,adavid,elenaf,paupet,yi}@docs.uu.se

2 BRICS? ? ?, Department of Computer Science, Aarhus University,
omoeller@brics.dk

Abstract. We present a real-time extension of UML statecharts to enable modelling and
verification of real-timed constraints. For clarity, we shall consider a reasonable subset of the
rich UML statechart model and extend it with real-time constructs (clocks, timed guards,
invariants and real-time tasks). We have developed a a rule-based formal semantics for the
obtained formalism, called hierarchical timed automata (HTA). To use the existing tool
UPPAAL for formal verification, HTA are translated to enriched timed automata model.
We report on an XML based implementation of the translation from HTA to a network
of timed automata and present an example to illustrate our technique and report run-time
data for the formal verification part. We also report on a prototype implementation of the
code synthesis for the legOS platform.

1 Introduction

In this short paper, we briefly discuss two recent developments that are aimed to adopt the Uppaal

tool [LPY97] towards UML statechart compability.
First, we propose a timed version of the UML statecharts model appropriate for high-level

design and analysis of real-time systems. The model has a simple and clear semantics, and is
powerful enough to describe the characteristic features of real-time systems, such as scheduling
algorithms, timers, timeouts, continuous behaviors, etc. We refer to the formalism as hierarchical

timed automata (HTA). HTA are defined from a subset of UML statecharts extended with clocks,
integer variables, and channel synchronizations. In the next section, we present the chosen UML
subset and the real-time extensions. We also outline the formal syntax and semantics of HTA.

Secondly, we present a model called executable timed automata as an extension of timed au-
tomata allowing code synthesis. Most commercial real-time tools provide a code generation capa-
bility. However the translation is often done process by process without taking allocated resources
such as total CPU utilization into account. For the proposed model of executable timed automata
we are able to synthesize code with predictable timing behaviour.

The overall goal is a uniform framework for modeling, analysis, and code synthesis of real-time
systems. Figure 1 illustrates the current position of the Uppaal tool in the context of UML. The
tools exchange data through a XML/XMI interface mechanism. The UML tools need a translation
for compatibility with the specific formalism used. Then simulation, verification, debugging with
trace analysis, and ultimately code synthesis are carried out.

2 Hierarchical Timed Automata

Our HTA is essentially a subset of UML statecharts extended with real-time constructs. State
are either basic or composed of state machines themselves. Transitions are guarded, can entail
synchronization, and update local or global variables. For the real-time aspects, clocks, invariants,
and timed guards are added. In the following, we describe in some more detail, the chosen subset
of UML statecharts and the real-time extensions.

? ? ? Basic Research in Computer Science, Centre of the Danish National Research Foundation.

Simulator

Verifier

Code generation

Timed

automata

Properties

Trace

example

C

XML

UML

model

Trace

example

Requirements

UPPAAL

XML

Translator

UPPAAL formatUML tool format

Fig. 1. Modelling, analysis, and code synthesis framework.

Statecharts Subset. The UML statecharts subset is a hierarchically organized state machine
with XOR states, AND states and basic states. XOR and AND states are the building blocks of
the state hierarchy. They contain other sub states. In XOR states, sub states are related to each
other by “exclusive-or”, i.e. in an active XOR state exactly one sub state is active at a time. In
an active AND states, all sub states are active, i.e., they run in parallel. AND states cannot have
basic sub states. Note that the set of active states is a dynamic property of the system.

In HTA we do not allow transitions crossing hierarchy levels as in UML statecharts. Instead we
always use explicit entry and exit points represented as UML stubs. This makes it easier to give a
clear semantics and perform formal analysis. However, this does not have to hinder designers since
a sufficiently advanced editor can provide UML facilities by keeping the explicit representation
internally. Furthermore, since every legal UML model has a corresponding representation in the
HTA notation, we do not restrict the expressiveness.

HTA include shallow history as a special entry. Deep history is not addressed explicitly, since it
is straight forward to encode deep history using shallow history. Parallel components communicate
via CCS style handshaking synchronisations [Mil89]. The more general event model of UML can
be encoded via broadcast communication which will be supported in the near future.

Real-Time Extensions. We equip our HTA model with clocks, invariants, and urgency to
capture real-time behavior. Clocks are real-valued variables that increase their values synchronously
(i.e. at the same rate) whenever time elapses. All clocks start with the initial value 0 and may
be reset to 0 along transitions. This extension is influenced strongly by the timed automata
model [AD94] that has been studied thoroughly in the literature and has been successfully applied
in formal verification.

Invariants are boolean expressions that can be associated to states and are used to enforce
progress. They must evaluate to true as long as the state is active, i.e. the state must be left
before the invariant evaluates to false. This notion of progress is expressive enough to imitate the
run-to-completion step concept of UML statecharts.

Urgency is a concept that gives priority to actions over time delay. We propose to use this as
a property of transitions. If urgent transition is enabled, no time delay is possible, i.e., the next
step is an action step.

Formal Semantics of HTA. The complete formal syntax and semantics are defined in [DM01].
We give a brief sketch. Semantics is based on the configuration vector (ρ, µ, ν, θ) that is a snapshot
of the system. ρ : S → 2S captures the control location. It is a partial version of δ. µ : S → (Z)∗

gives the valuation of the local integers of a state. ν : S → (R+)∗ gives the real valuation of the
clocks visible at a given state. θ reflects the history and has a state and a variable component.

The semantics is then defined in term of a configuration vector transformation Tt(ρ, µ, ν, θ)
that performs a join, a transition, and a fork. We give here two of the rules:

TransitionEnabled(t : l
g,r,u
−−−→ l′, ρ, µ, ν)

action
(ρ, µ, ν, θ)

t
−→ Tt(ρ, µ, ν, θ)

Inv(l)(ρ, ν + d) ¬UrgentEnabled(ρ, µ, ν)
delay

(ρ, µ, ν, θ)
d
−→ (ρ, µ, ν + d, θ)

All the work resides in defining the predicates TransitionEnabled, UrgentEnabled, and Inv that
evaluate when a given transition is enabled with respect to a cascade join-transition-fork, when
urgent transitions are enabled with respect to synchronizations between transitions, and when
invariants are enabled.

Case Study: Pacemaker Example. We have implemented a translator from HTA to Uppaal

timed automata to experiment with formal verification of HTA and to compare the sizes between
a HTA and its corresponding representation as timed automata. The modeled system is the well-
known pacemaker example (see [DM01] for details). Using the implemented translation, we have
been able to check a number of safety and liveness properties of the system, indicating that formal
verification of HTA is indeed feasible. Table 1 shows a comparison between the input and the
output of the translator.

HTA model Uppaal model

control locations 35 45

transitions 47 177

variables and constants 33 72

clocks 6 6

Table 1. Translations of a hierarchical timed automaton description to an equivalent flat Uppaal model.

3 Code Synthesis

We propose a way to synthesize code from timed automata models that will have predictable
timing behavior. Inspired by the design philosophy of synchronous languages e.g. Esterel [BG92],
we assume that the underlying real-time operating system guarantees the synchrony hypothesis1.
We extend timed automata so that each node of an automaton is associated with a task (or
several tasks in the general case). A task is assumed to be an executable program with two given
parameters: its worst case execution time and its deadline. An example is shown in Figure 2.

Intuitively, a discrete transition in an extended timed automaton denotes an event releasing a
task and the clock constraints (guard) on the transition specifies all the possible arrival times of
the associated task. When the task is released it is inserted into the ready queue of the operating
system. Note that in the simple automaton shown in Figure 2, an instance of task A could be
released before the preceding instance of task P has been computed. This means that the scheduling
queue may contain at least P and A. In fact, instances of all four tasks may appear in the queue
at the same time.

Schedulability analysis. In the extended model, the tasks in the ready queue are executed
according to a chosen scheduling strategy, e.g. earliest deadline first. In [EWY99] it is shown
that the schedulability of extended automata can be checked by reachability analysis for non-
preemptive tasks. It is equivalent to prove that all schedulable states are schedulable. We are
working on extending this result to more general execution models.
1 That is, the underlying operating system calls take little time compared to the worst case execution

times and deadlines of tasks.

P2,10

A1,2

Q4,20

B1,4

x:=0

x:=0

x:=0

x:=0

x==20

x==40

x>10

b?

a?

Fig. 2. The system shown consists of 4 tasks as annotation on nodes, where P, Q are periodic with periods
20 and 40 respectively (specified by the constraints: x==20 and x==40), and A, B are sporadic or event
driven (by event a and b respectively). The pairs in the nodes give the computation times and deadlines
for tasks e.g. for P they are 2 and 10 respectively.

Synthesizing Code for Controllers. Timed automata annotated with tasks, as described
above, are used as a design model for control programs. The discrete transitions (i.e. the control
structure) of the automaton and the associated task are implemented using a small set of (common)
system calls and light-weight threads provided by the underlying real-time operating system. This
allows us to synthesize code for a variety of target platforms. As a result, if an automaton is
schedulable and the synchrony hypothesis is guaranteed by the underlying operating system the
generated code will, when executed, meet the constraints (timed and other) imposed on the tasks.

We have implemented a prototype that synthesizes C-code for the legOS operating system.
legOS runs on the LEGO Mindstorm control brick which includes an 8-bit Hitachi micro-controller.
We belive that this hardware is rather typical for embedded systems of the kind we are targeting.
Therefore our prototype give some promising evidence that our approach is viable.

4 Conclusion

We are approaching a situation where the Uppaal tool can manage imported UML statechart
models represented as HTA. Code generation from Uppaal models by means of higher level
concepts is work in progress. This opens a way to perform code generation and formal verification
in the same framework. Preliminary experiments are encouraging.

References

[AD94] Rajeev Alur and David Dill. A Theory of Timed Automata. Theoretical Computer Science,
2(126):183–236, 1994.

[BG92] G. Berry and G. Gonthier. The Synchronous Programming Language ESTEREL: Design, Se-
mantics, Implementation. Science of Computer Programming, 19:87–152, 1992.

[DM01] Alexandre David and M. Oliver Möller. From HUppaal to Uppaal: A translation from hierar-
chical timed automata to flat timed automata. Research Series RS-01-11, BRICS, Department
of Computer Science, University of Aarhus, March 2001.

[EWY99] Christer Ericsson, Anders Wall, and Wang Yi. Timed Automata as Task Models for Event-
Driven Systems. Proceedings of RTSCA’99, 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on Software

Tools for Technology Transfer, 1(1–2):134–152, October 1997.
[Mil89] R. Milner. Communication and Concurrency. Prentice–Hall, 1989.

