
A Real-Time Animator for Hybrid Systems

Tobias Amnell, Alexandre David

Wang Yi

Department of Computer Systems, Uppsala University

{adavid, tobiasa, yi} @docs.uu.se

Abstract

In this paper, we present a real time animator
for dynamical systems that can be modeled
as hybrid automata i.e. standard finite au-
tomata extended with differential equations.
We describe its semantic foundation and its
implementation in Java and C using CVODE,
a software package for solving ordinary diffe-
rential equations. We show how the animator
is interfaced with the Uppaal tool to demon-
strate the real time behavior of dynamical sys-
tems under the control of discrete components
described as timed automata.

1 Introduction

Uppaal is a software tool for modeling, sim-
ulation and verification of real time systems
that can be described as timed automata. In
recent years, it has been applied in a number
of case studies [4, 5, 6, 7, 8], which demon-
strates the potential application areas of the
tool. It suits best the class of systems that
contain only discrete components with real
time clocks. But it can not handle hybrid
systems, which has been a serious restriction
on many industrial applications. This work is
to extend the Uppaal tool with features for
modeling and simulation of hybrid systems.

A hybrid system is a dynamical system that
may contain both discrete and continuous
components whose behavior follows physical
laws [1], e.g. process control and automotive
systems. In this paper, we shall adopt hybrid

automata as a basic model for such systems.
A hybrid automaton is a finite automaton ex-
tended with differential equations assigned to
control nodes, describing the physical laws.
Timed automata [2] can be seen as special
class of hybrid automata with the equation
ẋ = 1 for all clocks x. We shall present an ope-
rational semantics for hybrid automata with
dense time and its discrete version for a given
time granularity. The discrete semantics of
a hybrid system shall be considered as an ap-
proximation of the continuous behavior of the
system, corresponding to sampling in control
theory.

We have developed a real time animator
for hybrid systems based on the discrete se-
mantics. It can be used to simulate the dy-
namical behavior of a hybrid system in a
real time manner. The animator implements
the discrete semantics for a given automa-
ton and sampling period, using the differen-
tial equation solver CVODE. Currently the
engine of the animator has been implemented
in Java and C using CVODE. We are aiming
at a graphical user interface for editing and
showing moving graphical objects and plot-
ting curves. The graphical objects act on the
screen according to physical laws described
as differential equations and synchronize with
controllers described as timed automata in
Uppaal.

The rest of the paper is organized as follows:
In the next section we describe the notion of
hybrid automata, the syntax and operational
semantics. Section 3 is devoted to implemen-
tation details of the animator. Section 4 con-

1

cludes the paper.

2 Hybrid Systems

A hybrid automaton is a finite automata ex-
tended with differential equations describing
the dynamical behavior of the physical com-
ponents.

2.1 Syntax

Let X be a set of real-valued variables X
ranged over by x, y, z etc including a time
variable t.

We use ẋ to denote the derivative (rate) of
x with respects to the time variable t. Note
that in general ẋ may be a function over X;
but ṫ = 1. We use Ẋ to stand for the set of
differential equations in the form ẋ = f(X)
where f is a function over X.

Assume a set of predicates over the values
of X; for example, 2x +1 ≤ 10 is such a pred-
icate. We use G ranged over by g, h etc to
denote the set of boolean combinations of the
predicates, called guards.

To manipulate variables, we use con-
current assignments in the form: x1 :=
f1(X) . . . xn := fn(X) that takes the current
values of the variables X as parameters for fi

and updates all xi’s with fi(X)’s simultane-
ously. We use Γ to stand for the set of con-
current assignments.

We shall study networks of hybrid au-
tomata in which component automata syn-
chronize with each other via complementary
actions. Let A be a set of action names. We
use Act = { a? | α ∈ A }∪{ a! | α ∈ A }∪{ τ }
to denote the set of actions that processes can
perform to synchronize with each other, where
τ is a distinct symbol representing internal ac-
tions.

A hybrid automaton over X, Ẋ, G, Act and
Γ is a tuple 〈L, E, I, T, L0, X0〉 where

• L is a finite set of names standing for
control nodes.

• E is the equation assignment function:
E : L → 2Ẋ .

• I is the invariant assignment function: I :
L → G which for each node l, assigns an
invariant condition I(l).

• T is the transition relation: T ⊆ L×(G×
Act×Γ)×L. We denote (l, g, α, γ, l′) by

l
g,α,γ
−−−→ l′. For simplicity, we shall use

l
g,γ
−−→ l′ to stand for l

g,τ,γ
−−−→ l′.

• l0 ∈ L is the initial node.

• X0 is the initial variable assignment.

To study networks of automata, we intro-
duce a CCS-like parallel composition opera-
tor. Assume that A1, ..., An are automata.
We use A to denote their parallel composi-
tion. The intuitive meaning of A is similar
to the CCS parallel composition of A1, ..., An

with all actions being restricted, that is, A =
(A1|...|An)\Act. Thus only synchronization
between the components Ai is possible. We
call A a network of automata. We simply view
A as a vector and use Ai to denote its ith com-
ponent.

Example 1 In figure 1 we give a simple
example hybrid automaton which describes
a bouncing ball and a touch sensitive floor.
The left automaton defines three variables,
x, the horizontal distance from the starting
point, the height y and the speed upwards
u. Initially the x-speed is 1, the ball is at
20 m height and the gravitational constant is
9.8. The variables will change according to
their equations until the transition becomes
enabled when y <= 0. The middle automa-
ton is a model of a sensor that will issue a
signal when the ball hits the floor. The right
automaton is on the Uppaal side. It synchro-
nizes with the sensor signal and resets a clock
z. If the intervals between signals are longer
than 5 time units it will return to the initial
location, but the first interval that is shorter
will lead to the location low bounces.

2

bounce!

init

y<=0
u:=-0.8*u

bounce?

z:=0
bounce?
z>5

z<=5

y<=0
y=20

y= u
u=-9.8

x=0

u=0

x=1
.

.
.

low_bounces

Figure 1: Bouncing ball with touch sensitive
floor and control program.

Example 2 As a more complex example we
show a model of an industrial robot. In figure
2 a schematic view of robot with a jointed arm
is shown. The inner arm can be turned 360
degrees around the z-axis, it can also be raised
and lowered between 40 and 60 degrees. The
outer arm is positioned at the tip of the inner
arm and can be raised and lowered.

y

z

θ

φ
x

ξ

Figure 2: Industrial robot with three degrees
of freedom.

In figures 3 and 4 the hybrid automaton
controlling the motion of the robot is shown.
We do not show the simple control automaton
that starts and stops the execution.

When the execution starts the inner
arm will stand still until it receives the

move2pickup? signal from the control au-
tomaton. Then the arm will start turning and
lowering the arm so that the gripping tool on
the outer arm can reach a table where it will
pick up an object. When th inner arm reaches
a position in front of the table it will try to
synchronize with the outer arms automaton
on the signal pickup! . After the pickup
the robot will raise and turn to another table
where it will again try to synchronize with the
outer arm on release! . After the release
the robot will return to the original position
and issue the back! signal to the controller.

φ=0
θ=0

.

.

φ=0
θ=0

.

.

φ=0; θ=45init

.

.

.

.

φ=1.5
θ=0.5

.

.

θ=0

.

.φ=2
θ=0

.

.

φ=0
θ=1

.

.

move2pickup? φ>30

θ<40
θ<40

φ>30

θ>45

pickup!

φ>270 & θ<40

φ>270 & θ>=40

atrelease!

release?

atrelease!

θ>60

φ>270
θ>60

φ>360

θ>45
back!

back!

φ>360

φ=2
θ=−1 θ=−1

φ=2

φ=0
θ=−1

.

.φ=1.5
θ=0

.

.

φ=2
θ=1

.

.

φ=0

pickup!

Figure 3: Robot inner arm automaton

The automaton, in figure 4, controlling the
outer arm is simpler since the outer arm only
has one degree of freedom. It starts with
lowering the arm when the controller sends a
move2pickup2!. When it comes to the right
angle it will stop and wait for the inner arm
to do the same, then they will synchronize on
pickup. After the pickup the arm will raise
until it reaches its max (30 degrees), then it
will wait for the inner arm to reach the release
position. When the robot is at the release ta-
ble the outer arm will descend and then re-
lease the object in its grip. On the return to
the original position the outer arm will rise

3

again.

.
ξ=0 .

ξ=0

.
ξ=0

init: ξ=15

ξ>15

.
ξ=−1

pickup?

ξ>30

ξ<10

move2pickup2?

.
ξ=−1

.
ξ=0.5
.

atrelease?
release!

ξ<10

ξ=1

Figure 4: Robot outer arm automaton

2.2 Semantics

To develop a formal semantics for hybrid au-
tomata we shall use variable assignments. A
variable assignment is a mapping which maps
variables X to the reals. For a variable as-
signment σ and a delay ∆ (a positive real),
σ + ∆ denotes the variable assignment such
that

(σ + ∆)(x) = σ(x) +

∫
∆

ẋdt

For a concurrent assignment γ, we use γ[σ]
to denote the variable assignment σ′ with
σ′(x) = V al(e, σ) whenever (x := e) ∈ γ and
σ′(x′) = σ(x′) otherwise, where V al(e, σ) de-
notes the value of e in σ. Given a guard g ∈ G
and a variable assignment σ, g(σ) is a boolean
value describing whether g is satisfied by σ or
not.

A node vector l of a network A is a vec-
tor of nodes where li is a location of Ai. We
write l[l′i/li] to denote the vector where the
ith element li of l is replaced by l′i.

A state of a network A is a configuration
(l, σ) where l is a node vector of A and σ is a
variable assignment.

The semantics of a network of automata A
is given in terms of a labelled transition sys-

tem with the set of states being the configu-
rations. The transition relation is defined by
the following three rules:

• (l, σ)
α
; (l[l′i/li], γi[σ]) if li

gi α,γi
−→ l′i and

gi(σ) for some li, gi,α,γi.

• (l, σ)
τ
; (l[l′i/li, l

′

j/lj], (γj ∪ γi)[σ]) if

li
gi a! γi
−→ l′i, lj

gj a? γj
−→ l′j , gi(σ), gj(σ), and

i 6= j, for some li, lj , gi, gj , a, γi, γj .

• (l, σ)
∆
; (l, σ +∆) if I(l)(σ) and I(l)(σ +

∆) for all positive real numbers ∆.

where I(l) =
∧

i I(li).
The execution of a hybrid automata then

becomes an alternating sequence of delay and
action transitions in the form:

s0
∆0
;(l0, σ0 + ∆0)

α0
;(l1, σ1)

∆1
;(l1, σ1 + ∆1)

α1
;

(l2, σ2) . . . (li, σi)
∆i
;(li, σi + ∆i)

αi
;(li+1, σi+1)

2.3 Tick semantics

The operational semantics above defines how
an automaton will behave at every real-valued
time point with arbitrarily fine precision. In
fact, it describes all the possible runnings of
a hybrid automata.

In practice, a “sampling” technique is of-
ten needed to analyze a system. Instead of
examining the system at every time point,
which often is impossible, only a finite num-
ber of time points are chosen to approximate
the full system behavior. Based on this idea,
we shall adopt a time–step semantics called
δ–semantics relativized by the granularity δ,
which describes how a hybrid system shall
behave in every δ time units. In practical
applications, the time granularity δ is cho-
sen according to the nature of the differen-
tial equations involved. In a manner similar
to sampling of measured signals the sampling
interval should be short for rapidly changing
functions. To achieve finer precision, we can
choose a smaller granularity.

We use the distinct symbol χ to denote the
sampled time steps. Now we have a discrete
semantics for hybrid automata.

4

• (l, σ)
χ
7→(l, σ + δ) if (l, σ)

δ
;(l, σ + δ) and

• (l, σ)
α
7→(l

′

, σ′) if (l, σ)
α
;(l

′

, σ′)

We use βi to range over {χ, τ} represent-
ing the discrete transitions. The “sampled”
runnings of a hybrid automaton will be in the
form:

(l0, σ0)
β1
7→(l1, σ1) . . . (li, σi)

βi+1

7→ (li+1, σi+1) . . .
In the following section, we shall present a

real time animator based on the δ-semantics.
For a given hybrid automaton, the anima-
tor works as an interpretor computing the δ-
transitions step by step using CVODE, a dif-
ferential equations solver.

3 Implementation

Our goal is to extend the Uppaal tool to deal
with hybrid systems. The Uppaal GUI is
written in Java and the differential equation
solver that we have adopted, CVODE, is writ-
ten in C. This gives the natural architecture of
the animator: the animator itself with the ob-
jects is written in Java and the engine of the
animator in C, connected through the Java
native interface (JNI). The two main layers of
the implementation are the animation system
and the CVODE layers.

3.1 The Animation System Layer

The system to be modeled is defined as a col-
lection of objects. Each object is described
by a hybrid automaton with its corresponding
variables. Every state of the hybrid automa-
ton has a set of equations and transitions.
The equations, conditions (guards) and as-
signments are given as logical/arithmetic ex-
pressions with ordinary mathematical func-
tions such as sine, cosine . . . , and also user
defined functions.

The evaluation of the object equations, con-
ditions and assignments is written in C. Each
animator object, i.e. a hybrid process, is as-
sociated with one Uppaal process that is an
abstraction of the hybrid part and a bridge

to Uppaal. The abstraction is modeled as
a stub process that performs the same syn-
chronizations as the hybrid counterpart. This
choice of implementation is motivated by the
desire to model-check the rest of the Uppaal

processes as a closed system. Figure 5 shows
the association of animator objects with Up-

paal automata.

uppaal

simulator

uppaal

plug-in

controller model environment model

Figure 5: Association between animator ob-
jects and Uppaal automata.

3.2 The CVODE Layer

At the heart of the animator we have used
the CVODE [9] solver for ordinary differential
equations (ODE’s). This is a freely available
ODE solver written in C, but based on two
older solvers in Fortran.

The mathematical formulation of an initial
value ODE problem is

ẋ = f(t, x), x(t0) = x0, x ∈ R
N . (1)

Note that the derivative is only first order.
Problems containing higher order differential
equations can be transformed to a system of
first order. When using CVODE one gets a
numerical solution to (1) as discrete values xn

at time points tn.

CVODE provides several methods for solv-
ing ODE’s, suitable for different types of prob-
lem. But since we aim at general usage of the
animator engine we cannot assume any cer-
tain properties of the system to solve. There-
fore we only use the full dense solver and as-

5

sume that the system is well behaved (non-
stiff in numerical analysis terminology). This
will give neither the most memory efficient nor
the best solution, but the most general.

We use one CVODE solver for the whole
system. This is set up and started with new
initial values at the beginning of each delay
transition. The calculations are performed
stepwise, one “tick” (δ–transition) at a time.
After each tick all the conditions of the cur-
rent state are checked, if any is evaluated to
true one has to be taken. If an assignment on
the transition changes a variable the solver
must be reinitialized before the calculations
can continue.

It is worth pointing out that the tick length
δ is independent of the internal step size used
by the ODE solver, the solver will automat-
ically choose an appropriate step size accor-
ding to the function calculated and accept-
able local error of the computation. From the
solvers point of view the tick intervals can be
seen as observation or sampling points.

After each tick the system variables are re-
turned to the Java side of the animator where
they are used either to update a graph or as
an input to move graphical objects.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Figure 6: Bouncing ball on touch sensitive
floor that continues until bounces are shorter
than 1 second

Example 1, continued In figure 6 a plot of
the system described in figure 1 is shown. The
plot shows the height and the distance of the
bouncing ball. Not shown in the figure is that
the touch sensitive floor will create a signal
every time the ball hits the floor, and that the
system will continue running until the time
between bounces is less than 1 second.

−2

−1

0

1

2

3 −3
−2

−1
0

1
2

3

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Y AxisX Axis

Z
 A

xi
s

Figure 7: The movement of the robots outer
arm.

Example 2, continued For the robot ex-
ample we only show, in figure 7, how the outer
arm will raise and turn during the execution of
the system. In order to get a better view, the
plot only shows the movement from the ini-
tial position to the release. The robot starts
at the right and turns counter clock-wise.

4 Conclusion

We have presented a real time animator for
hybrid automata. For a given hybrid au-
tomaton modeling a dynamical system and a
given time granularity representing sampling
frequency, the animator demonstrates a pos-
sible running of the system in real time, which
is a sequence of sampled transitions. The an-
imator has been implemented in Java and C
using CVODE, a software package for solving

6

differential equations. As future work, we aim
at a graphical user interface for editing and
showing moving graphical objects and plot-
ting curves. The graphical objects act on the
screen according to the differential equations
and synchronize with controllers described as
timed automata in Uppaal.

References

[1] Thomas A. Henzinger. The Theory of
Hybrid Automata. Proceedings of the
11th Annual IEEE Symposium on Logic
on Computer Science (LICS 96), pp. 278-
292.

[2] R. Alur and D.L. Dill. A Theory of
Timed Automata. Theoretical Computer
Science, 125:183-235,1994.

[3] J. Bengtsson, K.G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Uppaal: a
Tool-Suite for Automatic Verification of
Real-time Systems. In R. Alur, T.A. Hen-
zinger, and E.D. Sontag, editors, Hybrid
Systems III, Lecture Notes in Computer
Science 1066, pages 232-243. Springer-
Verlag 1996.

[4] K̊are J. Kristoffersen, Kim G. Larsen,
Paul Pettersson and Carsten Weise. Ex-
perimental Batch Plant - VHS Case
Study 1 Using Timed Automata and
UPPAAL. Deliverable of EPRIT-LTR
Project 26270 VHS (Verification of Hy-
bird Systems).

[5] Magnus Lindahl, Paul Pettersson and
Wang Yi Formal Design and Analysis
of a Gear Controller. In Proceedings of
the 4th International Workshop on Tools
and Algorithms for the Construction and
Analysis of Systems. Gulbenkian Foun-
dation, Lisbon, Portugal, 31 March - 2
April, 1998. LNCS 1384, pages 281-297,
Bernhard Steffen (Ed.).

[6] Henrik Lönn and Paul Pettersson. For-
mal Verification of a TDMA Protocol

Start-Up Mechanism. In Proceedings of
1997 IEEE Pacific Rim International
Symposium on Fault-Tolerant Systems,
pages 235-242. Taipei, Taiwan, 15-16 De-
cember, 1997.

[7] Klaus Havelund, Arne Skou, Kim G.
Larsen and Kristian Lund. Formal Mod-
elling and Analysis of an Audio/Video
Protocol: An Industrial Case Study Us-
ing UPPAAL. In Proceedings of the 18th
IEEE Real-Time Systems Symposium,
pages 2-13. San Francisco, California,
USA, 3-5 December 1997.

[8] P.R. D’Argenio, J.-P. Katoen, T.C.
Ruys, and J. Tretmans. The bounded re-
transmission protocol must be on time!
In Proceedings of the 3rd International
Workshop on Tools and Algorithms for
the Construction and Analysis of Sys-
tems. Enschede, The Netherlands, April
1997. LNCS 1217, pages 416-431.

[9] S. Cohen and A. Hindmarsh. CVODE, a
Stiff/Nonstiff ODE Solver in C. Comput-
ers in Physics, 10(2):138-43, March-April
1996.

7

