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Abstract. This chapter is to provide a tutorial and pointers to resatid related
work on timed automata with a focus on semantical and algwiit aspects of
verification tools. We present the concrete and abstractisgées of timed au-
tomata (based on transition rules, regions and zones)sidagproblems, and
algorithms for verification. A detailed description on DBWifference Bound
Matrices) is included, which is the central data structwekid several verifica-
tion tools for timed systems. As an example, we give a brigbauction to the
tool UPPAAL.

1 Introduction

Timed automata is a theory for modeling and verification af tgne systems. Exam-
ples of other formalisms with the same purpose, are timed Rets, timed process
algebras, and real time logics [BD91,RR88,Yi91,NS94, Al3a99]. Following the
work of Alur and Dill [AD90,AD94], several model checkersigebeen developed with
timed automata being the core of their input languaggsYov97,LPY97]. It is fair
to say that they have been the driving force for the appticaéind development of the
theory. The goal of this chapter is to provide a tutorial oneil automata with a focus
on the semantics and algorithms based on which these taoteseloped.

In the original theory of timed automata [AD90,AD94], a tichautomaton is a finite-
state Bichi automaton extended with a set of real-valueidbias modeling clocks.
Constraints on the clock variables are used to restrict¢hevwior of an automaton, and
Buchi accepting conditions are used to enforce progregsepties. A simplified ver-
sion, namelyTimed Safety Automaia introduced in [HNSY94] to specify progress
properties using local invariant conditions. Due to its @ieity, Timed Safety Au-
tomata has been adopted in several verification tools feediautomat@.g. UPPAAL
[LPY97] and Kronos [Yov97]. In this presentation, we shaltfis on Timed Safety Au-
tomata, and following the literature, refer themTamed Automatar simply automata
when it is understood from the context.

The rest of the chapter is organized as follows: In the nectia®, we describe the syn-
tax and operational semantics of timed automata. The seatsm addresses decision
problems relevant to automatic verification. In the litaraf the decidability and unde-
cidability of such problems are often considered to be tmel&amental properties of a
computation model. Section 3 presents the abstract veo§ibie operational semantics
based on regions and zones. Section 4 describes the dattustrDBM (Difference



Bound Matrices) for the efficient representation and mdaipan of zones, and opera-
tions on zones, needed for symbolic verification. Sectioiveégg brief introduction to
the verification tool WPAAL. Finally, as an appendix, we list the pseudo-code for the
presented DBM algorithms.

2 Timed Automata

A timed automaton is essentially a finite automaton (thatgsagh containing a finite
set of nodes or locations and a finite set of labeled edgeshést with real-valued
variables. Such an automaton may be considered as an almstrdel of a timed sys-
tem. The variables model the logical clocks in the systeat, dhe initialized with zero
when the system is started, and then increase synchronaeitislthe same rate. Clock
constraintd.e. guards on edges are used to restrict the behavior of the atdomA
transition represented by an edge can be taken when thesolatiles satisfy the guard
labeled on the edge. Clocks may be reset to zero when a toamisitaken.

The first exampleFig. 1(a) is an example timed automaton. The timing behavior
the automaton is controlled by two clocksandy. The clockz is used to control the
self-loop in the locatiomoop. The single transition of the loop may occur wheg- 1.
Clocky controls the execution of the entire automaton. The automalay leavestart
at any time point whem is in the interval between 10 and 20; it can go frtoop to
endwheny is between 40 and 5@fc.

10<=y
y:=0

40<=y<=50
leave
y:=0

(a) (b)

Fig. 1. Timed Automata and Location Invariants

Timed Biichi Automata guard on an edge of an automaton is only an enabling con-
dition of the transition represented by the edge; but it cainforce the transition to
be taken. For instance, the example automaton may stayefioi@any location, just



idling. In the initial work by Alur and Dill [AD90], the prot#m is solved by introduc-
ing Blchi-acceptance conditions; a subset of the locatiotiee automaton are marked
as accepting, and only those executions passing througtcaepting location infinitely
often are considered valid behaviors of the automaton. Aesxample, consider again
the automaton in Fig. 1(a) and assume #vyad is marked as accepting. This implies
that all executions of the automaton must visitd infinitely many times. This imposes
implicit conditions onstart andloop. The locationstart must be left when the value
of y is at most 20, otherwise the automaton will get stucktart and never be able to
enterend. Likewise, the automaton must leale®p wheny is at most 50 to be able to
enterend.

Timed Safety AutomatA more intuitive notion of progress is introducedimed safety
automataHNSY94]. Instead of accepting conditions, in timed safetiyjomata, loca-
tions may be put local timing constraints calledation invariants An automaton may
remain in a location as long as the clocks values satisfyrth&riant condition of the
location. For example, consider the timed safety autometdiig. 1(b), which corre-
sponds to the Biichi automaton in Fig. 1(a) wétid marked as an accepting location.
The invariant specifies a local condition ttsiart andend must be left whery is at
most 20 andoop must be left whery is at most 50. This gives a local view of the
timing behavior of the automaton in each location.

In the rest of this chapter, we shall focus on timed safetgraata and refer such au-
tomata agimed Automatar simply automata without confusion.

2.1 Formal Syntax

Assume a finite set of real-valued variablfasnged over by, y etcstanding for clocks
and a finite alphabeX ranged over by, b etcstanding for actions.

Clock ConstraintsA clock constraint is a conjunctive formula of atomic coasits of
the formz ~ norz —y ~nforz,y € C,~€ {<,<,=,>,>}andn € N. Clock
constraints will be used as guards for timed automata. W& (&gto denote the set of
clock constraints, ranged over hyand also byD later.

Definition 1 (Timed Automaton) A timed automatot is a tuple(N, ly, E, I) where
— N is afinite set of locations (or nodes),
— lg € N is the initial location,
- EC N x B(C) x X x 2¢ x N is the set of edges and

— I: N — B(C) assigns invariants to locations

We shall writel 2%% 1" when(l, g, a,r,1') € E.



As in verification toolse.g. UPPAAL [LPY97], we restrict location invariants to con-
straints that are downwards closed, in the form< n or z < n wheren is a natural
number.

Concurrency and Communication To model concurrent systems, timed automata
can be extended with parallel composition. In process afgglvarious parallel com-
position operators have been proposed to model differgretcas of concurrency (see
e.9g.CCS and CSP [Mil89,Hoa78]). These algebraic operators eaadbpted in timed
automata. In the BrPAAL modeling language [LPY97], the CCS parallel composition
operator [Mil89] is used, which allows interleaving of acts as well as hand-shake
synchronization. The precise definition of this operataiven in Section 5.

Essentially the parallel composition of a set of automathdsproduct of the automata.
Building the product automaton is an entirely syntacticaldomputationally expensive
operation. In WPAAL, the product automaton is computed on-the-fly during vexific
tion.

2.2 Operational Semantics

The semantics of a timed automaton is defined as a transitgiara where a state or
configuration consists of the current location and the eunralues of clocks. There are
two types of transitions between states. The automaton ittasr éelay for some time

(a delay transition), or follow an enabled edge (an actiandition).

To keep track of the changes of clock values, we use funckinosn asclock assign-
mentsmappingC to the non-negative real8 ;. Letw, v denote such functions, and use
u € g to mean that the clock values denotedibgatisfy the guarg. Ford € R, let

u + d denote the clock assignment that mapscadl C to u(z) + d, and forr C C, let

[r — O]u denote the clock assignment that maps all clocksto 0 and agree with,
for the other clocks i€ \ r.

Definition 2 (Operational Semantics)The semantics of a timed automaton is a tran-
sition system (also known as a timed transition system) evhi@tes are pairgl, u),
and transitions are defined by the rules:

- (l,u) 4, {l,u+d)if u € I(l) and(u + d) € I(l) for a non-negative reaf € R

g9,a,T

—{luy 5 () ifl 2251 u € g,u' = [r— Oluandu’ € I(1')

2.3 \Verification Problems

The operational semantics is the basis for verificationmét automata. In the follow-
ing, we formalize decision problems in timed automata basetlansition systems.



Language Inclusion A timed actions a pair(t,a), wherea € X' is an action taken by

an automatod aftert € R, time units sinced has been started. The absolute tiime
is called atime-stampf the actiona. A timed traces a (possibly infinite) sequence of
timed actiong = (t1, a1)(t2, a2)...(t;, a;) ... wheret; < ¢;,, foralli > 1.

Definition 3 A run of a timed automatol = (N, o, E, I) with initial state (lo, ug)
over a timed tracé = (t1,a1)(t2, a2)(t3, a3)... is a sequence of transitions:

(lo;uo) Ad_l* (thl) d_2>a_2> (lz,u2) d_3>£> (l3,u3) s

satisfying the conditio; = ¢;_y + d; forall ¢ > 1.

The timed languagé(.A) is the set of all timed tracesfor which there exists a run of
A overé.

Undecidability The negative result on timed automata as a computation nietiet
the language inclusion checking problém to checkZ(A) C L(B) is undecidable
[AD94,ACH94]. Unlike finite state automata, timed automiataot determinizable in
general. Timed automata can not be complemented eithe¢ristithe complement of
the timed language of a timed automaton may not be describadimed automaton.

The inclusion checking problem will be decidable3fin checkingL(A) C L(B) is
restricted to the deterministic class of timed automataeRech effort has been made
to characterize interesting classes of determinizabledisysteme.g.event-clock au-
tomata [AFH99] and timed communicating sequential proee$¥J94]. Essentially,
the undecidability of language inclusion problem is dueht arbitrary clock reset. If
all the edges labeled with the same action symbol in a tim&zhaaton, are also labeled
with the same set of clocks to reset, the automaton will berdenizable. This covers
the class of event-clock automata [AFH99].

We may abstract away from the time-stamps appearing in timaegs and define the
untimed languagé.,.;im.q(.A) as the set of all traces in the fompazas . . . for which
there exists a timed trade= (1, a1 ) (t2, a2)(t3, a3)... in the timed language oAl.

The inclusion checking problem for untimed languages isd#date. This is one of the
classic results for timed automata [AD94].

Bisimulation Another classic result on timed systems is the decidahilftyimed
bisimulation [Cer92]. Timed bisimulation is introduced faned process algebras[Yi91].
However, it can be easily extended to timed automata.

Definition 4 A bisimulationR over the states of timed transition systems and the al-
phabet™ U R, is a symmetrical binary relation satisfying the followiogndition:

for all (s1,s2) € R, if s; = s} for somes € ¥ UR, ands}, thens, = s, and
(s},sh) € R for somes),.



Two automata are timed bisimilar iff there is a bisimulatimontaining the initial states
of the automata.

Intuitively, two automata are timed bisimilar iff they perfn the same action transition
at the same time and reach bisimilar states. In [Cer92] sih@avn that timed bisimula-
tion is decidable.

We may abstract away from timing information to establistirbulation between au-
tomata based actions performed only. This is captured bgdkien of untimed bisim-

ulation. We defines < s’ if s % s’ for some real numbet. Untimed bisimulation is
defined by by replacing the alphabet wihu {e} in Definition 4. As timed bisimula-
tion, untimed bisimulation is decidable [LW97].

Reachability Analysis Perhaps, the most useful question to ask about a timed automa
ton is the reachability of a given final state or a set of finaleg. Such final states may
be used to characterize safety properties of a system.

Definition 5 We shall write{l, u) — (I',u') if (I,u) = (I',u') for somesr € X UR,.
For an automaton with initial statélg,uo), (I, u), is reachable iff(ly, uo)—* (I, u).
More generally, given a constraint € B(C) we say that the configuratiofi, ¢) is
reachable if{l, u) is reachable for some satisfyingg.

The notion of reachability is more expressive than it appéarbe. We may specify
invariant properties using the negation of reachabiliperties, and bounded liveness
properties using clock constraints in combination withaloproperties on locations
[LPYO01] (see Section 5 for an example).

The reachability problem is decidable. In fact, one of thgopmadvances in verification
of timed systems is the symbolic technique [Dil89,YL93,Hre&,YPD94,LPY95], de-
veloped in connection with verification tools. It adopts itlea from symbolic model
checking for untimed systems, which uses boolean formolasgresent sets of states
and operations on formulas to represent sets of state ticarssilt is proven that the
infinite state-space of timed automata can be finitely pamitd into symbolic states
using clock constraints known asnegBel57,Dil89]. A detailed description on this is
given in Section 3 and 4.

3 Symbolic Semantics and Verification

As clocks are real-valued, the transition system of a timgdraaton is infinite, which
is not an adequate model for automated verification.

3.1 Regions, Zones and Symbolic Semantics

The foundation for the decidability results in timed autéana based on the notion of
region equivalencever clock assignments [AD94,ACD93].



Definition 6 (Region Equivalence)Let k be a function, called &lock ceiling map-
ping each clock: € C to a natural numberk(z) (i.e. the ceiling ofz). For a real
numberd, let {d} denote the fractional part af, and|d| denote its integer part. Two
clock assignments, v are region-equivalentdenoteds ~, v, iff

1. for all z, either|u(z)| = |v(x)] or bothu(z) > k(z) andv(x) > k(z),
2. forall z, if u(z) < k(z) then{u(z)} = 0iff {v(z)} =0and

3. forall z,y if u(z) < k(z) andu(y) < k(y) then{u(z)} < {u(y)} iff {v(z)} <
{v(y)}

Note that the region equivalence is indexed with a clockrogit. When the clock ceil-
ing is given by the maximal clock constants of a timed aut@mainder consideration,
we shall omit the index and write- instead. An equivalence clagg induced by~ is
called aregion, where[u] denotes the set of clock assignments region-equivalent to
The basis for a finite partitioning of the state-space of @trautomaton is the follow-
ing facts. First, for a fixed number of clocks each of which dasaximal constant, the
number of regions is finite. Second/~ v implies (I, u) and(l,v) are bisimilar w.r.t.
the untimed bisimulation for any locatéonf a timed automaton. We use the equivalence
classes induced by the untimed bisimulation as symbolial§etract) states to construct
a finite-state model called thregion graphor region automatorof the original timed
automaton. The transition relation between symbolic stateefined as follows:

Fig. 2. Regions for a System with Two Clocks

= (I, [u]) = {,[v]) if {I,u) 4, (I, v) for a positive real numbet and
— (I, [u]) = (I, [v]) if (I,u) = (I',v) for an actiona.

Note that the transition relatiog is finite. Thus the region graph for a timed automaton
is finite. Several verification problems such as reachgtalitalysis, untimed language
inclusion, language emptiness [AD94] as well as timed higittion [Cer92] can be
solved by techniques based on the region construction.

However, the problem with region graphs is the potential@sipn in the number of re-
gions. In fact, it is exponential in the number of clocks a#l a®the maximal constants



appearing in the guards of an automaton. As an example,dsmiSig. 2. The figure
shows the possible regions in each location of an automaithntwo clocksz andy.
The largest number compared#as 3, and the largest number compared g 2. In
the figure, all corner points (intersections), line segreeahd open areas are regions.
Thus, the number of possible regions in each location ofetkésnple is 60.

A more efficient representation of the state-space for tisngdmata is based on the
notion of zoneandzone-graphs[Dil89,HNSY92,YL93,YPD94,HNSY94]. In a zone
graph, instead of regions, zones are used to denote syndiates. This in practice
gives a coarser and thus more compact representation otateespace. The basic
operations and algorithms for zones to construct zonehgrape described in Section 4.
As an example, a timed automaton and the corresponding zapé gor reachability

graph) is shown in Fig. 3. We note that for this automaton theezgraph has only 8
states. The region-graph for the same example has overtg8.sta

K off,x = 0 >>
(Off z > 0)
x>10 5
bress? press?
; =0 (d|m T = 0)
; ?
dim press: (bright, z = 0) (d'm z2>0)
x<=10 - N
press? (off, z > 10) > (bright, z < 10)

i

(bright, z > 0)

Fig. 3. A Timed Automaton and its Zone Graph

A zone is a clock constraint. Strictly speakingzaneis the solution set of a clock
constraint, that is the maximal set of clock assignmentsfgatg the constraint. It
is well-known that such sets can be efficiently representetistored in memory as
DBMs (Difference Bound MatricgqdBel57]. For a clock constrainD, let [D] denote
the maximal set of clock assignments satisfyingin the following, to save notation,
we shall useD to stand fof D] without confusion. Thei3(C) denotes the set of zones.

A symbolic state of a timed automaton is a p@irD) representing a set of states of the
automaton, wheréis a location andD is a zone. A symbolic transition describes all
the possible concrete transitions from the set of states.

Definition 7 Let D be a zone and a set of clocks. We defide" = {u+d|u € D,d €
R4} andr(D) = {[r — OJu | u € D}. Let~ denote the symbolic transition relation
over symbolic states defined by the following rules:

— (I, D) ~ (1, DY A I(D))



— (I,D) ~ (I',r(D Ag) NI("))if 1 225 1

We shall study these operations in details in Section 4 wigrés written asup(D)
andr(D) asr eset (D, r:=0). It will be shown that the set of zon#K() is closed un-
der these operations, in the sense that the result of thatipes is also a zone. Another
important property of zones is that a zone has a canoniaal.farzoneD is closed un-
der entailmenbr just closed for short, if no constraintin can be strengthened without
reducing the solution set. The canonicity of zones meanddahaach zond € B(C),
there is a unique zonR’ € B(C) such thatD andD’ have exactly the same solution set
and D’ is closed under entailment. Section 4 describes how to ctergnd represent
the canonical form of a zone. It is the key structure for thieieht implementation of
state-space exploration using the symbolic semantics.

The symbolic semantics corresponds closely to the ope@taemantics in the sense
that(l, D) ~ (I', D') implies for allu’ € D', (I,u) — {l',u') for someu € D. More
generally, the symbolic semantics is a correct and fullatt@rization of the operational
semantics given in Definition 2.

Theorem 1 Assume a timed automaton with initial stétg, ug).
1. (soundness)o, {uo}) ~* (l¢, Dy) implies(ly, uo) —=* (lf,us) forall uy € Dy.

2. (Completenessjo, ug) —* (I, uy) implies(ly, {ug}) ~* (lz, Dy) for someD
such thatuy € Dy

The soundness means that if the initial symbolic staje{uo}) may lead to a set of
final stategl;, D) according to-, all the final states should be reachable according to
the concrete operational semantics. The completenesssrtearif a state is reachable
according to the concrete operational semantics, it shioeildossible to conclude this
using the symbolic transition relation.

Unfortunately, the relatior- is infinite, and thus the zone-graph of a timed automaton
may be infinite, which can be a problem to guarantee terntinati a verification pro-
cedure. As an example, consider the automaton in Fig. 4. @he=\of clocky drifts
away unboundedly, inducing an infinite zone-graph.

The solution is to transform.€. normalize) zones that may contain arbitrarily large
constants to their representatives in a class of zones wdwes#tants are bounded by
fixed constantg.g.the maximal clock constants appearing in the automatonguesi
abstraction technique similar to the widening operatioal@3]. The intuition is that
once the value of a clock is larger than the maximal constatité automaton, it is no
longer important to know the precise value of the clock, miy ¢the fact that it is above
the constant.

3.2 Zone-Normalization for Automata without Difference Constraints

In the original theory of timed automata [AD94], differerem@nstraints are not allowed
to appear in the guards. Such automata (whose guards contgiatomic constraints in
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(loop,z < 10 A z = y)
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x==10 4
x:=0 (loop,z < 10 Ay <30Ay —z = 20)
¥
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(end, z = y)

Fig. 4. A Timed Automaton with an Infinite Zone-Graph

the formz ~ n) are known as diagonal-free automata in the literature GB98]. For
diagonal-free automata, a well-studied zone-normabragirocedure is the so-called
k-normalizationoperation on zones [Rok93,Pet99]. It is implemented inisdwerifi-
cation tools for timed automatag. UPPAAL to guarantee termination.

Definition 8 (k-Normalization) Let D be a zone and a clock ceiling. The semantics
of thek-normalization operation on zones is defined as follows:

normy (D) = {ulu ~ v,v € D}

Note that the normalization operation is indexed by a cloekirgy k. According to
[Rok93,Pet99]normy (D) can be computed from the canonical representatidn by

1. removing all constraints of the form< m,x < m,z —y < mandx —y < m
wherem > k(x),

2. replacing all constraints of the form> m,z > m,z —y > mandz —y > m
wherem > k(z) with z > k(z) andz — y > k() respectively.

Let [D]; denote the resulted zone by the above transformation. $eisactly the nor-
malized zone as defined in Definition 8, that{B)];, = {u|u ~, v,v € D}

As an example, the normalized zone-graph of the automatdtigin 4 is shown in
Fig. 5 where the clock ceiling is given by the maximal clockstants appearing in the
automaton.

Note that for a fixed number of clocks with a clock ceilibgthere can be only finitely
many normalized zones. The intuition is that if the congtalibwed to use are bounded,
one can write down only finitely many clock constraints. Tgiiges rise to a finite char-
acterization for—.

Definition 9 (I, D) ~» (I',normg(D")) if (I, D) ~~ (I', D').
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Fig. 5. Normalized Zone Graph for the Automaton in Fig. 4

For the class of diagonal-free timed automatg is sound, complete and finite in the
following sense.

Theorem 2 Assume a timed automaton with initial stdtg, uo), whose maximal clock
constants are bounded by a clock ceilihgAssume that the automaton has no guards
containing difference constraints in the formaof y ~ n.

1. (soundness)g, {uo}) ~% Iz, Dy) implies{ly, uo) =* (I¢,uy) forall uy € Dy
such thatuy(z) < k(z) for all z.

2. (Completenesg)o, uo) =* (I, us) Withus(z) < k(x) for all z, implies(lo, {uo})
~3 (ly, Dy) for someD; such thatuy € Dy

3. (Finiteness) The transition relatiow, is finite.

Unfortunately the soundness will not hold for timed autcemahose guards contain
difference constraints. We demonstrate this by an exan@esider the automaton
shown in Fig. 6. The final location of the automaton is not hadte according to the
operational semantics. This is because in locafigrthe clock zone isf — y > 2 and

x > 2) and the guard on the outgoing edge i z+ 1Az < y + 1 which is equivalent
tox —2<1Az—y<1Az—1y <2. Obviously the zone af, can never enable the
guard, and thus the last transition will never be possibtevéler, because the maximal
constants for clock is 1 (and2 for y), the zone in locatioSz: z —y > 2 Az > 2 will

be normalized tx — y > 1 Az > 1 by the maximal constarit for x, which enables
the guardr — z < 1 A z — y < 1 and thus the symbolic reachability analysis based on
the above normalization algorithm would incorrectly cartt# that the last location is
reachable.

The zones in canonical forms, generated in exploring thie-sfaace of the counter
example are given in Fig. 7. The implicit constraints thatcldcks are non-negative
are not shown.
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Fig. 6. A counter example

rT—y= r—y=0
So:qy—z=0 So:qy—2z2z=0
z—x =0 z—x =0
r—y=0 r—y=20
S1:¢z—z2<0 S1:¢z—2z<0
z—y<0 z—y<0
y—xr<—2 y—zr< -1
Jy—2<0 Jy—2<0
S z—x <0 S z—xz <0
0—z< -2 0—-z< -1
y—zr<-—1

y—2<0

z—x<0

$3:Y0-2< -1

0—-2<0

r—z<l1

(a) Zones without normalization (b) Zones normalized vikithormalization

Fig. 7. Zones for the counter example in Fig. 6

Note that atSy and.S;, the normalized and un-normalized zones are identical. The
problem is atS, where the intersection of the guard (on the only outgoingegddth
the un-normalized zone is empty and non-empty with the ntizetzone.

3.3 Zone-Normalization for Automata with Difference Constaints

Our definition of timed automata (Definition 1) allows anyataonstraint to appear in
a guard, which may be a difference constraint in the form efy ~ n. Such automata
are indeed needed in many applicatieng.to model scheduling problems [FPY02].
It is shown that an automaton containing difference coimdgaan be transformed to
an equivalent diagonal-free automaton [BDGP98]. Howewer transformation is not
applicable since it is based on the region constructionidgssit is impractical to im-
plement such an approach in a tool. Since the transformatatifies the model before
analysis, it is difficult to trace debugging information pided by the tool back to the
original model.



In [Ben02,BY03], a refined normalization algorithm is pnetesl for automata that may
have guards containing difference constraints. The alyoriransforms DBMs accord-
ing to not only the maximal constants of clocks but also diffece constraints appearing
in the automaton under consideration. Note that the diffegeonstraints correspond to
the diagonal lines which split the entire space of clockgassients. A finer partitioning
is needed.

We present the semantical characterization for the refinedalization operation based
on a refined version of the region equivalence from Definiéon

Definition 10 (Normalization Using Difference Constraintg LetG stand for a finite
set of difference constraints of the fosry ~ nforz,y € C,~€ {<,<,=,>,>}and
n € N, andk for a clock ceiling. Two clock assignmenisv are equivalent, denoted
u ~p,g v if the following holds:

— u~,vand
—forallge G,uegiffveg.

The semantics of the refinéehormalization operation on zones is defined as follows:

normg,g(D) = {u|u ~kg v,v € D}

Note that the refined region equivalence is indexed by botbck ceilingk and a finite
set of difference constraing and so is the normalization operation.

Since the number of regions induced By;, is finite and there are only finitely many
constraints ing, ~ ¢ induces finitely many equivalence classes. Thus for anyngive
zoneD, normy, g(D) is well-defined in the sense that it contains only a finite $et o
equivalence classes though the set may not be a convex zuh#é,can be computed
effectively according to the refined regions. In genenakmy g(D) is a non-convex
zone, which can be implemented as the union of a finite lisboffex zones. The next
section will show how to compute this efficiently.

The refined zone-normalization gives rise to a finite charation for—.
Definition 11 (I, D) ~»y,g (I',normy, g(D")) if (I, D) ~ (I',D').
The following states the correctness and finiteness pg .

Theorem 3 Assume a timed automaton with initial stétg, uo), whose maximal clock
constants are bounded by a clock ceilingand whose guards contain only a finite set
of difference constraints denotéd

1. (soundnesso, {uo}) (~k,g)* {Is, Ds) implies{lo, uo) =* {Is,uy) forall uy €
Dy such thatuy(z) < k(z) for all z.

2. (Completenesg)o, uo) —* (If,uyr) withuy(z) < k(z) forall  implies(lo, {uo})
(~k,g)* (ly, Dy) for someD; such thatuy € Dy

3. (Finiteness) The transition relatior g is finite.



3.4 Symbolic Reachability Analysis

Model-checking concerns two types of propertieenessand safety The essential
algorithm of checking liveness properties is loop detagtishich is computationally
expensive. The main effort on verification of timed systeras heen put on safety
properties that can be checked using reachability anabysisaversing the state-space
of timed automata.

Algorithm 1 Reachability analysis
Passep= 0, WAIT = {(lo, Do)}
while WAIT # 0 do
take(l, D) from WAIT
if l=1y ADN¢y # 0 thenreturn “YES”
if D ¢ D' forall (I, D'y € Passebthen
add(l, D) to PASSED
forall (', D'} such thatl, D) ~ k,G{l', D") do
add({l', D") to WAIT
end for
end if
end while
return “NO”

Reachability analysis can be used to check properties tesstaconsists of two basic
steps, computing the state-space of an automaton undedecatson, and searching for
states that satisfy or contradict given properties. Thedstep can either be performed
prior to the search, or doren-the-flyduring the search process. Computing the state-
space on-the-fly has an obvious advantage over pre-congpinithat only the part of
the state-space needed to prove the property is generastauld be noted though, that
even on-the-fly methods will generate the entire stateesfraprove certain properties,
e.g.invariant properties.

Several model-checkers for timed systems are designedmimdized for reachability
analysis based on the symbolic semantics and the zonesespiagion (see Section 4).
As an example, we present the core of the verification endinéreAAL (see Algo-
rithm 1).

Assume a timed automato# with a set of initial states and a set of final stateg(

the bad states) characterized&s Do) and(ly, ¢s) respectively. Assume thatis the
clock ceiling defined by the maximal constants appearing imd¢;, andG denotes

the set of difference constraints appearingdrand ¢;. Algorithm 1 can be used to
check if the initial states may evolve to any state whosetionas iy and whose clock
assignment satisfigg;. It computes the normalized zone-graph of the automaton on-
the-fly, in search for symbolic states containing locafipand zones intersecting with

P5.



The algorithm computes the transitive closure-ef ¢ step by step, and at each step,
checks if the reached zones intersect wigh From Theorem 2, it follows that the algo-
rithm will return with a correct answer. It is also guaramtée terminate because, g

is finite. As mentioned earlier, for a given timed automatathwa fixed set of clocks
whose maximal constants are bounded by a clock cellirand a fixed set of diago-
nal constraints contained in the guards, the number of abipte normalized zones is
bounded because a normalized zone can not contain atyiteaigie or arbitrarily small
constants. In fact the smallest possible zones are the defeéggons. Thus the whole
state-space of a timed automaton can only be partitionedfimtely many symbolic
states and the worst case is the size of the region graph afutioenaton, induced by
the refined region equivalence. Therefore, the algorithwoiking on a finite structure
and it will terminate.

Algorithm 1 also highlights some of the issues in develogimgodel-checker for timed
automata. Firstly, the representation and manipulaticniasés, primarily zones, is cru-
cial to the performance of a model-checker. Note that intafdio the operations to
compute the successors of a zone according ig;, the algorithm uses two more op-
erations to check the emptiness of a zone as well as the ionlbstween two zones.
Thus, designing efficient algorithms and data-structuoezénes is a major issue in
developing a verification tool for timed automata, whichdslgessed in Section 4. Sec-
ondly, lsseDholds all encountered states and its size puts a limit onitieecd sys-
tems we can verify. This raises the research challeaggstate compression [Ben02],
state-space reduction [BJLY98] and approximate techisidéal96].

4 DBM: Algorithms and Data Structures

The preceding section presents the key elements needethbyosiyg reachability anal-
ysis. Recall that the operations on zones are all definednmstef sets of clock assign-
ments. It is not clear how to compute the result of such anatjmer. In this section, we
describe how to represent zones, compute the operatiorchackl properties on zones.
Pseudo code for the operations is given in the appendix.

4.1 DBM basics

Recall that a clock constraint ovéris a conjunction of atomic constraints of the form
z ~mandz —y ~ n wherez,y € C, ~€ {<,<,=,>,>}andm,n € N. A zone
denoted by a clock constraifit is the maximal set of clock assignments satisfying
The most important property of zones is that they can can jpesented as matrices
i.e. DBMs (Difference Bound Matrices) [Bel57,Dil89], which heaa canonical repre-
sentation. In the following, we describe the basic strieeand properties of DBMs.

To have a unified form for clock constraints we introduce amerfice clocl0 with the
constant value 0. L&ty = C U {0}. Then any zoné € B(C) can be rewritten as a
conjunction of constraints of the form—y < n forz,y € Cy, 2€ {<,<} andn € Z.



Naturally, if the rewritten zone has two constraints on #re pair of variables only the
intersection of the two is significant. Thus, a zone can besssmted using at mojgl |
atomic constraints of the form—y < n such that each pair of clocks-y is mentioned
only once. We can then store zones udifig x |Co| matrices where each element in
the matrix corresponds to an atomic constraint. Since elrhest in such a matrix
represents a bound on the difference between two clockg,ateenamedifference
Bound MatricegDBMs). In the following presentation, we ugg; to denote element
(4,7) in the DBM representing the zore.

To construct the DBM representation for a zabewe start by numbering all clocks
in Cp as0, ...,n and the index fof is 0. Let each clock be denoted by one row in the
matrix. The row is used for storing lower bounds on the défere between the clock
and all other clocks, and thus the corresponding columned & upper bounds. The
elements in the matrix are then computed in three steps.

— For each constraint; — z; < n of D, let D;; = (n, X).

— For each clock difference; — z; that is unbounded i®, let D;; = oo. Whereoo
is a special value denoting that no bound is present.

— Finally add the implicit constraints that all clocks areitigs, i.e.0 — z; < 0, and
that the difference between a clock and itself is alwayis0z; — z; < 0.

As an example, consider the zabe= 2 —0 < 20Ay—0 < 20Ay—z < 10Az—y <
—10 A 0 — z < 5. To construct the matrix representation/®f we number the clocks
in the ordel0, z, y, z. The resulting matrix representation is shown below:

(0,<) (0,<) (0,<)(5,<)

(20,<) (0,<)(-10,<) oo

(20,<) (10,<)  (0,5) oo
0 0 o (0,5)

M(D) =

To manipulate DBMs efficiently we need two operations on latsurcomparison and
addition. We define than, <) < oo, (n1,=<1) < (n2,=2) if n1 < n2 and(n, <) <
(n, <). Further we define addition &g + co = 00, (m, <) +(n, <) = (m+n, <) and
(m, <)+ (n,%) = (m+n,<).

Canonical DBMs Usually there are an infinite number of zones sharing the smue
tion set. However, for each family of zones with the sametsmiset there is a unique
constraint where no atomic constraint can be strengtheitduwt losing solutions.

To compute the canonical form of a given zone we need to dérevtightest constraint
on each clock difference. To solve this problem, we use argnajerpretation of zones.
A zone may be transformed to a weighted graph where the cliocks are nodes
and the atomic constraints are edges labeled with boundenét@int in the form of
z —y = n will be converted to an edge from nogeto nodex labeled with(n, <),
namely the distance fromto z is bounded by:.



(a) (b)

Fig. 8. Graph interpretation of the example zone and its closed form

As an example, considerthe zone- 0 < 20Ay — 0 < 20Ny —z < 10Az —y <
—10. By combining the atomic constraings— 0 < 20 andz — y < —10 we derive
thatz — 0 < 10, i.e. the bound oz — 0 can be strengthened. Consider the graph
interpretation of this zone, presented in Fig. 8(a). Thibtégbound onz — 0 can be
derived from the graph, using the p&h~ y — =, giving the graph in Fig. 8(b). Thus,
deriving the tightest constraint on a pair of clocks in a zsnequivalent to finding the
shortest path between their nodes in the graph interpoatafithe zone. The conclusion
is that a canonical,e. closed, version of a zone can be computed using a shortést pat
algorithm. Floyd-Warshall algorithm [Flo62] (Algorithm) & often used to transform
zones to canonical form. However, since this algorithm isegexpensive (cubic in the
number of clocks), it is desirable to make all frequentlydusperations preserve the
canonical formj.e. the result of performing an operation on a canonical zoneilsho
also be canonical.

Minimal Constraint Systems A zone may contain redundant constraints. For example,
a zone contains constraints-y < 2,y—z < 5andz—z < 7. The constraint—z < 7

is obviously redundant because it may be derived from thetfirs. It is desirable to
remove such constraints to store only the minimal numbeopn$taints. Consider, for
instance, the zoneg —y < 0Ay—2 < 0Az—2 <0A2<z-0 < 3. This
is a zone in a minimal form containing only five constrainteeTclosed form of this
zone contains more than 12 constraints. It is knosvg.from [LLPY97], that for each
zone there is a minimal constraint system with the sameisalget. By computing this
minimal form for all zones and storing them in memory usingarse representation
we might reduce the memory consumption for state-spaceoeatiin. This problem
has been thoroughly investigated in [LLPY97,Pet99,Lar00]

The following is a summary of the published work on the minimegpresentation of
zones. We present an algorithm that computes the minimai fifra closed DBM.
Closing a DBM corresponds to computing the shortest pativdsat all clocks. Our
goal is to compute the minimal set of bounds for a given skbpath closure. For
clarity, the algorithm is presented in terms of directedgh¢ed graphs. However, the
results are directly applicable to the graph interpretatibDBMs.



First we introduce some notation: we say that a cycle in algisazero cycleif the

sum of weights along the cycle is 0, and an edge™% z; is redundantf there is
another path betweer; andz; where the sum of weights is no larger thag.

In graphs without zero cycles we can remove all redundargeddthout affecting the
shortest path closure [LLPY97]. Further, if the input gragim shortest path form (as
for closed DBMs) all redundant edges can be located by ceriaglalternative paths
of length two.

As an example, consider Fig. 9. The figure shows the shor&tktqbosure for a zero-
cycle free graph (a) and its minimal form (b). In the graph wel fihatz 2 o is
made redundant by the path N T4 2, x2 and can thus be removed. Further, the edge
T3 18, x4 IS redundant due to; 5, 1 2, xo. Note that we consider edges marked
as redundant when searching for new redundant edges. Téenreathat we let the
redundant edges represent the path making them reduntdasgltowing all redundant
edges to be located using only alternative paths of lengthTiis procedure is repeated
until no more redundant edges can be found.

(b)

Fig. 9. A zero cycle free graph and its minimal form

This gives theO(n?) procedure for removing redundant edges presented in Algo-
rithm 3. The algorithm can be directly applied to zero-cyfteee DBMs to compute
the minimal number of constraints needed to represent a givee.

However, this algorithm will not work if there are zero-cogslin the graph. The reason
is that the set of redundant edges in a graph with zero-cyslest unique. As an
example, consider the graph in Fig. 10(a). Applying the ar@asoning on this graph
would remover; 3, x3 based on the pathy, =2 To 5, x3. It would also remove the
edgezx, 5, x3 based on the path, 2, 1 3, x3. But if both these edges are removed
it is no longer possible to construct paths leading 4o In this example there is a
dependence between the edge;si 3 andzs 5 x3 such that only one of them can
be considered redundant.



(b)

Fig. 10. A graph with a zero-cycle and its minimal form

The solution to this problem is to partition the nodes actwytb zero-cycles and build
a super-graph where each node is a partition. The graph figmlB(a) has two parti-
tions, one containing; andz» and the other containings. To compute the edges in
the super-graph we pick one representative for each paraind let the edges between
the partitions inherit the weights from edges between tpeasentatives. In our exam-
ple, we choose; andxs as representatives for their equivalence classes. Theduge
the graph are thefw, 22} 3 {z3} and{zs} 3 {z1,x2}. The super-graph is clearly
zero-cycle free and can be reduced using Algorithm 3. Thigllsgraph can not be
reduced further. The relation between the nodes within &tjoaris uniquely defined
by the zero-cycle and all other edges may be removed. In ample all edges within
each equivalence class are part of the zero-cycle and tiesofdhem can be removed.
Finally the reduced super-graph is connected to the redpasiions. In our example
we end up with the graph in Fig. 10(b). Pseudo-code for theatwoh-procedure is
shown in Algorithm 4.

Now we have an algorithm for computing the minimal number addes to represent
a given shortest path closure that can be used to computeitirmahnumber of con-
straints needed to represent a given zone.

4.2 Basic Operations on DBMs

This subsection presents all the basic operations on DBMsp#xhe ones for zone-
normalization, needed in symbolic state space exploraticimed automata, both for
forwards and backwards analysis. The two operations foezmrmalization are pre-
sented in the next subsection.

First note that even if a verification tool only explores thege space in one direction
all operations are still useful for other purposesgy.for generating diagnostic traces.
The operations are illustrated graphically in Fig. 11.

To simplify the presentation we assume that the input zoreesansistent and in canon-
ical form. The basic operations on DBMs can be divided into tlasses:



D r up(D) * down(D) “
y
free‘(D,y)# r
y y
e |

normy (D) w shi ft(D,y:=y+IZ§

and(D,z <2)

Fig. 11.DBM operations applied to the same zone wherenfirmy, (D), k is defined byk(z) =
2 andk(y) =1



1. Property-Checking: This class includes operations to check the consistency of a
DBM, the inclusion between zones, and whether a zone satiafigiven atomic
constraint.

2. Transformation: This class includes operations to compute the strongettqos
dition and weakest precondition of a zone according to amtjan with guards,
time delay and clock reset.

Property-Checking

consi st ent (D) The most basic operation on a DBM is to check if it is consisten
i.e.if the solution set is non-empty. In state-space explondtiis operation is used to
remove inconsistent states from the exploration.

For a zone to be inconsistent there must be at least one pelod{s where the up-
per bound on their difference is smaller than the lower botiod DBMs this can be
checked by searching for negative cycles in the graph irgéapon. However, the most
efficient way to implement a consistency check is to dete@mdm upper bound is set
to lower value than the corresponding lower bound and markdme as inconsistent by
settingDyg to a negative value. For a zone in canonical form this tesbegperformed
locally. To check if a zone is inconsistent it will then be egb to check whetheb,

is negative.

rel ati on(D, D’) Anotherkey operation in state space exploration is inolusheck-
ing for the solution sets of two zones. For DBMs in canoniocaif, the condition that
D;; < D;.j for all clocksi, j € Cq is necessary and sufficient to conclude tha€ D'.
Naturally the opposite condition applies to checkind¥f C D. This allows for the
combined inclusion check described in Algorithm 5.

sati sfied(D,z; —x; X m) Sometimes itis desirable to non-destructively check
if a zone satisfies a constraing. to check if the zon® A z; — z; < m is consistent
without alteringD. From the definition of theonsi st ent -operation we know that

a zone is consistent if it has no negative cycles. Thus, ¢hgékD A z; —z; < m

is non-empty can be done by checking if adding the guard tadhe would introduce

a negative cycle. For a DBM on canonical form this test candréopmed locally by
checking if(m, <) + Dj; is negative.

Transformations



up(D) Theup operation computes the strongest postcondition of a zotierespect
to delay,i.e. up(D) contains the clock assignments that can be reached froby
delay. Formally, this operation is definedwgs(D) = {u +d |u € D,d € Ry }.

Algorithmically,up is computed by removing the upper bounds on all individuzdks

(In a DBM all elementsD;q are set tox). This is the same as saying that any clock
assignment in a given zone may delay an arbitrary amountrf. tirhe property that
all clocks proceed at the same speed is ensured by the facahstraints on the dif-
ferences between clocks are not altered by the operation.

This operation preserves the canonical fore,applyingup to a canonical DBM wiill
result in a new canonical DBM. Thep operation is also presented in Algorithm 6.

down(D) This operation computes the weakest preconditioDoWith respect to
delay. Formallydown(D) = {u|u+d € D,d € R4}, i.e.the set of clock assignments
that can reactD by some delayl. Algorithmically, down is computed by setting the
lower bound on all individual clocks t(0, <). However due to constraints on clock
differences this algorithm may produce non-canonical DBMsan example, consider
the zone in Fig. 12(a). Whatown is applied to this zone (Fig. 12(b)), the lower bound
onz is 1 and not), due to constraints on clock differences. Thus, to obtaialgorithm
that produce canonical DBMs the difference constraintehawe taken into account
when computing the new lower bounds.

Y Y

(@) (b)

Fig. 12. Applying down to a zone.

To compute the lower bound for a clogkstart by assuming that all other cloagkshave
the value 0. Then examine all difference constraipts  and compute a new lower
bound forz under this assumption. The new boundenaz will be the minimum bound
ony; — z found in the DBM. Pseudo-code fdown is presented in Algorithm 7.

and(D, z; — y; = b) The most used operation in state-space exploration is nonju
tion, i.e. adding a constraint to a zone. The basic step ofthe operation is to check
if (b,<) < D;; and in this case set the bouidit}; to (b, <). If the bound has been
altered,.e.if adding the guard affected the solution set, the DBM hastputt back on
canonical form. One way to do this would be to use the genbddsst path algorithm,



however for this particular case it is possible to deriveecsgization of the algorithm
allowing re-canonicalization i) (n?) instead ofO(n?).

The specialized algorithm takes the advantagefhats the only bound that has been
changed. Since the Floyd-Warshall algorithm is inseresitiv how the nodes in the
graph are ordered, we may decide to tegaandz; last. The outer loop of Algorithm 2
will then only affect the DBM twice, fok = ¢ andk = j. This allows the canonical-
isation algorithm to be reduced to checking, for all pairglotks in the DBM, if the
path via eithee; or x; is shorter than the direct connection. The pseudo code i®r th
is presented in Algorithm 8.

free(D,z) Thefree operation removes all constraints on a given cldaak,the
clock may take any positive value. Formally this is exprdssst r ee(D, z) = {uz =
d|u € D,d € Ry}. In state-space exploration this operation is used in coatizin
with conjunction, to implement reset operations on clot¢kean be used in both for-
wards and backwards exploration, but since forwards eaptor allows other more
efficient implementations of resdtr ee is only used when exploring the state-space
backwards.

A simple algorithm for this operation is to remove all bourmasz in the DBM and
setDy, = (0, <). However, the result may not be on canonical form. To obtain a
algorithm preserving the canonical form, we change how néfgrdnce constraints
regardinge are derived. We note that the constrdint- 2 < 0 can be combined with
constraints of the forny — 0 < m to compute new bounds far — . For instance,

if y — 0 < 5 we can derive thag — = < 5. To obtain a DBM on canonical form we
derive bounds foD,, based oD, instead of settind),, = oo.In Algorithm 9 this

is presented as pseudo code.

reset (D,x:=m) In forwards exploration this operation is used to set cloiks
specific valuesi.e.r eset (D, z:=m) = {u[z = m] | u € D}. Without the require-
ment that output should be on canonical forreset can be implemented by setting
Do = (m, <), Doy = (—m, <) and remove all other bounds an However, if we
instead of removing the difference constraints computevadues using constraints on
the other clocks, like in the implementationfafee, we obtain an implementation that
preserve the canonical form. Such an implementation isspted in Algorithm 10.

copy (D, x:=y) This is another operation used in forwards state-spaceeun.

It copies the value of one clock to another. Formally, we aefiopy (D, z:=y) as
{u[r = u(y)] | v € D}. Asreset, copy can be implemented by assignifg,,, =
(0,<), Dy, = (0,<), removing all other bounds an and re-canonicalize the zone.
However, a more efficient implementation is obtained bygaseg D,, = (0, <),
Dy, = (0,<) and then copy the rest of the boundsofrom y. For pseudo code, see
Algorithm 11



shift (D,z:=x + m) The last reset operation is shifting a clocle. adding or
subtracting a clock with an integer valie.shi ft (D,z:=z+m) = {u[z = u(z)+

m] | u € D}. The definition gives a hint on how to implement the operatidl can
view the shift operation as a substitutioruof m for z in the zone. With this reasoning
m is added to the upper and lower boundsrofHowever, since lower bounds an
are represented by constraints pr- x, m is subtracted from all those bounds. This
operation is presented in pseudo-code in Algorithm 12

4.3 Zone-Normalization

The operations for zone-normalization are to transformesomhich may contain arbi-
trarily large constants to zones containing only boundetstamts in order to obtain a
finite zone-graph.

normg (D) For a timed automaton and a safety property to be checkedcangain

no difference constraints, tkenormalizatiomormy (D) is needed, and it can be com-
puted based on the canonical form/@{see Section 3). It is to remove all upper bounds
higher than the maximal constants and lower all lower bounigiser than the maximal
constants down to the maximal constants. The resulboi (D) is illustrated graph-
ically in Fig. 11.

In the canonical DBM representation of a zone, the operat@rsists of two steps:
first, remove all bounds — y < m such thatm, <) > (k(z), <) and second, set all
boundsz — y < m such thatim, <) < (—k(y), <) to (—k(y), <). Pseudo-code for
k-normalization is given in Algorithm 13 whetg denotes:(z;).

The k-normalization will not preserve the canonical form of a DBAhd the best way
to put the result back on canonical form is to use Algorithm 2.

normg,g (D) For automata containing difference constraints in the dgiat is more
complicated and expensive to compute the normalized zé&sssme an automataoh
containing the set of difference constraigtand the maximal clock constants bounded
by a clock ceilingk. Assume a zond® of A to be normalized. According to the se-
mantical characterization foormy, ¢ (D) in Definition 10 we know that if a difference
constraint is not satisfied by any assignment in the Zonie should not be satisfied by
any assignment in the normalized onerm;, ¢ (D), and if all assignments iy satisfy

a difference constraint then so should all assignment®im, g (D). This leads to a
core normalization algorithm consisting of three steps.

1. Collect all difference constraingsused as guards id such that
(&) g A D is empty. This is the case wheris outside ofD.
(b) =g A D is empty. That is the case whegrcontainsD completely.
Let Gunsat = {glg A D =0} U {~g|-g A D =0}



2. Computenormy (D), that is, to run thek-normalization without considering the
difference constraints.

3. Subtract (or cut) thk-normalized zone ab by all difference constraints ifynsat ,
that is to comput@ormy (D) A =Gunsat -

The last step is to make sure that none of the collected diffar constraints are satisfied
after thek-normalization. In Algorithm 14, the core normalizationgisen as pseudo
code. The sefyq used in the algorithm is the set of difference constrainiseapng
in the automaton under consideration with the maximal clomkstants bounded by a
given clock ceilingk as input.

It appears to be the case timatrmy (D) A—Gunsat IS the normalized zone we are looking
for. Unfortunately this is not. The core normalization does handle the third case
when a difference constraint splits the zobeto be normalized. That is, there is a
guardg such thatg A D # § and—g A D # . In this case, we need to spi? by g
using Algorithm 15, and then apply the core normalizatiggoathm to the parts oD
separately, which are the sub-zonedbfesulted from the splitting. Each of the sub-
zoneD; should satisfy eitheD; A g = ) or D; A g = D, for all g € G. The union of
the normalized sub-zones using the above core normalivakjmrithm is what we are
looking for, that isnormy, g (D).

The complete normalization procedure is presented in Algorl6. The splitting, de-
noted bysplit in the description, is used as a preprocessing step andhbearte nor-
malization algorithmi(e. Algorithm 14) is applied to all the resulted sub-zones resll
from the splitting.

Finally, the symbolic transition relatiom g can be computed as follows: (f, D) ~»
{I',D"), (I, D) ~p,g (I',D") for all D" € @ used in Algorithm 16ij.e. the algorithm
for normy, g (D’).

To demonstrate the normalization procedure we apply itéaztine for locatiorb, in
our counter example. The difference constraints in the @kamreg; = z — 2z < 1
andg, = z —y < 1. The zone contains both clock assignments satisfyingnd
assignments satisfying its negation, and thus we have iotlsplzone with respect to
this constraint prior to normalization, giving the zonetole

y—x < —2
y—z2< -1 y—x < -2
z—z <0 y—2<0

0-z< -2 0—-z< -2
0—-z2< -1 z—x < -1
z—2<1

(a) satisfyingg; (b) satisfying—g;

Zone (a) above does not contain any clock assignmentsysatjgh and thus it will not
be split further. Zone (b) however needs to be split into tadpsatisfyingy, and—gs,.
This gives us the following zones to normalize by the coremadization procedure.



y—zr < —2

y—2<-1 (y—z<-2 y—m:—f
z—x <0 y—2<0 y_zz_l
0—z<-2 J|0—z< -2 3:22:2
0-2< -1 z—r<-—1

0—-2<-1

r—z<1
(8)g1 and—g> (b) —g; andgs (c) —g; and—g,

The sets of difference constraints not satisfied by the z@)eé) and (c) shown above

are:gl(li)sat = {_'91792}7 glgll?l)sat = {g1,—|gz}, g1(1(1:1)sat = {91792} respectively. We

apply k-normalization to each of them, giving:

y—z<—1 _ B

y—z<—1 y—z<—1 y—z<-l1

y—z< -1

z—z <0 y—2<0 < —1
0—z<-1 J]0—-z< -1 -

0—z< -1 r—z2>1 0-z<-1

- 0—-2<-1

rz—z<1
(A) g1 andﬁgz (B) g1 andgz (C) g1 andﬁgz

Since thek-normalized zones (A), (B) and (C) shown above do not enafyecan-
straint inGunsat, We Need not to subtract the corresponding difference caingt from
the zones. Finally, we note that, as the un-normalized z@)e&) and (c), none of the
normalized zones (A), (B) and (C) intersects wjihA g=; the transition fromS; to S3
is not enabled by the normalization procedure.

4.4 Zones in Memory

This section describes a number of techniques for storingz@ computer memory.
The section starts by describing how to map DBM elements azhina words. It con-
tinues by discussing how to place two-dimensional DBMsmedir memory and ends
by describing how to store zones using a sparse repregantati

Storing DBM Elements To store a DBM element in memory we need to keep track
of the integer limit and whether it is strict or not. The ramgfethe integer limit is
typically much lower than the maximum value of a machine wand the strictness can
be stored using just one bit. Thus, it is possible to storb that limit and the strictness in
different parts of the same machine word. Since comparidgalding DBM elements
are frequently used operations it is crucial for the perfamoe of a DBM package that
they can be efficiently implemented for the chosen encodingunately, it is possible

to construct an encoding of bounds in machine words, whezelghg ifb; is less than

bs can be performed by checking if the encodeds smaller than the encodégl.



The encoding we propose is to use the least significant bB)ldsthe machine word

to store whether the bound is strict or not. Since strict lisusre smaller than non-
strict we let a set (1) bit denote that the bound is non-strigte an unset (0) bit denote
that the bound is strict. The rest of the bits in the machinedvarve used to store the
integer bound. To encod® we use the largest positive number that fit in a machine
word (denotedVAX_| NT).

For good performance we also need an efficient implememntafiaddition of bounds.
For the proposed encoding Algorithm 17 adds two encodeddsiyrandb,. The sym-
bols& and| in the algorithm are used to denote bitwise-and and bitwisesspectively.

Placing DBMs in Memory Another issue is how to store two-dimensional DBMs
in linear memory. In this section we present two differecht@ques and give a brief
comparison between them. The natural way to put matriceséal memory is to store
the elements by row (or by column)e. each row of the matrix is stored consequently
in memory. This layout has one big advantage, its good paidace. This advantage is
mainly due to the simple function for computing the locatadra given element in the
matrix:loc(z,y) = z*(n+1)+y. This function can (on most computers) be computed
in only two instructions. This is important since all acest DBM elements use this
function. How the different DBM elements are place in memeaith this layout if
presented in Fig. 13(a).

The second way to store a DBM in linear memory is based on addymodel where
each layer consists of the bounds between a clock and thiescldgth lower index in the
DBM. In this representation it is cheap to implement locatkls, since all information
about the local clocks are localised at the end of the DBM. ditaavback with this
layout is the more complicated function from DBM indices temory locations. For
this layout we have:

_Jyxy+ ) +zifz<y
loc(z,y) = {x*x+y otherwise

This adds at least two instructions (one comparison and onditional jump) to the
transformation. This may not seem such a huge overhead isutlearly noticeable.
The cache performance is also worse when using this layamt When storing the
DBMs row-wise. This layout is illustrated in Fig. 13(b).

The conclusion is that unless the tool under constructippstis adding and removing
clocks dynamically the row-wise mapping should be used Herother hand, if the tool
supports local clocks the layered mapping may be prefesitde no reordering of the
DBM is needed when entering or leaving a clock scope.

Storing Sparse ZonesIn most verification tools, the majority of the zones are kept
in the set of states already visited during verification.yTaee used as a reference to
ensure termination by preventing states from being exglarere than once. For the



0123 02 6 12
4567 13 713
8 91011 45 814
121314 15 9101115
(a) Row wise (b) Layered

Fig. 13. Different layouts of DBMs in memory

states in this set we may benefit from storing only the minimahber of constraints
using a sparse representation.

A straight forward implementation is to store a sparse zana @ector of constraints
of the form{z, y, b). We may save additional memory by omitting implicit constts,
such a®) — z < 0. A downside with using sparse zones is that each constexuine
twice the amount of memory needed for a constraint in a fulM)Bince the sparse
representation must store clock indices explicitly. Thudess half of the constraints in
a DBM are redundant we do not gain from using sparse zones.

A nice feature of the sparse representation is that checkitegher a zoné ; repre-
sented as a full DBM is included in a sparse zdngmay be implemented without
computing the full DBM forD;. It suffices to check for all constraints i, that the
corresponding bound i is tighter. However, to check D, C D we have to com-
pute the full DBM forD,.

5 UPPAAL

Inthe last decade, there have been a number of tools dedbaged on timed automata
to model and verify real time systems, notably Kronos [YQw@Td UpPAAL [LPY97].
As an example, we give a brief introduction to theRAAL tool (www.uppaal.com).

UPPAAL is a tool box for modeling, simulation and verification of &ohautomata,
based on the algorithms and data-structures presenteg\iimps sections. The tool was
released for the first time in 1995, and since then it has beealdped and maintained
in collaboration between Uppsala University and Aalborgvdrsity.

5.1 Modeling with UpPPAAL

The core of the BPAAL modeling language is networks of timed automata. In adulitio
the language has been further extended with features taleaseodeling task and to
guide the verifier in state space exploration. The most itamorof these are shared
integer variables, urgent channels and committed locstion



Networks of Timed Automata A network of timed automatia the parallel compo-
sition Ay |- -- |4, of a set of timed automatd,, ..., A,, called processes, combined
into a single system by the CCS parallel composition opewaith all external actions
hidden. Synchronous communication between the procesbgdiand-shake synchro-
nization using input and output actions; asynchronous conication is by shared vari-
ables as described later. To model hand-shake synchriamizéite action alphabéf is
assumed to consist of symbols for input actions denatedutput actions denoted,
and internal actions represented by the distinct symbol

An example system composed of two timed automata is showiginl®. The network
models a time-dependent light-switch (to the left) and #sruto the right). The user
and the switch communicate using the lgelss The user can press the switch (press!)
and the switch waits to be pressed (press?). The produghatno,i.e. the automaton
describing the combined system is shown in Fig. 15.

press!
y:=0

press!

press? idle

x<=10
press?

press!

y:=0 y>10

press!

relax

Fig. 14.Network of Timed Automata

The semantics of networks is given as for single timed autanmaterms of transition
systems. A state of a network is a pdiru) wherel denotes a vector of current locations
of the network, one for each process, and as usual a clock assignment remembering
the current values of the clocks in the system. A network mexygom two types of
transitions, delay transitions and discrete transitidite rule for delay transitions is
similar to the case of single timed automata where the iav&f a location vector

is the conjunction of the location invariants of the proessd here are two rules for
discrete transitions defining local actions where one optloeesses makes a move on
its own, and synchronizing actions where two processedggnize on a channel and
move simultaneously.

Let!; stand for theth element of a location vectdrandi[l;/1;] for the vector with I;
being substituted witkf. The transition rules are as follows:

—{lLu) S (1w +t)if ue IQ) and(u + d) € I(1), whereI(1) = A\ I(l;)

— Ly S A1),y i L 225 1w € g,u! = [r e Ou, o' € T([IL/1:)



bright, study dim,relax

offidle
N\

x:=0, y:=0

x>10, y>10

x>10

bright,relax

bright, idle

off,relax

Fig. 15. Product Automaton for the Network in Fig. 14

- (luy & (U113 /1][15 /15, u') if there existi # j such that

(B PRUEUEENG Ty P ICLEN I andu € g; A g;, and
2. u' =[r;Urj = Oluandu’ € I([1;/L][5/1;]).

Note that a network is a closed system which may not perfoyreaternal action. In
fact, the CCS hiding operator is embedded in the above rules.

Shared Integer Variables Clocks may be considered as typed variables with type
clock In UPPAAL, one may also use integer variables and arrays of integeeh, veith

a bounded domain and an initial value. Predicates over tlegan variables can be
used as guards on the edges of an automaton process andeiper imariables may
be updated using resets on the edges. In the current versidrmnAL, the syntax
related to integer variables resembles the standard CxsyBtdh integer guards and
integer resets are standard C expressions with the r@strittat guards can not have
side-effects.

The semantics of networks can be defined accordingly. Thek@esignment, in the
state configuratiofl, u) can be extended to store the values of integer variables-in ad
dition to clocks. Since delay does not affect the integeiatdes, the delay transitions
are the same as for networks without integer variables. Thlieratransitions are ex-
tended in the natural wayg. for an action transition to be enabled the extended clock
assignment must also satisfy all integer guards on the sporeding edges and when a
transition is taken the assignment is updated accordirgetonteger and clock resets.



There is a problem with variable updating in a synchronisiagsition where one of the
processes participating in the transition updates a Verig®d by the other. InkpPAAL,
for a synchronization transition, the resets on the eddeavitoutput-label is performed
before the resets on the edge with an input-label. This @gsthe symmetry of input
and output actions. But it gives a natural and clear sen&fdicsariable updating. The
transition rule for synchronization is modified according|

— (I,u) S (I1;/L][1} /1;], ") if there existi # j such that

i,a?,ri alrs
1. <LILALILN l,li,lj 95,0 r,, l‘; andu € gi N 95, and

2. u' = [r; = 0]([r; — OJu) andu’ € I(I[L;/L][l;/1;])

Urgent Channels To model urgent synchronizing transitions, which shoulddien

as soon as they are enabletRRAAL supports a notion of urgent channels. An urgent
channel works much like an ordinary channel, but with theeption that if a syn-
chronization on an urgent channel is possible the systemnmuoagelay. Interleaving
with other enabled action transitions, however, is stithwed. In order to keep clock
constraints representable using convex zones, clock guaednot allowed on edges
synchronizing on urgent channels.

To illustrate why this restriction is necessary, consither network shown in Fig. 16.
Both processes may independently go from their first statiedin second state. In the
second state, the first process must delay for at least 1Qutiteebefore it is allowed to
synchronize on the urgent channelin the second state, the other process must delay
for at least 5 time units before it is allowed to synchronindfte urgent channel. As
soon as both processes have spent the minimal time periqdsed in their second
state, they should synchronize and move to their third sTdte problem is if{S2,72
where the zone may be for examile> 10 Ay = 5) V (y > 5 Az = 10) which is a
non-convex zone.

x:=0 x>=10 52

S1
@ @ u!

Tl T2

=0 =5
@ ’ @ g u? {D

Fig. 16. An example of a network with non convex timing regions.

For this example, the problem can be solved by splitting threconvex zone into two
convex ones. But in general, the splitting is a computatigrxpensive operation. In
UpPPAAL, we decided to avoid such operations for the sake of effigiedm only integer
guards are allowed on edges involving synchronizationsrgant channels.



Committed Locations To model atomic sequences of actioag.atomic broadcast or
multicast, UPPAAL supports a notion ofommitted locationsA committed location is
a location where no delay is allowed. In a network, if any sxis in a committed lo-
cation then only action transitions starting from such a eotted location are allowed.
Thus, processes in committed locations may be interleangdwith processes in a
committed location.

Syntactically, each process; in a network may have a subsat® C N; of loca-
tions marked as committed locations. (&) denote the set of locations inthat are
committed. For the same reason as in the case of urgent deaase syntactical re-
striction, no clock constraints but predicates over integeables are allowed to appear
in a guard on an outgoing edge from a committed location.

The transition rules are given in the following, whese denotes the transition relation
for a network with committed locations and denotes the transition relation for the
same network without considering the committed locations.

—(uy S Qu+d)if (Luy S (,u+d) andC(l) = 0
= (Lu) Sre (I/1), ') i

1. (uy 5 (1)1, u'), and

2. Eitherl; e C(l) orC(l) =0
= (L) S UG/ /1), u') i

1 (Lu) 5 (/1] /1], '), and

2. Eitherl; € C(1),1; € C(l)orC(l) =0

5.2 Verifying with U PPAAL

The model checking engine offBAAL is designed to check a subset of TCTL formula
[ACD90] for networks of timed automata. The formulas shdudtbne of the following
forms:

— Al'] ¢ — Invariantly¢.

— E<> ¢ — Possiblyqg.

— A<> ¢ — Always Eventuallyp.

— E[] ¢ — Potentially Alwaysep.

— ¢ - - > — ¢ always leads t@. This is the shorthand faA[ ] (¢ = A<>y)).

whereg, ¢ are local properties that can be checked locally on a statdoolean ex-
pressions over predicates on locations and integer vasabhd clock constraints in
B(C).
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Fig. 17.(T)CTL-formulae

The transition system of a network may be unfolded into amitefitree containing
states and transitions. The semantics of the formulas digedeover such a tree. The
letters A and E are used to quantify over paths. A is used totdahat the given prop-
erty should hold for all paths of the tree while E denotes thate should be at least
one path of the tree where the property holds. The synjjoend<> are used to quan-
tify over states within a patlf.] denotes that all states on the path should satisfy the
property, while<> denotes that at least one state in the execution satisfigsdaperty.
In Fig. 17 the four basic property types are illustrated gsirecution trees, where the
dashed arrows are used to denote repetitions in the treesstates satisfying are
denoted by filled nodes and edges corresponding to the pathghlighted using bold
arrows.

The two types of properties most commonly used in verificatibtimed systems are
E<>¢ andA[ ] ¥. They are dual in the sense tti&t>¢ is satisfied if and only if\[ | —¢
is not satisfied. This type of properties are often classéfeshafety propertiese. mean-
ing that the system is safe in the sense that a specified heaandot occur. It is also
possible to transform so called bounded liveness properte properties stating that
some desired state will be reached within a given time, iafety properties using ob-
server automata [ABL98] or by annotating the model [LPY 3&]r example, to check
if an automaton will surely reach a locatidémwithin 10 time units, we use one cloak
(set to0 initially) and introduce a boolean variahlg (set to false initially). For each



incoming edge td in the automaton, séi to true. Then if the automaton satisfies the
invariant property # < 10V 1", it will surely reachl within 10 time units provided that
the automaton contains no zeno loops which stop time to pssgr

The other three types of properties are commonly classifiethbounded liveness prop-
erties,i.e. they are used to express and check for global progress. Phegerties are

not commonly used in BPAAL case-studies. It seems to be the case that bounded live-
ness properties are more important for timed systems.

5.3 The UrPAAL Architecture

Reachability

Initial
state

Fig. 18. Schematic view of the reachability pipeline irrBaAL.

To provide a system that is both efficient, easy to use anébplaitUpPAAL is split into
two components, a graphical user interface written in Janhaverification engine
written in C++. The engine and the GUI communicate using agua, allowing the
verification to be performed either on the local workstatioon a powerful server in a
network.

To implement the reachability analysis algorithm 1, thePlAL verification engine is
organized as a pipeline that incarnates the natural datarilthe algorithm. A sketch
of this pipeline is shown in Fig. 18. This architecture siifigé both activating and
deactivating optimizations at runtime by inserting and eging stages dynamically,
and introducing new optimizations and features in the tgolrbplementing new or
changing existing stages.

In addition to the zone-manipulation algorithms descrilme8Section 4 and the pipeline
architecture, in BPAAL a number of optimizations have been implemented:

— Minimal constraint systems [LLPY97] and CDDs [LPWY99,BL89], to reduce
memory consumption by removing redundant information inembefore storing
them.

— Selective storing of states imBsSED [LLPY97], where static analysis is used to
detect states that can be omitted safely froxs $EDwithout losing termination.



— Compression [Ben01] and sharing [BDLY03,DBLY03] of statgal to reduce the
memory consumption ofAsepand WAIT.

— Active clock reduction [DY96], that use live-range anaty determine when the
value of a clock is irrelevant. This does not only reduce the sf individual states
but also the perceived state-space.

— Supertrace [Hol91] and Hash Compaction [WL93,SD95] whdready visited
states are stored only as hash signatures, and Convexpiputhdamation [Bal96]
where convex hulls are used to approximate unions of zoaeseducing memory
consumption at a risk of inconclusive results.
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Appendix: Pseudo-Code for Operations on DBMs

Algorithm 2 cl ose(D): Floyds algorithm for computing shortest path

for k:=0tondo
for i :=0ton do
for j :=0tondo
Djj = min(D;j, Dy, + Dy;)
end for
end for
end for

Algorithm 3 Reduction of Zero-Cycle Free Graghwith n nodes

fori:=1ton do
for j:=1tondo
for k:=1tondo
if Gir, + Gk]‘ < G,’j then
Mark edgei — j as redundant
end if
end for
end for
end for
Remove all edges marked as redundant.




Algorithm 4 Reduction of negative-cycle free graghwith n nodes

fori:=1tondo
if Node is not in a partitiorthen
Eqi=10
for j :=itondo
if Gi; + Gj; = 0then
Eq; := Eq; U {NOdQ}
end if
end for
end if
end for
Let G’ be a graph without nodes.
for each Eq; do
Pick one representative Node Fg;
Add Nodg to G’
Connect Nodgto all nodes inG' using weights fronG.
end for
ReduceG’
for each Eq; do
Add one zero cycle containing all nodeshly; to G’
end for

Algorithm 5 r el at i on(D, D")

ngD’ =1
fDQD’ =1
fori:=0tondo
for j:=0tondo
focop := fpcp A (Dij < Dyj)
foop = foop A (Dij > Djj)
end for
end for

retun {fpcpr, foopr)

Algorithm 6 up(D)

for i :=1ton do
Dz'() =
end for




Algorithm 7 down(D)

fori:=1tondo
DOi = (05 S)
for j:=1tondo
if Dj,' < Dy; then
Dy; = Dji
end if
end for
end for

Algorithm 8 and(D, g)

if Dyz + (m, <) < 0then

Dgo = (—1,<)
else if(m, <) < D,, then
Da:y = (m7 j)

for i :=0tondo
for j := 0ton do
if D;, + Dzj < D,‘j then
Dij = Dig + Dyj
end if
if Dzy + Dy] < Dij then
Dij = Diy + Dy,
end if
end for
end for
end if

Algorithm 9 free(D, x)

fori:=0ton do

if i # x then
Dy =0
D;, = Dy
end if

end for




Algorithm 10 reset (D, z:=m

for i := 0ton do
Dy := (m, <)+ Dy;
Di; := Do + (—m, <)
end for

Algorithm 11 copy(D, z :=y)

fori:=0ton do
if i # x then
Dy; := Dyi
Dy, = -Diy
end if
end for
Dzy = (07 S)
Dyz = (07 S)

Algorithm 12 shi ft (D, z:=xz + m)

fori:=0tondo
if 4 # 2 then
Dy := Dy + (m, S)
Dy := Dy + (_m; S)
end if
end for
Do := maz(Dyo, (0, <))
Dy, := min(Dqg, (0, <))

Algorithm 13 normy (D))

fori:=0ton do
for j:=0tondo
if D;; # oo andD;; > (k;), <) then

Dz’j =0
else ifD;; # oo andD;; < (—kj, <) then
Dyj = (_kj7 <)
end if
end for
end for

cl ose(D)




Algorithm 14 Core normalizationCore-Normy,(D)

gunsat = 0
forall g € Gq do
if DA g=0then
Gunsat *= Gunsat U {g}
end if
if DA —g =0 then
Gunsat *= Gunsat U {ﬁg}
end if
end for
D := norm (D)
forall g € Gunsat dO
D:=DA-g
end for
return D

Algorithm 15 Zone splitting:split(D)

Q={D}.Q' =0
forall g € G4 do
forall D' € Q do
if D' A gandD' A =g then
Q' =Q U{D'Ag,D' A—g}
else
Q' :=Qu{D}
end if
end for
Q:=Q.,Q =10
end for
return Q

Algorithm 16 Normalization:normy,g(D)

Q:=0
forall D" € split(D) do
Q := Q U {Core-Norm(D")}
end for
return @

Algorithm 17 Algorithm for adding encoded bounds

if b1 = MAX_I NT or b, = MAX_I NT then
return MAX_| NT
else
return by + bz — ((b1&1)|(b2&1))
end if
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