
Uppaal DBM Library

Programmer’s Reference

Alexandre David

October 23, 2006

Contents

1 Introduction 8

2 C API 9
2.1 Header file constraints.h . 9

2.1.1 Types . 9
2.1.2 Constants . 9
2.1.3 Conversion Functions . 10

dbm boundbool2raw . 10
dbm raw2bound . 10
dbm strictRaw . 10
dbm weakRaw . 10
dbm raw2strict . 10
dbm rawIsStrict . 10
dbm rawIsWeak . 10
dbm negStrict . 10
dbm negRaw . 10
dbm isValidRaw . 11
dbm negConstraint . 11
dbm areConstraintsEqual 11

2.1.4 Addition of Constraints 11
dbm addRawRaw . 11
dbm addRawFinite . 11
dbm addFiniteRaw . 11
dbm addFiniteFinite . 11
dbm addFiniteWeak . 12
dbm rawInc . 12
dbm rawDec . 12

2.2 Header file dbm.h . 12
2.2.1 Basic Functions . 13

dbm init . 13
dbm zero . 13
dbm isEqualToInit . 13
dbm isEqualToZero . 13
dbm copy . 13
dbm areEqual . 13
dbm hash . 13
dbm isPointIncluded . 14
dbm isRealPointIncluded 14

1

dbm shrinkExpand . 14
dbm updateDBM . 15
dbm swapClocks . 15
dbm isDiagonalOK . 15
dbm isValid . 15
dbm relation2string . 16
dbm getMaxRange . 16

2.2.2 DBM-DBM Operations 16
dbm convexUnion . 16
dbm intersection . 16
dbm relaxedIntersection 16
dbm haveIntersection . 17

2.2.3 Constraining Operations 17
dbm constrain . 17
dbm constrainN . 17
dbm constrainIndexedN 17
dbm constrain1 . 18
dbm constrainC . 18
dbm constrainClock . 18

2.2.4 Standard Operations . 18
dbm up . 18
dbm down . 18
dbm freeClock . 19
dbm freeUp . 19
dbm freeAllUp . 19
dbm isFreedAllUp . 19
dbm freeDown . 19
dbm freeAllDown . 19
dbm testFreeAllDown . 19
dbm satisfies . 20
dbm isEmpty . 20
dbm close . 20
dbm isClosed . 20
dbm closex . 20
dbm close1 . 21
dbm closeij . 21
dbm tighten . 21
dbm isUnbounded . 21
dbm relation . 21
dbm isSubsetEq . 22
dbm isSupersetEq . 22

2.2.5 Update Operations . 22
dbm updateValue . 22
dbm updateClock . 22
dbm updateIncrement . 22
dbm update . 23

2.2.6 Relax Operations . 23
dbm relaxUpClock . 23
dbm relaxDownClock . 23
dbm relaxAll . 23

2

dbm relaxUp . 23
dbm relaxDown . 23

2.2.7 Extrapolation Operations 24
dbm extrapolateMaxBounds 24
dbm diagonalExtrapolateMaxBounds 24
dbm extrapolateLUBounds 24
dbm diagonalExtrapolateLUBounds 24

2.3 Header file mingraph.h . 24
dbm writeToMinDBMWithOffset 25

2.4 Header file gen.h . 26
2.5 Header file print.h . 26

3 C++ API 27
3.1 Header file constraints.h . 27

3.1.1 Type . 27
3.1.2 Operator . 27

operator < . 27
3.2 Header file fed.h . 28
3.3 Header file Valuation.h . 28
3.4 Header file partition.h . 28
3.5 Header file print.h . 28
3.6 Header file inline fed.h . 28
3.7 Header file Federation.h . 28

4 Ruby Wrapper 29
4.1 Module udbm . 29

matrix . 29
Fed . 29

4.1.1 Class UDBM::Constraint 30
INF . 30
initialize . 30
bound . 30
strict? . 30
bound= . 30
strict= . 30
to s . 31
raw . 31
<=> . 31

4.1.2 Class UDBM::Matrix . 31
initialize . 31
< . 31
<= . 32
<< . 32
dim . 32
size . 32
to s . 32
inspect . 32
to a . 32
[] . 33
set . 33

3

each . 33
4.1.3 Class UDBM::Relation . 33

Relation::Different . 33
Relation::Subset . 33
Relation::Superset . 33
Relation::Equal . 33
== . 33
new . 34
to i . 34
to s . 34

4.1.4 Class UDBM::Fed . 34
new . 34
Fed.zero . 34
Fed.init . 35
Fed.random . 35
initialize . 35
to s . 35
to a . 35
size . 35
dim . 36
set dim! . 36
copy . 36
empty? . 36
unbounded? . 36
empty! . 36
intern! . 37
zero! . 37
init! . 37
relation . 37
convex hull . 37
convex hull! . 38
+ . 38
convex add! . 38
constrain clock! . 38
constrain! . 38
& . 38
intersection! . 39
intersects? . 39
up . 39
up! . 39
down . 39
down! . 39
free clock . 40
free clock! . 40
free up . 40
free up! . 40
free down . 40
free down! . 40
free all up . 40
free all up! . 41

4

free all down . 41
free all down! . 41
update value . 41
update value! . 41
update clock . 41
update clock! . 41
update increment . 42
update increment! . 42
update . 42
update! . 42
satisfies? . 42
relax up . 43
relax up! . 43
relax down . 43
relax down! . 43
relax up clock . 43
relax up clock! . 43
relax down clock . 44
relax down clock! . 44
relax all . 44
relax all! . 44
subtraction empty? . 44
| . 44
union! . 44
- . 45
subtract! . 45
merge reduce! . 45
convex reduce! . 45
partition reduce! . 45
expensive reduce! . 45
expensive convex reduce! 46
predt . 46
predt! . 46
remove included in . 46
remove included in! . 46
< . 47
> . 47
<= . 47
>= . 47
== . 47
contains? . 48
possible back delay . 48
min delay . 48
max back delay . 48
delay . 49
has zero? . 49
extrapolate max bounds 49
extrapolate max bounds! 49
diagonal extrapolate max bounds 49
diagonal extrapolate max bounds! 49

5

extrapolate lu bounds . 50
extrapolate lu bounds! . 50
diagonal extrapolate lu bounds 50
diagonal extrapolate lu bounds! 50
drawing . 50
point drawing . 51
formula . 51
change clocks . 51
change clocks! . 51
<< . 51
dim= . 51

4.2 Module udbm-callback . 52
method added . 52
register method . 52
add change listener . 52

4.3 Module udbm-sys . 52
4.3.1 Quick Start . 52
4.3.2 Class Fixnum . 54

clock id . 54
offset . 54
plus clock . 54
minus clock . 55

4.3.3 Class UDBM::Context . 55
name . 55
clock names . 55
set class . 55
context id . 55
short names . 56
Context.create . 56
Context.get . 56
initialize . 56
dim . 56
zero . 57
true . 57
false . 57
random . 57
to s . 57
update . 57

4.3.4 Class UDBM::Context::Clock 58
context . 58
initialize . 58
to s . 58
clock id . 58
offset . 59
plus clock . 59
minus clock . 59
Operators On Clocks . 59

4.3.5 Class UDBM::Context::Set 59
instance . 59
initialize . 60

6

fed . 60
context . 60
to s . 60
to context . 60
assign clock! . 60
assign clock id! . 61
copy . 61
and! . 61
or! . 61
subtract! . 61
& . 61
| . 62
- . 62
satisfies? . 62
intern! . 62
reduce1! . 62
reduce2! . 62
reduce3! . 63
reduce4! . 63
reduce5! . 63
reduce! . 63
Wrapper Methods (Fed to Set) 63

4.3.6 Internal Classes . 64
4.4 Module udbm-gtk . 64

get fed . 65
4.4.1 Class Array . 65

to color . 65
4.4.2 Class Gdk::Color . 65

darker . 65
to s . 65

4.4.3 Class Gtk::Allocation . 65
to rectangle . 65

4.4.4 Class UDBM::Fed . 66
show . 66
hide . 66

4.4.5 Class UDBM::Context::Set 66
show . 66
show2 . 66
hide . 66
context= . 67

4.4.6 Internal Classes . 67
4.5 Module udbm-mdi . 67

References 68

Index 69

7

Chapter 1

Introduction

Difference bound matrices (DBMs) are efficient data structures commonly used
in verification timed automata [1]. Uppaal is a verification tool for timed
automata and uses this library for operating on DBMs. However, DBMs can
only represent convex sets so the library provides access to federations as well,
an arbitrary union of DBMs. The library architecture (Fig. 1.1) is as follows: A
core of C functions for basic operations on DBMs serves as a basis for a C++
implementation of two main classes dbm t and fed t that implement DBMs
and federations. The C++ API is developper friendly in the sense that memory
allocation is hidden in the library and these structures can be manipulated as
simple scalar types cheaply since the library implements reference counting and
copy-on-write. A Ruby binding is available to access federations with different
modules: udbm is the core module for federations, udbm-gtk is the module for
the graphical viewer (based on Gtk), udbm-sys is a higher level abstraction on
system of constraints where DBMs are entered only by means of constraints
between clocks.

Core Ruby wrapper
’udbm’

’udbm−sys’

C++ API

C API

fed.h

dbm.h

’udbm−gtk’

Gtk visualization

system wrapper
Constraint

Figure 1.1: Architecture of the DBM library.

8

Chapter 2

C API

2.1 Header file constraints.h

2.1.1 Types

DBMs are matrices of clock constraints of the form xi−xj < bij or xi−xj ≤ bij .
A clock constraint is internally encoded into the type raw t. In contrast bounds
are integers (int32 t).

The type constraint t regroups the indices of clock constraints and the
encoded constraint itself (bound + strict or non strict inequality). This type is
also available with a constructor in C++.

typedef struct {

index_t i,j;

raw_t value;

} constraint_t;

Creation of constraints can be done with one of these two functions:

constraint_t dbm_constraint(index_t i, index_t j,

int32_t bound, strictness_t strictness);

constraint_t dbm_constraint2(index_t i, index_t j,

int32_t bound, BOOL isStrict);

The indices i and j correspond to the entry (i, j) in the DBM for the constraint.
The bound is given followed by either a strictness type (see Constants) or a
boolean that says if the constraint has a strict inequality or not.

2.1.2 Constants

dbm INFINITY The infinity bound.
dbm OVERFLOW Bound to test for overflow.
dbm LE ZERO Constraint encoding of ≤ 0.
dbm LS INFINITY Constraint encoding of < ∞.
dbm LS OVERFLOW Constraint to test for overflow.
dbm STRICT Enum type for strict inequalities (<).
dbm WEAK Enum type for weak inequalities (≤).

9

2.1.3 Conversion Functions

dbm boundbool2raw

Synopsis: raw t dbm boundbool2raw(int32 t bound, BOOL isStrict);

Description: Convert a bound and a flag telling if the inequality is strict or not
to an encoded constraint.

dbm raw2bound

Synopsis: int32 t dbm raw2bound(raw t raw);

Description: Decode a constraint and return its bound.

dbm strictRaw

Synopsis: raw t dbm strictRaw(raw t raw);

Description: Make a constraint strict (strict inequality).

dbm weakRaw

Synopsis: raw t dbm weakRaw(raw t raw);

Description: Make a constraint weak (weak inequality).

dbm raw2strict

Synopsis: strictness t dbm raw2strict(raw t raw);

Description: Decode a constraint and return its strictness (enum type, see the
constants in Subsection 2.1.2).

dbm rawIsStrict

Synopsis: BOOL dbm rawIsStrict(raw t raw);

Description: Test if a constraint is strict – return TRUE (<) or FALSE (≤).

dbm rawIsWeak

Synopsis: BOOL dbm rawIsWeak(raw t raw);

Description: Test if a constraint is weak – return TRUE (≤) or FALSE (<).

dbm negStrict

Synopsis: strictness t dbm negStrict(strictness t strictness);

Description: Negate the strictness of a constraint.

dbm negRaw

Synopsis: raw t dbm negRaw(raw t c);

Description: Negate a constraint, e.g., the negation of < a is ≤ −a and the
negation of ≤ a is < −a.

10

dbm isValidRaw

Synopsis: BOOL dbm isValidRaw(raw t x);

Description: Test if a constraint is valie, i.e., it should not cause overflow in
(addition) operations.

dbm negConstraint

Synopsis: constraint t dbm negConstraint(constraint t c);

Description: Negate a constraint and return its negation. The negation of
xi−xj < bij is xj −xi ≤ −bij and the negation of xi−xj ≤ bij is xj −xi < −bij.

dbm areConstraintsEqual

Synopsis: BOOL dbm areConstraintsEqual(constraint t c1, constraint t

c2);

Description: Test if two constraints c1 and c2 are equal, which is same indices
and same constraint value.

2.1.4 Addition of Constraints

dbm addRawRaw

Synopsis: raw t dbm addRawRaw(raw t x, raw t y);

Description: Addition of constraints. This is useful for the shortest path compu-
tation. The constraints x or y may be infinity. Examples: (≤ 2)+(≤ 1) = (≤ 3),
(≤ 2) + (< 1) = (≤ 3), (< 2) + (< 1) = (< 3), (<= 1) + (< ∞) = (< ∞).

dbm addRawFinite

Synopsis: raw t dbm addRawFinite(raw t x, raw t y);

Description: Addition of constraints with y being finite (not
dbm LS INFINITY).

dbm addFiniteRaw

Synopsis: raw t dbm addFiniteRaw(raw t x, raw t y);

Description: Addition of constraints with x being finite (not
dbm LS INFINITY).

dbm addFiniteFinite

Synopsis: raw t dbm addFiniteFinite(raw t x, raw t y);

Description: Addition of constraints with x and y being finite (not
dbm LS INFINITY).

11

dbm addFiniteWeak

Synopsis: raw t dbm addFiniteWeak(raw t x, raw t y);

Description: Specialized addition of constraints with x and y being finite (not
dbm LS INFINITY) and at least x or y being a weak constraint.

dbm rawInc

Synopsis: raw t dbm rawInc(raw t c, raw t i);

Description: Increment a constraint by i with a safe test for infinity. Notice
that the increment (i) is in raw t format. Addition of constraints will result
as (≤ 0) + (≤ 0) = (≤ 0), whereas increment of constraints will result as
(≤ 0)+ = 1 = (< 1) with 1 corresponding to internal encoding of (≤ 0).

dbm rawDec

Synopsis: raw t dbm rawDec(raw t c, raw t d);

Description: Similarly to decrement a constraint. This has no effect if c is
infinity.

2.2 Header file dbm.h

A dbm is defined as a squared matrix of raw t. The type raw t is the encoded
clock constraint (see constraints.h). IMPORTANT: In the system, you will
typically have clocks x1, x2..., xn. The dbm has x0 as the reference clock, hence
the dimension is equal to n+1, which implies that we assume in all the functions
that the dimension is strictly greater than 0.

The constraints of a DBM are refered as dbm[i,j] corresponding to the ele-
ment dbm[i*dim+j] of the raw t array. As a reminder, dbm[i,j] represents the
constraint xi − xj < bij or xi − xj ≤ bij . The constraint encoding is described
in constraints.h.

The C API does not support indirection table for clocks but the C++ API
does. Dynamic mappings must be resolved before calling these functions. Be
careful when dealing with operation that involve arrays of constraints (e.g.,
kExtrapolate). As a common assumption for all operations on DBM: dim > 0,
which means at least the reference clock is in the DBM.

A non empty DBM means the represented zone is non empty, which is, for a
closed dbm the diagonal elements are equal to 0. As a common assumption, all
the DBMs taken as arguments are closed (the canonical form with the tightest
constraints obtained by running the shortest path algorithm) and non empty.
Resulting DBMs are either empty or closed and non empty.

The type cindex t is used whenever an index or a dimension for a DBM is
expected. An index is between 0 and 216 − 1 (even if the representation is on
32 bits). Obviously since DBMs are square matrices, this is a very reasonable
limitation.

12

2.2.1 Basic Functions

dbm init

Synopsis: void dbm init(raw t *dbm, cindex t dim);

Description: Initialize a DBM dbm of dimension dim with ≤ 0 on the diagonal
and the first row, and infinity everywhere else, which is an unconstrained DBM
(with positive clocks).

dbm zero

Synopsis: void dbm zero(raw t *dbm, cindex t dim);

Description: Initialize a DBM dbm of dimension dim to the zero point (origin),
which is set all the constraints to ≤ 0.

dbm isEqualToInit

Synopsis: BOOL dbm isEqualToInit(const raw t *dbm, cindex t dim);

Description: Test if the DBM dbm of dimension dim is equal to an unconstrained
DBM (as written by dbm init). Return TRUE if it is, FALSE otherwise.

dbm isEqualToZero

Synopsis: BOOL dbm isEqualToZero(const raw t *dbm, cindex t dim);

Description: Test if the DBM dbm of dimension dim is equal to the zero point
(as written by dbm zero). Return TRUE if it is, FALSE otherwise.

dbm copy

Synopsis: void dbm copy(raw t *dst, const raw t *src, cindex t dim);

Description: Copy a DBM src of dimension dim to dst. Notice that the user
has to make sure that dst points to an array raw t[dim*dim].

dbm areEqual

Synopsis:
BOOL dbm areEqual(const raw t *dbm1, const raw t *dbm2, cindex t

dim);

Description: Test if two DBMs are equal, i.e., are exactly identical, which makes
sense for DBMs in closed form. It is also possible to call dbm relation and
test the result for base EQUAL but this function is better and implements an
optimistic test, which means that it will perform much better when DBMs are
most often equal. This is particularly desirable when using hash tables to store
DBMs.

dbm hash

Synopsis: uint32 t dbm hash(const raw t *dbm, cindex t dim);

Description: Compute a hash value for a DBM.

13

dbm isPointIncluded

Synopsis:
BOOL dbm isPointIncluded(const int32 t *pt, const raw t *dbm,

cindex t dim);

Description: Test if a discrete point (i.e., clock valuation) is included in the
DBM (i.e., satisfies all the constraints of the DBM). Return TRUE if it is the
case, FALSE otherwise. Note that the dimension of the point and the DBM
must match. Also note that pt[0] should be 0 for this to be meaningful unless
the user wants to include an offset.

dbm isRealPointIncluded

Synopsis:
BOOL dbm isRealPointIncluded(const double *pt, const raw t *dbm,

cindex t dim);

Description: Test if a real point (at the precision of double, of course) is included
in the DBM. Return TRUE if it is the case, FALSE otherwise. Note that the
dimension of the point and the DBM must match. Also note that pt[0] should
be 0 for this to be meaningful unless the user wants to include an offset.

dbm shrinkExpand

Synopsis:
cindex t dbm shrinkExpand(const raw t *dbmSrc, raw t *dbmDst,

cindex t dimSrc, const uint32 t *bitSrc, const uint32 t *bitDst,

size t bitSize, cindex t *table);

Description: Shrink and expand a DBM, which is, resize it and copy, add, or
remove clocks constraints corresponding to clocks that are copied, added, or
removed. The arguments are:

• dbmSrc: The source DBM to resize. The necessary constraints will be
copied and the DBM will not be modified.

• dbmDst: The destination DBM (enough space must be reserved) where to
write the resulting DBM. It must be different from dbmSrc.

• dimSrc: The dimension of the source DBM. Note that the dimension of
the destination is not given in argument because it is redundant with the
information in bitDst. Instead, it is returned.

• bitSrc and bitDst: Bit tables to mark which clocks are represented in the
source and the destination DBM. The idea is that the user has a number
of global clocks but the DBMs are representing constraints on some of
them only. The bit tables mark which clocks are used in the DBMs, i.e.,
if bit i is set then clock i is used. Of course clock i is represented by some
index k in the DBM and a translation table (or mapping) is computed
and returned as well. The first bit (bit 0) must be set (it is the reference
clock). In addition, bitSrc and bitDst must be different (have different
bits), which is, the function is supposed to be called if there is anything to

14

do since it is slightly more expensive than a simple copy (additional tests
and computations are made).

• bitSize: The size of the bit table in integers (must be ≤ ⌈maxDim/32⌉
where maxDim is the maximal dimension, or total number of clocks.

• table: Where to write the resulting translation table (or mapping) for
the result DBM.

The function returns the dimension of the resulting DBM (equal to the number
of bits set in bitDst).

dbm updateDBM

Synopsis:
void dbm updateDBM(raw t *dbmDst, const raw t *dbmSrc, cindex t

dimDst, cindex t dimSrc, const cindex t *cols);

Description: Variant for resizing DBMs. Instead of giving arrays of bits, the user
provides an array of the clocks wanted in the destination DBM (with the indices
refering directly to the indices of the clocks of the source DBM). The resulting
DBM is written in dbmDst (enough space must be allocated), the original is
read from dbmSrc, the dimensions of the destination and the source, are dimDst
and dimSrc. The table cols which clock to take for the destination and in
which order: cols[i] tells which clock from the source to copy as clock i in the
destination and if the special value 0 is used then a new unconstrained clock is
added. Only the entries from 1 to dimDst-1 are meaningful with the entry at 0
being ignored since it corresponds to the reference clock that is always present
(must always be 0).

dbm swapClocks

Synopsis: void dbm swapClocks(raw t *dbm, cindex t dim, cindex t x,

cindex t y);

Description: Swap clocks x and y, which has the effect of swapping the corre-
sponding constraints in the DBM dbm of dimension dim.

dbm isDiagonalOK

Synopsis: BOOL dbm isDiagonalOK(const raw t *dbm, cindex t dim);

Description: Test if the diagonal of a DBM is OK, which means that the con-
straints are either less than < 0 for an empty DBM or exactly ≤ 0 for a non
empty DBM. This is useful only for debugging. Return TRUE if the diagonal
is OK, FALSE otherwise.

dbm isValid

Synopsis: BOOL dbm isValid(const raw t *dbm, cindex t dim);

Description: Return TRUE if a DBM is closed, not empty, and the constraints
in the first row are at most ≤ 0 (positive clocks), FALSE otherwise. It is not
necessary to test for the diagonal separately. This is a very useful function to
use in assertions, although it is expensive (cubic).

15

dbm relation2string

Synopsis: const char* dbm relation2string(relation t rel);

Description: Convert a relation t value to a meaningful string, which is useful
for user feedback.

dbm getMaxRange

Synopsis: raw t dbm getMaxRange(const raw t *dbm, cindex t dim);

Description: Compute the maximal range needed to store constraints of a DBM,
excluding infinity (a special large value). This function is useful if the user
intends to save DBMs on fewer than 32 bits.

2.2.2 DBM-DBM Operations

dbm convexUnion

Synopsis:
void dbm convexUnion(raw t *dbm1, const raw t *dbm2, cindex t

dim);

Description: Compute the convex union of two DBMs. This implements “*dbm1
+= *dbm2” where “+” refers to the convex union operator (used in the C++
API).

dbm intersection

Synopsis:
BOOL dbm intersection(raw t *dbm1, const raw t *dbm2, cindex t

dim);

Description: Compute the intersection of two DBMs. This implements “*dbm1
&= *dbm2” where “&” refers to the intersection operator (used in the C++
API). The function returns TRUE if the resulting DBM is not empty, FALSE
otherwise (and dbm1 is empty).

dbm relaxedIntersection

Synopsis:
BOOL dbm relaxedIntersection(raw t *dbm1, const raw t *dbm2,

cindex t dim);

Description: Compute the intersection of two DBMs with their constraints re-
laxed. A relaxed constraint is a constraint made non strict if it is not infinity,
e.g., (< 3)+ = (≤ 3). Infinity is always strict. The result is stored in dbm1 and
operation corresponds to “*dbm1 = (*dbm1)+ & (*dbm2)+”. The function re-
turns TRUE if the resulting DBM is not empty, FALSE otherwise (and dbm1
is empty).

16

dbm haveIntersection

Synopsis:
BOOL dbm haveIntersection(const raw t *dbm1, const raw t *dbm2,

cindex t dim);

Description: Test if two DBM have a non empty intersection. The test is
approximate: The function returns FALSE if the intersection is empty for sure,
or TRUE if the intersection is maybe not empty.

2.2.3 Constraining Operations

dbm constrain

Synopsis:
BOOL dbm constrain(raw t *dbm, cindex t dim, cindex t i, cindex t

j, raw t constraint, uint32 t *untouched);

Description: This is the only function in the API that returns DBMs that
may not be closed. Calls to dbm isEmpty may return erroneous results unless
dbm closex is called before. This function is useful in the case where several
constraints have to be applied on-the-fly to a DBM without knowing in advance
all of them. The DBM dbm of dimension dim has its constraint xi−xj constrained
(or tightened if possible) with the constraint constraint. The function returns
FALSE if the DBM is empty for sure or TRUE if it is maybe not empty. The
array untouched is a bit array with dim bits, i.e., it is an array of ⌈dim/32⌉
uint32 t. It must be initialized to 0 for the first call and then it must not
be modified between calls to dbm constrain. This array is used to mark clocks
that will be iterated over in the dbm closex function to reduce, if possible, the
iterations (each iteration is quadratic in function of dim).

dbm constrainN

Synopsis:
BOOL dbm constrainN(raw t *dbm, cindex t dim, const constraint t

*constraints, size t n);

Description: Constrain the DBM dbm of dimension dim with n constraints. The
resulting DBM is either closed and not empty (and the function returns TRUE),
or empty (and FALSE is returned). The constraint of the DBM are tightened
if the argument constraints are tighter.

dbm constrainIndexedN

Synopsis:
BOOL dbm constrainIndexedN(raw t *dbm, cindex t dim, const

cindex t *indexTable, const constraint t *constraints, size t n);

Description: Constrain the DBM dbm of dimension dim with n constraints,
but constrain the constraints xindexTable[i] − xindexTable[j] instead of xi − xj as
the previous function for all the constraints given in argument (a constraint
has indices i and j, and a value field encoding the bound and the inequality).
This function is useful in the case where DBMs are dynamically resized and a

17

global clock x may not correspond to the index x of the DBM but to the index
indexTable[x].

dbm constrain1

Synopsis:
BOOL dbm constrain1(raw t *dbm, cindex t dim, cindex t i, cindex t

j, raw t constraint);

Description: Constrain the DBM dbm of dimension dim with one constraint
given in argument (for the constraint xi − xj). Return TRUE if the resulting
DBM is not empty, FALSE otherwise.

dbm constrainC

Synopsis:
BOOL dbm constrainC(raw t *dbm, cindex t dim, constraint t c);

Description: This is a wrapper for dbm constrain1(dbm, dim, c.i, c.j,

c.value).

dbm constrainClock

Synopsis:
BOOL dbm constrainClock(raw t *dbm, cindex t dim, cindex t x,

int32 t value);

Description: Apply the constraint x == value for a clock x to this DBM. This
is the same as applying x − x0 ≤ 0 and x0 − x ≤ 0 to the DBM, except that
this call is more efficient than making two consecutive calls. Return TRUE if
the result is not empty, FALSE otherwise.

2.2.4 Standard Operations

dbm up

Synopsis: void dbm up(raw t *dbm, cindex t dim);

Description: Delay operation (future), also called strongest post-condition. The
function sets the constraints (i, 0) to infinity, i.e., xi − x0 < ∞.

dbm down

Synopsis: void dbm down(raw t *dbm, cindex t dim);

Description: Inverse delay operation (past), also called weakest pre-condition.
The function removes the lower bounds of the clocks and update on-the-fly the
closed form (some lower bounds may be induced by diagonal constraints). The
clocks are still positive.

18

dbm freeClock

Synopsis: void dbm freeClock(raw t *dbm, cindex t dim, cindex t k);

Description: Free a clock k, which is, remove all the constraints of this clock
(except that the clock is still positive). This sets the constraints xi − xk < ∞
and xk − xi < ∞ ∀i) except for xk − xk ≤ 0 and x0 − xk ≤ 0.

dbm freeUp

Synopsis: void dbm freeUp(raw t *dbm, cindex t dim, cindex t k);

Description: Free the upper bounds of the clock k, i.e., set the constraints
xk − xi < ∞ ∀i 6= k).

dbm freeAllUp

Synopsis: void dbm freeAllUp(raw t *dbm, cindex t dim);

Description: Free the upper bounds for all the clocks (except the reference
clock), i.e., set all the constraints to xi − xj < ∞ for i > 0 and i 6= j.

dbm isFreedAllUp

Synopsis: BOOL dbm isFreedAllUp(const raw t *dbm, cindex t dim);

Description: Test if calling dbm freeAllUp(dbm,dim)has no effect on the DBM,
i.e., if all the clocks have their upper bounds freed: Return TRUE if it is the
case, FALSE otherwise.

dbm freeDown

Synopsis: void dbm freeDown(raw t *dbm, cindex t dim, cindex t k);

Description: Free the lower bounds of the clock k, i.e., set the constraints (i, k)
to ≤ 0 and tighten the DBM on-the-fly. In practice this means to set dbm[i, k] :=
dbm[i, 0] ∀i 6= k.

dbm freeAllDown

Synopsis: void dbm freeAllDown(raw t *dbm, cindex t dim);

Description: Free the lower bounds of all the clocks (except the reference clock),
i.e., set dbm[i, k] := dbm[i, 0] ∀i 6= k, ∀k > 0.

dbm testFreeAllDown

Synopsis: BOOL dbm testFreeAllDown(const raw t *dbm, cindex t dim);

Description: Test if calling dbm freeAllDown(dbm,dim) has no effect on the
DBM, i.e., if all the clocks have their lower bounds freed: Return 0 if it is the
case, or the value (j << 16)|i where (i, j) corresponds to the constraint from
where the DBM differs from the expected value.

19

dbm satisfies

Synopsis:
BOOL dbm satisfies(const raw t *dbm, cindex t dim, cindex t i,

cindex t j, raw t constraint);

Description: Test if the DBM dbm of dimension dim satisfies the constraint
constraint (xi − xj < bij or xi − xj ≤ bij encoded in constraint). This
corresponds to applying the constraint to the DBM and checking if the result
is not empty, except that we do not apply the constraint. The function must
not be miss-used in testing consecutive constraints to conclude that the DBM
satisfies their conjuction, which is wrong. However, it is right for a disjunction.

dbm isEmpty

Synopsis: BOOL dbm isEmpty(const raw t *dbm, cindex t dim);

Description: Test if a DBM is empty (return TRUE) or not (return FALSE).
An empty DBM has a constraint stricly less than 0 (can be negative or can be
just < 0), which results in no point satisfying the constraints. So either there
is such a constraint on the diagonal (and the DBM is empty), or there is no
such constraint but the DBM must be closed (canonical form) for the result
to be right. Generally all the functions (except dbm constrain) maintain this
invariant.

dbm close

Synopsis: BOOL dbm close(raw t *dbm, cindex t dim);

Description: Apply the shortest path algorithm to the DBM to compute the
tightest possible constraints. This is the canonical form of the DBMs and we
refer to these DBM as being “closed”. The result may be an empty DBM, hence
the return value: Return TRUE if the DBM is not empty, FALSE otherwise.
Note: This algorithm is cubic in function of dim!

dbm isClosed

Synopsis: BOOL dbm isClosed(const raw t *dbm, cindex t dim);

Description: Test if this DBM is in its “closed” form. This function is only useful
for debugging or for assertions but be warned that it is as expensive as dbm close

(in fact more expensive because there is an internal allocation/copy/deallocation
to test this). Return TRUE if the DBM is closed, FALSE otherwise.

dbm closex

Synopsis:
BOOL dbm closex(raw t *dbm, cindex t dim, const uint32 t

*touched);

Description: This is a special version of dbm close where only the clocks marked
in touched will be tightened, i.e., if the bit k is set then the clock k is tightened.
This is useful to reduce the cost of the close operation if we know that we need to
tighten only certain clocks, which is the case when constraining DBMs. Return
TRUE if the DBM is not empty, FALSE otherwise.

20

dbm close1

Synopsis: BOOL dbm close1(raw t *dbm, cindex t dim, cindex t k);

Description: Special version of dbm closex for tightening only one clock k.
Return TRUE if the DBM is not empty, FALSE otherwise.

dbm closeij

Synopsis:
BOOL dbm closeij(raw t *dbm, cindex t dim, cindex t i, cindex t j);

Description: Special and more efficient version of dbm closex for re-tightening
a DBM after its constraint xi − xj has been tightened! Note that this works
only for xi − xj and its cost is dim + dim2 instead of 2 ∗ dim2 if you call twice
dbm close1 or if you call dbm closex with the two bits i and j set.

dbm tighten

Synopsis:
void dbm tighten(raw t *dbm, cindex t dim, cindex t i, cindex t j,

raw t c);

Description: This is a shortcut for dbm[i,j] := c followed by a call to
dbm closeij(dbm, dim, i, j). The function assumes that 1) it is a tight-
ening (c < dbm[i, j]) and 2) the tightening results in a non empty DBM
(c + dbm[j, i] ≥ 0).

dbm isUnbounded

Synopsis: BOOL dbm isUnbounded(const raw t *dbm, cindex t dim);

Description: Test if a DBM is unbounded, i.e., if a point in the DBM can delay
indefinitely. Return TRUE if it is, FALSE otherwise.

dbm relation

Synopsis:
relation t dbm relation(const raw t *dbm1, const raw t *dbm2,

cindex t dim);

Description: Compute the relation between two DBMs dbm1 and dbm2 of di-
mension dim in the sense of set inclusion. The return value relation t is an
enumeration taking the values:

• base DIFFERENT if dbm1 and dbm2 are not comparable,

• base SUPERSET if dbm1 is a strict superset of dbm2,

• base SUBSET if dbm1 is a strict subset of dbm2,

• base EQUAL if dbm1 is equal to dbm2.

21

dbm isSubsetEq

Synopsis:
BOOL dbm isSubsetEq(const raw t *dbm1, const raw t *dbm2, cindex t

dim);

Description: Test if dbm1 is a subset (non strict) of dbm2. Return TRUE if it
is, FALSE otherwise.

dbm isSupersetEq

Synopsis:
BOOL dbm isSupersetEq(const raw t *dbm1, const raw t *dbm2,

cindex t dim);

Description: Test if dbm1 is a superset (non strict) of dbm2. Return TRUE if
it is, FALSE otherwise.

2.2.5 Update Operations

These operations correspond to updating a DBM to compute operations at the
clock level, e.g., x := 0 for a reset of the clock x to 0, x := y for copying the
clock y to x, etc Using a specialized version is more efficient than the call
to the general function dbm update.

dbm updateValue

Synopsis:
void dbm updateValue(raw t *dim, cindex t dim, cindex t x, int32 t

value);

Description: Update a clock x to the value value, i.e., compute the operation
x := value where value is a positive integer.

dbm updateClock

Synopsis:
void dbm updateClock(raw t *dbm, cindex t dim, cindex t x, cindex t

y);

Description: Update a clock x to the clock y, i.e., compute the operation x :=

y.

dbm updateIncrement

Synopsis:
void dbm updateIncrement(raw t *dbm, cindex t dim, cindex t x,

int32 t value);

Description: Increment a clock x with value, i.e., compute the operation x :=

x + value. The value may be negative but the user has to make sure it is not
too much negative, i.e., it will not result in a negative value for the clock x.

22

dbm update

Synopsis:
void dbm update(raw t *dbm, cindex t dim, cindex t x, cindex t y,

int32 t value);

Description: This is a more general call to compute the operation x := y +

value.

2.2.6 Relax Operations

Relaxing constraints means to make them less or equal (a.k.a. weak) when they
are not < ∞. A constraint of the form < b becomes ≤ b. There are different relax
operations to relax upper or lower bounds. The point is that they recompute the
closed form on-the-fly whenever it is needed and the update is at most quadratic
(and not cubic if running dbm close). However, it is important to note that
some functions may not be able to relax all the constraints they are suppose
to relax if they are induced by other tighter constraints (a diagonal constraint
may imply that another constraint must be strict).

dbm relaxUpClock

Synopsis: void dbm relaxUpClock(raw t *dbm, cindex t dim, cindex t

x);

Description: Relax the upper bounds of the clock x, i.e., make the constraints
xk − xi weak ∀i.

dbm relaxDownClock

Synopsis: void dbm relaxDownClock(raw t *dbm, cindex t dim, cindex t

x);

Description: Relax the lower bounds of the clock x, i.e., make the constraints
xi − xk weak ∀i.

dbm relaxAll

Synopsis: void dbm relaxAll(raw t *dbm, cindex t dim);

Description: Relax all the constraints (those that are not < ∞ of course).

dbm relaxUp

Synopsis: void dbm relaxUp(raw t *dbm, cindex t dim);

Description: Compute the smallest possible delay, which is the same as calling
dbm relaxDown(dbm, dim, 0) for the reference clock!

dbm relaxDown

Synopsis: void dbm relaxDown(raw t *dbm, cindex t dim);

Description: Compute the smallest possible inverse delay, which is the same as
calling dbm relaxUp(dbm, dim, 0) for the reference clock!

23

2.2.7 Extrapolation Operations

Extrapolations are approximation techniques to make sure that exploration al-
gorithms will terminate. Depending on the models (in particular if diagonal
constraints are used) the approximation can be exact, or not. The following dif-
ferent extrapolation algorithms are described in [2] and the names correspond
to the algorithms of the paper. The arguments to the functions are the arrays of
maximal constants (possibly different lower and upper maximal bounds). It is
possible to give the special value -dbm INFINITY, which has the effect to “free”
the corresponding clock, which is a trick for implementing the so-called active
clock reduction.

dbm extrapolateMaxBounds

Synopsis:
void dbm extrapolateMaxBounds(raw t *dbm, cindex t dim, const

int32 t *max);

Description: Classical extrapolation using maximal constants.

dbm diagonalExtrapolateMaxBounds

Synopsis:
void dbm diagonalExtrapolateMaxBounds(raw t *dbm, cindex t dim,

const int32 t *max);

Description: Diagonal extrapolation based on maximal bounds.

dbm extrapolateLUBounds

Synopsis:
void dbm extrapolateLUBounds(raw t *dbm, cindex t dim, const

int32 t *lower, const int32 t *upper);

Description: Extrapolation based on lower and upper bounds.

dbm diagonalExtrapolateLUBounds

Synopsis:
void dbm diagonalExtrapolateLUBounds(raw t *dbm, cindex t dim,

const int32 t *lower, const int32 t *upper);

Description: Diagonal extrapolation based on lower and upper bounds.

2.3 Header file mingraph.h

DBMs can be represented more compactly by removing redundant constraints
and keeping only a minimal subset of constraints [4]. If we view DBMs as
graphs we have constraints, the edges, defined between clocks, the vertices.
This minimal representation is referred to as the minimal graph. The API gives
access to the minimal graph directly and provides means of saving it somehow
with different levels of compactness.

24

The idea is to have generic implementation that can be used with standard
allocation schemes (malloc, new) and with custom allocators. This interface is
in C to make it easy to wrap to other languages so we use a generic function
to allocate memory. The type of this function is int32 t* function(uint32 t

size, void *data), where sizee is the size in int to allocate, and it returns a
pointer to a int32 t[size], and data is other custom data. Possible wrappers
are:

• for a custom allocator Alloc

int32_t *alloc(uint32_t size, void *data) {

return ((Alloc*)data)->alloc(size);

}

defined as base allocate in base/DataAllocator.h,

• for malloc

int32_t *alloc(uint32_t size, void *) {

return (int32_t*) malloc(size*sizeof(int32_t));

}

defined as base malloc in base/c allocator.h,

• for new

int32_t *alloc(uint32_t size, void *) {

return new int32_t[size];

}

defined as base new in base/DataAllocator.h.

The allocator function and the custom data are packed together inside the
allocator t type.

dbm writeToMinDBMWithOffset

Synopsis: int32 t* dbm writeToMinDBMWithOffset(const raw t *dbm,

cindex t dim,

BOOL minimizeGraph, BOOL tryConstraints16, alocator t c alloc,

size t offset);

Description: Save a DBM in minimal representation. The API supports al-
location of larger data structures than needed for the actual zone represen-
tation. When the offset argument is bigger than zero, offset extra inte-
gers are allocated and the zone is written with the given offset. Thus when
int32 t[data size] is needed to represent the reduced zone, an int32 t array of
size offset+data size is allocated. The first offset elements can be used by
the caller. It is important to notice that the other functions typically expect a
pointer to the actual zone data and not to the beginning of the allocated block.
Thus in the following piece of code, most functions expect mg and not memory:

25

int32_t *memory = dbm_writeToMinDBMWithOffset(...);

mingraph_t mg = &memory[offset];

Notes: If offset is 0 and dim is 1, NULL may be returned. NULL is valid
as an input to the other functions. It could be possible to send as argument
the maximal value of the constraints that can be deduced from the maximal
constants but this would tie the algorithm to the extrapolation.

The argument minimizeGraph activates the minimal graph reduction. The
flag tryConstraints16 enables saving the constraints on 16 bits (instead of
32). The allocation function conforms to the previous specification of memory
allocation.

2.4 Header file gen.h

2.5 Header file print.h

26

Chapter 3

C++ API

3.1 Header file constraints.h

3.1.1 Type

When compiling with g++ the structure constraint t is available with con-
structors.

struct constraint_t

{

constraint_t() {}

constraint_t(index_t ci, index_t cj, raw_t vij)

: i(ci), j(cj), value(vij) {}

index_t i,j;

raw_t value;

};

3.1.2 Operator

operator <

Synopsis: bool operator <(const constraint t& a, const

constraint t& b);

Description: Comparison of two constraints. An arbitrary ordering has been
chosen for sorting purposes. See constraint.h for the implementation.

27

3.2 Header file fed.h

3.3 Header file Valuation.h

3.4 Header file partition.h

3.5 Header file print.h

3.6 Header file inline fed.h

3.7 Header file Federation.h

28

Chapter 4

Ruby Wrapper

4.1 Module udbm

The easiest way to use the module is to start with:
require ’udbm’

include UDBM

to include the Ruby file udbm.rb and include the Ruby module UDBM that is
defined (similar to a namespace for accessing the classes). The examples assume
that “include UDBM” has been executed.

matrix

Synopsis: matrix

Description: This is a shortcut for Matrix.new.

Return: a Matrix.

Fed

Synopsis: Fed(dim)

Description: This is the shortcut function to make writing federations more
natural. It expects a valid dimension as argument (≥ 1) and a block that results
in one Matrix or an array of matrices (or nil in case of an empty federation).
The trick is to use the function matrix.
Example:
Fed(3) # empty federation of dimension 3

Fed(4) {} # empty federation of dimension 4 (variant)

Fed(2) { matrix <=0 <=-2 <=2 <=0 } # one DBM

Fed(2) {[matrix <=0 <=-1 <=1 <=0,matrix <=0 <=-3 <=3 <=0]} # two

However, constructing federations explicitly is not recommended since it is not
what is used in practice. The class methods zero and init are here for this
purpose.

Return: a Fed.

29

4.1.1 Class UDBM::Constraint

This class includes the module Comparable and has therefor access to the meth-
ods declared in this module.

INF

Description: The module defines the constant INF to access the bound infinity.

initialize

Synopsis: initialize(b, s = false)

Description: This is the initialization method called by new. A constraint is
made of a bound and a strictness flag so the expected arguments are the bound
(b) and a boolean saying if the constraint is strict or not.
Example:
Constraint.new(2,false)

Constraint.new(1,true)

Return: The new instance (actually new returns it.).

bound

Synopsis: bound

Description: This is the attribute reader for the bound of the constraint.

Return: The bound.

strict?

Synopsis: strict?

Description: Test if the constraint is strict. This is in fact an attribute reader
for the strictness (boolean).

Return: true if the constraint is strict, false otherwise.

bound=

Synopsis: bound=(b)

Description: Set the value of the bound of the constraint. The strictness is
changed if the argument is infinity (INF).

Return: b.

strict=

Synopsis: strict=(s)

Description: Set the strictness of the constraint. A check is done in case the
bound is infinity (INF) to keep the constraint consistent. If the constraint is
infinity the strictness does not change.

Return: s.

30

to s

Synopsis: to s

Description: String representation of a constraint.

Return: a String.

raw

Synopsis: raw

Description: This gives access to the encoded value of constraints. Actually it
computes it on-the-fly since this class does not store an encoded constraint but
is only here as a helper class.

Return: a numeric (Integer in principle).

<=>

Synopsis: <=>(c)

Description: Comparison function to make the constraint comparable. The
ordering corresponds to the ordering of the encoded value of constraints (raw),
which is consistent with the natural ordering of inequalities (< 0,≤ 0,< 1,≤
1,. . .).

Return: -1, 0, or 1, as a standard <=> method is supposed to do.

4.1.2 Class UDBM::Matrix

This class is here only for convenience and testing. It is not necessary for
manipulating DBMs. A Matrix is simply a square matrix of constraints and
is used to construct DBMs manually or to get constraints individually from
DBMs.

initialize

Synopsis: initialize(*a)

Description: The initialization method expects constraints as arguments. No
argument will initialize an empty matrix.

Return: self.

<

Synopsis: <(b)

Description: This operator is used as a trick to add constraints to the matrix.
It expects a bound as argument and the added constraint is (< b).

Return: self.

31

<=

Synopsis: <=(b)

Description: This operator is used as a trick to add constraints to the matrix.
It expects a bound as argument and the added constraint is (≤ b).

Return: self.

<<

Synopsis: <<(c)

Description: This operator is similar to Array::<< and adds constraints.

Return: self.

dim

Synopsis: dim

Description: Compute the dimension corresponding to the current matrix.

Return: ⌊
√

size⌋.

size

Synopsis: size

Description: Access to the number of element in the matrix.

Return: a numeric (the size).

to s

Synopsis: to s

Description: String representation of a matrix.

Return: a String.

inspect

Synopsis: inspect

Description: Special formated string representation to be used in irb.

Return: a String.

to a

Synopsis: to a

Description: Access to the internal array that stores the constraints. Notice
that if you do something like m.to a << Constraint.new(3,true), you will
add constraints to the matrix.

Return: an Array.

32

[]

Synopsis: [](i,j)

Description: Access the element of the matrix at (i, j) (a constraint in principle).

Return: Constraint expected.

set

Synopsis: set(i,j,c)

Description: Set the constraint (i, j) of in the matrix to be c.

Return: self.

each

Synopsis: each{ |x| ...}

Description: Enumerate the constraints of the matrix.

Return: self.

4.1.3 Class UDBM::Relation

The class Relation encapsulates the different constants representing the possible
results of a relation between DBMs (or in fact federations here). When applying
a relation from a federation on another, e.g., a.relation(b), a Relation result
is returned.

Relation::Different

Description: Relation result when the two federations are not comparable.

Relation::Subset

Description: Relation result when the federation ’a’ is a subset of ’b’.

Relation::Superset

Description: Relation result when the federation ’a’ is a superset of ’b’.

Relation::Equal

Description: Relation result when the federation ’a’ is equal to ’b’.

==

Synopsis: ==(r)

Description: Test equality with another relation.

Return: true or false.

33

new

Synopsis: new(i)

Description: It is possible to create relation instances on-the-fly. In this case
the argument is expected to be an integer between 0 and 3 to be mapped to the
proper constant.

Return: self.

to i

Synopsis: to i

Description: Convert a Relation to an Integer corresponding to the internal
numerical representation of relations.

Return: a Fixnum.

to s

Synopsis: to s

Description: Convert a Relation to its String representation.

Return: a String.

4.1.4 Class UDBM::Fed

The class Fed is a wrapper for the underlying C++ fed t class. There is no
support for individual DBMs from Ruby since it is only a particular case of
federations. If for some reason the clock constraints need to be accessed, it is
possible to get them via the Matrix class.

new

Synopsis: new(*a)

Description: The constructor takes a variable number of arguments. The dif-
ferent ways to construct a federation are: (1) Constructor by copy, expects one
Fed; and (2) explicit DBMs, expects a list of Matrix instances with the same
dimension. There is a shortcut by using the function Fed(dim) with a syntax
that corresponds to the output of federations.

Return: a Fed.

Fed.zero

Synopsis: Fed.zero(dim)

Description: Create a federation with one DBM of dimension dim representing
the origin (the zero point).

Return: a Fed.

34

Fed.init

Synopsis: Fed.init(dim)

Description: Create a federation with one DBM of dimension dim that is un-
constrained (infinity for all constraints except the lower bounds set to 0 since
clocks are positive).

Return: a Fed.

Fed.random

Synopsis: Fed.random(dim)

Description: Create a random federation with a random number of DBMs, all
of dimension dim. This may be useful for testing.

Return: a Fed.

initialize

Synopsis: initialize(*a)

Description: This is the initialization function called by new. See new.

Return: a Fed (actually new returns it).

to s

Synopsis: to s

Description: Standard method to get a String representation of the federation.
Notice that the output corresponds to the syntax of declaring federations.

Return: a String.

to a

Synopsis: to a

Description: Convert a federation to an array of Matrix instances. This is the
method to use if you want to access individual constraints for some reason.

Return: an Array.

size

Synopsis: size

Description: Return the number of DBMs in the federation.

Return: a Fixnum.

35

dim

Synopsis: dim

Description: Return the dimension of all the DBMs of this federation. Notice
that all DBMs must have the same dimension.

Return: a Fixnum.

set dim!

Synopsis: set dim!(dim)

Description: Empty the federation and change its dimension to dim. As there
is no information on which clock constraints to keep, the only way to have a
consistent result is to have an empty federation.

Return: self.

copy

Synopsis: copy

Description: Return a copy of itself. Keep in mind that doing a = b will copy
the reference of b to a, thus modifying a (e.g. a.up!) will change b as well.
The copy method gives a new reference.

Return: a new Fed.

empty?

Synopsis: empty?

Description: Test if a federation is empty.

Return: true if empty, false otherwise.

unbounded?

Synopsis: unbounded?

Description: Test if the federation is unbounded, i.e., if a point in the federation
can delay infinitely.

Return: true if unbounded, false otherwise.

empty!

Synopsis: empty!

Description: Empty the federation.

Return: self.

36

intern!

Synopsis: intern!

Description: Similarly to Java “intern” call on strings, this call will try to
share the DBMs internally so that all instances point to a unique data structure
whenever possible, thus saving memory. The user does not have to worry if the
federations are modified later, e.g., a.intern! ...a.up!, the federations will
be consistent and there will be no undesirable side effect.

Return: self.

zero!

Synopsis: zero!

Description: Set this federation to the zero point (the origin) with all the clocks
equal to zero.

Return: self.

init!

Synopsis: init!

Description: Remove all the constraints of this federation (except that all clocks
are always positive).

Return: self.

relation

Synopsis: relation(f)

Description: Compute a relation in the sense of set inclusion between this fed-
eration and the argument federation. The result is typed as a Relation class
and is

• Relation::Superset if self is a strict superset of the argument (self > f),

• Relation::Subset if self is a strict subset of the argument (self < f),

• Relation::Equal if self is equal to the argument (self == f), or

• Relation::Different if self is not comparable to the argument.

Return: a Relation.

convex hull

Synopsis: convex hull

Description: Compute the convex hull of all the DBMs in this federation.

Return: a Fed.

37

convex hull!

Synopsis: convex hull!

Description: Set this federation to the convex hull of all its DBMs.

Return: self.

+

Synopsis: +(f)

Description: Convex addition of this federation and another. The operator ’+’
is for convex addition and the ’—’ for ordinary addition. The result is the
convex union of this federation and the argument (with this federation being
untouched).

Return: a new Fed.

convex add!

Synopsis: convex add!(f)

Description: Same a the ’+’ operator but modify this federation.

Return: self.

constrain clock!

Synopsis: constrain clock!(clock,value)

Description: Apply the constraint clock == value for a given clock, which
is equivalent to applying both constraints clock ≤ value and clock ≥ value
although it is shorter and faster to call this method.

Return: self.

constrain!

Synopsis: constrain!(*args)

Description: Apply a constraint of the form xi − xj < bij or xi − xj ≤ bij to
this federation. The expected arguments are either i, j, b, s for the indices (i, j),
the bound b and a boolean s telling if the bound is strict (true) or not (false),
or i, j, c for the indices (i, j) and a Constraint c.

Return: self.

&

Synopsis: &(f)

Description: Compute the intersection of this federation and the argument fed-
eration.

Return: a new Fed.

38

intersection!

Synopsis: intersection!(f)

Description: Set this federation to the intersection of itself and the argument
federation.

Return: self.

intersects?

Synopsis: intersects?(f)

Description: Test intersection between this federation and the argument feder-
ation. The result is approximate and the “no” answer is safe. To get an ex-
act result (and more expensive to compute), you should use !(a & b).empty?

which would give the exact wanted result.

Return: true if there may be an intersection or false if there is no intersection
for sure.

up

Synopsis: up

Description: Compute the future. This is the delay, a.k.a. strongest post-
condition. In practice this operation removes the upper bounds on the clock
constraints.

Return: a new Fed.

up!

Synopsis: up!

Description: Apply the delay operation on this federation.

Return: self.

down

Synopsis: down

Description: Compute the past. This is the “reverse” delay operation, a.k.a.
weakest pre-condition. In practice this operation removes the lower bounds
while still maintaining the canonical form.

Return: a new Fed.

down!

Synopsis: down!

Description: Apply the past operation on this federation.

Return: self.

39

free clock

Synopsis: free clock(clock)

Description: Free all the constraints for a given clock and return a new federa-
tion.

Return: a new Fed.

free clock!

Synopsis: free clock!(clock)

Description: Same as free clock but modify this federation.

Return: self.

free up

Synopsis: free up(clock)

Description: Remove the upper bounds of a clock.

Return: a new Fed.

free up!

Synopsis: free up!(clock)

Description: Same as free up but modify this federation.

Return: self.

free down

Synopsis: free down(clock)

Description: Remove the lower bounds of a clock.

Return: a new Fed.

free down!

Synopsis: free down!(clock)

Description: Same as free down but modify this federation.

Return: self.

free all up

Synopsis: free all up

Description: Remove all the upper bounds for all the clocks.

Return: a new Fed.

40

free all up!

Synopsis: free all up!

Description: Same as free all up but modify this federation.

Return: self.

free all down

Synopsis: free all down

Description: Remove all the lower bounds for all the clocks.

Return: a new Fed.

free all down!

Synopsis: free all down!

Description: Same as free all down but modify this federation.

Return: self.

update value

Synopsis: update value(x,value)

Description: Apply the update x := value for a given clock, where “x” is a
clock and “value” a positive integer.

Return: a new Fed.

update value!

Synopsis: update value!(x,value)

Description: Same as update value but modify this federation.

Return: self.

update clock

Synopsis: update clock(x,y)

Description: Apply the update x := y for a given clock, where “x” and “y” are
clocks.

Return: a new Fed.

update clock!

Synopsis: update clock!(x,y)

Description: Same as update clock but modify this federation.

Return: self.

41

update increment

Synopsis: update increment(x,inc)

Description: Apply the update x := x + inc for a given clock, where “x” is a
clock and “inc” is an integer. The user is responsible for making sure that the
increment is not too much negative since clocks must stay positive.

Return: a new Fed.

update increment!

Synopsis: update increment!(x,inc)

Description: Same as update increment but modify this federation.

Return: self.

update

Synopsis: update(x,y,value)

Description: Apply the update x := y + value where “x” and “y” are clocks
and “value” is an integer. The user is responsible for making sure that the result
will give positive clock values.

Return: a new Fed.

update!

Synopsis: update!(x,y,value)

Description: Same as update but modify this federation.

Return: self.

satisfies?

Synopsis: satisfies?(*a)

Description: Test if this federation satisfies a constraint of the form xi−xj < bij

or xi−xj ≤ bij , i.e., if applying this constraint to the federation results in a non
empty federation. Notice that it is fine to test for one constraint but testing
several constraints on a row is not correct because constraining a federation with
several constraint may yield an empty federation while constraining it with the
constraints separately may yield several non empty federations. The arguments
may be (i, j, b, s) where (i, j) are the indices, b the bound and s a boolean telling
if the constraint is strict (<) or not (≤), or (i, j, c) where (i, j) are the indices
and c a Constraint.

Return: true if the federation satisfies the constraint, false otherwise.

42

relax up

Synopsis: relax up

Description: Make the upper bounds of all the clocks non strict. Notice that
some bounds may still be strict if they are inferred by strict diagonal constraints.
This method is equivalent to relax down clock(0).

Return: a new Fed.

relax up!

Synopsis: relax up!

Description: Same as relax up but modify this federation.

Return: self.

relax down

Synopsis: relax down

Description: Make the lower bounds of all the clocks non strict. Notice that
some bounds may still be strict if they are inferred by strict diagonal constraints.
This method is equivalent to relax up clock(0).

Return: a new Fed.

relax down!

Synopsis: relax down!

Description: Same as relax down but modify this federation.

Return: self.

relax up clock

Synopsis: relax up clock(clock)

Description: Make the upper bounds of a particular clock non strict. Some
bounds may still be strict if they are inferred by strict diagonal constraints.

Return: a new Fed.

relax up clock!

Synopsis: relax up clock!(clock)

Description: Same as relax up clock but modify this federation.

Return: self.

43

relax down clock

Synopsis: relax down clock(clock)

Description: Make the lower bounds of a particular clock non strict. Some
bounds may still be strict if they are inferred by strict diagonal constraints.

Return: a new Fed.

relax down clock!

Synopsis: relax down clock!(clock)

Description: Same as relax down clock but modify this federation.

Return: self.

relax all

Synopsis: relax all

Description: Make all the constraints non strict.

Return: a new Fed.

relax all!

Synopsis: relax all!

Description: Same as relax all but modify this federation.

Return: self.

subtraction empty?

Synopsis: subtraction empty?(fed)

Description: Test if subtraction the argument federation to this federation (self
- fed) would give an empty federation, without computing the subtraction itself
if possible (internally). This federation is untouched.

Return: (self-fed).empty?.

|

Synopsis: |(fed)

Description: Set union operator between this federation and the argument fed-
eration.

Return: a new Fed.

union!

Synopsis: union!(fed)

Description: Same as the set union operator (—) but modify this federation.

Return: self.

44

-

Synopsis: -(fed)

Description: Subtraction operator between this federation and the argument
federation.

Return: a new Fed.

subtract!

Synopsis: subtract!(fed)

Description: Same as the subtraction operator but modify this federation.

Return: self.

merge reduce!

Synopsis: merge reduce!

Description: Apply a simple reduction algorithm on this federation to merge
the DBMs together if possible. The reduction tries to merge DBMs by pairs and
is able to remove included DBMs. The method computes a fixpoint internally
so there is no point in calling the method several times.

Return: self.

convex reduce!

Synopsis: convex reduce!

Description: Apply a more complex reduction based on convex union of several
DBMs chosen by some heuristic to merge them together if possible. This method
behaves at least as well as merge reduce but is more expensive.

Return: self.

partition reduce!

Synopsis: partition reduce!

Description: Partition the federation and run reduction algorithms on the parti-
tions. This method is more expensive but is as least as good as convex reduce.

Return: self.

expensive reduce!

Synopsis: expensive reduce!

Description: Apply an expensive reduction algorithm based on subtractions
to eliminate included DBMs in the federation. Results may be very different
compared to the other reduction algorithms (although partition reduce is
using it internally).

Return: self.

45

expensive convex reduce!

Synopsis: expensive convex reduce!

Description: Recompute the federation, which is potentially very expensive but
can give very good results with respect to the number of DBMs.

Return: self.

Important note. All the reduce operations have side-effects in the sense that if
several federations refer to the same internal structure, they will all be affected.
The set is not changed semantically but it may be simplified. In practice you
may notice it even with a copy (which might not update the graphical viewer
automatically if you are using it).

predt

Synopsis: predt(bad)

Description: Compute the predt operation described in [3]. This federation is
considered to represent “good” states and the argument is a set of “bad” states.
The method computes the set of predecessors of “good” avoiding the “bad”
states, i.e., when delaying from these states they will not intersect the “bad”
states and they will end-up in the “good” ones, if possible of course.

Return: a new Fed.

predt!

Synopsis: predt!(bad)

Description: Same as predt but modify this federation.

Return: self.

remove included in

Synopsis: remove included in(fed)

Description: Compare the DBMs of this federation and the argument by pairs
and return a copy of this federation without the DBMs that are included in
those of the argument federation.

Return: a new Fed.

remove included in!

Synopsis: remove included in!(fed)

Description: Same as remove included in but modify this federation and do not
copy anything.

Return: self.

46

<

Synopsis: <(fed)

Description: Set inclusion test: Test if this federation is strictly included in the
argument federation. The test involves more than testing DBMs by pairs, it
is a set inclusion test on the whole federation as a set. This is equivalent to
self.relation(fed) == Relation::Subset, although possibly faster.

Return: true if self ⊂ fed (in the sense of set inclusion), false otherwise.

>

Synopsis: >(fed)

Description: Set inclusion test similar to <: Test if this federation stricly in-
cludes the argument federation. This is equivalent to self.relation(fed) ==

Relation::Superset, although possibly faster.

Return: true if fed ⊂ self (in the sense of set inclusion), false otherwise.

<=

Synopsis: <=(fed)

Description: Set inclusion test similar to <: Test if this federation
is included in or equal to the argument federation. This is equiva-
lent to self.relation(fed) == Relation::Subset || self.relation(fed)

== Relation::Equal that can be rewritten much more efficiently as
(self.relation(fed) & Relation::Subset) != 0, although possibly even
faster.

Return: true if self ⊆ fed (in the sense of set inclusion), false otherwise.

>=

Synopsis: >=(fed)

Description: Set inclusion test similar to <: Test if this federation includes or is
equal to the argument federation. This is equivalent to self.relation(fed)

== Relation::Superset || self.relation(fed) == Relation::Equal

that can be rewritten much more efficiently as (self.relation(fed) &

Relation::Superset) != 0, although possibly even faster.

Return: true if fed ⊆ self (in the sense of set inclusion), false otherwise.

==

Synopsis: ==(fed)

Description: Set inclusion test similar to <: Test if this federation is equiva-
lent to the argument federation. This is equivalent to self.relation(fed) ==

Relation::Equal, although possibley faster.

Return: true if self = fed (in the sense of set inclusion), false otherwise.

47

contains?

Synopsis: contains?(vec)

Description: Test if this federation contains a clock valuation (a point in dimen-
sion n counting the reference clock 0). The argument (vec) is either an array
of integers or an array of floats giving the coordinate of the point in dimension
n (and we have of course self.dim == n). A clock valuation is included in a
federation iff it satisfies all the constraints of one of its DBMs.

Return: true if the point is included in this federation, false otherwise.

possible back delay

Synopsis: possible back delay(vec)

Description: Compute the “almost max” possible delay backward from a point
while still staying inside the federation. It is ’almost max’ since we want a
discrete value, which cannot me the max when we have strict constraints. The
precision is 0.5. 0.0 may be returned if the point is too close to a border. The
argument is expected to be an array of floats giving the coordinate of the point
in the federation.

Return: a Float.

min delay

Synopsis: min delay(point)

Description: Compute the minimal delay to wait from a point to enter this
federation. 0.0 is returned if the point is inside the federation. Infinity is
returned if the point cannot enter this federation by delaying. A point is an
array of floats giving the coordinate of a point. The dimension must match the
dimension of the federation and the first coordinate (reference clock) is expected
to be 0.0.

Return:

max back delay

Synopsis: max back delay(point)

Description: Compute the maximal delay to go back in time (back-delay or
past) so that the (past-)point is still in this federation. If the point is or is not
in the federation or the federation is not a connected set does not matter. 0.0
is returned if there is no such max delay or the max delay is already 0.0.

Return:

48

delay

Synopsis: delay(point)

Description: Compute an interval delay where the first delay is given by
min delay and the second delay begin the minimum delay plus the time it
is possible to wait and stay in the federation without leaving it from the point
plus the minimum delay.

Return:

has zero?

Synopsis: has zero?

Description: Return True if this federation contains the zero point, false other-
wise.

Return:

Extrapolation algorithms. The following different extrapolation algorithms
are described in [2] and the names correspond to the algorithms of the paper.
The arguments to the methods are arrays of integers giving the constants but
it is possible to give the special value -INF, which has the effect to “free” the
corresponding clock, which is a trick for implementing active clock reduction.
The dimension of the array argument and the federation should match.

extrapolate max bounds

Synopsis: extrapolate max bounds(vec)

Description: Classical extrapolation using maximal constants.

Return: a new Fed.

extrapolate max bounds!

Synopsis: extrapolate max bounds!(vec)

Description: Same as extrapolate max bounds but modify this federation.

Return: self.

diagonal extrapolate max bounds

Synopsis: diagonal extrapolate max bounds(vec)

Description: Diagonal extrapolation based on maximal bounds.

Return: a new Fed.

diagonal extrapolate max bounds!

Synopsis: diagonal extrapolate max bounds!(vec)

Description: Same as diagonal extrapolate max bounds but modify this feder-
ation.

Return: self.

49

extrapolate lu bounds

Synopsis: extrapolate lu bounds(low,up)

Description: Extrapolation based on lower (low) and upper (up) bounds.

Return: a new Fed.

extrapolate lu bounds!

Synopsis: extrapolate lu bounds!(low,up)

Description: Same as extrapolate lu bounds but modify this federation.

Return: self.

diagonal extrapolate lu bounds

Synopsis: diagonal extrapolate lu bounds(low,up)

Description: Diagonal extrapolation based on lower (low) and upper (up)
bounds.

Return: a new Fed.

diagonal extrapolate lu bounds!

Synopsis: diagonal extrapolate lu bounds!(low,up)

Description: Same as diagonal extrapolate lu bounds but modify this federa-
tion.

Return: self.

drawing

Synopsis: drawing(border,width,height,x,y)

Description: Get drawing information for the drawing module (udbm-gtk). The
arguments are:

• border: the border to use (in pixels),

• width: the width of the canvas for drawing (in pixels),

• height: the height of the canvas for drawing (in pixels),

• x,y: the clocks to use for the axis x and y.

Drawing is done in 2-D, which means that the federation is projected on two
given dimensions. The result is used internally by udbm-gtk.

Return: an Array with the format [[segments1 , polygon , segments2 , info
],. . .] where every DBM gets a sub array. “Segments1” are segments for border
lines going to the axis x and y, “polygon” is a set of points to draw a DBM,
and “segments2” are additional segments for non strict borders of the polygon.
“Info” are tuples of the form [x,y,value] to print a value at (x,y).

50

point drawing

Synopsis: point drawing(point,x,y)

Description: Get drawing informatino for drawing a point for the drawing mod-
ule (udbm-gtk). This method must be called after drawing. The arguments are
the point (same dimension as the federation being displayed), and the clocks to
choose for the projection on 2D. It returns an [[x1,y1,x2,y2],[x1,y1,x2,y2]] of the
coordinates of two segments for drawing a cross.

Return:

formula

Synopsis: formula(names)

Description: Convert this federation to a readable formula (string of characters).
The argument is an Array of String to map clocks j to the names names[j-1].
The clock reference (0) has no name and is not part of the mapping.

Return: a String.

change clocks

Synopsis: change clocks(clocks)

Description: Change the clocks and resize the federation. The new federation
has its clock constraints coming from the original ones whenever possible. The
argument is an Array giving in order which clocks (indices for the integers,
without the clock reference) should be present in the new federation, or nil if
a new clock is to be inserted (then without constraints on it).

Return: a new Fed.

change clocks!

Synopsis: change clocks!(clocks)

Description: Same as change clocks but modify this federation.

Return: self.

<<

Synopsis: <<(fed)

Description: Operator similar to Array::<< to compute a union of this federa-
tion with the argument. This is equivalent to self.union!(fed).

Return: self.

dim=

Synopsis: dim=(d)

Description: Set a new dimension and empty the federation. This is equivalent
to self.set dim(d) but returns d.

Return: d.

51

4.2 Module udbm-callback

This short module is used by udbm-gtk to detect changes on federations to
automatically update the graphical viewer. Normally users do not need to
use this module directly unless they wish to have a change listener feature for
federations. This module makes use of Ruby “magic”. The following methods
are added in the class Fed.

method added

Synopsis: method added(id)

Description: This method is automatically called whenever a method is defined
in Fed. The argument is the name of the method newly created. Of course, it is
preferrable to include the callback module before declaring methods but there
is a work-around to get rid of this limitation.

Return: nil.

register method

Synopsis: register method(name)

Description: This is the method that does the actual work of registering a
method for callback. Only the methods named “something!” are registered.

Return: nil.

add change listener

Synopsis: add change listener(proc)

Description: Add a change listener to call after any previously registered
method was executed. The argument is an object that provides a method
call(Fed,String), typically a Proc object with these two arguments. When
the listener is called, it is passed the instance of Fed triggering the call and the
name of the method invoked.

Return: an Array of listeners.

4.3 Module udbm-sys

4.3.1 Quick Start

Let’s have a mini-tutorial to start. We use irb for the interactive Ruby
interpreter. Start with including the modules:

prompt> irb

irb(main):001:0> require ’udbm-sys’

=> true

irb(main):002:0> require ’udbm-gtk’

=> true

irb(main):003:0> include UDBM

52

=> Object

Declare a context for our clocks. The context is named “C” and c is
our ruby reference to it. We can access our clocks as follows:

irb(main):004:0> c=Context.create(’C’,:x,:y,:z)

=> #<UDBM::Context C {C.x,C.y,C.z}>
irb(main):005:0> c.x

=> #<UDBM::Context::Clock C.x>

irb(main):006:0> c.y

=> #<UDBM::Context::Clock C.y>

irb(main):007:0> c.z

=> #<UDBM::Context::Clock C.z>

We can use a Ruby variable “C” to match the context name (optional).
Actually, names with capital letters are supposed to be used for constants in
Ruby. Let’s also declare two sets referred to by a and b.

irb(main):008:0> C=c

=> #<UDBM::Context C C.x,C.y,C.z>

irb(main):009:0> a=(C.x>C.y) & (C.z<4) & (C.y<3) =>

#<UDBM::Context C::Set C (((C.x>C.y) & (C.z<4)) & (C.y<3))>

irb(main):010:0> b=a & ((C.x<2) | (C.x>=3))

=> #<UDBM::Context C::Set C ((((C.x>C.y) & (C.z<4)) & (C.y<3)) &

((C.x<2) | (C.x>=3)))>

Please be careful with parenthesis to declare sub-expressions otherwise
the operator “&” will be applied to clocks and we want it to be applied to sets.
These sets are defined naturally with constraints on clocks as you can see. So
far they are not evaluated (internal representation, you don’t have to worry
about it). You can see them with the following commands:

irb(main):011:0> a.show(’a’)

=> #<UDBM::Context C::Set C (C.y<3 & C.y-C.x<0 & C.z<4)>

irb(main):012:0> b.show(’b’)

=> #<UDBM::Context C::Set C (3<=C.x & C.y<3 & C.z<4)|(C.x<2 &

C.y-C.x<0 & C.z<4)>

Viewing is done by projecting the federation on two dimensions that the
user can choose. Notice that invoking the viewer triggers the evaluation of the
sets, which explains why they are now displayed slightly differently. You can
use most standard operations (see Fed in Subsection 4.1.4) on sets, for example:

irb(main):012:0> b.up!

= > #<UDBM::Context C::Set C (3<=C.x & C.y-C.x<0 & C.y-C.z<3 &

C.z-C.x<1 & C.z-C.y<4) | (C.x-C.y<2 & C.x-C.z<2 & C.y-C.x<0 &

C.z-C.y<4)>

The viewer is updated automatically thanks to the ’udbm-callback’ mod-
ule (loaded automatically by ’udbm-gtk’). Update operations are made extra

53

user-friendly with operators defined on-the-fly:
irb(main):013:0> b.x=1

=> 1

irb(main):014:0> b.up!

=> #<UDBM::Context C::Set C (1<=C.x & C.x-C.y<=1 & C.x-C.z<=1

& C.y-C.z<3 & C.z-C.y<4) | (1<=C.x & C.x-C.y<=1 & C.x-C.z<=1 &

C.y-C.z<2 & C.z-C.y<4)>

Access to clock x in the set b is natural with b.x. Notice that the set
keeps a reference to its context, you do not have to worry about it. You can
also change context to resize federations, which we will describe later. The
current federation of our example can be simplified, which we can do with:

irb(main):014:0> b.reduce!

=> #<UDBM::Context C::Set C (1<=C.x & C.x-C.y<=1 & C.x-C.z<=1 &

C.y-C.z<3 & C.z-C.y<4)>

Now that we’ve seen the basic idea behind sets, let’s examine how they
work.

4.3.2 Class Fixnum

The standard class Fixnum has some methods added to make the evaluation of
formula easier, i.e., avoid to treat particular cases and adopt Ruby philosophy of
untyped objects that respond to methods. These methods are used in evaluating
expression of the form x+c or x-c where “x” should refer to a clock (ID) and
“c” should be a constant value (an offset).

clock id

Synopsis: clock id

Description: Return the clock ID associated with this object. Since this object
is not a clock, it is associated with the reference clock 0.

Return: 0.

offset

Synopsis: offset

Description: The offset associated with this object. Since this object is simply
an integer, the offset is itself.

Return: self.

plus clock

Synopsis: plus clock

Description: This object is not a “+”-expression.

Return: nil.

54

minus clock

Synopsis: minus clock

Description: This object is not a “-”-expression.

Return: nil.

4.3.3 Class UDBM::Context

When defining constraint systems, the user needs clocks. A set of clocks is used
to define federations and the size of the set corresponds to the dimension of the
federations. Clocks are therefor defined within a “context” that groups these
clocks to define federations. A context is created with a name (for the context)
and a list of clocks (names too). A context is able to generate basic federations
(zero, init, random) and provides access to its clock objects that are defined
automatically (that’s Ruby magic).

name

Synopsis: name

Description: The attribute reader for the name of a context.

Return: a String.

clock names

Synopsis: clock names

Description: The attribute reader for the names of the clocks of a context. The
names are prefixed by the name of the context.

Return: an Array of String.

set class

Synopsis: set class

Description: The attribute reader for the class corresponding to the set of a
context. This is used within the module and users do not need this. Classes are
also objects, instances of the class Class. In Ruby everything is a class.

Return: a Class.

context id

Synopsis: context id

Description: The attribute reader for the ID of a context. A context has an ID
based on the names of its clocks (used for changing context). The ID is just
another string constructed used internally. Users do not need to worry about
this method.

Return: a Symbol.

55

short names

Synopsis: short names

Description: The attribute reader for the short names of the clocks of a context.
The difference with clock names is that the names are not prefixed (hence
short). The returned type is different, though it does not matter very much,
it’s for efficiency reasons when changing context.

Return: an Array of Symbol instances.

Context.create

Synopsis: Context.create(name, *symbols)

Description: Create a context with a given name and a list of symbols (or
strings) for the clocks.
Example:
c=Context.create(‘‘c’’,:x,:y)

A context has a unique name, which means you cannot declare different contexts
with the same name even if they have the same clocks.

Return: a Context.

Context.get

Synopsis: Context.get(name)

Description: Get a previously defined context by its name. If the corresponding
context was not defined then the methods returns nil.

Return: a Context or nil.

initialize

Synopsis: initialize(name, *symbols)

Description: The initialization method of Context called by new. Do not create
contexts directly with new, use create instead.

Return: a Context (actually new returns it).

dim

Synopsis: dim

Description: The dimension of the federations that can be defined with context.
The dimension is equal to the number of clocks plus one (the reference clock
with the ID equal to 0, see 4.3.2).

Return: a Fixnum.

56

zero

Synopsis: zero

Description: Create the federation representing the origin (point zero) within
this context, i.e., with the clocks defined in this context.

Return: a Fed.

true

Synopsis: true

Description: Create an unconstrained federation, i.e., corresponding to true in
terms of constraint (or the method init on Fed), with the clocks defined in this
context.

Return: a Fed.

false

Synopsis: false

Description: Create an empty federation, i.e., corresponding to false in terms
of constraints, with the clocks defined in this context.

Return: a Fed.

random

Synopsis: random

Description: Create a random set, useful for testing only.

Return: a Fed.

to s

Synopsis: to s

Description: The string representation of this context. This shows a list of
clocks.

Return: a String.

update

Synopsis: update(context)

Description: Compute the clock mapping from itself to the given context ar-
gument for changing context (resizing of federations). The reference clock is
always mapped to 0 and is therefor not part of the mapping. The result is an
array of integers (IDs of the clocks) of the clocks of this context (self) to be used
in a given order for the target context. Newly created clocks have nil entries.
Example:
a=Context.create("A",:x,:y)

57

=> #<UDBM::Context A {A.x,A.y}>
b=Context.create("B",:y,:x,:z)

=> #<UDBM::Context B {B.y,B.x,B.z}>
a.update(b)

=> [2, 1, nil]

b.update(a)

=> [2, 1]

This method is used internally and may be used for other purposes.

Return: an Array of Integer (or nil).

4.3.4 Class UDBM::Context::Clock

The most useful features of clocks are their operators that allow users to write
formulas naturally to define constraints. The other methods are useful internally
to evaluate formulas to federations.

context

Synopsis: context

Description: The attribute reader for the context of this clock.

Return: a Context.

initialize

Synopsis: initialize(context, index)

Description: The initialization method to be called by new. Users are not
supposed to define clocks directly but to access them from a context.

Return: a Clock (actually new returns it).

to s

Synopsis: to s

Description: String representation of this clock, i.e., its name prefixed by the
context name.

Return: a String.

clock id

Synopsis: clock id

Description: The clock ID of this clock, which corresponds to its index in fed-
erations (of this clock’s context) to access it.

Return: a Fixnum.

58

offset

Synopsis: offset

Description: The offset of this object. Since this is a clock, its offset is 0.
Integers have offsets equal to themselves. This is used internally for evaluating
formulas.

Return: a Fixnum.

plus clock

Synopsis: plus clock

Description: The “+ clock” expression of this formula, which is itself for a
simple clock. Actually, the method returns the ID of this clock.

Return: a Fixnum.

minus clock

Synopsis: minus clock

Description: The “- clock” expression of this formula, which is nothing for a
simple clock so the method returns nil.

Return: nil.

Operators On Clocks

Clocks have operators in order to write formulas of clock constraints to describe
sets. The operators that return sets (Context::Set XX with XX being the name
of the context) are: ==, <, <=, >, and >=. The operators that return sub-formulas
(Context::Formula) are + and -. Notice that the class Formula has the same
operators to write formulas.

4.3.5 Class UDBM::Context::Set

The class Set represents sets of clock valuations. This class is not supposed to
be created directly by users. Instead, the Context class will create the proper
Set XX class on-demand where XX is the name of the context. Only sets with
the same context are compatible. For the sake of simplicity we refer only to
Set from now on. Sets are represented internally as formulas (class Formula)
or federations (class SymbolicSet that wraps Federation). The convertion is
transparent for the user. Sets implement lazy evaluation of formulas, which
means that they are evaluated only when needed.

instance

Synopsis: instance

Description: Attribute reader for the actual representation of the set (formula or
federation). There is also a corresponding attribute writer that should disappear
one day.

Return: a Formula or a SymbolicSet.

59

initialize

Synopsis: initialize(instance)

Description: The initialization method called by new. Users do not instantiate
sets directly. This is used by Context. The instance is either a Formula or a
SymbolicSet that are owned by this Set instance.

Return: a Set (actually new returns it).

fed

Synopsis: fed

Description: Compute (if needed) the corresponding federation and return it.
Since lazy evaluation is used, this is the method to call to get the federation
representation.

Return: a Fed.

context

Synopsis: context

Description: Get the context of this set.

Return: a Context.

to s

Synopsis: to s

Description: Convertion to string.

Return: a String.

to context

Synopsis: to context(ctx)

Description: Change the context of this set. Underlying federations are com-
puted (if needed) and they are resized by removing absent clocks in the target
context and added new clocks of the target context. Clocks may also be re-
ordered. This method returns a new set and it is not possible to have a method
changing a set without making a copy otherwise the clock name methods would
be incorrect. In addition, the context changes and by design, the Set class too.

Return: a new Set (of different sub-type).

assign clock!

Synopsis: assign clock!(clk, arg)

Description: Assign the clock clk of this set to the argument arg. The clock is
a Clock instance (see assign clock id! for using a clock ID). The argument
is an integer (Fixnum), another clock (Clock), or a simple formula (Formula)
of the form x + c where x is a clock and c an integer (or x − c, c + x, but not
c − x).

Return: self.

60

assign clock id!

Synopsis: assign clock id!(clkid, arg)

Description: Similar to assign clock! but with the clock ID instead of the
clock object itself.

Return: self.

copy

Synopsis: copy

Description: Copy this set.

Return: a new reference to copy of this Set.

and!

Synopsis: and!(s)

Description: Apply the intersection operation to this set. The argument is
another set that can be a simple formula, in which case the user gets the effect
of constraining the set.

Return: self.

or!

Synopsis: or!(s)

Description: Apply the set union operation to this set. The argument is another
set (possibly a formula).

Return: self.

subtract!

Synopsis: subtract!(s)

Description: Apply the set subtraction operation to this set. The argument is
another set (possibly a formula).

Return: self.

&

Synopsis: &(s)

Description: Intersection operator between two sets.

Return: a new Set.

61

|

Synopsis: |(s)

Description: Union operator between two sets.

Return: a new Set.

-

Synopsis: -(s)

Description: Subtraction operator between two sets.

Return: a new Set.

satisfies?

Synopsis: satisfies?(s)

Description: Shortcut method for !(self & s).fed.empty?. Notice that from
the Set class the satisfies? method is substantially more expensive than
from Fed but on the other hand it is more general and more powerful since it
can operate on any formula (i.e., set), including disjunctions of more complex
sub-expressions.

Return: true if this set satisfies the constraints given in arguments (represented
as a formula or another set), false otherwise.

intern!

Synopsis: intern!

Description: This is similar to the intern! call from Fed. If the internal rep-
resentation is a federation then its DBMs are shared between other federations
(otherwise nothing happens).

Return: self.

reduce1!

Synopsis: reduce1!

Description: The reduce methods are classified subjectively by cost, from cheap-
est and rather efficient to more expensive and uncertain result. The reduce1

call corresponds to Fed::merge reduce!.

Return: self.

reduce2!

Synopsis: reduce2!

Description: The reduce2! call corresponds to Fed::convex reduce!.

Return: self.

62

reduce3!

Synopsis: reduce3!

Description: The reduce3! call corresponds to
Fed::expensive convex reduce!.

Return: self.

reduce4!

Synopsis: reduce4!

Description: The reduce4! call corresponds to Fed::partition reduce!.

Return: self.

reduce5!

Synopsis: reduce5!

Description: The reduce5! call corresponds to Fed::expensive reduce!.

Return: self.

reduce!

Synopsis: reduce!

Description: This is the default reduce method to be called in general without
worrying too much about cost. It corresponds to reduce1!.

Return: self.

Wrapper Methods (Fed to Set)

Sets have operators and methods that are simple wrappers to their internal
federation representation (class Fed). Their semantics are equivalent to their
corresponding calls for Fed the difference being the type of argument expected,
being sets instead of federations. The readers is referred to Subsection 4.1.4 for
the definition of the methods in Fed. The different wrapper methods are:

• Methods taking no argument, returning true or false:
empty? and unbounded?.

• Methods taking no argument, returning self:
empty!, convex hull!, up!, down!, free all up!, free all down!, relax up!, re-
lax down!, relax all!.

• Methods taking a Set argument, returning self:
remove included in!, predt!.

• Methods taking a Set argument, returning a Relation (first method), or
true or false to test for relation between sets: relation, <, >, <=, >=, ==.

• Methods taking a Clock argument, returning self:
free clock!, free up!, free down!, relax up clock!, relax down clock!.

63

• contains? takes an Array of integers or floats and returns true or false.

• possible back delay takes an Array of floats and returns a float.

• Methods taking an Array of integers, returning self:
extrapolate max bounds!, diagonal extrapolate max bounds!.

• Methods taking two Arrays of integers, returning self:
extrapolate lu bounds!, diagonal extrapolate lu bounds!.

4.3.6 Internal Classes

Sets are represented internally by either an instance of Formula or SymbolicSet.
The convertion of Formula to SymbolicSet is done by evaluating the formula
on-the-fly, constraining federations or computing more expensive operations like
intersection or unions when needed. We do not describe these classes in detail
since users are not supposed to manipulate them directly. We only go through
their useful functionalities from a user’s point-of-view.

Formulas are represented as simple binary trees and have little semantics,
i.e., it is possible to write formulas corresponding to empty sets and manipulate
them. When they are converted to SymbolicSet they receive the semantics of
federations, which explains why formulas are restricted. It may still be possible
to write (buggy) formulas that will fail to convert to federations. Printing
formulas corresponds to going through the binary tree and printing the left
branch, the operator, and the right branch. Printing SymbolicSet corresponds
to computing the minimal graph for every DBM of the underlying federation,
print the remaining constraints, and disjunct with all the DBMs.

Operations on sets are actually done on formulas or federations. Since we
are implementing lazy evaluation, formulas are converted to federations as late
as possible. In particular the simple operations of conjunctions and disjunctions
do not trigger the conversion. In addition, user should be aware that consecu-
tive conjunctions are cheaper than mixing conjunctions and disjunctions when
the conversion is triggered because they correspond to simple constrain calls. If
a sub-expression is a simple conjunction then simple constraining is used (Eval-
Conjunction), otherwise a more general call to compute intersections etc. . . is
used (Eval).

4.4 Module udbm-gtk

This short module implements the graphical viewer for federations. It is de-
signed to work with both udbm-sys or udbm, i.e., low-level federations or higher-
level sets. Its basic idea is to install a change listener for every method that
changes federations (to monitor them) and to redraw them automatically when
needed without changing a single line of code in the modules udbm or udbm-
sys. The only hook we have currently is for obtaining graphical coordinates
since we need to access constraints and compute conversions (scale, project,
etc. . .), which is better to do in C++ since the module is not designed to play
with constraints individually. The module adds some hook to other classes to
add basic functionalities but we do not modify existing code.

It recommanded to include this module after ’udbm-sys’ if you are using
’udbm-sys’.

64

get fed

Synopsis: get fed(title)

Description: This is the reverse mapping function to get back a federation that
is shown under a certain title in the viewer. See Fed::show in Subsection 4.4.4.

Return: a Fed (or nil if there is no corresponding federation).

4.4.1 Class Array

to color

Synopsis: to color

Description: This is a convenience method to convert arrays of [red, blue, green
] values to Gdk::Color.

Return: a Gdk::Color instance corresponding to the specified color.

4.4.2 Class Gdk::Color

darker

Synopsis: darker

Description: This is a convenience method to generate a darker color than this
instance. By default, 5/6th of the intensity is taken.

Return: a new Gdk::Color.

to s

Synopsis: to s

Description: A more useful string convertion than the default one.

Return: a String.

4.4.3 Class Gtk::Allocation

to rectangle

Synopsis: to rectangle

Description: This is a convenience method to convert a Gtk::Allocation to a
Gdk::Rectangle. For some reason we get the first one although we need the
second one for later calls. This can be useful somewhere else.

Return: a Gdk::Rectangle.

65

4.4.4 Class UDBM::Fed

show

Synopsis: show(title, labels=nil)

Description: Hook to display federation. We could have used a function but it is
more natural to ask a federation to show itself. The title argument is the name
of the tab under which the federation is drawn. There is a one-to-one mapping
of the tag and federation, so if later another federation shows itself under the
same tag, it replaces the old one in the viewer. Conversely, it is possible to get a
federation, given its tag (in the viewer). The labels arguments are useful when
using sets because clocks are named and the viewer can then display names
instead of clock numbers (this is done automatically internally). The argument
is an array of Strings giving the names of the clocks (except the reference clock
0).

Return: self.

hide

Synopsis: hide

Description: Hide itself in the viewer (if it was shown).

Return: self.

4.4.5 Class UDBM::Context::Set

show

Synopsis: show(name)

Description: Show this set in the viewer. The behaviour is similar to the call
from Fed, with the same one-to-one correspondence for federations representing
sets (not the sets themselves). The clocks names are prefixed by the context
name in the viewer.

Return: self.

show2

Synopsis: show2(name)

Description: Similar to show but display short names (not prefixed by the
context name).

Return: self.

hide

Synopsis: hide

Description: Hide this set in the viewer.

Return: self.

66

context=

Synopsis: context=(ctx)

Description: This is the only hook that modifies existing code. Actually, it is
to fix the change of context for a federation since this requires more than just
redrawing the federation. The choice of clocks changes as well. This method is
not supposed to be used directly.

Return: self.

4.4.6 Internal Classes

Internal classes are not supposed to be used directly so they will not be described
in details. We only explain the global structure. The viewer consists of a window
(FedWindow) and a panel (FedPanel) where the federation is actually drawn.
The panel is responsible for handling the clock choices (drawing the buttons and
handling the events) and drawing the federations themselves. We use a slightly
modified component from Gtk (to make the labels more readable) for the tabs.
The useful feature to know about the drawing is that it is fully automatic and
the user has currently no control about it, which means the drawing has to be
intelligent. It features

• Automatic color generation with a generated contrast scale that corre-
sponds to perceived human difference between colors (and just numerical),
with colors that are supposed to contrast each other.

• Blending of DBMs to see all of them but also each of them :).

• Captions on the axis to read the constraints.

• Automatic scaling (with aspect ratio maintained).

The design for drawing is simple: The drawing area knows its dimensions and
the federation to display, so it asks the federation to give it a list of coordinates
and labels to display with the proper scaling (sent as arguments, see the method
drawing in Subsection 4.1.4, page 50). Then it has a simple loop to draw
everything.

The class FedWindow handles opening and closing the viewer with one or
several windows (the user can drag the tabs out of the window and drag them
in again!). It also maintains the mapping label to federation.

4.5 Module udbm-mdi

This is the modified module from Ruby/Gtk2. The original component
is Gtk::MDI but it has the problem that default label margins are too
small to make the tabs easily clickable. We fixed that. See http://ruby-
gnome2.sourceforge.jp/hiki.cgi?MDI for more information on the original li-
brary.

67

References

[1] R. Alur and D.L. Dill. A theory of timed automata. In Theoretical Computer
Science, volume 126, pages 183–235, 1994.

[2] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek.
Lower and upper bounds in zone-based abstractions of timed automata. In
TACAS’04, volume 2988 of LNCS, pages 312–326. Springer–Verlag, 2004.

[3] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Di-
dier Lime. Efficient on-the-fly algorithms for the analysis of timed games. In
CONCUR’05, volume 3653 of LNCS, pages 66–80. Springer–Verlag, August
2005.

[4] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient
Verification of Real-Time Systems: Compact Data Structures and State-
Space Reduction. In Proc. of the 18th IEEE Real-Time Systems Symposium,
pages 14–24. IEEE Computer Society Press, December 1997.

68

Index

C API
constraint t, 9
dbm addFiniteFinite, 11
dbm addFiniteRaw, 11
dbm addFiniteWeak, 12
dbm addRawFinite, 11
dbm addRawRaw, 11
dbm areConstraintsEqual, 11
dbm areEqual, 13
dbm boundbool2raw, 10
dbm close, 20
dbm close1, 21
dbm closeij, 21
dbm closex, 20
dbm constrain, 17
dbm constrain1, 18
dbm constrainC, 18
dbm constrainClock, 18
dbm constrainIndexedN, 17
dbm constrainN, 17
dbm constraint, 9
dbm constraint2, 9
dbm convexUnion, 16
dbm copy, 13
dbm diagonalExtrapolateLUBounds,

24
dbm diagonalExtrapolateMaxBounds,

24
dbm down, 18
dbm extrapolateLUBounds, 24
dbm extrapolateMaxBounds, 24
dbm freeAllDown, 19
dbm freeAllUp, 19
dbm freeClock, 19
dbm freeDown, 19
dbm freeUp, 19
dbm getMaxRange, 16
dbm hash, 13
dbm haveIntersection, 17
dbm init, 13
dbm intersection, 16

dbm isClosed, 20
dbm isDiagonalOK, 15
dbm isEmpty, 20
dbm isEqualToInit, 13
dbm isEqualToZero, 13
dbm isFreedAllUp, 19
dbm isPointIncluded, 14
dbm isRealPointIncluded, 14
dbm isSubsetEq, 22
dbm isSupersetEq, 22
dbm isUnbounded, 21
dbm isValid, 15
dbm isValidRaw, 11
dbm negConstraint, 11
dbm negRaw, 10
dbm negStrict, 10
dbm raw2bound, 10
dbm raw2strict, 10
dbm rawDec, 12
dbm rawInc, 12
dbm rawIsStrict, 10
dbm rawIsWeak, 10
dbm relation, 21
dbm relation2string, 16
dbm relaxAll, 23
dbm relaxDown, 23
dbm relaxDownClock, 23
dbm relaxedIntersection, 16
dbm relaxUp, 23
dbm relaxUpClock, 23
dbm satisfies, 20
dbm shrinkExpand, 14
dbm strictRaw, 10
dbm swapClocks, 15
dbm testFreeAllDown, 19
dbm tighten, 21
dbm up, 18
dbm update, 23
dbm updateClock, 22
dbm updateDBM, 15
dbm updateIncrement, 22

69

dbm updateValue, 22
dbm weakRaw, 10
dbm writeToMinDBMWithOffset,

25
dbm zero, 13
raw t, 9

C Constants
dbm INFINITY, 9
dbm LE ZERO, 9
dbm LS INFINITY, 9
dbm LS OVERFLOW, 9
dbm OVERFLOW, 9
dbm STRICT, 9
dbm WEAK, 9

C++ API
constraint t, 27
operator <, 27
raw t, 9

Ruby API
Class Array

to color, 65
Class Fixnum

clock id, 54
minus clock, 55
offset, 54
plus clock, 54

Class Gdk::Color
darker, 65
to s, 65

Class Gtk::Allocation
to rectangle, 65

Class UDBM::Constraint, 30
<=>, 31
bound, 30
bound=, 30
initialize, 30
raw, 31
strict?, 30
strict=, 30
to s, 31

Class UDBM::Context
clock names, 55
Context.create, 56
Context.get, 56
context id, 55
dim, 56
false, 57
initialize, 56
name, 55

random, 57
set class, 55
short names, 56
to s, 57
true, 57
update, 57
zero, 57

Class UDBM::Context::Clock
+, 59
-., 59
<=,, 59
<,, 59
==,, 59
>=., 59
>,, 59
clock id, 58
context, 58
initialize, 58
minus clock, 59
offset, 59
plus clock, 59
to s, 58

Class UDBM::Context::Eval, 64
Class

UDBM::Context::EvalConjunction,
64

Class UDBM::Context::Formula,
64

Class UDBM::Context::Set
-, 62
&, 61
|, 62
convex hull!,, 63
diago-

nal extrapolate lu bounds!.,
64

diago-
nal extrapolate max bounds!.,
64

down!,, 63
empty!,, 63
extrapolate lu bounds!,, 64
extrapolate max bounds!,, 64
free all down!,, 63
free all up!,, 63
free clock!,, 63
free down!,, 63
free up!,, 63
predt!., 63
relation,, 63

70

relax all!., 63
relax down!,, 63
relax down clock!., 63
relax up!,, 63
relax up clock!,, 63
remove included in!,, 63
unbounded?., 63
up!,, 63
<=,, 63
<,, 63
==., 63
>=,, 63
>,, 63
and!, 61
assign clock!, 60
assign clock id!, 61
contains?, 64
context, 60
context=, 67
copy, 61
empty?, 63
fed, 60
hide, 66
initialize, 60
instance, 59
intern!, 62
or!, 61
possible back delay, 64
reduce!, 63
reduce1!, 62
reduce2!, 62
reduce3!, 63
reduce4!, 63
reduce5!, 63
satisfies?, 62
show, 66
show2, 66
subtract!, 61
to context, 60
to s, 60

Class
UDBM::Context::SymbolicSet,
64

Class UDBM::Fed, 34
+, 38
-, 45
<<, 51
<=, 47
<, 47
==, 47

>=, 47
>, 47
&, 38
|, 44
add change listener, 52
change clocks, 51
change clocks!, 51
constrain!, 38
constrain clock!, 38
contains?, 48
convex add!, 38
convex hull, 37
convex hull!, 38
convex reduce!, 45
copy, 36
delay, 49
diago-

nal extrapolate lu bounds,
50

diago-
nal extrapolate lu bounds!,
50

diago-
nal extrapolate max bounds,
49

diago-
nal extrapolate max bounds!,
49

dim, 36
dim=, 51
down, 39
down!, 39
drawing, 50
empty!, 36
empty?, 36
expensive convex reduce!, 46
expensive reduce!, 45
extrapolate lu bounds, 50
extrapolate lu bounds!, 50
extrapolate max bounds, 49
extrapolate max bounds!, 49
Fed.init, 35
Fed.random, 35
Fed.zero, 34
formula, 51
free all down, 41
free all down!, 41
free all up, 40
free all up!, 41
free clock, 40

71

free clock!, 40
free down, 40
free down!, 40
free up, 40
free up!, 40
has zero?, 49
hide, 66
init!, 37
initialize, 35
intern!, 37
intersection!, 39
intersects?, 39
max back delay, 48
merge reduce!, 45
method added, 52
min delay, 48
new, 34
partition reduce!, 45
point drawing, 51
possible back delay, 48
predt, 46
predt!, 46
register method, 52
relation, 37
relax all, 44
relax all!, 44
relax down, 43
relax down!, 43
relax down clock, 44
relax down clock!, 44
relax up, 43
relax up!, 43
relax up clock, 43
relax up clock!, 43
remove included in, 46
remove included in!, 46
satisfies?, 42
set dim!, 36
show, 66
size, 35
subtract!, 45
subtraction empty?, 44
to a, 35
to s, 35
unbounded?, 36
up, 39
up!, 39
update, 42
update!, 42
update clock, 41

update clock!, 41
update increment, 42
update increment!, 42
update value, 41
update value!, 41
zero!, 37

class UDBM::FedPanel, 67
class UDBM::FedWindow, 67
Class UDBM::Matrix, 31

[], 33
<<, 32
<=, 32
<, 31
dim, 32
each, 33
initialize, 31
inspect, 32
set, 33
size, 32
to a, 32
to s, 32

Class UDBM::Relation, 33
==, 33
new, 34
to i, 34
to s, 34

Constants
UDBM::INF, 30
UDBM::Relation::Different, 33
UDBM::Relation::Equal, 33
UDBM::Relation::Subset, 33
UDBM::Relation::Superset, 33

Module UDBM
Fed, 29
get fed, 65
matrix, 29

72

