
Intro to UPPAAL

Gerd Behrmann
Kim Larsen

BRICS & Aalborg University

Intro to UPPAAL – p.1/23

mailto://behrmann@cs.auc.dk
mailto://kgl@cs.auc.dk

Plan of the Lecture

1. UPPAAL Architecture

2. UPPAAL Features

3. Train Gate Example

4. Demonstration of Uppaal

Intro to UPPAAL – p.2/23

UPPAAL’s Architecture

Intro to UPPAAL – p.3/23

Short view of UPPAAL

Intro to UPPAAL – p.4/23

Declarations

Clocks
clock x1, x2,...,xn;

Bounded Integer Variables
int[0,5] i1, i2,... in;

Constants
const delay 5, true 1, false 0;

Arrays
int x[4] := { 1, 4, 7, 2 }

Intro to UPPAAL – p.5/23

Expressions

Expression

::= ID

| NAT

| Expression ’[’ Expression ’]’

| ’(’ Expression ’)’

| Expression ’++’ | ’++’ Expression

| Expression ’--’ | ’--’ Expression

| Expression AssignOp Expression

| UnaryOp Expression

| Expression BinOp Expression

| Expression ’?’ Expression ’:’ Expression

| ID ’.’ ID
Intro to UPPAAL – p.6/23

Operators

Unary

’-’ | ’!’ | ’not’

Binary

’<’ | ’<=’ | ’==’ | ’!=’ | ’>=’ | ’>’

’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’

’|’ | ’ˆ’ | ’<<’ | ’>>’ | ’&&’ | ’||’

’and’ | ’or’ | ’imply’

Assignment

’:=’ | ’+=’ | ’-=’ | ’*=’ | ’/=’ | ’%=’

’|=’ | ’&=’ | ’ˆ=’ | ’<<=’ | ’>>=’

Intro to UPPAAL – p.7/23

Guards

Any expression satisfying the following
conditions is a guard:

It is side effect free, type correct and evaluates to a
boolean.

Only clock variables, integer variables and constants
are referenced (or arrays of these types).

Clocks and differences between clocks are only
compared to integer expressions (no inequallity).

Guards over clocks are essentially conjunctions (i.e.
disjunctions are only allowed over integer conditions).

Intro to UPPAAL – p.8/23

Assignments

Any expression satisfying the following
conditions is an assignment:

It has a side effect and is type correct.

Only clock variables, integer variables and constants
are referenced (or arrays of these types).

Only integers are assigned to clocks.

Intro to UPPAAL – p.9/23

Invariants

Any expression satisfying the following
conditions is an invariant:

It is side effect free and is type correct.

Only clock variables, integer variavles and constants
are referenced (or arrays of these types).

It forms a conjunction of conditions on the form x < e

or x <= e, where x is a clock reference and e
evaluates to an integer.

Intro to UPPAAL – p.10/23

Binary Synchronisation

Channels can be declared like:
chan a, b, c[3];

If a is channel, then:

a! = Emission

a? = Reception

Two edges in different processes can synchronise

if one is emitting and the other is receiving on the

same channel.

Intro to UPPAAL – p.11/23

Broascast Synchronization

Broadcast channels can be de declared like:
broadcast chan a, b, c[2];

If a is a broadcast channel, then:

a! = Emission of a broadcast

a? = Reception of a broadcast

A set of edges in different processes can synchro-

nise if one is emitting and the others are receiving

on the same broadcast channel. A process can

always emit on a broadcast channel.
Intro to UPPAAL – p.12/23

Urgent Channels

No delay if the synchronising edges can be
taken!

Restriction: No clock guard allowed on the
edges.

Allowed: Guards on data-variables.

Urgent channels can be declared like:
urgent chan a,b,c[3];

Intro to UPPAAL – p.13/23

Urgent Location

No delay in urgent location!

Time is freezed.

Remark: The use of the urgent location reduces

the number of clocks in a model, and thus the

complexity of the analysis.

Intro to UPPAAL – p.14/23

Committed Location

No delay pass in committed location!

Next transition must involve an edge in one of the
processes in a committed location.

Remark: The use of the committed location con-

siderably reduces the state space.

Intro to UPPAAL – p.15/23

Templates

Templates can be instantiated to form processes.

Templates are parameterised.

Example of parameter declaration of a template A:

(int v, const min, const max)

Example of instantiation:

P := A(i, 1, 5);

Q := A(j, 0, 4);

Example of system declaration:

system P, Q;

Intro to UPPAAL – p.16/23

Syntax of Properties

A[] Expression
E<> Expression
A<> Expression
E[] Expression
Expression --> Expression
A[] not deadlock

The expressions must be type safe, side effect

free, and evaluate to a boolean. Only references

to integers variables, constants, clocks, and loca-

tions are allowed (and arrays of these).
Intro to UPPAAL – p.17/23

Operators A[] and A<>

A[]ϕ

ϕ

ϕ

ϕ

A<>ϕ

ϕ

ϕ ϕ

ϕ

Intro to UPPAAL – p.18/23

Operators E[] and E<>

E[]ϕ

ϕ

E<>ϕ

ϕ

ϕ

Remark
¬(A[]ϕ)=E<>(¬ϕ) and ¬(E[]ϕ)=A<>(¬ϕ)

Intro to UPPAAL – p.19/23

Operator --> (leads to)

ϕ-->ψ
def
⇐⇒ A[](ϕ⇒A<>ψ)

ϕ

ϕ

ψ

ψ

Intro to UPPAAL – p.20/23

State Property: deadlock

A deadlock is a state in which no action transition
will ever be enabled again.

In other words (l, u) |= deadlock iff:

∀d ≥ 0, a ∈ Act : (l, u + d) 6
a

→

Checking for absence of deadlocks:
A[] not deadlock

Intro to UPPAAL – p.21/23

Bounded Liveness: Decoration

AG(a =⇒ ≤tb)

A[] (B implies x <= t)

Intro to UPPAAL – p.22/23

Test Automata

AG(a =⇒ ≤tb)

A[] (not T.BAD)

Intro to UPPAAL – p.23/23

	Plan of the Lecture
	uppaal 's Architecture
	Short view of uppaal
	Declarations
	Expressions
	Operators
	Guards
	Assignments
	Invariants
	Binary Synchronisation
	Broascast Synchronization
	Urgent Channels
	Urgent Location
	Committed Location
	Templates
	Syntax of Properties
	Operators 	exttt {A[]} and 	exttt {A<>}
	Operators 	exttt {E[]} and 	exttt {E<>}
	Operator 	exttt {-->} (leads to)
	State Property: 	exttt {deadlock}
	Bounded Liveness: Decoration
	Test Automata

