
To Store or Not To Store
Radek Pelánek

Masaryk University, Brno

Gerd Behrmann, Kim G. Larsen

Aalborg University

To Store or Not To Store – p.1/24



Reachability Problem

Model: networks of timed automata with
variables and handshake communication

Input: Network N , state formula ϕ

Question: Is there a state s of the network N
such that s is reachable from the initial state
of N and s |= ϕ ?

Reachability ≡ verification of safety properties

To Store or Not To Store – p.2/24



Example

X

x<2,a

Y

x>2,i:=0

C
a

A
i:=1

B

i==1,x:=0

i==0

CX0

BY1 AX0

BX0 BX1

AY1

CX1

AY0

CY1

To Store or Not To Store – p.3/24



Reachability Algorithm

W = {s0}; P = ∅;
while W 6= ∅ do

get s from W
if s |= ϕ then return true fi
P = P ∪ {s}

foreach s′, t : s
t
⇒ s′ do

if s′ 6∈ P ∪ W then W = W ∪ {s′} fi od
od
return false

To Store or Not To Store – p.4/24



Example
1,1

2,1

100,3

44,3

54,4

101,3

46,3

55,5

102,15

106,16

30,19

103,15

107,7

110,6

10,3

15,3 16,3

19,5

104,15

108,7

111,6

105,15

109,17

112,12 113,12 114,12

38,20

39,3 40,341,3 42,3 43,3

49,5 50,5

3,2

51,3

8,3

52,3

9,3

11,3

17,4

20,6 21,6 22,6

53,3

12,3 13,3

18,5

23,7

14,3

24,8

25,9 26,9 27,10 28,6 29,6 30,11

31,12

4,2

32,12

2,20

33,13 34,13 35,1336,3 37,3 38,14

45,3 47,3 48,2

5,2 6,2 7,2

56,2

57,15 58,1559,15 60,15 61,15 62,663,6 64,6 65,6 66,7 67,2 68,2 69,2

70,16 71,772,7 73,17 74,1675,976,9 77,10 78,18 79,6 80,6 81,6

82,19 83,684,6 85,12 86,12 87,1988,1289,12 90,13 91,13

92,20 93,394,3 95,3 96,3

97,2 98,599,5

To Store or Not To Store – p.5/24



Passed List
Memory consumption is dominated by the
Passed list.
Why do we store states in the Passed list?

to guarantee termination (at least one state
from each cycle has to be stored)

to reduce the number of revisits

To achieve these goals it is sufficient to store only

some states.

To Store or Not To Store – p.6/24



Reachability with Reduction

W = {(s0, 0)}; P = ∅;

while W 6= ∅ do

get (s, flag) from W

if s |= ϕ then return true fi

if to store(s, flag) then P = P ∪ {s} fi

foreach s′, t : s
t

⇒ s′ do

if s′ 6∈ P ∪ W then W = W ∪ {(s′, next flag(s, t, flag))} fi od

od

return false

To Store or Not To Store – p.7/24



Strategies

Counter strategy

Random strategy

Distance strategy

Successors strategy

Covering set strategy

Combined strategies

To Store or Not To Store – p.8/24



Distance Strategy
Observation

cycles are rather long
it is not necessary to store states close to
each other

Strategy

computes the distance from the last stored
state
stores states with the distance equal to
parameter k

To Store or Not To Store – p.9/24



Distance Strategy

k = 2
CX0

BY1 AX0

BX0 BX1

AY1

CX1

AY0

CY1

To Store or Not To Store – p.10/24



Successors Strategy
Observation

chains of states with only one successor
it is practically useless to store all states
from such a chain

Strategy

stores only states with more than one
successor

To Store or Not To Store – p.11/24



Successors Strategy

CX0

BY1 AX0

BX0 BX1

AY1

CX1

AY0

CY1

(a) (b)

To Store or Not To Store – p.12/24



Covering Set Strategy

Let Cover be a set of transitions, such that each
cycle in the state space cointains at least one
transition from this set.

It is sufficient to store states that are targets of
such transitions.

To Store or Not To Store – p.13/24



Covering Set Strategy –
Example

Cover = {(C,A)}

CX0

BY1 AX0

BX0 BX1

AY1

CX1

AY0

CY1

To Store or Not To Store – p.14/24



Combined Strategies

compute the distance with respect to covering
transitions

combination of covering sets and successors
strategies

different probabilities according to the number
of successors, covering transitions

. . .

To Store or Not To Store – p.15/24



Covering Set
The concept of covering set was originally proposed for
static partial order reduction [Kurshan et al., 1998].

local cycle – cycle in an automaton (in syntax)
global cycle – cycle in a state space (in semantics)
covering set – set of transitions T such that each
global cycle cointains at least one transition from T

We want to compute T by static analysis of local cycles.

To Store or Not To Store – p.16/24



Dependencies among Local
Cycles

X

x<2,a

Y

x>2,i:=0

C
a

A
i:=1

B

i==1,x:=0

i==0

local cycles:

(X,Y ), (C,A,B), (A,B)

set {(C,A)} is a covering set

cycle (X,Y ) covers cycle (A,B)

because of variable i

cycle (C,A,B) covers cycle
(X,Y ) because of channel a

To Store or Not To Store – p.17/24



Construction of Covering Set

Minimal covering set – PSPACE-hard problem
Heuristic construction:

while not (T cover all local cycles of N ) do
T = T ∪ select transition(N);

Different heuristics for selection of a next transi-

tion

To Store or Not To Store – p.18/24



Random Walk Analysis

Is the minimal covering set the best one?

"Good" covering set = the number of stored
states during the reachability (with reduction)
as low as possible

Frequencies of transitions in the state space
are more important than the size of the set

Difficult to estimate from static analysis ⇒
Random Walk Analysis

To Store or Not To Store – p.19/24



Experiments

Experiments done within UPPAAL
12 different models, including industrial case
studies

Covering set construction

Comparison of strategies

To Store or Not To Store – p.20/24



Experiments – Covering Sets

9 different heuristics for the construction
Observations:

Very small number of transitions is needed to
cover all cycles

Random walk coeficients better measure of
the ’quality’ of covering set than its size

None of the heuristics is dominant in all cases

To Store or Not To Store – p.21/24



Experiments – Storing
Strategies

It is usually possible to store less than 10% of
states with reasonable increase of number of
revisits
Run-time is sometimes even faster for
reachability with reduction
None of the strategies is dominant for all
examples
Tradeoff space × time
The best results are usually obtained for
suitably choosen combination strategy

To Store or Not To Store – p.22/24



Experiments – Remarks

Order of visits is important! Breadth-first order
keeps the number of revisits small.

r

p2p1

q Size of the waiting list

For some models the size of
the waiting list dominates the
memory consumption.

Solution: priority queue

To Store or Not To Store – p.23/24



Conclusions
General framework for reachability analysis
with reduction

Several strategies how to decide on-the-fly
whether "to store or not to store" a state

Use of static analysis and random walk
analysis for reduction during state space
exploration

To Store or Not To Store – p.24/24


	Reachability Problem
	Example
	large Reachability Algorithm
	Example
	Passed List
	large Reachability with Reduction
	Strategies
	Distance Strategy
	Distance Strategy
	Successors Strategy
	Successors Strategy
	Large Covering Set Strategy
	Large Covering Set Strategy -- Example
	Combined Strategies
	Covering Set
	large Dependencies among Local Cycles
	large Construction of Covering Set
	Large Random Walk Analysis
	Experiments
	large Experiments -- Covering Sets
	large Experiments -- Storing Strategies
	Large Experiments -- Remarks
	Conclusions

