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Reachability Problem

Model: networks of timed automata with
variables and handshake communication

Input: Network N , state formula ϕ

Question: Is there a state s of the network N
such that s is reachable from the initial state
of N and s |= ϕ ?

Reachability ≡ verification of safety properties
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Reachability Algorithm

W = {s0}; P = ∅;
while W 6= ∅ do

get s from W
if s |= ϕ then return true fi
P = P ∪ {s}

foreach s′, t : s
t
⇒ s′ do

if s′ 6∈ P ∪ W then W = W ∪ {s′} fi od
od
return false
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Passed List
Memory consumption is dominated by the
Passed list.
Why do we store states in the Passed list?

to guarantee termination (at least one state
from each cycle has to be stored)

to reduce the number of revisits

To achieve these goals it is sufficient to store only

some states.
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Reachability with Reduction

W = {(s0, 0)}; P = ∅;

while W 6= ∅ do

get (s, flag) from W

if s |= ϕ then return true fi

if to store(s, flag) then P = P ∪ {s} fi

foreach s′, t : s
t

⇒ s′ do

if s′ 6∈ P ∪ W then W = W ∪ {(s′, next flag(s, t, flag))} fi od

od

return false
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Strategies

Counter strategy

Random strategy

Distance strategy

Successors strategy

Covering set strategy

Combined strategies
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Distance Strategy
Observation

cycles are rather long
it is not necessary to store states close to
each other

Strategy

computes the distance from the last stored
state
stores states with the distance equal to
parameter k
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Distance Strategy
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Successors Strategy
Observation

chains of states with only one successor
it is practically useless to store all states
from such a chain

Strategy

stores only states with more than one
successor
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Successors Strategy
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Covering Set Strategy

Let Cover be a set of transitions, such that each
cycle in the state space cointains at least one
transition from this set.

It is sufficient to store states that are targets of
such transitions.
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Covering Set Strategy –
Example

Cover = {(C,A)}
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Combined Strategies

compute the distance with respect to covering
transitions

combination of covering sets and successors
strategies

different probabilities according to the number
of successors, covering transitions

. . .
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Covering Set
The concept of covering set was originally proposed for
static partial order reduction [Kurshan et al., 1998].

local cycle – cycle in an automaton (in syntax)
global cycle – cycle in a state space (in semantics)
covering set – set of transitions T such that each
global cycle cointains at least one transition from T

We want to compute T by static analysis of local cycles.
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Dependencies among Local
Cycles
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local cycles:

(X,Y ), (C,A,B), (A,B)

set {(C,A)} is a covering set

cycle (X,Y ) covers cycle (A,B)

because of variable i

cycle (C,A,B) covers cycle
(X,Y ) because of channel a
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Construction of Covering Set

Minimal covering set – PSPACE-hard problem
Heuristic construction:

while not (T cover all local cycles of N ) do
T = T ∪ select transition(N);

Different heuristics for selection of a next transi-

tion
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Random Walk Analysis

Is the minimal covering set the best one?

"Good" covering set = the number of stored
states during the reachability (with reduction)
as low as possible

Frequencies of transitions in the state space
are more important than the size of the set

Difficult to estimate from static analysis ⇒
Random Walk Analysis
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Experiments

Experiments done within UPPAAL
12 different models, including industrial case
studies

Covering set construction

Comparison of strategies
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Experiments – Covering Sets

9 different heuristics for the construction
Observations:

Very small number of transitions is needed to
cover all cycles

Random walk coeficients better measure of
the ’quality’ of covering set than its size

None of the heuristics is dominant in all cases
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Experiments – Storing
Strategies

It is usually possible to store less than 10% of
states with reasonable increase of number of
revisits
Run-time is sometimes even faster for
reachability with reduction
None of the strategies is dominant for all
examples
Tradeoff space × time
The best results are usually obtained for
suitably choosen combination strategy
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Experiments – Remarks

Order of visits is important! Breadth-first order
keeps the number of revisits small.

r

p2p1

q Size of the waiting list

For some models the size of
the waiting list dominates the
memory consumption.

Solution: priority queue
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Conclusions
General framework for reachability analysis
with reduction

Several strategies how to decide on-the-fly
whether "to store or not to store" a state

Use of static analysis and random walk
analysis for reduction during state space
exploration
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