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Abstract. In this paper, we define a timed logic L, which is sufficiently
expressive that we for any timed automaton may construct a single char-
acteristic L., formula uniquely characterizing the automaton up to timed
bisimilarity.

Also, we prove decidability of the satisfiability problem for L, with re-
spect to given bounds on the number of clocks and constants of the timed
automata to be constructed.

1 Introduction

One of the most successful techniques for automatic verification is that of model-
checking; i.e. a property is given as a formula of a propositional temporal logic
and automatically compared with an automaton representing the actual be-
haviour of the system. Extremely efficient model-checking algorithms have been
obtained for finite automata with respect to the branching—time temporal logics
CTL [7, 22, 8] and the modal y—calculus [17, 4, 10, 9, 3, 24]. In the last few years,
model-checking has been extended to real-time systems, with time considered to
be a dense linear order. A timed extension of finite automata through addition of
a finite set of real-valued clocks has been put forward [2], and the corresponding
model-checking problem has been proven decidable for a number of timed logics
including timed extensions of CTL (TCTL) [1] and a timed p—calculus (T,) [13].

In this paper we continue this transfer of existing techniques from the
setting of finite (untimed) automata to that of timed automata. In particular a
timed logic L, is put forward, which is sufficiently expressive that we for any
timed automaton may (effectively) construct a single characteristic L, formula
uniquely characterizing the automaton up to timed bisimilarity. The construc-
tion is a timed extension of those in [5, 12, 16], and reduces timed bisimilarity
between automata to a model-checking problem, which — when combined with
the model-checking algorithm for L, — yields an alternative algorithm for timed
bisimulation compared with [6]. In addition, characteristic formula constructions
may be given for other behavioural preorders [19, 11], immediately yielding deci-
sion procedures for these relationships as well. Secondly, we prove decidability of
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Fig. 1. An automaton and its behaviour

bounded satisfiable for L,. That is, we present a model-construction algorithm,
which given a formula of L, and bounds k£ and M will synthesize a timed au-
tomaton with no more than & clocks and no clock being compared with constants
greater than M (provided any such exits).

Combining the characteristic formula construction with the bounded model—
construction algorithm enables us to decide whether an automaton can be sim-
plified in terms of number of clocks and constants used for comparison.

A full version can be found in [18].

2 Timed Automata

Let A be a fixed set of actions ranged over by a, b, ¢, .... We denote by N the set
of natural numbers and by R the set of non—negative real numbers. D denotes
the set of delay actions {e(d) |d € R}, and £ denotes the union AUD. If C is a
set of clocks, B(C') denotes the set of formulas built using boolean connectives
over atomic formulas of the formzx < m,y m <z, z <y+mandy+m <z
with 2,y € C and m € N. Moreover By (C) denotes the subset of B(C') with no
constant greater than M.

Definition1. A timed automaton A is a tuple (A4, N,ng, C, E) where A is a
finite set of actions, IV is a finite set of nodes, 7g is the initial node, C' is a finite
set of clocks, and £ C N x N x A x 2¢ x B(C) corresponds to the set of edges.
e = (n,n,a,r,b) € E represents an edge from the node 5 to the node 1’ with
action a, r denoting the set of clocks to be reset and b is the enabling condition
over the clocks of A.

Informally, the system starts at node ng with all its clocks initialized to 0. The val-
ues of the clocks increase synchronously with time. At any time, the automaton
whose current node is 7 can change node by following an edge (n,',a,r,b) € E
provided the current values of the clocks satisfy b. With this transition the clocks
in 7 get reset to 0.

A time assignment v for C is a function from C to R. We denote by R®
the set of time assignments for C'. For v € Rc, z € C'and d € R, v + d denotes



the time assignment which maps each clock z in C' to the value v(z) + d. For
C' C C, [C'" = 0]v denotes the assignment for C' which maps each clock in C’
to the value 0 and agrees with v over C\C". Given a condition b € B(C) and a
time assignment v € R, b(v) is a boolean value describing whether b is satisfied
by v or not. Finally a k—clock automaton is a timed automaton (A, S, ng, C, E)
such that |C| = k.

A state of an automaton A is a pair (1, v)4 where 7 is a node of A and
v a time assignment for C. The initial state of A is (g, vg)a where vg is the
time assignment mapping all clocks in C' to 0. The semantics of A is given by a
labelled transition system My = (X4, L, 00, —>4), where X4 is the set of states
of A, o¢ is the initial state (1o, vo)a, and — 4 is the transition relation defined
as follows: (g, v) =>4 (1, v') iff Ir,b. s.t. (g, 1, a,7,0) € E Ab(v) Av' = [r — 0Jv
and (7, 'U)ﬂAW’,'U’) iff n=n" and v =v+d

We may now apply the standard notion of bisimulation [20, 21] to the
labelled transition systems determined by two automata A and B. Letting sa
and sp range over states of respectively A and B, strong timed bisimulation ~
is defined as the largest symmetric relation over X4 x X' such that whenever

sa ~sg, £ e AUD and SAL)AS/A then there exists s’ such that SBLBSIB
and sy ~ si3. We say that A and B are strong timed bisimular if their initial
states are strong bisimilar.

FEzample 1. Consider the automaton A of Figure 1. The two coordinate systems in
the right part of the Figure indicate (some of) the states of A. Each point of the
coordinate systems represents a unique time assignment, with the left (resp. right)
coordinate system representing states involving the node 7o (resp. n1). In the Figure
we have indicated some transition sequences (with d < 1 and e +d < 1).

3 Timed Modal Logic L,

We consider a dense-time logic L, with clocks and recursion. This logic may be
seen as a certain fragment of the gy—calculus T, presented in [13].

Definition 2. Let K a finite set of clocks, Id a set of identifiers and k an integer.
The set L, of formulae over K, Id and k is generated by the abstract syntax with
 and ¥ ranging over Ly:
pu=t | Flony [oVve | Fe [ Ve | (a)e | [de
| zing | z4+n=<xy+m | z=xm | Z

where a € A;z,y € K;n,m € {0,1,...,k}; e {=,<,<,>,>}and Z € Id.

The meaning of the identifiers is specified by a declaration D assigning

a formula of L, to each identifier. When D is understood we write 7 = ¢ for
D(Z) = ¢. The K clocks are called formula clocks and a formula ¢ is said to
be closed if every formula clock z occurring in ¢ is in the scope of an “zin ...”
operator.



Given a timed automaton A = (A, N,ng, C, E), we interpret the L, for-
mulas over an eztended state (n,vu)a+ where (n,v)4 is a state of A and u a
time assignment for K. Transitions between extended states are defined by:

d .
(n, vu) 4+ Q (' v+ du+dya+ and (n,vu) g — (i, v'u')4r iff (n,0)4
(n',v"Ya and w = v'. Formally, the satisfaction relation between extended states
and formulas is defined as follows:

Definition3. Let A be a timed automaton and D a declaration. The satisfaction
relation |=p is the largest relation satisfying the following implications :

(nvu),+ Eptt = true
(mvu)s+ =p f false

(movu)a+ EpeAY (mvu)at Fo e and (nvu)a+ Fp Y

(movu),+ Ep I dd e R. (n,v+d ut+d),+ Ep ¢
(movu)a+ o (@) e = T, v)a (nv)a — (0',v")a and (7,0 u)as Ep @
(n,vu) 4+ =D z+mpay+n u(z) + meu(y) +n

(mvu)a+ Epzing {(n,vu') 4+ Ep ¢ where u' =[{z} — 0Ju

(0wt oo Z = (nvu) s o D(Z)

=
=
=
=
=
=

Any relation satisfying the above implications is called a satisfiability re-
lation. It follows from standard fixpoint theory [23] that |=p is the union of all
satisfiability relations and that the above implications in fact are biimplications
for =p. We say that A satisfies a closed L, formula ¢ and write A = ¢ when
(no,vo u)4+ =D ¢ for any u. Note that if ¢ is closed, then (n,vu) 4+ FEp ¢ iff
(n,vu'y 4+ = @ for any u,u’ € RE.

The real-time interval modality 3]m; n[ (resp. V]m;n[) introduced in [14]
which denotes existential (resp. universal) quantification over delay between m
and n, can be defined in L, *. A formulais called a g-clocks formula if it contains
no more than ¢ formula clocks.

Ezample 2. The initial state (no, vo uo) of the automaton from Figure 1 satisfies the
following L, formula ¢:

@ =310;1[{a) [({c) tt) A (V]O;1[ [c] F) A (3]0;1[ (b) &) A (3]0; 1[[B] F) ] (1)

4 Model Checking

The model-checking problem for L, consists in deciding if a given timed automa-
ton A satisfies a given specification ¢ in L. This problem is decidable using the
region technique of Alur and Dill [2, 1] which provides an abstract semantics of
timed automata in the form of finite labelled transition systems with the truth
value of L, formulas being maintained. The basic idea is that, given a timed au-
tomaton A, two states (n,v1)4 and (5, v2)4 which are close enough with respect
to their clocks values (we will say that v; and vy are in the same region) can
perform the same actions, and two extended states (1, v1 u1) 4+ and (n, va uz) 4+

def

* Amynle = min(Eﬂ(m > mAz < n/\go)) and V]m;n[¢ def xin(V(x <mVzg > n\/go))



suce(vo) = e 0< o <1A
suce(vs) = mis Blr)= o0< y < 1A
y==x
(1) 0<z<1A
Blyo)=(z=0Ay=0) Blyr)= o0<y<i1A
Bre)=(0<z<1Ay=1) y>a

Fig.2. R{ with C = {z,y} and k =1

where vy u; and vy ug are in the same region, satisfy the same L, formulas. In
fact the regions are defined as equivalence classes of a relation = over time as-
signments [13]. Formally, given C a set of clocks and k an integer, we say u = v
if and only if u and v satisfy the same conditions of Bg (C). [u] denotes the region
which contains the time assignment u. RS denotes the set of all regions for a
set C' of clocks and the maximal constant k. From a decision point of view it is
important to note that Rg is finite.

For a region v € RS, we can define b(y) as the truth value of b(u) for
any u in . Conversely given a region v, we can easily build a formula of B(C),
called B(v), such that #(y)(u) = t iff u € 4. Thus, given a region v/, B8(y)(y') is
mapped to the value t precisely when v = 4. Finally, note that 5(7) itself can
be viewed as a L, formula.

Given a region [u] in R{ and C’ C C we define the following reset op-
erator: [C" — 0][u] = [[C" — 0]u]. Moreover given a region 7, we can define
the successor region of v (denoted by suce(y)): Informally the change from v to
suce(y) correspond to the minimal elapse of time which can modify the enabled
actions of the current state( a formal definition is given in [18]).

We denote by 4! the {** successor region of vy (i.e. 7' = succ!(y)). From
each region v, it is possible to reach a region v s.t. suce(y’) = 4/, and we denote
by I, the required number of step s.t. v = suce(y").

Ezxample 3. The Figure 2 gives an overview of the set of regions defined by two clocks
z and y, and the maximal constant 1. In this case there are 32 different regions. In
general successor regions are determined by following 45° lines upwards to the right.

Given a timed automata A = (A, N,ng, C, E), let k4 be the maximal
constant occurring in the enabling condition of the edges E. Then for any & > k4
we can define a symbolic semantics of A over symbolic states [,v]a where
n € N and v € RS as follows: for any [n,v] we have [n,7]a — [',7]a iff
Juery, (nuha —=(n,u)s and v’ €.

Consider now L, with respect to formula clock set K and maximal con-
stant kr. Also consider a given timed automaton A = (A, N, n,C, E) (s.t. K
and C are disjoint). Then an eztended symbolic state is a pair [n,v]4+ where
n€ N and vy € ch+ with C* = CUK and k = maz(ka, kr). We can define the



Fig. 3. Characteristic formula for finite automata.

symbolic semantics for L, i.e. the truth value of L, formulas over the extended
symbolic state. Due to space limitation we only give the two main implications
defining the symbolic satisfiability relation Fp ®:

[7,7]a+ Fp 3¢ = FEN. [n,succ! ()]a+ Fp ¢
m.7]a+ Fo (@) = T ycla — [0 yjclaste Y =1 A0 Y]avFo o

We have the following important result: Let ¢ be a formula of L,, and let
(n,v u) s+ be an extended state over some timed automaton A, then we have ©:

(mvu)a+r Fp ¢ ifandonlyif [ [v-ulla+ bp o

It follows that the model checking problem for L, is decidable since, given
¢ € L,, it suffices to check the truth value of any given L, formula ¢ with respect
to a finite transition system corresponding to the extended symbolic semantics

of A.

5 Characteristic Properties

First let us recall the characteristic formula construction for finite au-
tomata [16, 12, 5] (see Figure 3). The construction defines the characteristic
formula @(A) of a node A in terms of similar characteristic formulas of the
derivates A; ... A, of A: whenever A has an a;—transition to A; this is reflected
in §(A) by addition of a conjunct {(a;)®(A;). To characterize A up to strong
bisimilarity @¢(A) contains in addition a conjunct [a]¥, for each action a, where
¥, is a disjunction over all a-transitions out of A. In general the definitions
of characteristic formulas @(A) constitutes a simultaneous recursive definition
(as the automaton may have cycles), and to obtain the desired characterization
the solution sought is the maximum one. For timed automata the characteristic
formula construction must necessarily take account of the time assignment in
addition to the actual node. Thus, for a timed automaton A = (A, N, no, C, E),
we shall define characteristic formulas of the form @(n,v), where 5 is a node of A

5 Y|c (resp. 4|k ) denotes the set of time-assignments in vy restricted to the automata
(resp. formula) clocks.

¢ where v - u is the time assignment over C U K such that (v - u)(z) = v(z) if 2 € C
and (v-u)(z) =u(z)if z € K.



and 7 is a region over the clocks of A. The construction of &(n, ) follows closely
the pattern from the finite automa case. However, we first need to be able to
determine the (a—) edges out of  which are enabled in the region v. Given an
edge e = (n,n',a,r,b) in E, n. (resp. 1}, e, 7e, be) denotes n (resp. 0, a, r, b).
Givenn € N and v € RgA, we define E(n,v) = {e | ne = n and b.(y) = tt} and
E(n,v,a) = {e € E(n,7) | ae = a}. Thus, E(n,7) (resp. E(n,7,a)) is the set
of all enabled transitions (resp. a-transitions) from [, y]4. We may now present
the characteristic formula construction for timed automata:

Definition4. Let A be a timed automaton (A, N, n, C, E). For any region v
in RgA, and node n in N, we introduce an identifier @(n, ) (the characteristic
formula) associated with the symbolic state [n,v]a. The definition (declaration)
for @(n, ) is:

At (e inaitre() & A ( \/ (fe"n@(né,re(v))))
95(777 7) d:ef e€E(n.7) a €E(n,v,a)
A (A B0 = oY)

We denote by ld4 the set of identifiers ®(n,~) and by D4 the corresponding
declaration.

Note that the declaration for @(n,v) is not quite a L, formula due to the
presence of implication. However, it is easy to transform it into an equivalent L,
formula because the negation of 5(7) can be expressed in L, . Moreover (rin ¢)
is an abbreviation for (eyin(cain ... (chinp))) whenever ris {c1, ..., ¢p }. Finally
r(7y) denotes [r — 0]y. Note that D4 uses no more than |C| formula clocks.

The declaration for @(n,~) contains three groups of conjunctions the two
first of which are closely related to the characteristic formula construction for
finite automata. The first group contains a (a.)—formula for any edge e, which
is enabled at 7 in the region 7. Following this edge clearly takes the automaton
to the extended state [n),re(7y)]. The second group of conjuncts contains for
each action a a formula of the type [a]¥,, where ¥ is a disjunction over all a—
labelled edges being enabled at 5 in the region . Whereas the two first groups
exhaustively characterizes the action behaviour of the extended state [, ~], the
third conjunct is a W—formula dealing with all delay transitions by requiring
that any delay leading to a particular successor region 4! should satisfy the
corresponding characteristic formula.

FEzrample 4. Reconsider the timed automaton A described in Example 1 and the cor-
responding regions from Example 3. Below we give the declaration of some of the

characteristic formulas. We define ni def /\a[a]ff and we denote 3(v;) by Bi. We have:

@0, 1) it A¥[(B0 = B(n0,20)) A (B = P, %6) A (Bra = P, 114))
A(B2a = D(no, 724))
D(no,76) E (a) zin D, 31) Afa] 2in D, 1) A B FA[c] £
/\V{(ﬁe = D(no,76)) A (Bra = P(no,v1a)) A (Baa = P(no, 724))



We have the following Main Theorem the proof of which is given in [18].

Theorem 5. Let A = (A, N,no,C,E) and B = (A, M, po, K, F) be two timed
automata. Then foranyp € M, n € N,ve R® andu e RC: (p,vdB ~ (n,u)a
iff {(p,vu)p+ Ep, P(n,[u]) where Da corresponds to the previous definition of
®(n,v) for eachn € N and v € RkCA.

As model—checking of L, is decidable we may use the above characteristic formula
construction to decide timed bisimilarity between timed automata: to decide if
two timed automata are timed bisimilar simply compare one automaton to the
characteristic formula of the other.

6 Model Construction

In this section we address the satisfiability problem for L,. That is we want to
decide whether there exists a timed automaton A satisfying a given L,—formula
. The hardness of this problem is illustrated by the following 1-clock formula:

0 (30soelta) - 3eetia)) [ A 31010 (e Al )]

; i=1..1 J#i

where | € N. Indeed ¥; is satisfiable by some p-clock automata if and only if
Il < 2p+ 1. As a consequence of this remark (see [18]) we cannot deduce the
number of clocks in the automaton from the number of clocks in ¢. In fact,
similar to the results for TCTL and T,, we conjecture that the satisfiability
problem for L, is undecidable.

Instead, we address the following more restricted bounded satisfiability
problem in which bounds have been placed on both the number of automaton
clocks as well as the size of the constants these clocks are compared to: given a
formula ¢ (over a declaration D), a set of clocks C' and an integer M, we want to
decide (and synthesize) whether there exists a (C, M)-automaton s.t. A FEp .
We have the following main result:

Theorem 6. The bounded satisfiability problem for L, is decidable.

The remainder of this section is devoted to the proof of this theorem and to
an example of bounded satisfiability checking. The decision procedure is closely
related to the canonical model construction for modal logic [15].
Let ¢ be a given L, formula with k, as maximal constant. Let K be the set of
formula clocks occurring in ¢. Given C' a set of clocks (with CN K = () and M
an integer, we want to decide if there exists a (C, M)-automaton satisfying ¢.
Let Ct* = C UK. Let L¢ be the set of all subformulae of ¢. Obviously L? is
finite.

A problem II is a subset of ch+>< LY where k = maxz (M, ky). A problem
II is said to be satisfiable if there exists a (C, M )-automaton A and a node n of A
such that for any (v, ¢) € II we have [, v]4+ =p . We call A a solution to IT. A



problem IT is said to be mazimal if it satisfies the classical closure conditions for
the boolean operators and the following ones: (y,3) € IT = 3. (4, ) € IT;
(v, W) e ll = Y. (4, ¢)ell; (y,xing) e I = ([{a} = 0]y,¢) € II;

We have the two following remarks, the proofs of which are trivial: (1) If
II C IT" and II" is satisfiable then also IT is satisfiable, and (2) If IT is satisfiable
then there exists a maximal problem II’ containing II and being satisfiable.

Thus it suffices to consider satisfiability of maximal problems. Given a
problem I7, a region 4 and an action a we define the problem II])'" as the set
{(r(y),¥) | (v,[a] ¥) € IT}. Now we introduce a new notion about problems.
Let C be a set of maximal problems. Then C is a consistency relation if whenever
IT € C then:

I—(y,ze+m<y+n)ell = v@)+mey(y)+n

2— VPYa (P%ﬂ:)gn

3— (v {(a)¥)ell = IrCCbeBy(C)and II' € Cs.t.: b(y) =tA
((r(),9) VYT C I') A (W, by ) =t = I3 CII)

We say that a maximal problem is consistent if it belongs to some consistency
relation. We have the following key lemma:

Lemma 7. Let Il be a marimal problem. Then II is consistent if and only if IT
s satisfiable.

Proof. = Let C be a consistency relation (containing I7). Now construct the
canonical automaton A¢c = (A, N, no, C, EYys.t. : N = {ny | II € C}, no is some
np € N, and (g, n,a,7,b) € E iff whenever (v, [a] ¢) € II and b(y) = tt then

(r(v),¥) € II'.

Now it can be shown that A¢ solves all problems of C. In particular whenever
(7,%) € II for some II € C, then [n;,7] 4+ Fp #. Finally we have:
C

Lemma 8. It is decidable whether a mazimal problem is consistent.

Proof. Let Spr,, be the set of maximal problems over ch+>< L¢. Clearly Sp,,

is finite (since LY and chJr are t0o). Thus the set of relations C over maximal
problems is finite. Now given a relation C it is easy to check whether C is con-
sistent since the choices for possible reset set r over C' and the set By (C) are
both finite.

Thus given a formula ¢ and bounds C' and M, we can consider the (finitely
many) maximal problems IT over C' and M containing (vo, ¢). It follows that ¢ is
(C, M)-satisfiable precisely if one of these maximal problems is consistent, which
is decidable due to Lemma 8. Note that the proof of Lemma 7 is constructive:
given a consistency relation it gives a (C, M)-timed automata satisfying ¢.

FEzample 5. Consider the formula ¢ in Example 2: We can use the model construction
algorithm presented above to show that no (1, 1)-automaton satisfies ¢.



Thus the formula in the above example is satisfiable by a 2—clock au-
tomaton but by no (1, 1)-automata. Using the easily established fact that timed
bisimilar automata satisfy the same L,—formulas it follows that the automaton
of Example 2 is inequivalent to all (1, 1)-automata with respect to timed bisim-
ilarity. Now combining the above bounded model-construction algorithm with
the characteristic property construction of the previous section we obtain an
algorithm for deciding whether a timed automaton can be simplified in either its
number clocks or the size of the constants these clocks are compared to: given
a timed automaton A, a clock set C' and a natural number M, it is decidable
whether there exists a (C, M)-automaton being timed bisimilar to A.

Conclusion

This paper has presented two main results relating timed automata and the
real-timed logic L, : a characteristic formula construction, and, a bounded model
construction algorithm. The results presented may be pursued and improved in a
number of directions: The notion of a characteristic formula construction may be
applied to other behavioural preorders. In related work, we have already shown
that characteristic formula constructs also exists for the “faster-than”-relation
in [11] and the time-abstracted equivalence in [19]; The results of this paper
only settles decidability of a bounded satisfiability problem for L,. However, it
follows from this result that the unconstrained satisfiability problem is at least
r.e. Decidability of the satisfiability problem with only bounds on the number
of clocks remains an open problem. Finally, future work includes study of the
decidability of the satisfiability problems for extensions of L,,.
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