As Cheap as Possible:
Efficient Cost-Optimal Reachability for Priced
Timed Automata

Kim Larsen'2?, Gerd Behrmann', Ed Brinksma?, Ansgar Fehnker*, Thomas
Hune?, Paul Pettersson®, and Judi Romijn*

! Basic Research in Computer Science, Aalborg University
? Department of Computer Systems, University of Twente
3 Basic Research in Computer Science, Aarhus University
4 Computing Science Institute, University of Nijmegen,
5 Department of Information Technology, Uppsala University

Abstract. In this paper we present an algorithm for efficiently comput-
ing optimal cost of reaching a goal state in the model of Linearly Priced
Timed Automata (LPTA). The central contribution of this paper is a
priced extension of so-called zones. This, together with a notion of facets
of a zone, allows the entire machinery for symbolic reachability for timed
automata in terms of zones to be lifted to cost-optimal reachability using
priced zones. We report on experiments with a cost-optimizing extension
of UPPAAL on a number of examples.

1 Introduction

Well-known formal verification tools for real-time and hybrid systems, such as
UPPAAL [LPY97], Kronos [BDM198] and HyTech [HHWT97], use symbolic tech-
niques to deal with the infinite state spaces that are caused by the presence of
continuous variables in the associated verification models. However, symbolic
model checkers still share the “state space explosion problem” with their non-
symbolic counterparts as the major obstacle for their application to non-trivial
problems. A lot of research, therefore, is devoted to the containment of this
problem.

An interesting idea for model checking of reachability properties that has
received more attention recently is to “guide” the exploration of the (symbolic)
state space such that “promising” sets of states are visited first. In a number
of recent publications [Feh99,HLP00,BFH™ NY99,BM00] model checkers have
been used to solve a number of non-trivial scheduling problems, reformulated in
terms of reachability, viz. as the (im)possibility to reach a state that improves on
a given optimality criterion. Such criteria distinguish scheduling algorithms from
classical, full state space exploration model checking algorithms. They are used
together with, for example, branch-and-bound techniques [AC91] to prune parts
of the search tree that are guaranteed not to contain optimal solutions. This
observation motivates research into the extension of model checking algorithms

with optimality criteria. They provide a basis for the (cost-) guided exploration
of state spaces, and improve the potential of model checking techniques for the
resolution of scheduling problems. We believe that such extensions can be inter-
esting for real-life applications of both model checking and scheduling.

Based on similar observations an extension of the timed automata model
with a notion of cost, the Linearly Priced Timed Automata (LPTA), was already
introduced in [BFH*01]. This model allows for a reachability analysis in terms of
accumulated cost of traces, i.e. the sum of the costs of the individual transitions
in the trace. Each action transitions has an associated price p determining its
cost. Likewise, each location has an associated rate r and the cost of delaying
d time units is d - r. In [BFH01], and independently in [ATP], computabitlity
of minimal-cost reachability is demonstrated based on a cost-extension of the
classical notion of regions.

Although ensuring computability, the region construction is known to be very
inefficient. Tools like UPPAAL and Kronos use symbolic states of the form (I, Z),
where [is a location of the timed automaton and Z is a zone, i.e. a convex set
of clock valuations. The central contribution of this paper is the extension of
this concept to that of priced zones, which are attributed with an (affine) linear
function of clock valuations that defines the cost of reaching a valuation in the
zone. We show that the entire machinery for symbolic reachability in terms of
zones can be lifted to cost-optimal reachability for priced zones. It turns out that
some of the operations on priced zones force us to split them into parts with
different price attributes, giving rise to a new notion, viz. that of the facets of a
zone.

The suitability of the LPTA model for scheduling problems was already illus-
trated in [BFHT], using the more restricted Uniformly Priced Timed Automata
(UPTA) model, admitting an efficient priced zone implementation via Differ-
ence Bound Matrices [Dil89]. The model was used to consider traces for the
time-optimal scheduling of a steel plant and a number of job shop problems.
The greater expressivity of LPTA also supports other measures of cost, like idle
time, weighted idle time, mean completion time, earliness, number of tardy jobs,
tardiness, etc. We take an aircraft landing problem [BKAOQO] as the application
example for this paper.

The structure of the rest of this paper is as follows. In Section 2 we give an
abstract account of symbolic optimal reachability in terms of priced transition
systems, including a generic algorithm for optimal reachability. In Section 3 we
introduce the model of linearly priced timed automata (LPTA) as a special case
of the framework of Section 2. We also introduce here our running application
example, the aircraft landing problem. Section 4 contains the definition of the
central concept of priced zones. The operations that we need on priced zones
and facets are provided in Section 5. The implementation of the algorithm, and
the results of experimentation with our examples are reported in Section 6. Our
conclusions, finally, are presented in Section 7.

2 Symbolic Optimal Reachability

Analysis of infinite state systems require symbolic techniques in order to effec-
tively represent and manipulate sets of states simultaneously (see [FSO01],[FS98],
[ACIYK96,AJ94,Cer94]). For analysis of cost-optimality, additional information
of costs associated with individual states needs to be represented. In this section,
we describe a general framework for symbolic analysis of cost-optimal reachabil-
ity on the abstract level of priced transition systems.

A priced transition system is a structure T = (S, so, X, —), where S is a
(infinite) set of states, so € S is the initial state, X is a (finite) set of labels,
and, — is a partial function from S x X' x S into the non-negative reals, R>o,
defining the possible transitions of the systems as well as their associated costs.
We write s =, s' whenever — (s,a,s') is defined and equals p. Intuitively,
s =, ' indicates that the system in state s has an a-labeled transition to the
state s' with the cost of p. We denote by s < s' that Ip € Rsg.5 =, &/,
and, by s = s' that 3o € ¥.s 3 s'. Now, an execution of 7 is a sequence
Q= 80 =, 81 —p, Sa--0 —, 8n. The cost of a, cost(a), is the sum
> ic{1..n} Pi- For a given state s, the minimal cost of reaching s, mincost(s),
is the infimum of the costs of finite executions starting in the initial state sg
and ending in s. Similar, the minimal cost of reaching a designated set of states
G C S, mincost(G), is the infimum of the costs of finite executions ending in a
state of G.

To compute minimum-cost reachability, we suggest the use of priced symbolic
states of the form (A,w), where A C S is a set of states, and 7 : A — R
assigns (non-negative) costs to all states of A. The intention is that, reachabil-
ity of the priced symbolic state (A,) should ensure, that any state s of A is
reachable with cost arbitrarily close to 7(s). As we are interested in minimum-
cost reachability, = should preferably return as small cost values as possible.
This is obtained by the following extension of the post-operators to priced sym-
bolic states: for (A, 7) a priced symbolic state and a € X, Post,(A,n) is the
priced symbolic state (post,(A),n), where post,(A) = {s'|3s € A.s & s}
and 7 is given by n(s) = inf{n(s') + p|s' € AAs' %, s}. That is, n essen-
tially gives the cheapest cost for reaching states of B via states in A, assuming
that these may be reached with costs according to w. A symbolic execution of
a priced transition system 7 is a sequence 8 = (Ao, 70),---,(An,), where
for i < m, (Ajr1,mir1) = Post,, (A;,m;) for some a; € ¥, and 49 = {sp} and
mo(s0) = 0. It is not difficult to see, that there is a very close connection be-
tween executions and symbolic executions: for any execution a of 7 ending in
a state s, there is a symbolic execution 8 of T, that ends in a priced symbolic
state (A,), such that s € A and 7(s) < cost(a). Dually, for any symbolic ex-
ecution 8 of T ending in priced symbolic state (A,7), whenever s € A, then
mincost(s) < m(s). From this it follows that the symbolic semantics on priced
symbolic states accurately captures minimum-cost reachability in the sense that
mincost(G) = inf{mincost(A N G, 7) : (4,7) is reachable}.

CoST := 0
PASSED := ()
WAITING := {({so},m0)}
while WAITING #) do
select (A, 7) from WAITING
if ANG # 0 and minCost(AN G, w) < CosT then
CosT := minCost(AN G,)
if for all (B,n) in PASSED: (B,n) IZ (A,7) then
add (A,) to PASSED
add Post, (A,) to WAITING for all a € ¥
return CoOSsT

Fig. 1. Abstract Algorithm for the Minimal-Cost Reachability Problem.

Let (A,n) and (B,n) be priced symbolic states. We write (4,7) C (B,n) if
B C A and 7(s) < n(s) for all s € B, informally expressing, that (A,) is “as
big and cheap” as (B,n). Also, we denote by minCost(A,r) the infimum costs
in A wr.t. m, i.e. inf{n(s)|s € A}. Now using the above notion of priced sym-
bolic state and associated operations, an abstract algorithm for computing the
minimum cost of reaching a designated set of goal states G is shown in Fig.1. It
uses two data-structures WAITING and PASSED to store priced symbolic states
waiting to be examined, and priced symbolic states already explored, respec-
tively. In each iteration, the algorithm proceeds by selecting a priced symbolic
state (A, 7) from WAITING, checking that none of the previously explored states
(B,n) are bigger and cheaper, i.e. (B,n) £ (4,7), and adds it to PASSED and
its successors to WAITING. In addition, the algorithm uses the global variable
CosT, which is initially set to oo and updated whenever a goal state is found
that can be reached with lower cost than the current value of CosT. The algo-
rithm terminates when WAITING is empty, i.e. when no further priced symbolic
states are left to be examined. When the algorithm of Fig. 1 terminates, the
value of CosT equals mincost(G). Furthermore, termination of the algorithm
will be guaranteed provided L is a well-quasi ordering on priced symbolic states.

The above framework may be instantiated by providing concrete syntax
for priced transition systems, together with data-structures for priced symbolic
states allowing for computation of the Post-operations, minCost, as well as
C (which should be well-quasi). In the following sections we provide such an
instantiation for a priced extension of timed automata.

3 Priced Timed Automata

Linearly priced timed automata (LPTA) [BFH+01,BFH" ,ATP] extend the model
of timed automata [AD90] with prices on all edges and locations. In these mod-
els, the cost of taking an edge is the price associated with it, and the price of a
location gives the cost-rate applied when delaying in that location.

Let C be a set of clocks. Then B(C) is the set of formulas that are conjunctions
of atomic constraints of the form z < n and £ — y > m for z,y € C, < € {<

,=,>}' n a natural number, and m an integer. Elements of B(C) are called
clock constraints or zones over C. P(C) denotes the power set of C. Clock values
are represented as functions from C to the non-negative reals R>¢, called clock
valuations. We denote by RC the set of clock valuations for C. For u € R® and
g € B(C), we denote by u € g that u satisfies all constraints of g.

Definition 1 (Linearly Priced Timed Automata). A linearly priced timed
automaton A over clocks C is a tuple (L,ly, E,I, P), where L is a finite set of
locations, ly is the initial location, E C L x B(C) x P(C) x L is the set of edges,
where an edge contains a source, a guard, a set of clocks to be reset, and a target,
I: L — B(C) assigns invariants to locations, and P : (LUE) — N assigns prices

to both Iocations and edges. In the case of (I,g,7,1'") € E, we write | 25 1.

approaching
cost ‘8 cl>=waitll
> i
cost=I (T)+d t>=E — oot
landX! cost+=d A
cl:=0
early late
- t<=T t<=L
cost=¢ (T-) cost’==e Qe 9 cost'==] 0
d t==T landX! cl>=waitl2
c2>=wait22
0 g = i t @) land2?
(a) done (b) c2:=0 (C)

Fig. 2. Figure (a) depicts the cost of landing a plane at time t. Figure (b) shows an
LPTA modelling the landing costs. Figure (c) shows an LPTA model of the runway.

The semantics of a linearly priced timed automaton A = (L, lo, E, I, P) may
now be given as a priced transition system with state-space L x RC with the
initial state (lp,uo) (where ug assigns zero to all clocks in C), and with the finite
label-set X' = E U {¢}. Thus, transitions are labelled either with the symbol §
(indicating some delay) or with an edge e (the one taken). More precisely, the
priced transitions are given as follows:

—(u) S, (u+d)ifV0<e<d:u+eel(l),andp=d-P(l),
- (l,u) 3),, " u)ife=(,g9,r1") € E,u€ g, u =u[r— 0], and p = P(e),

where for d € R>o, u + d maps each clock z in C to the value u(z) + d, and
u[r — 0] denotes the clock valuation which maps each clock in r to the value 0
and agrees with u over C \ r.

Ezample 1 (Aircraft Landing Problem). As an example of the use of LPTAs
we consider the problem of scheduling aircraft landings at an airport, due to
[BKAOQ]. For each aircraft there is a maximum speed and a most fuel efficient
speed which determine an earliest and latest time the plane can land. In this

! For simplicity we do not deal with strict inequalities in this short version.

interval, there is a preferred landing time called target time at which the plane
lands with minimal cost. The target time and the interval are shown as T' and
[E, L] respectively in Fig. 2(a). For each time unit the actual landing time devi-
ates from the target time, the landing cost increases with rate e for early landings
and rate [for late landings. In addition there is a fixed cost d associated with
late landings. In Fig. 2(b) the cost of landing an aircraft is modeled as an LPTA.
The automaton starts in the initial location approaching and lands at the mo-
ment one of the two transitions labeled l1andX!? are taken. In case the plane
lands too early it enters location early in which it delays exactly T — ¢ time
units. In case the plane is late the cost is measured in location late (i.e. the
delay in location late is 0 if the plane is on target time). After L time units the
automaton always ends in location done. Figure 2(c) models a runway ensuring
that two consecutive landings takes place with a minimum separation time. 0O

4 Priced Zones

Typically, reachability of a (priced) timed automaton, A = (L,lo, E, I, P), is
decided using symbolic states represented by pairs of the form (I, Z), where [is
a location and Z is a zone. Semantically, (I, Z) represents the set of all states
(I,u), where u € Z. Whenever Z is a zone and r a set of clocks, we denote by ZT
and {r}Z the set of clock valuations obtained by delaying and resetting (w.r.t. r)
clock valuations from Z respectively. That is, Z" = {u+d|u € Z,d € R>¢} and
{r}Z = {u[r — 0]|u € Z}. It is well-known — using a canonical representation
of zones as Difference Bounded Matrices (DBMs) [Dil89] — that in both cases the
resulting set is again effectively representable as a zone. Using these operations
together with the obvious fact, that zones are closed under conjunction, the post-
operations may now be effectively realised using the zone-based representation
of symbolic states as follows:

— posts((1,2)) = (I, (Z A1) AIQ)),
— poste((1,Z)) = (I',{r}(Z A g)) whenever e = (l,g,7,l').

Now, the framework given in Section 2 for symbolic computation of minimum-
cost reachability calls for an extension of our zone-based representation of sym-
bolic states, which assigns costs to individual states. For this, we introduce the
following notion of a priced zone, where the offset, Az, of a zone Z is the unique
clock valuation of Z satisfying Vu € ZVz € C. Az (z) < u(x).

Definition 2 (Priced Zone). A priced zone Z is a tuple (Z,c,r), where Z is
a zone, ¢ € N describes the cost of the offset, Az, of Z, and r : C — Z assigns a
cost-rate r(x) for any clock x. We write u € Z whenever u € Z. For any u € Z
the cost of u in Z, Cost(u, Z), is defined as ¢ +), c7(x) - (u(z) — Az(x)).

2 In the example we assume that several automata Ai,..., A, can be composed
in parallel with a CCS-like parallel composition operator [Mil89] to a network
(Ai, ..., An)\Act, with all actions Act being restricted. We further assume that the
cost of delaying in the network is the sum of the cost of delaying in the individual
automata.

Cost = @ + 2y — 12

Cost =2 — 2 + 2y Cost =2 — @ + 2y

Ay Az
— c=4
TSN A A B B

ZI Zl x T
Glm C025t=m—4

Fig. 3. A Priced Zone and Successor-Sets

Thus, the cost assignments of a priced zone define a linear plane over the un-
derlying zone and may alternatively be described by a linear expression over
the clocks. Figure 3 illustrates the priced zone Z = (Z,c¢,r) over the clocks
{z,y}, where Z is given by the six constraints 2 < z < 7, 2 < y < 6 and
-2 <z —y < 3, the cost of the offset (Az = (2,2) is ¢ = 4, and the cost-rates
are (z) = —1 and r(y) = 2. Hence, the cost of the clock valuation (5.1,2.3) is
given by 4 + (—1) - (5.1 — 2) + 2. (2.3 — 2) = 1.5. In general the costs assigned
by Z may be described by the linear expression 2 — z + 2y.

Now, priced symbolic states are represented in the obvious way by pairs (I, Z),
where [is a location and Z a priced zone. More precisely, (I, Z) represents the
priced symbolic state (4, w), where A = {({,u) |u € Z} and n(l,u) = Cost(u, Z).

Unfortunately, priced symbolic states are not directly closed under the Post-
operations. To see this, consider a timed automata 4 with two locations / and
m and a single edge from [to m with trivial guard (¢rue) and resetting the clock
y.. The cost-rate of [is 3 and the transition has zero cost. Now, let Z = (Z,¢,r)
be the priced zone depicted in Fig. 3 and consider the associated priced symbolic
state (I, Z). Assuming that the e-successor set, Post.(l, Z), was expressible as a
single priced symbolic state (I, Z'), this would obviously require I’ = m and Z' =
(Z',d,r") with Z' = {y}Z. Furthermore, following our framework of Section 2,
the cost-assignment of Z’ should be such that Cost(u’, Z') = inf{Cost(u, Z) |u €
ZAu[y— 0] =u'} for all w' € Z'. Since r(y) > 0, it is obvious that these infima
are obtained along the lower boundary of Z with respect to y (see Fig. 3 left).
E.g. Cost((2,0), 2" = 4, Cost((4,0), Z') = 2, and Cost((6,0), Z') = 2. In general
Cost((z,0), Z") = Cost((z,2),Z) = 6 —z for 2 < z < 5 and Cost((z,0), 2") =
Cost((z,z — 3),Z2) =z — 4 for 5 < x < 7. However, the disagreement w.r.t. the
cost-rate of z (—1 or 1) makes it clear that the desired cost-assignment is not
linear and hence not obtainable from any single priced zone. On the other hand,
it is also shows that splitting Z' = {y}Z into the sub-zones Z] = Z' A2 <z <5
and Zy = Z' A5 <z <7, allows the e-successor set Post.(l, Z) to be expressed
using the union of two priced zones (with 7(z) = —1 in Z] and r(z) =1 in Z}).

— z3

Zg
Zo =(Z A(z—y=23) B Zo

Z1=(ZNy=2)

I

I

l
T T T T T T T T T T T
" {v}Z1 {y}Z2-

{y}z

Fig.4. A Zone: Facets and Operations.

Similarly, priced symbolic states are not directly closed w.r.t. Posts. To see
this, consider again the LPTA A from above and the priced zone Z = (Z,¢,r)
depicted in Fig. 3. Clearly, the set Posts(I, Z) must cover the zone Z' (see Fig. 3).
It can be seen that, although Posts(l, Z) is not expressible as a single priced
symbolic state, it may be expressed as a finite union by splitting the zone Z' into
the three sub-zones Z, Z] = (ZN\Z)A(z—y < 1), and Z] = (ZN\Z)A(z—y > 1).

5 Facets & Operations on Priced Zones

The universal key to expressing successor sets of priced symbolic states as finite
unions is provided by the notion of facets of a zone Z. Formally, whenever x < n
(z —y < m) is a constraint of Z, the strengthened zone ZA(z =n) (ZA(z—y =
m)) is a facet of Z. Facets derived from lower bounds on individual clocks, z > n,
are classified as lower facets, and we denote by LF(Z) the collection of all lower
facets of Z. Similarly, the collection of upper facets, UF(Z), of a zone Z is
derived from upper bounds of Z. We refer to lower as well as upper facets as
individual clock facets. Facets derived from lower bounds of the forms x > n or
x —y > m are classified as lower relative facets w.r.t. . The collection of lower
relative facets of Z w.r.t. z is denoted LF,(Z). The collection of upper relative
facets of Z w.r.t. x, UF,(Z), is derived similarly. Figure 4(left) illustrates a zone
Z together with its six facets: e.g. {Z1, Zg } constitutes the lower facets of Z, and
{Z1,Z>} constitutes the lower relative facets of Z w.r.t. y.

The importance of facets comes from the fact that they allow for decompo-
sitions of the delay- and reset-operations on zones as follows:

Lemma 1. Let Z be a zone and y a clock. Then the following holds:
i) 7" = UFeLF(Z) Ft iii) {y}Z = UFELFy(Z){y}F
i) Z'=2u UFeUF(Z) Ft iv) {y}Z = UFeUFy(Z){y}F

Informally (see Fig. 4(right)) i) and ii) express that any valuation reachable by
delay from Z is reachable from one of the lower facets of Z, as well as reachable

from one of the upper facets of Z or within Z. iii) (and iv)) expresses that any
valuation in the projection of a zone will be in the projection of the lower (upper)
facets of the zone relative to the relevant clock.

As a first step, the delay- and reset-operation may be extended in a straight-
forward manner to priced (relative) facets:

Definition 3. Let Z = (F,c,r) be a priced zone, where F is a relative facet
w.r.t. y in the sense that y —x = m is a constraint of F. Then {y}Z = (F',d,r'),
where F' = {y}F, ¢ = ¢, and r'(z) = r(y) + r(z) and r'(2) = r(z) for z # . In
case y = n is a constraint of F, {y}Z = (F',c,r) with F' = {y}F.3

Definition 4. Let Z = (F,¢,r) be a priced zone, where F is a lower or upper
facet in the sense that y = n is a constraint of F. Let p € N be a cost-rate.
Then Z = (F',c',r'), where F' = F', ¢! = ¢, and r'(y) = p — > .y T(2) and
r'(z) =r(z) for z £ y.

Conjunction of constraints may be lifted from zones to priced zones simply by
taking into account the possible change of the offset. Formally, let Z = (Z,¢,r)
be a priced zone and let g € B(C). Then Z A g is the priced zone Z' = (Z',c,r')
with Z' = Z Ag,r' =r,and ¢' = Cost(Az, Z). For Z = (Z,c,r) and n € N we
denote by Z + n the priced zone (Z, ¢ + n,r).

The constructs of Definitions 3 and 4 essentially provide the Post-operations
for priced facets. More precisely, it is easy to show that:

Post.(l, 21) = (I, {y}(Z1Ag)+P(e)) Posts(l, Z2) = (I, (22 A I1)TOAI))

ife=(l,9,{y},!"), 21 is a priced relative facet w.r.t. to y and Z, is an individual
clock facet. Now, the following extension of Lemma 1 to priced symbolic states
provides the basis for the effective realisation of Post-operations in general:

Theorem 1. Let A = (L,lo,E,I, P) be an LPTA. Let e = (I,9,{y},l') € E*
with P(e) = ¢, P(I) =p, I(l) = J and let Z = (Z,¢,r) be a priced zone. Then:
{{y}Q+a) | Qe LF)(ZAg) } ifr(y) >0
{({s}Q+9) |QeUF,(Zng)} ifr(y) <O

{0.2)} U{LQWAI) [QEUFZAD} ifp> T, ccr(@)
{@,Q"AJ) | Qe LF(Z A)} D < Yeer(@)

In the definition of Post. the successor set is described as a union of either lower
or upper relative facets w.r.t. to the clock y being reset, depending on the rate
of y (as this will determine whether the minimum is obtained at the lower of

Post.((1, 2)) = { E

Posts((1,2)) = {

3 This “definition” of {y}(Z) is somewhat ambigious since it depends on which con-
straint involving y that is choosen. However, the Cost-function determined will be
independent of this choice.

4 For the case with a general reset-set 7, the notion of relative facets may be generalized
to sets of clocks.

upper boundary). For similar reason, in the definition of Posts, the successor-
set is expressed as a union over either lower or upper (individual clock) facets
depending on the rate of the location compared to the sum of clock cost-rates.

To complete the instantiation of the framework of Section 2, it remains
to indicate how to compute minCost and C on priced symbolic states. Let
Z = (Z,c,r) and Z2' = (Z',c',r'") be priced zones and let (I, Z) and (I', 2') be
corresponding priced symbolic states. Then minCost(l, Z) is obtained by min-
imizing the linear expression ¢ + Y, (r(z) - (r — Az(x)) under the (linear)
constraints expressed by Z. Thus, computing minCost reduces to solving a sim-
ple Linear Programming problem. Now let Z'\ Z be the priced zone (Z*, c*,r*)
with Z* = Z, ¢* = ¢/ — Cost(Az, Z) and r*(x) = r'(x) — r(z) for all z € C. Tt
is easy to see that Cost(u, Z'\Z) = Cost(u, Z') — Cost(u, Z) for all u € Z’, and
hence that (I,Z) C (I',2") iff I =1U', Z' C Z and minCost(Z'\Z) > 0) Thus,
deciding C also reduces to a Linear Programming problem.

In exploring LPTAs using the algorithm of Fig. 1, we will only need to
consider priced zones Z with non-negative cost assignments in the sense that
Cost(u, Z) > 0 for all u € Z. Now, application of Higman’s Lemma [Hig52]
ensures that C is a well-quasi ordering on priced symbolic states for bounded
LPTA. We refer to [BFH101] for more detailed arguments.

6 Implementation & Experiments

In this section we give further details on a prototype implementation within the
tool UPPAAL [LPY97] of priced zones, formally defined in the previous sections,
and report on experiments on the aircraft landing problem.

The prototype implements the Post. (reset), Posts (delay), minCost, and
C operations, using extensions of the DBM algorithms outlined in [Rok93]. To
minimize the number of facets considered and reduce the size of the LP problems
needed to be solved, we make heavy use of the canonical representation of zones
in terms a minimal set of constraints given in [LLPY97]. For dealing with LP
problems, our prototype currently uses a free available implementation of the
simplex algorithm.5 Many of the techniques for pruning and guiding the state
space search described in [BFH™'] have been used extensively in modelling and
verification.

Recall the aircraft landing problem partially described in Example 1. An
LPTA model of the costs associated with landing a single aircraft is shown in
Fig. 2(b). When landing several planes the schedule has to take into account
the separation times between planes to avoid that the turbulence of one plane
affecting an other. The separation times depend on the types of the planes that
are involved. Large aircrafts for example generate more turbulence than small
ones, and successive planes should consequently keep a bigger distance. To model
the separation times between two types of planes we introduce an LPTA of the
kind shown in Fig. 2(c).

% Ip_solve 3.1a by Michael Berkelaar, ftp://ftp.es.ele.tue.nl/pub/lp_solve.

Table 1. Results for seven instances of the aircraft landing problem. Results were
obtained on a PentiumII 333Mhz.

" problem instance 1 2 3 4 5 6 7
é% number of planes| 10{ 15| 20 20 20 30| 44
AB |[number of types 2 2 2 2 2 4 2

optimal value 700| 1480 820 2520 3100(24442{1550

1 |lexplored states 481| 2149| 920 5693| 15069| 122| 662
cputime (secs) 4.19(25.30{11.05| 87.67| 220.22| 0.60|4.27
optimal value 90(210{ 60 640 650 554 0
2 |lexplored states | 1218| 1797| 669 28821| 47993| 9035| 92
cputime (secs) [17.87(39.92|11.02| 755.84| 1085.08/123.72| 1.06
optimal value 0 0 0 130 170 0
3 ||explored states 24| 46| 84| 207715| 189602 62|N/A
cputime (secs) 0.36 0.70| 1.71|14786.19|12461.47| 0.68

optimal value 0 0
4 |lexplored states | N/A|N/A|N/A 65 64| N/AN/A
cputime (secs) 1.97 1.53

Table 1 presents the results of an experiment were the prototype was applied
to seven instances of the aircraft landing problem taken from [BKA00]®. For each
instance, which varies in the number of planes and plane types, we compute the
cost of the optimal schedule. In cases the cost is non-zero we increase the number
of runways until a schedule of cost 0 is found”. In all instances, the state space is
explored in minimal cost-order, i.e. we select from the waiting list the priced zone
(1, Z) with lowest minCost(l, Z). Equal values are distinguished by selecting first
the zone which results from the largest number of transitions, and secondly by
selecting the zone which involves the plane with the shortest target time. As
can be seen from the table, our current prototype implementation is able to deal
with all the tested instances. Beasley et al. [BKAOO] solves all problem instances
with a linear programming based tree search algorithm, in cases that the initial
solution — obtained with a heuristic — is not zero. In 7 of the 15 benchmarks
(with optimal solution greater than zero) the time-performance of our method is
better than theirs. These are the instances 4 to 7 with less than 3 runways. This
result also holds if we take into account that our computer is about 50% faster
(according to the Dongarra Linpack benchmarks [Don01]). It should be noted,
however, that our solution-times are quite incomparable to those of Beasleys.
For some instances our approach is up to 25 times slower, while for others it is
up to 50 times faster than the approach in [BKAOO].

The cost-extended version of UPPAAL has additionally been (and is currently
being) applied to other examples, including a cost-extended version of the Bridge
Problem [RB98], an optimal broadcast problem and a testing problem.

6 These and other benchmarks are available at ftp://mscmga.ms.ic.ac.uk/pub/.
" This is always possible as the cost of landing on target time is 0 and the number of
runways can be increased until all planes arrive at target time.

7 Conclusion

In this paper we have considered the minimum-cost reachability problem for LP-
TAs. The notions of priced zones, and facets of a zone are central contributions of
the paper underlying our extension of the tool UPPAAL. Our initial experimental
investigations based on a number of examples are quite encouraging.

Compared with the existing special-purpose, time-optimizing version of UP-
PAAL [BFH*], the presented general cost-minimizing implementation does only
marginally down-grade performance. In particular, the theoretical possibility of
uncontrolled splitting of zones does not occur in practice. In addition, the consid-
eration of non-uniform cost seems to significantly reduce the number of symbolic
states explored.

The single, most important question, which calls for future research, is how
to exploit the simple structure of the LP-problems considered. We may benefit
significantly from replacing the currently used LP package with some package
more tailored towards small-size problems.

References

[AC9]1] D. Applegate and W. Cook. A Computational Study of the Job-Shop
Scheduling Problem. OSRA Journal on Computing 3, pages 149-156, 1991.

[ACJYK96] P. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability
theorems for infinite-state systems, 1996.

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc.
of Int. Colloquium on Algorithms, Languages and Programming, number
443 in Lecture Notes in Computer Science, pages 322-335, July 1990.

[AJ94] P. Abdulla and B. Jonsson. Undecidability of verifying programs with
unreliable channels. In Proc. 21st Int. Coll. Automata, Languages, and
Programming (ICALP’94), volume 820 of LNCS, 1994.

[ATP] R. Alun, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed
automata. To appear in HSCC2001.

[BDM198] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: A Model-Checking Tool for Real-Time Systems. In Proc. of the
10th Int. Conf. on Computer Aided Verification, number 1427 in Lecture
Notes in Computer Science, pages 546—550. Springer—Verlag, 1998.

[BFH] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, and
J. Romijn. Efficient guiding towards cost-optimality in UPPAAL. To appear
in Proceedings of TACAS’2001.

[BFH'01] G.Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager. Minimum-Cost Reachability for Priced Timed Au-
tomata. To appear in Proceedings of HSCC2001, 2001.

[BKA0O] J.E. Beasley, M. Krishnamoorthy, and D. Abramson. Scheduling Aircraft
Landings-The Static Case. Transportation Science, 34(2):180-197, 2000.

[BMOO] Ed Brinksma and Angelika Mader. Verification and optimization of a plc
control schedule. In Proceedings of the 7th SPIN Workshop, volume 1885
of Lecture Notes in Computer Science. Springer Verlag, 2000.

[Cer94] K. Cerans. Deciding properties of integral relational automata. In Pro-
ceedings of ICALP 9/, volume 820 of LNCS, 1994.

[Dil89]

[Don01]

[Feh99]

[FS98]

[FS01]

[HHWTY7]

[Hig52]

[HLP0O]

[LLPY97]

[LPY97]

[Mil89)]

[NY99]

[RBOS]

[Rok93]

D. Dill. Timing Assumptions and Verification of Finite-State Concurrent
Systems. In J. Sifakis, editor, Proc. of Automatic Verification Methods for
Finite State Systems, number 407 in Lecture Notes in Computer Science,
pages 197-212. Springer—Verlag, 1989.

Jack J. Dongarra. Performance of Various Computers Using
Standard Linear Equations Software. Technical Report CS-
89-85, Computer Science Department, University of Tennessee,
2001. An up-to-date version of this report can be found at

http://www.netlib.org/benchmark/performance.ps.

A. Fehnker. Scheduling a steel plant with timed automata. In Proceedings
of the 6th International Conference on Real-Time Computing Systems and
Applications (RTCSA99), pages 280-286. IEEE Computer Society, 1999.
A. Finkel and P. Schnoebelen. Fundamental structures in well-structured
infinite transition systems. In Proc. 8rd Latin American Theoretical Infor-
matics Symposium (LATIN’98), volume 1380 of LNCS, 1998.

A. Finkel and Ph. Schnoebelen. Well structured transition systems every-
where. Theoretical Computer Science, 256(1-2):64-92, 2001.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A Model Checker
for Hybird Systems. In Orna Grumberg, editor, Proc. of the 9th Int. Conf.
on Computer Aided Verification, number 1254 in Lecture Notes in Com-
puter Science, pages 460-463. Springer—Verlag, 1997.

G. Higman. Ordering by divisibility in abstract algebras. Proc. of the
London Math. Soc., 2:326-336, 1952.

T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control
Programs Using UPPAAL. In Ten H. Lai, editor, Proc. of the IEEE ICDCS
International Workshop on Distributed Systems Verification and Valida-
tion, pages E15-E22. IEEE Computer Society Press, April 2000.

Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Effi-
cient Verification of Real-Time Systems: Compact Data Structures and
State-Space Reduction. In Proc. of the 18th IEEE Real-Time Systems
Symposium, pages 14-24. IEEE Computer Society Press, December 1997.
K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1-2):134-152, October 1997.
R. Milner. Communication and Concurrency. Prentice Hall, Englewood
Cliffs, 1989.

P. Niebert and S. Yovine. Computing optimal operation schemes for multi
batch operation of chemical plants. VHS deliverable, May 1999. Draft.
T. C. Ruys and E. Brinksma. Experience with Literate Programming in
the Modelling and Validation of Systems. In Bernhard Steffen, editor, Pro-
ceedings of the Fourth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’98), number 1384
in Lecture Notes in Computer Science (LNCS), pages 393-408, Lisbon,
Portugal, April 1998. Springer-Verlag, Berlin.

T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis,
Stanford University, 1993.

